WO1992005659A1 - Pseudo-halftone picture processing equipment - Google Patents

Pseudo-halftone picture processing equipment Download PDF

Info

Publication number
WO1992005659A1
WO1992005659A1 PCT/JP1991/001274 JP9101274W WO9205659A1 WO 1992005659 A1 WO1992005659 A1 WO 1992005659A1 JP 9101274 W JP9101274 W JP 9101274W WO 9205659 A1 WO9205659 A1 WO 9205659A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
error
output
pseudo
calculating
Prior art date
Application number
PCT/JP1991/001274
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Suzuki
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Publication of WO1992005659A1 publication Critical patent/WO1992005659A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/41Bandwidth or redundancy reduction
    • H04N1/4105Bandwidth or redundancy reduction for halftone screened pictures

Definitions

  • the present invention relates to a pseudo-halftone image processing apparatus for converting m- value image data into n-valued (m> ⁇ > 2, mn is an integer) pseudo-halftone image data and a device utilizing the same.
  • This device is a display or output device or a binary display or output, that is, a pixel can be represented only as ON or OFF2, but the original image data is multi-valued. If it is a ⁇ halftone or a pseudo halftone consisting of ⁇ data, such as (C 1) or (0,: 55) ⁇ ⁇ To convert to binary data:;: c used
  • the average error method ']' is known.
  • the above-mentioned average error method uses the same average luminance level between the input image and the output image.
  • the difference between the input value and the output value when binarizing is stored as an error, and correction is performed using the error when binarizing the pixel of interest.
  • the above-mentioned average error minimizing method has a feature that gradation characteristics are good. .
  • FIG. 2 is a block diagram showing a configuration of a pseudo halftone image processing apparatus A ′ that performs the conventional average error minimization method.
  • the input image data is gradation data of 0 to R (R is an integer), and the output data is either 0 or R.
  • Image data is input from the input means 1 to the image data to be subjected to pseudo halftone processing
  • the multi-valued pixel te input from the input means 1 is added to the correction value obtained by the correction value calculation means 7 described later and the correction value calculation means.
  • the O-added value is output from the corrected value calculating means 2 as a corrected value.
  • the correction value is compared with a specific value by the singular threshold comparing means 8. c
  • the value is, for example, an intermediate value R / 2 of the input image data.
  • the above-mentioned correction value is used to determine the magnitude of ⁇ at the boundary, and is classified into one of them.
  • the binary data output means 9 outputs binary data corresponding to either 0 or R based on the comparison result of the single orchid value comparison means 8.
  • the error calculating means 5 calculates a difference between the correction value and the output value as an error.
  • the calculated error is stored in the error storage means 6.
  • the error storage means 6 has a liner 'and stores at least an error of one line. That is, each error is stored here for a predetermined number of pixels input immediately before the target pixel to be subjected to the binarization processing.
  • the correction value calculation means 7 is located in the vicinity of the pixel of interest and is stored in the error storage means 6. With reference to the elementary errors, the above errors are weighted by means that have been roughly determined, and the errors are averaged: the calculated average value is the correction value c
  • FIG. 9 is a diagram showing the pixels and the original image. The above processing is performed on the original image in the rightward direction in FIG. 9 for each pixel in the main scanning direction, or the like, and is performed while shifting it by one line in the subscanning direction.
  • Figure 3 shows an example of weighting factors for calculating the correction value. It is natural that the error storage means 6 has a reference range of the error ⁇ a capacity for storing the error. .
  • FIG. 5 is an explanatory diagram showing the relationship between the output value and the threshold value i in this case.
  • binary data output means 9 ⁇ output value ⁇ _0 and 255 G2 value.
  • the threshold value of the singular value comparison means 8 is., Above: the median value of the two output values 1 2 —, and the singular threshold value comparing means S. Half of the force in the area between and
  • Binary data output means 9, single-value comparison means 8 G Receives the result and outputs one of the binary output values.In other words, the corrected value is less than 127, that is, area A in FIG. , 0 is output, and if it is 1 2 7 or more (area A 2 ), 255 is output.
  • the error is a difference between the output value corresponding to the comparison result of the singular threshold value comparing means S and the correction value. If the correction value is less than 127 (the difference between Q and Q in the case of region A, or the correction value is more than 27 (the difference between 255 and 0 if the region A £ : 'is the error)
  • the above-mentioned error is stored in the above-mentioned error storage means 6 as described above, and is used by the correction value calculating means ⁇ to calculate a correction value.
  • the pseudo halftone processing device cannot obtain a pseudo halftone image having three or more values.
  • a multi-gradation for example, 4 gradations, 16 gradations, etc.
  • a mature transfer type color printer When trying to perform display or output on a liquid crystal display device or the like that can express multi-gradation such as 4-gradation or 16-gradation, naturally multi-gradation data such as 256-gradation is required. Display and output cannot be performed, and even with the pseudo-halftone image processing device that outputs the C binary data described above, the performance with the display or output device of 4 gradations or 16 gradations can be sufficiently exhibited. Not coming. Also, the pseudo-intermediate processing device cannot convert pseudo-tone characteristics of an image subjected to pseudo-halftone processing by itself.
  • the present invention solves the above-described drawbacks of the prior art, and provides a pseudo-halftone image processing device that can sufficiently exhibit the performance of a 4-gradation, 16-gradation display or output device. Both aim to provide a display or output device using this. Disclosure of the invention
  • an error calculation reference value storage unit a threshold value calculation storage unit, and an error calculation unit are provided, and a plurality or a plurality of sets of reference values are set and stored.
  • the threshold value comparing means compares the corrected value with a plurality of threshold values, and outputs a multi-value output value based on the result.
  • FIG. 1 is a block diagram showing a preferred embodiment of the present invention
  • FIG. 2 is a block diagram showing a conventional technique
  • FIG. 3 is a diagram showing storage contents of an error storage means.
  • FIG. 4 is a diagram showing an example of a weighting coefficient
  • FIG. 5 is an explanatory diagram showing a relationship between an output value and a threshold with respect to a conventional example
  • FIG. 6 is a diagram showing an output in the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a preferred embodiment of the present invention
  • FIG. 2 is a block diagram showing a conventional technique
  • FIG. 3 is a diagram showing storage contents of an error storage means.
  • FIG. 4 is a diagram showing an example of a weighting coefficient
  • FIG. 5 is an explanatory diagram showing a relationship between an output value and
  • FIG. 8 is an explanatory diagram showing the relationship between the output value, the threshold value, and the error calculation reference value O in the case of a-D.5 ⁇ in the second embodiment of the present invention.
