WO1992006482A1 - Process for increasing the electric strength and improving the leak resistance of insulation sections and application of this process to vacuum switches - Google Patents

Process for increasing the electric strength and improving the leak resistance of insulation sections and application of this process to vacuum switches Download PDF

Info

Publication number
WO1992006482A1
WO1992006482A1 PCT/DE1991/000728 DE9100728W WO9206482A1 WO 1992006482 A1 WO1992006482 A1 WO 1992006482A1 DE 9100728 W DE9100728 W DE 9100728W WO 9206482 A1 WO9206482 A1 WO 9206482A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation
component
coating
vacuum
insulation section
Prior art date
Application number
PCT/DE1991/000728
Other languages
German (de)
French (fr)
Inventor
Wolfgang Schlenk
Karl-Heinz Gunzelmann
Jutta Sill
Ernst-Ludwig Hoene
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1992006482A1 publication Critical patent/WO1992006482A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring

Definitions

  • the invention relates to a method for increasing the dielectric strength and reducing the leakage currents of insulation sections.
  • the invention relates to the use of this method in vacuum switches with a metallic switching vessel.
  • the invention also relates to such a vacuum switch with mutually movable contacts in a switching vessel made of metallic parts, with an inner insulation gap between the opened contacts and an outer insulation gap between the metallic parts of the switching vessel.
  • the outer insulation section is e.g. realized by a ceramic insulator ring, which is connected to the metal flanges or metal caps of the switch housing on both end faces by a metal / ceramic connection.
  • the length of the ceramic insulator ring should be kept as short as possible.
  • the dielectric strength of such an insulation section is indeed on the vacuum side, i.e. at a vacuum pressure ⁇ 10 mbar, at approx. 40 kV / mm. Outside, i.e. t, ⁇ against the environment, this value drops to approx. 3 kV / mm at atmospheric pressure.
  • a vacuum switch is described with a vacuum vessel containing an insulating element for receiving a fixed contact and a moving contact, which is provided by a coating of a grease compound of a water-repellent material and provided on the outer surface of the insulating element is characterized by an insulating tube made of water-repellent, shrinkable material on the coating made of the fat compound.
  • an insulating tube in particular has the disadvantage of a limited durability of the plastic in aggressive industrial atmospheres, when exposed to UV radiation outdoors and other disruptive influences.
  • moisture can creep under the shrink tube, so that the dielectric strength and leakage current behavior deteriorate.
  • the object of the invention is to improve the voltage resistance and the leakage current behavior of the ceramic in the exterior without having to use insulating sleeves with the disadvantages mentioned.
  • the object is achieved in that the effective insulation distance is increased by a coating of insulating material.
  • a layer is produced for this purpose by thermal spraying, which layer covers both the insulation gap and the adjacent metallic areas of the component.
  • thermal spraying is advantageously used in order to coat a ceramic insulator as an insulation section and associated metallic parts with the insulating material throughout. This can be done on the one hand with a plasma spraying process or on the other hand with a high-speed flame spraying process.
  • a ceramic powder for example A ⁇ O j , is preferably used as the insulation material.
  • the method according to the invention is used in vacuum switches with a metallic switching vessel.
  • a thermally sprayed layer is applied to the metallic parts of the switching vessel beyond the outer insulation gap.
  • Both caps of the switching vessel are advantageously provided with the thermally sprayed layer on the ring area adjoining the insulation section.
  • thermal spraying processes are easy to control, the process according to the invention can be implemented with comparatively little effort.
  • the coating produced by thermal spraying advantageously has only a low and closed porosity to the outside. A weather-proof insulation gap is thus created on the surface of the switching device, which is resistant to high temperatures even with aggressive media.