  • FIG. 10 is a pseudo halftone image processing device of the present invention.
  • FIG. 11 is a block diagram schematically showing a printing apparatus used.
  • FIG. 11 is a block diagram showing an example in which the pseudo halftone image processing apparatus of the present invention is applied to a color printer for printing three colors simultaneously.
  • FIG. 12 is a block diagram schematically showing a color display device using the pseudo halftone image processing apparatus of the present invention
  • FIG. 13 is a pseudo halftone image processing apparatus of the present invention. share each color in the image processing apparatus, it is if O force over the display device C 'Bed ⁇ click H showing an example of displaying c
  • FIG. 1 is a pseudo halftone image processing apparatus A0 block diagram of the present invention, which has a function of converting m-value multi-gradation image data into n-value gradation image data and outputting it.
  • M >n> 2
  • m and ⁇ are integers.
  • Reference numeral 1 denotes an input means including an image storage means, and the output is multi-tone ⁇ -valued pixel data.
  • the pixel data is sequentially read from the original image in the main scanning direction for each pixel in the right direction in Fig. 9 and processed, and this is processed one line at a time in the sub-scanning direction. The processing is performed sequentially.
  • Reference numeral 2 denotes a correction value calculating means, which receives as input the correction value output of the correction value calculating means 7 described later and the multi-gradation m-value image data output from the input means 1 and adds them to obtain the correction value. Is output as.
  • Numeral 3 is a multi-value comparing means having a plurality of (n-1) thresholds, and comparing these with the above-mentioned correction values, and inputting the correction values to the n regions divided by this threshold. It is determined to which one it belongs. Then, output the result.
  • Numeral 4 denotes multi-value data output means, in which output values corresponding to the above-mentioned n areas are specified, respectively, and based on the comparison result of the plural threshold comparing means 3, the corrected value is obtained. Outputs the output value for the area to which it belongs IS j ""? .
  • 5c is an error calculation reference value setting means for setting an error calculation reference value corresponding to the output value of the multi-level data output means 4.
  • 5b is an error calculation reference value storage means for storing an error calculation reference value set by the error calculation reference value setting means 5c and corresponding to the output value of the multi-value data output means 4.
  • the I value used by the multiple threshold value comparison means 3 is calculated and stored.
  • 5a is an error calculation means, an error calculation reference value stored in the error calculation reference value storage means 5b and corresponding to the comparison result of the multiple threshold value comparison means 3, and an output value of the correction value calculation means 2 Is calculated and output as an error value.
  • Numeral 6 is an error storage means having a line buffer for storing an error of at least one line.
  • FIG. 3 shows an example of the storage contents of the error storage means 6. .. £ are the error values stored in the error storage means 6, and * is the position where the error value of the pixel of interest is stored.
  • Reference numeral 7 denotes a correction value calculating means, which is described in the above-mentioned error storage means 6 for the vicinity of the target pixel ⁇ , and refers to each pixel ⁇ error, and weights each error by a predetermined means. Is averaged over row t. The calculated average value is input to the correction value calculation means 2 as a correction value.
  • FIG. 4 shows an example of a weighting coefficient for calculating a correction value.
  • the correction value calculation by the correction value calculation means 7 is performed by the following calculation.
  • Output value is described as an example.
  • - Multi-value data output means C
  • the output value type is pseudo-halftone processed. It is common practice to match the number of gradations in the device that displays or outputs the image.
  • O Input image data The range of density gradation is 0 to R. At equal intervals, and set the partition value as the output value of the multi-value data output means 4. At this time, the output value is
  • This error calculation reference value is stored in the error calculation reference value storage means 5b.
  • the threshold value is an intermediate value between the above error calculation reference values.
  • the threshold is calculated by the threshold calculation and storage means 5 d. It is calculated from the error error reference value and stored.
  • the maximum output value of the pseudo halftone image processing device AG of the present invention is set to 255
  • FIG. 6 is an explanatory diagram illustrating a relationship among an output value, a threshold value, and an error calculation reference value in the case of the first embodiment.
  • the multi-value data output means 4 receives the result of the multiple threshold value comparison means 3 and outputs one of the four output values.
  • the corrected value should not be dropped by 4 2; ⁇ Fig. 6 0 If the area A is 0, the corrected value is 4 2 or more 1 2 7
  • the error takes a difference between the error calculation reference value corresponding to the comparison result of the multiple threshold value comparing means 3 and the corrected value, as in the case of the front ridge.
  • the correction value is less than 42.
  • the difference between 0 and the corrected value is not less than 4 2 and not more than 1 2 7 If it is (Area A 2 ), the difference from 85 and the corrected value is 1 27 or more 2 less than the error of the difference between (realm a 3) a long Invite 1 7 0, to 2 1 2 or more error the difference between the 2 [delta] 5 if (area a 4) is the error in the Hare by above Record
  • the correction value is stored in the storage means 6 and is used for calculating the correction value in the correction value calculation means 7.
  • the error calculation reference value differs from the output value of 2 multi-level data output means 4.
  • the error calculation reference value is, for example, 'as can be expressed by the following equation.
  • This error calculation reference value is set 5 by the error calculation reference value setting means 5c, and the threshold value stored in the error calculation reference value writing means 5b is 5
  • the gradation characteristics of the pseudo halftone processing result can be changed depending on the value of a.
  • the error calculation reference value storage means 5b the error calculation reference value setting means 5c, the end value calculation storage means 5d and the error calculation means 5a
  • a plurality of sets of reference values are set, stored and stored.
  • each threshold value is described as being an intermediate value between the output values.
  • the same effect can be achieved without necessarily setting the intermediate value.
  • weighting coefficient of the pixel near the target pixel is not limited to the example described above, and the range of the error to be referred to is not limited to the example described above.
  • FIG. 10 shows a printing apparatus using the pseudo halftone image processing apparatus of the present invention.
  • the print section 4 may be any device capable of printing an image of n gradations, and examples thereof include a monochromic printer and a force lap printer that prints in a line-sequential or line-sequential manner. Can be done.
  • the m-value multi-gradation image data is temporarily stored in the image data storage means 11 via the input means 21, and is stored in the pseudo halftone image processing apparatus 20 according to the present invention by the stored data read means 12. Is entered.
  • the pseudo-halftone image processing device 20 converts the m-value gradation image data into an n-value pseudo-halftone image data according to the above-described method, and sends it to the print control means 13.
  • Output c Control means: 3 is for converting the converted value O gradation pseudo halftone image data for printing! 314 to print section 14 Output.
  • the print unit 14 prints out pseudo halftone image data of ⁇ gradation.
  • FIG. 11 is a block diagram showing an example in which the pseudo halftone image processing device 20 of the present invention is applied to a color printer that prints three colors simultaneously.
  • the m-gradation image data input to the image data-recording means 11 by the image data input means 21 is stored once.
  • the storage data reading means 12 and the image data writing means ii have m-valued floors.
  • the pseudo halftone image processing devices 20F 20G and 20B convert the input m-value gradation image data into pseudo halftone image data having R, G, and B n-value gradations, respectively, and pre-convert them.
  • the print control unit 13 further converts the image data of R, G, and B converted to the n-valued gradation for the print unit 14, and outputs the image data to the cyan magenta and the yellow. , And outputs it to the print unit 14, which prints pseudo-halftone image data of n gradations.
  • FIG. 12 is a block diagram schematically showing the color display device of the present invention.
  • the m-value multi-gradation image data is temporarily stored in the image data storage means 11 via the input means 21 and is input from the storage data reading means 12 to the pseudo halftone image processing device 20 according to the present invention. .
  • the pseudo halftone image processing device 20 converts the m-value gradation image data into n-value pseudo halftone image data and outputs it to the display control means 15 by the above-described configuration.
  • the display control means 15 further converts the converted pseudo halftone image data of n-valued gradation for the display unit 16 and outputs the data to the display unit 16.
  • the display unit 16 displays the pseudo halftone image data of n gradations.
  • various display devices such as a liquid crystal display device and a CRT can be applied.
  • FIG. 13 is a block diagram showing an example of a case where display is performed by the pseudo- ⁇ halftone image processing devices 20R, 20G, and 20B of the present invention, which are assigned to each color.
  • the m-value / gradation image data separated for each of the colors R, G, and B is supplied to each of the input means 21R, 21G, and 21B. , 20B is entered.
  • the pseudo halftone image processing devices 20R, 20G, and 20B convert the input m-value gradation image data into pseudo halftones of R, G, and B n-value gradations, respectively, and display them.
  • the display control means 15 further converts the R, G, and B image data converted to the n-valued gradation for the display unit 16 and outputs the converted data. Outputs the toned image data to the screen.
  • the pseudo-halftone image processing apparatus converts an image represented by m-value image data into a pseudo-halftone image having n values (m> n> 2, m and ⁇ are integers). It is converted to data, and is used for image data on display devices such as color printers, color printers, liquid crystal display devices, and CR II.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)

Abstract

Pseudo-halftone picture processing equipment which has a means (5b) for storing a plurality of reference values for calculating errors or reference value classes for calculating errors, a means (5d) for calculating and storing a plurality of thresholds or threshold classes and a means (3) for comparing modified input picture data with the plurality of thresholds, and performs the processing according to the method of minimum average error. The modified value of the input picture data is compared with the plurality of thresholds. The nearest reference value for calculating errors to that modified value is outputted and the difference between both the values is calculated. The calculated difference is used to modify the next input picture data. Also, by making the output value of a means (4) for outputting multivalued data different from the reference value for calculating errors, the gradation characteristic of the result of the pseudo-halftone processing can be changed.

Description

擬似中間調画像処理装置  Pseudo halftone image processing device
技術分野 Technical field
本発明は m値の画像デ -ータを n値 ( m > η > 2 、 m n は整数) の擬似中間調画像デー タ こ変換する擬似中間調画像処理装置及びそ の利用装置に関する。 明 The present invention relates to a pseudo-halftone image processing apparatus for converting m- value image data into n-valued (m>η> 2, mn is an integer) pseudo-halftone image data and a device utilizing the same. Light
背景技術  Background art
従来、 中間謂または擬似中間調表現さ .た έΗ直画像を 2 値画像に 書  Conventionally, a half-tone image or a pseudo half-tone image is written in a binary image.
よ り擬似的に階調表現するため Ο擬似中間調画像^理装置 知られ し('、 。 In order to more quasi-grayscale representation, Οpseudo halftone image processing device is known.
こ の装置は、 表示あるいは出力装置か 2 値の表示あるいは出力、 つま り画素がオ ン 、 オ フ Ο 2 とお り しか表現でき ない も Οに対して もとの画像テ一タが多値 ÷ —タ よ り なる Φ間調または擬似中間調で ある場合、 ( C 1 ) ある いは ( 0, : 5 5 ) な ど Ο 2値デ一タに 変換する め:;:用いられる c This device is a display or output device or a binary display or output, that is, a pixel can be represented only as ON or OFF2, but the original image data is multi-valued. If it is a 間 halftone or a pseudo halftone consisting of タ data, such as (C 1) or (0,: 55) す る To convert to binary data:;: c used
その際、 2 値化された画像デー タ で 、 力 ニー画像を考えた場合 例えば R (赤) 、 G (緑) 、 B (青) の 3色でカ ラ ー画像を表す場 合でも、 画素レベルでは表現でき る色が通常 2 s = 8色しかな く 、 多値画像デ一タを特定の値を閻値と して単純に 2値の I、ずれかに割 り 当てた Oでは、 特に自然画像に対し不自然な画像しか得られない こ とが多い。 そのため、 視覚的に擬似的な中間色が感じ られるよう 擬似中間調処理がな されていた。 At this time, if a force image is considered with the binarized image data, for example, even if a color image is represented by three colors of R (red), G (green), and B (blue), the pixel is At the level, the number of colors that can be represented is usually 2 s = 8 colors.For multivalued image data, simply assigning a specific value to the binary value I and assigning it to the difference O In particular, it is often the case that only unnatural images can be obtained for natural images. For this reason, pseudo halftone processing has been performed so that a pseudo halftone color can be visually sensed.
この擬似中間調処理方法と して、. 平均誤差最 '] '法が知られて t、る , 上記平均誤差最小法は、 入力画像と出力画 との間 平均輝度レべ ルを一致させて擬似中間調を表現するため - 注目画素 周囲画素に 対し、 2値化する ときの入力値と出力値の差を誤差と して記憶して おき、 注目画素を 2 値化する ときにその誤差を用いて補正を行う方 法である。 上記平均誤差最小法は、 階調特性がよいという特徴があ る。 . As the pseudo-halftone processing method, the average error method ']' is known. The above-mentioned average error method uses the same average luminance level between the input image and the output image. To express pseudo-halftones-Attention pixel On the other hand, the difference between the input value and the output value when binarizing is stored as an error, and correction is performed using the error when binarizing the pixel of interest. The above-mentioned average error minimizing method has a feature that gradation characteristics are good. .