  • a vacuum switch requires an airtight switching vessel 1, for example with two metallic caps 2 and 3 and an intermediate ring 4 made of ceramic insulation material, for electrically isolated connections.
  • the switching vessel is made vacuum-tight by respective metal / ceramic connections of parts 2 and 3 with part 4.
  • contact bolts 5 and 6 are introduced into the vacuum-tight switching vessel 1, the contact bolt 5 being rigidly connected to the upper metal cap 2 and the contact bolt 6 being designed to be movable in the longitudinal direction of the switching vessel via a bellows 7. 1 contact pieces 8 and 9 sit on the contact pins 5 and 6 within the switching vessel.
  • Vacuum switches of this type are state of the art in a wide variety of designs.
  • the switching capacity is determined not only by the contact stroke within the switching vessel 1 and the structure and material of the contact pieces 8 and 9 itself, but also by the dielectric strength of the outer insulation gap defined by the ceramic ring 4.
  • the height of the ceramic ring 4 should be kept as low as possible.
  • the dielectric strength is therefore proportional to the height of the ceramic ring. It is shown in a known vacuum switch that the dielectric strength, for example on the vacuum side, is approximately 40 kV / mm, while in the outside at atmospheric pressure it is approximately 3 kV / mm. The latter discrepancy can be significantly reduced if the switching vessel 1 is provided with a ceramic coating on the outside. In addition, the leakage current behavior is significantly improved.
  • the ceramic coating is indicated in section by the structure 10.
  • the structure 10 makes sense to provide only the rigid parts that are not to be contacted, ie not the movable contact pin 6, with the coating.
  • the ceramic coating is indicated in section by the structure 10.
  • it makes sense to provide only the rigid parts that are not to be contacted, ie not the movable contact pin 6, with the coating.
  • the ceramic coating is indicated in section by the structure 10.
  • it makes sense to provide only the rigid parts that are not to be contacted, ie not the movable contact pin 6, with the coating.
  • Be ⁇ rich of the metallic parts 2 and 3 to be coated which may be realized by a 'mask technique.
  • thermal spraying processes can be used as coating technology for comparatively thick, firmly adhering layers that can be produced in the shortest possible time.
  • thermal spraying which can be used in particular in the low pressure range from 20 to 100 mbar.
  • the high-speed flame spraying process may also be considered. If the process is carried out in a suitable manner, layers of a predetermined thickness with a low, in particular closed out porosity and good connection to the substrate are formed. When using other coating methods that do not achieve closed porosity, the layer of a given thickness can be sealed in a simple manner, for example by glass, epoxy resin or curable adhesive, either only on the surface or in the impregnation process as a whole. This is important because only in this way is it effectively suppressed crawling under the layer by water or water absorption in the layer, which would otherwise conflict with the desired result with open porosity.
  • a flowable powder made of aluminum oxide (A1 2 0 3 ) was sprayed onto the switching vessel 1 using a plasma torch in the low pressure range at about 60 mbar or in air.
  • the ceramic ring 4 and the cylindrical region of the metallic caps 2 and 3 were provided with a closed layer which adheres well throughout. The result is an increased dielectric strength of the ceramic insulator 4 in the outer space due to the longer creepage distance and in particular also by covering any metal tips that may be present at the metal-ceramic transitions.
  • the switching vessels can also be subjected to the usual heating processes at 250 to 400'C after thermal coating in order to achieve a good final vacuum.
  • the vacuum switches that have been upgraded in this way have improved dielectric strength, which otherwise could only be achieved by using a considerably longer ceramic as an insulation section or by using a profile ceramic.
  • the described method can also be used in other applications in which the voltage resistance and the leakage current behavior of insulation sections are to be improved. This problem is also relevant, in particular in the case of X-ray tubes and / or image intensifiers. In this respect, the invention can also be used independently of vacuum switches.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