図 2 は、 従来の平均誤差最小法を行う擬似中間調画像処理装置 A ' の構成を示すブロ ッ ク図である。 こ こて、 入力画像データが 0 〜 R ( Rは整数) の階調データ、 出力データ は 0 または Rのいずれかで ある とする。  FIG. 2 is a block diagram showing a configuration of a pseudo halftone image processing apparatus A ′ that performs the conventional average error minimization method. Here, it is assumed that the input image data is gradation data of 0 to R (R is an integer), and the output data is either 0 or R.
擬似中間調処理されよう とする画像データに対し、 入力手段 1 か ら画素子 ータ 入力される  Image data is input from the input means 1 to the image data to be subjected to pseudo halftone processing
入力手段 1 ら入力された多値の画素テ ー 、 後述する補正値 算出手段 7 よ り得られた補正値と修正値算出手段 において加算さ れる。 こ O加算値が修正値と して、 上記修正値算出手段 2 より 出力 される。  The multi-valued pixel te input from the input means 1 is added to the correction value obtained by the correction value calculation means 7 described later and the correction value calculation means. The O-added value is output from the corrected value calculating means 2 as a corrected value.
上記修正値は、 単数閾値比較手段 8 によ り特定の閻値と比較され る c 上記閻値は , 例えば、 入力画像テ ータの中間の値 R / 2 である。 上記修正値 こ Ο闞値を境に してそ σ大小が判別され、 そのいずれ かに区分される  The correction value is compared with a specific value by the singular threshold comparing means 8. c The value is, for example, an intermediate value R / 2 of the input image data. The above-mentioned correction value is used to determine the magnitude of σ at the boundary, and is classified into one of them.
2値テ―タ出力手段 9 は、 上記単数蘭値比較手段 8 の比較結果に 基づき、 0 または Rのいずれかに当たる 2値のデータを出力する。  The binary data output means 9 outputs binary data corresponding to either 0 or R based on the comparison result of the single orchid value comparison means 8.
誤差算出手段 5 は、 上記修正値と出力値との差を誤差と して算出 する。 上記算出された誤差は、 誤差記憶手段 6 に記憶される。 上記 誤差記億手段 6 は、 ラ イ ンパ .' フ ァを有し、 少な く と も 1 ラ イ ン分 の誤差を記憶している。 すなわち、 こ こには、 これから 2値化処理 を行おう とする注目画素の直前までに入力した画素の所定数につい て、 それぞれの誤差が記憶されている。  The error calculating means 5 calculates a difference between the correction value and the output value as an error. The calculated error is stored in the error storage means 6. The error storage means 6 has a liner 'and stores at least an error of one line. That is, each error is stored here for a predetermined number of pixels input immediately before the target pixel to be subjected to the binarization processing.
次に、 補正値算出手段 7 について説明する。 補正値算出手段 7 は . 注目画素の近傍にあって上記誤差記憶手段 6 に記億されている各画 素の誤差を参照して、 上記各誤差に対してあら力 しめ定めた手段に よ って重み付けを行い、 誤差を平均する: こ ύ算出された平均値 補正値となる c Next, the correction value calculation means 7 will be described. The correction value calculation means 7 is located in the vicinity of the pixel of interest and is stored in the error storage means 6. With reference to the elementary errors, the above errors are weighted by means that have been roughly determined, and the errors are averaged: the calculated average value is the correction value c
図 9 は、 原画像の画素 な らびを示す図 ある。 以上の処理は原 画像に対し、 主走査方向に 1 画素毎に図 9 の右方向 順か、 、行われ、 これを副走査方向に 1 ラ イ ンずつずら しながら行われる。  FIG. 9 is a diagram showing the pixels and the original image. The above processing is performed on the original image in the rightward direction in FIG. 9 for each pixel in the main scanning direction, or the like, and is performed while shifting it by one line in the subscanning direction.
図 3 は補正値を算出するための重み付け係数 一例を示す。 上記 誤差記億手段 6 は、 上記誤差の参照範囲 Ο誤差を記億てき る容量か ある こ と は当然である。 .  Figure 3 shows an example of weighting factors for calculating the correction value. It is natural that the error storage means 6 has a reference range of the error 誤差 a capacity for storing the error. .
いま . 従来の擬似 Ψ間 ί¾'画像処理装置 A ' Ο最大出力値を 2 δ 5 と し て '. = 2 δ 6 ) P皆鋼の画像テ ータを 2階 、 すな: Πち 0 あ いは 2 5 5 O画像テ 一 タ に変換する例を取つて説明する。  Conventional pseudo-tank ί¾ 'image processing device A' Ο Let the maximum output value be 2 δ 5 '. = 2 δ 6) P All-steel image data is on the second floor, namely: 0 Or, an example of conversion to 255 O image data will be described.
図 5 は、 こ Ο場合における出力値、 闘値 i 関係を示す説明図であ る。 ます、 2値テータ出力手段 9 ©出力値 ·_ 0 および 2 5 5 G 2 値である。 単数閻値比較手段 8 の閾値は .、 上記 :; つの出力値の中間 値 1 2 — であり 、 上記単数閾値比較手段 S . 上記閻値と修正値算 出手段 2 から O修正値とを比較して修正値か鬨値に対 と の領域に あ.る 力、を半 lj g!j る  FIG. 5 is an explanatory diagram showing the relationship between the output value and the threshold value i in this case. First, binary data output means 9 © output value · _0 and 255 G2 value. The threshold value of the singular value comparison means 8 is., Above: the median value of the two output values 1 2 —, and the singular threshold value comparing means S. Half of the force in the area between and
2値テ ー タ出力手段 9 、 上記単数閻値比較手段 8 G)結果を受 て、 上記 2値の出力値のいずれかを出力する すなわち、 修正値が 1 2 7 未満すなわち図 5 の領域 A , であれば 0 を、 1 2 7 以上 (領 域 A 2 ) であれば 2 5 5 を出力する。 Binary data output means 9, single-value comparison means 8 G) Receives the result and outputs one of the binary output values.In other words, the corrected value is less than 127, that is, area A in FIG. , 0 is output, and if it is 1 2 7 or more (area A 2 ), 255 is output.
誤差は前述のよ う に、 上記単数閾値比較手段 S の比較結果に対£. した出力値と、 前記修正値との差をとる。 こ ::ては修正値が 1 2 7 未満(領域 A であれば Q と の差を、 修正値か : 2 7以上(領域 A £:' であれば 2 5 5 と 0差を誤差とする。 上記誤差 、 前述のよ う 上 記誤差記憶.手段 6 に記憶される と と もに .、 上記補正値算出手段 Ί に おいて補正値を算出する O 用い られる , 上記擬似中間調処理装置では、 すでに説明したと こ ろから明らか なよう に、 3値以上の擬似中間調画像を得る こ とはできない。 As described above, the error is a difference between the output value corresponding to the comparison result of the singular threshold value comparing means S and the correction value. If the correction value is less than 127 (the difference between Q and Q in the case of region A, or the correction value is more than 27 (the difference between 255 and 0 if the region A £ : 'is the error) The above-mentioned error is stored in the above-mentioned error storage means 6 as described above, and is used by the correction value calculating means Ί to calculate a correction value. As is apparent from the above description, the pseudo halftone processing device cannot obtain a pseudo halftone image having three or more values.
すなわち、 ド フ トの大きさを変える こ とにより ド ッ ト レべルで多 階調 (例えば、 4階調、 1 6 階調など) を表現でき る熟転写型カ ラ —プリ ンタや、 4階調、 あるいは 1 6階調等の多階調を表現でき る 液晶表示装置等などの表示あるいは出力を行おう とする と、 当然な がら、 2 5 6階調などの多階調データは表示あるいは出力できない し、 また上述 C 2値のデータを出力する擬似中間調画像処理装置に よっても、 4階調、 1 6 階調の表示あるいは 力装置との性能を十 分に発揮させる こ と てきない 。 また-、 上記擬似中間謂 理装置は、 それだけでは擬 間調処理された画像の擬似的な階調特性の変換 を行う こ とができない。  In other words, by changing the size of the dot, it is possible to express a multi-gradation (for example, 4 gradations, 16 gradations, etc.) at the dot level by using a mature transfer type color printer, When trying to perform display or output on a liquid crystal display device or the like that can express multi-gradation such as 4-gradation or 16-gradation, naturally multi-gradation data such as 256-gradation is required. Display and output cannot be performed, and even with the pseudo-halftone image processing device that outputs the C binary data described above, the performance with the display or output device of 4 gradations or 16 gradations can be sufficiently exhibited. Not coming. Also, the pseudo-intermediate processing device cannot convert pseudo-tone characteristics of an image subjected to pseudo-halftone processing by itself.
本発明は、 以上説明してきた従来技術の欠点を解消し、 4階調、 1 6階調 Ο表示あるいは出力装置においても、 その性能を十分に発 揮させる擬似中間調画像処理装置を提供する と ともにこれを用いた 表示あるいは出力装置を提供する こ とを目的とする。 発明の開示  The present invention solves the above-described drawbacks of the prior art, and provides a pseudo-halftone image processing device that can sufficiently exhibit the performance of a 4-gradation, 16-gradation display or output device. Both aim to provide a display or output device using this. Disclosure of the invention
本発明は、 平均誤差最小法の処理を行う擬似中間調処理装置にお いて、 誤差算出基準値記憶手段、 閾値算出記憶手段および誤差算出 手段を設け、 複数あるいは複数組の基準値の設定、 記憶およびそれ らを用いた誤差算出が可能な構成と し、 閾値比較手段では修正値を 複数の閾値と比較し、 その結果に基づいて多値出力値を出力するよ う に した。  According to the present invention, in a pseudo halftone processing apparatus that performs processing of the average error minimum method, an error calculation reference value storage unit, a threshold value calculation storage unit, and an error calculation unit are provided, and a plurality or a plurality of sets of reference values are set and stored. The threshold value comparing means compares the corrected value with a plurality of threshold values, and outputs a multi-value output value based on the result.
このこ とによって、 階調特性のよい擬似中間調画像が得られる また、 階調特性を変える こ とも可能で'ある c 図面の簡単な説明 By the Conoco, also good halftone image gradation characteristics can be obtained, and can be the this to change the gradation characteristic 'is c BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の好ま しい一実施例を示すブロ ッ ク図であり 、 図 2 は、 従来の技術を示すブロ ン ク図であり 、 図 3 は誤差記憶手段の 記憶内容を示す図であり 、 図 4 は、 重み付け係数の一例を示す図で あり、 図 5 は、 従来例に対する出力値および閾値の関係を示す説明 図であり、 図 6 は、 本発明の実施例 1 におけ る出力値、 闞値および 誤差算出基準値 0閬係を示す説明図であり、 図 7 は、 本発明の実施 例 2 において a = 1 . δ の場合における出力値、 闞値および誤差算 出基準値の関係を示す説明図であり 、 図 8 は、 本発明の実施例 2 に おいて a - D . 5 ©場合における出力値', 閾値および誤差算出基準 値 O関係を示す説明図であ 、 図 9 は、 原画像 G画素の並びを示す 図であり 、 図 1 0は、 本発明の擬似中間調画像処理装置を用いたプリ ン ト装置の概略を示すブロ ッ ク図であり 、 図 1 1は、 本発明の擬似中 間調画像処理装置を 3 色同時に印字する カ ラ —プリ ンタ に適用した 一例を示すブ ク図であり 、 図 12は、 本発明の擬似中間調画像処 理装置を用いたカ ラ ー表示装置の概略を示すブ π ク図て'あり、 図 1 3は、 本発明の擬似中間調画像処理装置で各色を分担し、 表示する 場合 O力 ー表示装置 C'一例を示すブ π ク Hてある c FIG. 1 is a block diagram showing a preferred embodiment of the present invention, FIG. 2 is a block diagram showing a conventional technique, and FIG. 3 is a diagram showing storage contents of an error storage means. Yes, FIG. 4 is a diagram showing an example of a weighting coefficient, FIG. 5 is an explanatory diagram showing a relationship between an output value and a threshold with respect to a conventional example, and FIG. 6 is a diagram showing an output in the first embodiment of the present invention. FIG. 7 is an explanatory diagram showing the relationship between the output value, the 闞 value, and the error calculation reference value when a = 1.δ in Example 2 of the present invention. FIG. 8 is an explanatory diagram showing the relationship between the output value, the threshold value, and the error calculation reference value O in the case of a-D.5 © in the second embodiment of the present invention. Is a diagram showing an arrangement of G pixels of an original image, and FIG. 10 is a pseudo halftone image processing device of the present invention. FIG. 11 is a block diagram schematically showing a printing apparatus used. FIG. 11 is a block diagram showing an example in which the pseudo halftone image processing apparatus of the present invention is applied to a color printer for printing three colors simultaneously. FIG. 12 is a block diagram schematically showing a color display device using the pseudo halftone image processing apparatus of the present invention, and FIG. 13 is a pseudo halftone image processing apparatus of the present invention. share each color in the image processing apparatus, it is if O force over the display device C 'Bed π click H showing an example of displaying c
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り詳細に説述するために、 添付の図面に従ってこれを 説明する  The present invention will be described in more detail with reference to the accompanying drawings.