According to the invention, the effective insulation section can be increased by coating with an insulating material. The coating is applied by thermal spraying, especially via a plasma spray process or a high-speed flame spraying process, the spray powder being, for example, aluminium oxide (Al2O3). In a vacuum switch reinforced by this process with mutually movable contacts in a switch casing of metal components, with an internal insulation section between the open contacts and an outer ceramic insulation section between the metal parts of the switch casing, a thermally sprayed coating (10) is applied over the outer insulation section to the metal parts (2, 3) of the switch casing (1).

Description

Verfahren zur Erhöhung der Spannungsfestigkeit und Verbesse¬ rung des Kriechstromverhaltens von Isolationsstrecken und An¬ wendung dieses Verfahrens auf Vakuumschalter Process for increasing the dielectric strength and improving the leakage current behavior of insulation sections and applying this process to vacuum switches
Die Erfindung bezieht sich auf ein Verfahren zur Erhöhung der Spannungsfestigkeit und Verkleinerung der Kriechströme von Isolationsstrecken. Daneben bezieht sich die Erfindung auf die Anwendung dieses Verfahrens bei Vakuumschaltern mit einem me¬ tallischen Schaltgefäß. In diesem Zusammenhang bezieht sich die Erfindung auch auf einen derartigen Vakuumschalter mit ge¬ geneinander beweglichen Kontakten in einem Schaltgefäß aus me¬ tallischen Teilen, mit einer inneren Isolationsstrecke zwi¬ schen den geöffneten Kontakten und einer äußeren Isolations¬ strecke zwischen den metallischen Teilen des Schaltgefäßes.The invention relates to a method for increasing the dielectric strength and reducing the leakage currents of insulation sections. In addition, the invention relates to the use of this method in vacuum switches with a metallic switching vessel. In this context, the invention also relates to such a vacuum switch with mutually movable contacts in a switching vessel made of metallic parts, with an inner insulation gap between the opened contacts and an outer insulation gap between the metallic parts of the switching vessel.
Zwischen dem beweglichen und dem festen Schaltstück einer Va¬ kuumschaltröhre befindet sich eine äußere Isolationsstrecke, so daß sich bei geöffneten Kontakten aufgrund der inneren Iso¬ lationsstrecke eine galvanische Trennung ergibt. Die äußere Isolationsstrecke wird z.B. durch einen Keramik-Isolatorring realisiert, der an beiden Stirnflächen durch eine Metall/Ke- ramik-Verbindung mit den Metallflanschen bzw. Metallkappen des Schaltgehäuses verbunden ist.There is an outer insulation section between the movable and the fixed contact piece of a vacuum interrupter, so that when the contacts are open, there is a galvanic separation due to the inner insulation section. The outer insulation section is e.g. realized by a ceramic insulator ring, which is connected to the metal flanges or metal caps of the switch housing on both end faces by a metal / ceramic connection.
Aus Kostengründen soll die Länge des Keramik-Isolatorringes möglichst gering gehalten werden. Zwar liegt die Spannungs¬ festigkeit einer derartigen Isolationsstrecke vakuu seitig, d.h. bei einem Vr jumdruck < 10 mbar, bei ca. 40 kV/mm. Im Außenraum, d.h. t,~gen die Umgebung, sinkt bei Atmosphärendruck dieser Wert auf ca. 3 kV/mm ab.For cost reasons, the length of the ceramic insulator ring should be kept as short as possible. The dielectric strength of such an insulation section is indeed on the vacuum side, i.e. at a vacuum pressure <10 mbar, at approx. 40 kV / mm. Outside, i.e. t, ~ against the environment, this value drops to approx. 3 kV / mm at atmospheric pressure.
Zur Verbesserung der Spannungsfestigkeit und Verminderung von Kriechströmen im Außenraum wurde bereits vorgeschlagen, eine Um antelung des Keramikisolators durch einen Isolierschlauch, welcher als Schrumpfschlauch ausgebildet ist, vorzusehen, wo¬ bei dieser Isolierschlauch breiter als die Isolatorlänge ist. Daneben ist es bekannt, durch Abdeckung von eventuell vorhan- denen Spitzen am Metall-Keramik-Ubergang die Spannungsfestig¬ keit zu erhöhen. Schließlich wird in der DE-OS 28 33 820 ein Vakuumschalter mit einem ein Isolierelement enthaltenden Va¬ kuumgefäß zur Aufnahme eines feststehenden Kontaktes und eines beweglichen Kontaktes beschrieben, der durch eine auf der Au- ßenfläche des Isolierelementes vorgesehene Beschichtung aus einer Fettverbindung eines wasserabstoßenden Materials und durch ein Isolierrohr aus wasserabstoßendem, aufschrumpfbaren Material auf der Beschichtung aus der Fettverbindung gekenn¬ zeichnet ist.To improve the dielectric strength and reduce leakage currents in the outdoor area, a In order to provide the ceramic insulator with an insulating tube which is designed as a shrink tube, this insulating tube is wider than the length of the insulator. In addition, it is known to increase the dielectric strength by covering any peaks present on the metal-ceramic transition. Finally, in DE-OS 28 33 820 a vacuum switch is described with a vacuum vessel containing an insulating element for receiving a fixed contact and a moving contact, which is provided by a coating of a grease compound of a water-repellent material and provided on the outer surface of the insulating element is characterized by an insulating tube made of water-repellent, shrinkable material on the coating made of the fat compound.