図 1 は、 本発明擬似中間調画像処理装置 A 0プロ ッ ク図であり、 m値の多階調画像データを n値の階調の画像テ'ータに変換して出力 する機能をもつ ( m :> n > 2 , m , η は整数) 。 1 は画像記億手段 などからなる入力手段でその出力は多階調 Ο値の画素データてある。 画素データ は原画像に対し、 主走査方向に 1 画素毎に図 9 の右方向 に順次読み込まれて処理され、 これを副走査方向に 1 ラ イ ンずつず ら しながら順次処理される。 2 は修正値算出手段で .、 後述する補正 値算出手段 7 の補正値出力と上記入力手段 1 からの多階調の m値の 画像データ出力とを入力と し、 これらを加算して修正値と して出力 する。 3 は複数閻値比較手段で、 複数 ( n - 1 個) の閾値を持ち、 これらと上記修正値とを比較して入力された修正値がこ の閾値で仕 切られた n個の領域のいずれに属するかを判別する。 そして、 その 結果を出力する。 FIG. 1 is a pseudo halftone image processing apparatus A0 block diagram of the present invention, which has a function of converting m-value multi-gradation image data into n-value gradation image data and outputting it. (M:>n> 2, m and η are integers). Reference numeral 1 denotes an input means including an image storage means, and the output is multi-tone Ο-valued pixel data. The pixel data is sequentially read from the original image in the main scanning direction for each pixel in the right direction in Fig. 9 and processed, and this is processed one line at a time in the sub-scanning direction. The processing is performed sequentially. Reference numeral 2 denotes a correction value calculating means, which receives as input the correction value output of the correction value calculating means 7 described later and the multi-gradation m-value image data output from the input means 1 and adds them to obtain the correction value. Is output as. Numeral 3 is a multi-value comparing means having a plurality of (n-1) thresholds, and comparing these with the above-mentioned correction values, and inputting the correction values to the n regions divided by this threshold. It is determined to which one it belongs. Then, output the result.
4 は多値データ出力手段て、 こ こ には上述した n個の領域にそれ ぞれ対応する出力値が規定されており 、 上記複数閾値比較手段 3 の 比較結果を受けて、 その修正値が属する領域に対 ISする出力値を出 ノ j ""? 。  Numeral 4 denotes multi-value data output means, in which output values corresponding to the above-mentioned n areas are specified, respectively, and based on the comparison result of the plural threshold comparing means 3, the corrected value is obtained. Outputs the output value for the area to which it belongs IS j ""? .
5 c は誤差算出基準値設定手段で、 上記多値データ出力手段 4 の ' 出力値に対応した誤差算出基準値を設定する。  5c is an error calculation reference value setting means for setting an error calculation reference value corresponding to the output value of the multi-level data output means 4.
5 b は誤差算出基準値記憶手段て、 上記誤差算出基準値設定手段 5 c て設定された、 上記多値データ出力手段 4 の出力値に対応した 誤差算出基準値を記憶する。  5b is an error calculation reference value storage means for storing an error calculation reference value set by the error calculation reference value setting means 5c and corresponding to the output value of the multi-value data output means 4.
5 d は閬値算出記憶手段て .、 上記誤差算出基準値設定手段 5 cて 設定した誤差算出基準値に基づき上記複数閾値比較手段 3 で用いる I値を算出、 記憶する。  5d is a 閬 value calculation storage means. Based on the error calculation reference value set by the error calculation reference value setting means 5c, the I value used by the multiple threshold value comparison means 3 is calculated and stored.
5 a は誤差算出手段で、 上記誤差算出基準値記憶手段 5 b に記憶 された、 上記複数閾値比較手段 3 の比較結果に対応した誤差算出基 準値と、 上記修正値算出手段 2 の出力値との差を算出して誤差値と して出力する。  5a is an error calculation means, an error calculation reference value stored in the error calculation reference value storage means 5b and corresponding to the comparison result of the multiple threshold value comparison means 3, and an output value of the correction value calculation means 2 Is calculated and output as an error value.
6 は誤差記憶手段で、 ラ ィ ンバ ッ フ ァ を有して、 少な く とも 1 ラ ィ ン分の誤差を記憶する。  Numeral 6 is an error storage means having a line buffer for storing an error of at least one line.
図 3 は、 誤差記憶手段 6 の記憶内容の一例を示している。 a . b , c · . . £ は、 すてに処理が終わり誤差記憶手段 6 に記憶されてい る誤差値、 * は注目画素の誤差値が記憶される位置を示す。 7 は補正値算出手段て 注目画素 Ο近傍に つ て上記誤差記憶手 段 6 にすてに記憒され 各画素 Ο誤差を参照 て、 上記各誤差に対 してあらかじめ定めた手段によ つて重み付けを行 tへ 誤差を平均す る。 こ の算出された平均値が補正値と して、 上記修正値算出手段 2 に入力される。 FIG. 3 shows an example of the storage contents of the error storage means 6. .. £ are the error values stored in the error storage means 6, and * is the position where the error value of the pixel of interest is stored. Reference numeral 7 denotes a correction value calculating means, which is described in the above-mentioned error storage means 6 for the vicinity of the target pixel Ο, and refers to each pixel Ο error, and weights each error by a predetermined means. Is averaged over row t. The calculated average value is input to the correction value calculation means 2 as a correction value.
図 4 は、 補正値を算出するための重み付け係数の例 ある 補正値算出手段 7 の補正値算出 、 図 4 の重 けけ係歡:こ従つて 以下の演算によって行われる  FIG. 4 shows an example of a weighting coefficient for calculating a correction value. The correction value calculation by the correction value calculation means 7 is performed by the following calculation.