Speziell der Einsatz eines Isolierschlauches hat den Nachteil einer begrenzten Haltbarkeit des Kunststoffes in aggressiven Industrieatmosphären, bei Bestrahlung mit UV-Anteilen im Freien und anderer störender Einflüsse. Insbesondere kann un- ter den Schrumpfschlauch Feuchtigkeit kriechen, so daß sich Spannungsfestigkeit und Kriechstromverhalten verschlechtern.The use of an insulating tube in particular has the disadvantage of a limited durability of the plastic in aggressive industrial atmospheres, when exposed to UV radiation outdoors and other disruptive influences. In particular, moisture can creep under the shrink tube, so that the dielectric strength and leakage current behavior deteriorate.
Aufgabe der Erfindung ist es demgegenüber, die Spannungsfe¬ stigkeit und das Kriechstromverhalten der Keramik im Außenraum zu verbessern, ohne daß Isolierschläuche mit den erwähnten Nachteilen verwendet werden müssen.In contrast, the object of the invention is to improve the voltage resistance and the leakage current behavior of the ceramic in the exterior without having to use insulating sleeves with the disadvantages mentioned.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß die wirk¬ same Isolationsstrecke durch eine Beschichtung aus isolieren- dem Material vergrößert ist. Bei einem Bauteil mit bereits vorhandener Isolationsstrecke wird dazu durch thermisches Spritzen eine Schicht hergestellt, die sowohl die Isolations¬ strecke als auch die angrenzenden metallischen Bereiche des Bauteiles haftfest bedeckt. Beim erfindungsgemäßen Verfahren wird das thermische Spritzen vorteilhafterweise dazu angewandt, um einen Keramikisolator als Isolationsstrecke und damit verbundene metallische Teile mit dem Isolierwerkstoff durchgehend zu beschichten. Dies kann einerseits mit einem Plasmaspritzverfahren oder andererseits mit einem Hochgeschwindigkeits-Flammspritzverfahren erfolgen. Als Isolationswerkstoff wird vorzugsweise ein keramisches Pul¬ ver, z.B. A^Oj, verwendet.The object is achieved in that the effective insulation distance is increased by a coating of insulating material. In the case of a component with an already existing insulation gap, a layer is produced for this purpose by thermal spraying, which layer covers both the insulation gap and the adjacent metallic areas of the component. In the method according to the invention, thermal spraying is advantageously used in order to coat a ceramic insulator as an insulation section and associated metallic parts with the insulating material throughout. This can be done on the one hand with a plasma spraying process or on the other hand with a high-speed flame spraying process. A ceramic powder, for example A ^ O j , is preferably used as the insulation material.
Insbesondere wird das erfindungsgemäße Verfahren bei Vakuum¬ schaltern mit einem metallischen Schaltgefäß angewandt. Bei einem solchen Vakuumschalter ist eine thermisch gespritzte Schicht über die äußere Isolationsstrecke hinaus auf den me¬ tallischen Teilen des Schaltgefäßes aufgebracht. Vorteilhaf- terweise sind beide Kappen des Schaltgefäßes auf dem sich der Isolationsstrecke anschließenden Ringbereich mit der thermisch gespritzten Schicht versehen.In particular, the method according to the invention is used in vacuum switches with a metallic switching vessel. In such a vacuum switch, a thermally sprayed layer is applied to the metallic parts of the switching vessel beyond the outer insulation gap. Both caps of the switching vessel are advantageously provided with the thermally sprayed layer on the ring area adjoining the insulation section.
Da die thermischen Spritzverfahren gut beherrschbar sind, läßt sich das erfindungsgemäße Verfahren mit vergleichsweise gerin¬ gem Aufwand realisieren. Die durch thermisches Spritzen er¬ zeugte Beschichtung hat vorteilhafterweise nur eine geringe und nach außen eine geschlossene Porosität. Es entsteht somit an der Oberfläche des Schaltgerätes eine verwitterungsfeste Isolationsstrecke, die bis zu hohen Temperaturen auch bei ag¬ gressiven Medien beständig ist.Since the thermal spraying processes are easy to control, the process according to the invention can be implemented with comparatively little effort. The coating produced by thermal spraying advantageously has only a low and closed porosity to the outside. A weather-proof insulation gap is thus created on the surface of the switching device, which is resistant to high temperatures even with aggressive media.