補正値 - ( a 1 / 4 8 ) - ( b X 3 / 4 8 Ϊ - - · · ·  Correction value-(a 1/4 8)-(b X 3/4 8 Ϊ--
一 ( 1: X 5 , 4 S ' ~ ' ( > ノ 4 8 J こ ^ —;:、 1 ,·- 4 0 c - 4 ϋ 、 · · · ' 、 凶 .一不 Γ二各画素 における重み付け係数てある c One (1: X5, 4S '~'(> ノ 48J this ^-;:, 1, ...-40c-4 、, ..., ', evil. Weighting in each pixel Coefficient c
〔実施例 】 〕  〔Example 】 〕
はじめに、 出力値及び閻値の定め方について例亍する  First, an example of how to determine the output and output values
じめに誤差算出基準値が多値 一タ出力手段 4 Ο出力値と等しい 場合を例と '- 説明す ... 多値 ー タ出力手段 C'出力値の種類は、 擬似中間調処理された画像を表示または出力する装置 O階調数に一 致させるのが普遣てあ 一 そ ::て、 入力画像 ÷一タ 濃度階調の範 囲を 0〜 R と して、 こ の範囲を等間隔に仕切一 値を多値テ ―タ出 力手段 4 の出力値とする。 こ の とき、 出力値は、  First, the case where the error calculation reference value is equal to the multi-value data output means 4 Ο Output value is described as an example.- Multi-value data output means C The output value type is pseudo-halftone processed. It is common practice to match the number of gradations in the device that displays or outputs the image. O: Input image data The range of density gradation is 0 to R. At equal intervals, and set the partition value as the output value of the multi-value data output means 4. At this time, the output value is
i R ( n - 1 ) こ こて、 i = 0〜 η — 1 ( 1 ) で表される。 本実施例て 、 誤差算出基準値も同様てある。 こ の誤 差算出基準値は、 誤差算出基準値記憶手段 5 b に記憶される。 閾値 は上記誤差算出基準値の中間値を取つて、  i R (n-1) where i = 0 to η — 1 (1). The same applies to the error calculation reference value in the present embodiment. This error calculation reference value is stored in the error calculation reference value storage means 5b. The threshold value is an intermediate value between the above error calculation reference values.
( 2 j - 1 ) R / 2 ( n - 1 ) こ こ で、 j = ' 〜 n — 2 (2:' で表される。 こ の閾値は、 閾値算出記憶手段 5 d によ って 、 上記誤 差箕出基準値よ り算出され記憶される。  (2 j-1) R / 2 (n-1) where j = '~ n-2 (2:'. The threshold is calculated by the threshold calculation and storage means 5 d. It is calculated from the error error reference value and stored.
いま .、 本発明の擬似中間調画像^理装置 A G最大出力値を 2 5 5 と して、 m ( = 2 5 6 ) 階調の画像データを n ( = 4 :) 階調の画像 データに変換する例を取って説明す'る。 Now, the maximum output value of the pseudo halftone image processing device AG of the present invention is set to 255 As an example, an example will be described in which image data of m (= 256) gradation is converted to image data of n (= 4 :) gradation.
図 6 は、 実施例 1 の場合における出力値、 閾値および誤差算出基 準値の関係を示す説明図である。 まず、 多値データ出力手段 4 の出 力値および誤差算出基準値は、 (1)式より明らかなよ う に、 0 , = 0 ( = 2 5 5 x 0 / 3 ) 、 0 z = 8 5 = 2 5 δ 1 / 3 ) 、 O s = 1 7 0 ( = 2 5 δ χ 2 ./ 3 ) . 04 = 2 5 5 ( = 2 5 5 x 3 / 3 ) の 4値である。 FIG. 6 is an explanatory diagram illustrating a relationship among an output value, a threshold value, and an error calculation reference value in the case of the first embodiment. First, the output value of the multi-level data output means 4 and the error calculation reference value are 0, = 0 (= 255 x 0/3) and 0 z = 85, as is clear from equation (1). = 2 5 δ 1/3) , O s = 1 7 0 (= 2 5 δ χ 2 ./ 3). a four values of 0 4 = 2 5 5 (= 2 5 5 x 3/3).
複数閾値比較手段 3 の閾値は 上記 4つの出力値に応じ、 )式よ り明らかなよ う に、 T i - 4 ' = 2 5 5 / 6 ) 、 T 2 = 1 2 7 The threshold value of the multi-threshold comparing means 3 depends on the above four output values, and as is clear from the expression), T i −4 ′ = 2 5 5/6) and T 2 = 1 2 7
( = 2 5 5 .· ·· ' 2 ノ 、 T 2 ' = 2 1 ! = 5 ' 2 ή δ , 6 ) Ο 3値を取 り、 上記複数閬値比較手段 3 は 上記蘭値と修正値算出手段 2から の修正値とを比較して修正値がどの閻値に挟まれた領域にあるかを 判別する。 (= 2 5 5... '2 no, T 2 ' = 2 1! = 5 '2 δ δ, 6) を 取 Takes 3 values, and the multiple-value comparison means 3 takes the orchid value and the corrected value. By comparing the correction value with the correction value from the calculation means 2, it is determined which area the correction value is between.
多値テ一タ出力手段 4 は、 上記複数閾値比較手段 3 の結果を受け て、 上記 4値の出力値の(、'ずれか一つを出力する。  The multi-value data output means 4 receives the result of the multiple threshold value comparison means 3 and outputs one of the four output values.
すなわち、 修正値が 4 2未滴すな; ρち図 6 Ο領域 A であれば 0 を、 修正値が 4 2以上 1 2 7 未满 領域 A 2 .:· てあれ S 5 を、 修 正値が 1 2 7以上 2 1 2 未潢 (領璩 A 3 ) であれば 1 0 を、 2 1 2以上 (領域 A 4 ) であれば 2 5 5 を出力する。 In other words, the corrected value should not be dropped by 4 2; ρ Fig. 6 0 If the area A is 0, the corrected value is 4 2 or more 1 2 7 The area A 2 .. value 1 0 if 1 2 7 more than 1 2 Not潢(Ryo璩a 3), and outputs a 2 5 5 if 2 1 2 or more (area a 4).
次に、 誤差の算出の仕方について説明する。 誤差は前逑のよう に 上記複数閾値比較手段 3 の比較結果に対応した誤差算出基準値と、 前記修正値と ©差をとる。 こ こでは、 誤差算出基準値が多値データ 出力手段 4 の出力値と等しいと しているのて、 修正値が 4 2未満 Next, how to calculate the error will be described. The error takes a difference between the error calculation reference value corresponding to the comparison result of the multiple threshold value comparing means 3 and the corrected value, as in the case of the front ridge. Here, since the error calculation reference value is equal to the output value of the multi-value data output means 4, the correction value is less than 42.
(領域 A )てあれば 0 との差を、 修正値が 4 2以上 1 2 7未潢 (領 域 A 2)であれば 8 5 との差を、 修正値が 1 2 7 以上 2 〗 2未満 (領 域 A 3)であれば 1 7 0 との差を、 2 1 2以上 (領域 A 4)であれば 2 δ 5 との差を誤差とする 上記誤差は、 前述 よ う に上記誤差記 憶手段 6 に記憶される と と もに、 上記補正値算出手段 7 において補 正値を算出する のに用い られる。 If it is (Area A), the difference between 0 and the corrected value is not less than 4 2 and not more than 1 2 7 If it is (Area A 2 ), the difference from 85 and the corrected value is 1 27 or more 2 less than the error of the difference between (realm a 3) a long Invite 1 7 0, to 2 1 2 or more error the difference between the 2 [delta] 5 if (area a 4) is the error in the Hare by above Record The correction value is stored in the storage means 6 and is used for calculating the correction value in the correction value calculation means 7.