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Patentansprüchen, wobei insbesondere in der Anwendung für Vakuumschalter auf die einzige Figur der Zeichnung verwiesen wird. Die Figur zeigt einen Vakuumschalter in sche atischer, teilweise geschnittener Darstellung. Ein Vakuumschalter benötigt ein luftdichtes Schaltgefäß 1, beispielsweise mit zwei metallischen Kappen 2 und 3 und einem dazwischen angeordneten Ring 4 aus keramischem Isolationsmate¬ rial, für potentialmäßig getrennte Anschlüsse. Durch jeweilige Metall/Keramik-Verbindungen der Teile 2 bzw. 3 mit dem Teil 4 ist das Schaltgefäß vakuumdicht ausgebildet.Further advantages and details of the invention emerge from the following description of exemplary embodiments in conjunction with the patent claims, reference being made in particular to the use of vacuum switches in the single figure of the drawing. The figure shows a vacuum switch in schematic, partially sectioned representation. A vacuum switch requires an airtight switching vessel 1, for example with two metallic caps 2 and 3 and an intermediate ring 4 made of ceramic insulation material, for electrically isolated connections. The switching vessel is made vacuum-tight by respective metal / ceramic connections of parts 2 and 3 with part 4.
In das vakuumdichte Schaltgefäß 1 sind zwei Kontaktbolzen 5 und 6 eingebracht, wobei der Kontaktbolzen 5 starr mit der oberen Metallkappe 2 verbunden und der Kontaktbolzen 6 über einen Federbalg 7 in der Längsrichtung des Schaltgefäßes be¬ weglich ausgebildet ist. Auf den Kontaktbolzen 5 und 6 sitzen innerhalb des Schaltgefäßes 1 Schaltstücke 8 und 9.Two contact bolts 5 and 6 are introduced into the vacuum-tight switching vessel 1, the contact bolt 5 being rigidly connected to the upper metal cap 2 and the contact bolt 6 being designed to be movable in the longitudinal direction of the switching vessel via a bellows 7. 1 contact pieces 8 and 9 sit on the contact pins 5 and 6 within the switching vessel.
Über einen nicht dargestellten Antrieb kann der beweglicheThe movable
Kontaktbolzen mit dem Kontaktstück 9 verschoben werden, so daß sich innerhalb des Vakuums bei Öffnen der Kontaktstücke 8 und 9 eine Isolationsstrecke ergibt, die einen Strom zu unterbre¬ chen vermag. Nach außen sind die Kontaktbolzen 5 und 6 über den Keramikring 4 gegeneinander isoliert, so daß sich hier ei¬ ne äußere Isolationsstrecke ergibt.Contact bolts are moved with the contact piece 9, so that there is an insulation gap within the vacuum when the contact pieces 8 and 9 are opened, which is able to interrupt a current. To the outside, the contact bolts 5 and 6 are insulated from one another via the ceramic ring 4, so that there is an outer insulation gap here.
Derartige Vakuumschalter sind in unterschiedlichster Auslegung Stand der Technik. Das Schaltvermögen wird dabei nicht nur durch den Kontakthub innerhalb des Schaltgefäßes 1 sowie Auf¬ bau und Material der Kontaktstücke 8 und 9 selbst bestimmt, sondern auch durch die Spannungsfestigkeit der durch den Kera¬ mikring 4 definierten äußeren Isolationsstrecke. Aus Kosten¬ gründen soll die Höhe des Keramikringes 4 möglichst gering ge- halten werden können. Die Spannungsfestigkeit ist daher der Höhe des Keramikringes proportional. Dabei zeigt sich bei ei¬ nem bekannten Vakuumschalter, daß die Spannungsfestigkeit bei¬ spielsweise vakuumseitig bei ca. 40 kV/mm, im Außenraum bei Atmosphärendruck dagegen bei etwa 3 kV/mm liegt. Letztere Diskrepanz läßt sich wesentlich verringern, wenn das Schaltgefäß 1 außen mit einer Keramikbeschichtung versehen ist. Darüber hinaus wird dadurch das Kriechstromverhalten we¬ sentlich verbessert.Vacuum switches of this type are state of the art in a wide variety of designs. The switching capacity is determined not only by the contact stroke within the switching vessel 1 and the structure and material of the contact pieces 8 and 9 itself, but also by the dielectric strength of the outer insulation gap defined by the ceramic ring 4. For cost reasons, the height of the ceramic ring 4 should be kept as low as possible. The dielectric strength is therefore proportional to the height of the ceramic ring. It is shown in a known vacuum switch that the dielectric strength, for example on the vacuum side, is approximately 40 kV / mm, while in the outside at atmospheric pressure it is approximately 3 kV / mm. The latter discrepancy can be significantly reduced if the switching vessel 1 is provided with a ceramic coating on the outside. In addition, the leakage current behavior is significantly improved.
In der Figur ist die keramische Beschichtung im Schnitt durch die Struktur 10 angedeutet. Selbstverständlich ist es sinn¬ voll, nur die starren und nicht zu kontaktierenden Teile, d.h. nicht etwa den beweglichen Kontaktbolzen 6, mit der Beschich- tung zu versehen. Gegebenenfalls sollen auch nur bestimmte Be¬ reiche der metallischen Teile 2 und 3 beschichtet sein, was durch eine 'Maskentechnik realisiert werden kann.In the figure, the ceramic coating is indicated in section by the structure 10. Of course, it makes sense to provide only the rigid parts that are not to be contacted, ie not the movable contact pin 6, with the coating. Optionally, should only certain Be¬ rich of the metallic parts 2 and 3 to be coated, which may be realized by a 'mask technique.