以上の説明においては、 上記処理を 1 面の画像テ ータに対して適 用すれば、 2 モ ノ ク ロ画像が得られるが、 例えば R、 G、 B G各面の  In the above description, if the above processing is applied to one plane of image data, two monochromatic images can be obtained. For example, for each of the R, G, and BG planes,
5  Five
画像データに適 5 用すればカ ラ ー画像に対しても処理でき る こ とはも ちろんである。 a Of course, if it is applied to image data, it can also process color images. a
R  R
〔実施例 2  (Example 2
X  X
次に、 誤差算出基準値が 2 多値データ出力手段 4 の出力値と異なる  Next, the error calculation reference value differs from the output value of 2 multi-level data output means 4.
5  Five
場合について説明する。 こ こ で 5 も、 本発明の擬似中間調画像処理装 置 Aの最大出力値を 2 5 5 と し"、 m ( = 2 5 6 ) 階調の画像テ 一 タを n ( - 4 ) 調の画像デ一タ に変換する場合を例に とる。 前述 のよう に出力値は表示装置あるいは出力装置によ って決ま つて く る ので :: こても実施例 1 と同 く 式(1)で表される ものとする。 The case will be described. Here, 5 also assumes that the maximum output value of the pseudo halftone image processing device A of the present invention is 255, and that the image data of m (= 256) gradations is n (−4) tone. As an example, since the output value is determined by the display device or the output device as described above, the following equation (1) is used as in the first embodiment. It is assumed that
誤差算出基準値は、 たとえば次式で表せる よ う に 'と る。  The error calculation reference value is, for example, 'as can be expressed by the following equation.
0 n 一 1 ( 3 ) n 1 0 n one 1 (3) n 1
こ の誤差算出基準値を誤差算出基準値設定手段 5 c によ り設定 5 し、 誤差算出基準値記憒手段 5 b に記億する 閾値は、 5 This error calculation reference value is set 5 by the error calculation reference value setting means 5c, and the threshold value stored in the error calculation reference value writing means 5b is 5
Figure imgf000011_0001
Figure imgf000011_0001
にとる。 これは、 閾値算出記憶手段 5 d によ り算出され記憶される こ こで、 a は一定値である。 こ のよ う に誤差算出基準値が多値デー タ出力手段 4 の出力値と異なる場合には、 一度誤差算出基準値が出 力値であるよう な擬似中間調画像を得て、 それを多値デ一夕出力手 段 4 の出力値に変換するのと等価となる。 いま、 a == l . 5 とする と、 誤差箕出基準値は、 0 , 4 9 , 1 3 9 , 2 5 5 となり 、 閾値は 2 5 , 9 4 - 1 9 7 となる c 図 7 は、 実施例 2 において a = 1 . 5 と した場合における出力値、 閻値および誤差算出基準値の閬係を示す説明図である。 これにより 本手法による擬似中間調処理を行う と、 実施例 1 の場合と比較して 明度を低下させた結果が得られる。 同様に、 a = 0 . 5 とする と、 誤差算出基準値は、 0 , 〗 4 7 , 2 0 8 , 2 5 5 となり 、 閾値は、 7 4 , 1 7 8 , 2 3 2 となる。 To take. This is calculated and stored by the threshold calculation storage unit 5d, where a is a constant value. When the error calculation reference value is different from the output value of the multi-value data output means 4 as described above, a pseudo halftone image in which the error calculation reference value is an output value is obtained once, and is multiplied. This is equivalent to converting to the output value of value 4 output means 4. Now, assuming that a == l.5, the error reference value is 0, 49, 13 39, 25 5 and the threshold value is 25, 9 4-19 7 c FIG. 7 is an explanatory diagram showing a relationship among an output value, an end value, and an error calculation reference value when a = 1.5 in the second embodiment. As a result, when the pseudo halftone processing according to the present method is performed, a result in which the brightness is reduced as compared with the case of the first embodiment is obtained. Similarly, when a = 0.5, the error calculation reference values are 0,〗 47, 207, 255, and the threshold values are 74, 178, 232.
図 8 は、 実施例 2 において a = 0 . 5 と した場合における出力値、 閾値および誤差算出基準値の関係を示す説明図である。 これにより 本手法による擬似中間調処理を行う と、 実施例 1 の場合と比較して 明度を向上させた結果が得られる。 また、 表示あるいは出力装置の 持つ入出力閬係の非線形性を補正する こ と も可能である。  FIG. 8 is an explanatory diagram showing the relationship among the output value, the threshold value, and the error calculation reference value when a = 0.5 in the second embodiment. As a result, when the pseudo halftone processing according to the present method is performed, a result in which the brightness is improved as compared with the case of the first embodiment can be obtained. It is also possible to correct the nonlinearity of the input / output relationship of the display or output device.
このよう に、 a の値により、 擬似中間調処理結果の階調特性を変 える こ とができる。  As described above, the gradation characteristics of the pseudo halftone processing result can be changed depending on the value of a.
〔実施例 3 〕  (Example 3)
本発明において、 誤差算出基準値記憶手段 5 b、 誤差算出基準値 設定手段 5 c 、 閻値算出記憶手段 5 d および誤差算出手段 5 a にお いて、 複数組の基準値の設定、 記憶およびそれらを用いた誤差算出 を可能にする こ とによ り 、 カ ラ—'画像を各原色、 例えば R 、 G 、 B の各面ごとに切り替える こ とによって、 実施例 2 で示した階調特性 面ごとに変える こ とができる。 それにより擬似中間調処理結果の.力 ラーバラ ンスを変える こ とができる。  In the present invention, in the error calculation reference value storage means 5b, the error calculation reference value setting means 5c, the end value calculation storage means 5d and the error calculation means 5a, a plurality of sets of reference values are set, stored and stored. By enabling the error calculation using the color characteristic, the color image is switched for each primary color, for example, for each of the R, G, and B planes, so that the gradation characteristic plane shown in the second embodiment can be obtained. It can be changed every time. As a result, the power balance of the pseudo halftone processing result can be changed.
以上の説明においては、 それぞれの閾値が各出力値の中間の値で ある と して説明したが、 必ずしも、 中間の値に設定しな く ても同様 の効果を達成する こ とができる。  In the above description, each threshold value is described as being an intermediate value between the output values. However, the same effect can be achieved without necessarily setting the intermediate value.
さ らに、 