Als Beschichtungstechnik für vergleichsweise dicke, fest an- haftende Schichten, die in kürzester Zeit hergestellt werden können, kommen alle thermischen Spritzverfahren in Frage. Die¬ se sind beispielsweise das Plasmaspritzen, welches insbesonde¬ re im Niederdruckbereich von 20 bis 100 mbar angewandt werden kann.All thermal spraying processes can be used as coating technology for comparatively thick, firmly adhering layers that can be produced in the shortest possible time. These are, for example, plasma spraying, which can be used in particular in the low pressure range from 20 to 100 mbar.
Gegebenenfalls kommt auch das Hochgeschwindigkeits-Flamm- spritz-Verfahren in Frage. Bei geeigneter Prozeßführung ent¬ stehen Schichten vorgegebener Dicke mit geringer, insbesondere nach außen geschlossener Porosität und guter Anbindung zur Un- terlage. Bei Anwendung anderer Beschichtungsverfahren, die keine geschlossene Porosität erreichen, kann die Schicht vor¬ gegebener Dicke in einfacher Weise, - z.B. durch Glas, Epoxyd¬ harz oder aushärtbare Kleber - entweder nur an der Oberfläche oder im Tränkverfahren insgesamt versiegelt werden. Dies ist deshalb von Bedeutung, da nur so ein Unterkriechen der Schicht durch Wasser oder eine Wasseraufnahme in der Schicht wirksam unterdrückt wird, was ansonsten bei offener Porosität dem an¬ gestrebten Ergebnis entgegenstünde. Beispiel;The high-speed flame spraying process may also be considered. If the process is carried out in a suitable manner, layers of a predetermined thickness with a low, in particular closed out porosity and good connection to the substrate are formed. When using other coating methods that do not achieve closed porosity, the layer of a given thickness can be sealed in a simple manner, for example by glass, epoxy resin or curable adhesive, either only on the surface or in the impregnation process as a whole. This is important because only in this way is it effectively suppressed crawling under the layer by water or water absorption in the layer, which would otherwise conflict with the desired result with open porosity. Example;
In Versuchen wurde ein fließfähiges Pulver aus Aluminiumoxid (A1203) mit einem Plasmabrenner im Niederdruckbereich bei etwa 60 mbar oder an Luft auf das Schaltgefäß 1 gespritzt. Dabei wurde der Keramikring 4 und der zylindrische Bereich der me¬ tallischen Kappen 2 und 3 mit einer geschlossenen Schicht ver¬ sehen, die durchgehend gut haftet. Das Ergebnis ist eine ver¬ größerte Spannungsfestigkeit des Keramikisolators 4 im Außen- räum durch die längere Kriechstrecke und insbesondere auch durch überdecken von eventuell vorhandenen Metallspitzen an den Metall-Keramik-Ubergängen.In experiments, a flowable powder made of aluminum oxide (A1 2 0 3 ) was sprayed onto the switching vessel 1 using a plasma torch in the low pressure range at about 60 mbar or in air. The ceramic ring 4 and the cylindrical region of the metallic caps 2 and 3 were provided with a closed layer which adheres well throughout. The result is an increased dielectric strength of the ceramic insulator 4 in the outer space due to the longer creepage distance and in particular also by covering any metal tips that may be present at the metal-ceramic transitions.
Es hat sich gezeigt, daß mit Aluminiumoxid eine verwitterungs- feste Isolationsstrecke geschaffen werden kann, die bis zu ho¬ hen Temperaturen beständig ist. Insbesondere können speziell für die Anwendung des Vakuumschalters die Schaltgefäße auch nach der thermischen Beschichtung den üblichen Ausheizvorgän¬ gen bei 250 bis 400'C zur Erreichung eines guten Endvakuums unterzogen werden. Die so ertüchtigten Vakuumschalter weisen eine verbesserte Spannungsfestigkeit auf, die ansonsten nur durch eine erheblich längere Keramik als Isolationsstrecke oder durch eine Profilkeramik erreicht werden konnte.It has been shown that with aluminum oxide a weather-proof insulation gap can be created which is resistant up to high temperatures. In particular, especially for the use of the vacuum switch, the switching vessels can also be subjected to the usual heating processes at 250 to 400'C after thermal coating in order to achieve a good final vacuum. The vacuum switches that have been upgraded in this way have improved dielectric strength, which otherwise could only be achieved by using a considerably longer ceramic as an insulation section or by using a profile ceramic.
Auch bei anderen Anwendungsfällen, bei denen die Spannungsfe¬ stigkeit und das Kriechstromverhalten von Isolationsstrecken verbessert werden soll, kann das beschriebene Verfahren einge¬ setzt werden. Insbesondere bei Röntgenröhren und/oder Bildver¬ stärkern ist diese Problematik ebenfalls relevant. Insofern ist die Erfindung auch unabhängig von Vakuumschaltern anwend¬ bar. The described method can also be used in other applications in which the voltage resistance and the leakage current behavior of insulation sections are to be improved. This problem is also relevant, in particular in the case of X-ray tubes and / or image intensifiers. In this respect, the invention can also be used independently of vacuum switches.

Claims

Patentansprüche Claims
1. Verfahren zur Erhöhung der Spannungsfestigkeit und Verklei¬ nerung der Kriechströme von Isolationsstrecken, d a - d u r c h g e k e n n z e i c h n e t , daß die wirksame Isolationsstrecke eines Bauteiles durch eine Beschichtung aus isolierendem Material vergrößert wird.1. A method for increasing the dielectric strength and reducing the leakage currents of insulation sections, that is, that the effective insulation section of a component is increased by a coating of insulating material.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , daß eine bei einem Bauteil bereits vorhan¬ dene Isolationsstrecke und daran angrenzende metallische Be¬ reiche des.Bauteiles durch thermisches Spritzen mit Isolier¬ werkstoff beschichtet werden.2. The method according to claim 1, which also means that an insulation section already present in a component and adjacent metallic areas of the component are coated with insulating material by thermal spraying.
3. Verfahren nach den Ansprüchen 1 und 2, d a d u r c h g e k e n n z e i c h n e t , daß der Isolierwerkstoff mit¬ tels Plasmaspritzen im Niederdruckbereich von 20 bis 100 mbar oder bei Atmosphärendruck auf das Bauteil aufgebracht wird.3. The method according to claims 1 and 2, that the insulation material is applied to the component by means of plasma spraying in the low pressure range from 20 to 100 mbar or at atmospheric pressure.
4. Verfahren nach den Ansprüchen 1 und 2, d a d u r c h g e k e n n z e i c h n e t , daß der Isolierwerkstoff mit¬ tels Hochgeschwindigkeits-Flammspritzen bei Atmosphärendruck auf das Bauteil aufgebracht wird.4. The method according to claims 1 and 2, that the insulation material is applied to the component by means of high-speed flame spraying at atmospheric pressure.
5. Verfahren nach den Ansprüchen 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß als Isolierwerkstoff kera¬ misches Pulver, z.B. A^O,, verwendet wird.5. The method according to claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that as an insulating material ceramic powder, e.g. A ^ O ,, is used.
6. Verfahren nach Anspruch 2 bis 4, d a d u r c h g e - k e n n z e i c h n e t , daß in einem zusätzlichen Verfah¬ rensschritt eine Versiegelung der Beschichtung, beispielsweise durch Oberflächenabdeckung oder durch Tränkung, erfolgt. 6. The method according to claim 2 to 4, so that the coating is sealed in an additional procedural step, for example by surface covering or by impregnation.
1 7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n ¬ z e i c h n e t , daß für die Versiegelung Glas oder Epoxyd¬ harz verwendet wird. 1 7. The method according to claim 6, characterized in that glass or epoxy resin is used for the sealing.
,- 8. Verfahren nach Anspruch 1 oder einem der Ansprüche 2 bis 7, g e k e n n z e i c h n e t d u r c h die Anwendung bei Vakuumschaltern.8. The method according to claim 1 or one of claims 2 to 7, suitable for use with vacuum switches.
9. Vakuumschalter mit gegeneinander beweglichen Kontakten in 0 einem Schaltgefäß aus metallischen Teilen, mit einer inneren Isolationsstrecke zwischen den geöffneten Kontakten und einer äußeren Isolationsstrecke zwischen den metallischen Teilen des Schaltgefäßes, d a d u r c h g e k e n n z e i c h n e t , daß eine thermisch gespritzte Schicht (10) über die äußere Isolationsstrecke (4) hinaus auf den metallischen Teilen (2, 5 3) des Schaltgefäßes (1) aufgebracht ist.9. Vacuum switch with mutually movable contacts in a switching vessel made of metallic parts, with an inner insulation gap between the opened contacts and an outer insulation gap between the metallic parts of the switching container, characterized in that a thermally sprayed layer (10) over the outer insulation gap (4 ) is also applied to the metallic parts (2, 5 3) of the switching vessel (1).
10. Vakuumschalter nach Anspruch 9, wobei das Schaltgefäß aus zwei topfartigen Kappen als metallische Teile mit jeweils ei¬ 0 nem Bodenbereich und einem zylindrischen Bereich und einem da- zwischenenliegenden Keramikring als äußere Isolationsstrecke besteht, d a d u r c h g e k e n n z e i c h n e t , daß die thermisch gespritzte Schicht (10) den zylindrischen Teil der Kappen (2, 3) weitgehend abdeckt. 510. Vacuum switch according to claim 9, wherein the switching vessel consists of two pot-like caps as metallic parts, each with a bottom area and a cylindrical area and an intermediate ceramic ring as an outer insulation section, characterized in that the thermally sprayed layer (10) cylindrical part of the caps (2, 3) largely covers. 5
11. Vakuumschalter nach Anspruch 6, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die thermisch gespritzte Schicht (10) eine geschlossene Porosität hat.11. Vacuum switch according to claim 6, so that the thermally sprayed layer (10) has a closed porosity.
00
5 5
PCT/DE1991/000728 1990-09-28 1991-09-12 Process for increasing the electric strength and improving the leak resistance of insulation sections and application of this process to vacuum switches WO1992006482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4030806.5 1990-09-28
DE19904030806 DE4030806A1 (en) 1990-09-28 1990-09-28 METHOD FOR INCREASING THE VOLTAGE RESISTANCE AND IMPROVING THE CROSS-CURRENT BEHAVIOR OF INSULATION CIRCUITS AND APPLICATION OF THIS METHOD TO VACUUM SWITCHES

Publications (1)

Publication Number Publication Date
WO1992006482A1 true WO1992006482A1 (en) 1992-04-16

Family

ID=6415223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000728 WO1992006482A1 (en) 1990-09-28 1991-09-12 Process for increasing the electric strength and improving the leak resistance of insulation sections and application of this process to vacuum switches

Country Status (2)

Country Link
DE (1) DE4030806A1 (en)
WO (1) WO1992006482A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047046A1 (en) * 2005-09-30 2007-04-05 Siemens Ag Method for preventing the formation of amines and similar organic compounds on insulator surfaces of nitrogen-insulated switching devices comprises providing the surfaces of the insulator parts with thin layers of inert inorganic materials
DE102009021022A1 (en) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Protective switching device e.g. earth-leakage circuit breaker, has clamps connecting external power lines on side that is turned towards interior of device, where gases or steams produced by arc in device are provided into components
RU2504857C1 (en) * 2012-05-18 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенская государственная технологическая академия" Method for training of contact gap for vacuum circuit breakers by high voltage
CN107610850A (en) * 2017-10-21 2018-01-19 江阴市赛英电子股份有限公司 A kind of superpower high pressure high-insulativity ceramic cartridge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9314617U1 (en) * 1993-09-23 1993-11-11 Siemens Ag Vacuum interrupter with improved external dielectric strength
JPH07114845A (en) * 1993-10-18 1995-05-02 Fuji Electric Co Ltd Insulation support for high voltage equipment
DE29717489U1 (en) * 1997-09-30 1999-01-28 Siemens Ag Tube for use in the medium and high voltage range
JP4031895B2 (en) * 2000-02-09 2008-01-09 日本特殊陶業株式会社 Metal-ceramic joint using ceramic member with glaze layer and vacuum switch unit using the same
DE102008031473B3 (en) * 2008-07-02 2010-03-25 Siemens Aktiengesellschaft Vacuum interrupter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084238A1 (en) * 1981-12-19 1983-07-27 Kabushiki Kaisha Meidensha Vacuum interrupter
EP0187950A1 (en) * 1984-12-14 1986-07-23 Siemens Aktiengesellschaft Vacuum switch
EP0196503A1 (en) * 1985-03-21 1986-10-08 Siemens Aktiengesellschaft Vacuum switch casing
DE3829888A1 (en) * 1988-09-02 1990-03-15 Calor Emag Elektrizitaets Ag Vacuum switching chamber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192312A (en) * 1961-06-07 1965-06-29 Westinghouse Electric Corp Ceramic suspension insulator with an elastomeric boot
DE1490136A1 (en) * 1964-12-14 1969-07-03 Orgreb Vetschau Organisation F Process for reducing the formation of foreign layers on electrical insulators
BE757659A (en) * 1969-10-17 1971-04-16 Raychem Corp HIGH TENSION INSULATION
SE382715B (en) * 1973-06-20 1976-02-09 Asea Ab PROCEDURE FOR INCREASING THE ELECTRICAL FLASH RESISTANCE OF METALLIC ELECTRODES.
US4393286A (en) * 1978-08-24 1983-07-12 Tokyo Shibaura Denki Kabushiki Kaisha Vacuum circuit breakers
DE2838358A1 (en) * 1978-09-02 1980-03-20 Licentia Gmbh Increasing the dielectric strength of insulators - by surface coating esp. with titanium di:oxide and water glass, used on insulators in cathode ray tubes
JPS5866213A (en) * 1981-10-15 1983-04-20 株式会社東芝 Insulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084238A1 (en) * 1981-12-19 1983-07-27 Kabushiki Kaisha Meidensha Vacuum interrupter
EP0187950A1 (en) * 1984-12-14 1986-07-23 Siemens Aktiengesellschaft Vacuum switch
EP0196503A1 (en) * 1985-03-21 1986-10-08 Siemens Aktiengesellschaft Vacuum switch casing
DE3829888A1 (en) * 1988-09-02 1990-03-15 Calor Emag Elektrizitaets Ag Vacuum switching chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047046A1 (en) * 2005-09-30 2007-04-05 Siemens Ag Method for preventing the formation of amines and similar organic compounds on insulator surfaces of nitrogen-insulated switching devices comprises providing the surfaces of the insulator parts with thin layers of inert inorganic materials
DE102005047046B4 (en) * 2005-09-30 2007-09-13 Siemens Ag Process for preventing the formation of amines or other organic compounds on surfaces of nitrogen-insulated switchgear and associated switching device
DE102009021022A1 (en) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Protective switching device e.g. earth-leakage circuit breaker, has clamps connecting external power lines on side that is turned towards interior of device, where gases or steams produced by arc in device are provided into components
RU2504857C1 (en) * 2012-05-18 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенская государственная технологическая академия" Method for training of contact gap for vacuum circuit breakers by high voltage
CN107610850A (en) * 2017-10-21 2018-01-19 江阴市赛英电子股份有限公司 A kind of superpower high pressure high-insulativity ceramic cartridge

Also Published As

Publication number Publication date
DE4030806A1 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
EP0866481B1 (en) Manufactring method of a vacuum chamber
WO2006032522A1 (en) Method for producing an arc-erosion resistant coating and corresponding shield for vacuum arcing chambers
DE2240106A1 (en) HIGH PERFORMANCE LEAD-THROUGH ENCLOSED VACUUM SWITCH
DE19510850C1 (en) Vacuum switch tube for low voltage protection
DE2746870A1 (en) METHOD FOR PRODUCING OUTDOOR COMPOSITE INSULATORS
DE3105065C2 (en)
WO1992006482A1 (en) Process for increasing the electric strength and improving the leak resistance of insulation sections and application of this process to vacuum switches
WO2007031202A1 (en) Vacuum interrupter chamber
DE2459270C2 (en) Vacuum interrupter
WO2017198391A1 (en) Method for producing a ceramic insulator
WO2018028946A1 (en) Insulator arrangement for a high or medium voltage switchgear assembly
WO2010000769A1 (en) Vacuum switching tube
EP0660354B1 (en) Casing of vacuum interrupter
DE19713478C1 (en) Vacuum switch tube e.g. for low-voltage switching
DE2623156B2 (en) Electrical feedthrough with Gieli resin support and metal mounting flange
DE2007676A1 (en) Vacuum switch
DE4125097C2 (en) Contact arrangement for a vacuum circuit breaker
DE102014204885A1 (en) Method for coating a vacuum interrupter and vacuum interrupter with an electrically insulating coating
WO2021148218A1 (en) Vacuum switch
DE102021207963A1 (en) Vacuum interrupter for switching voltages
EP0703593A2 (en) Polar column for an electrical circuit breaker
EP4016576A1 (en) Electrical switching device for medium and / or high voltage applications
DE19603081A1 (en) HV vacuum switch with vacuum switching chamber space surrounded by e.g. ceramic isolating cylinder
DE102021207960A1 (en) Vacuum interrupter and arrangement with vacuum interrupters and method for shutting down vacuum interrupters
DE1143888B (en) Tubular encapsulated push disconnector for high voltage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE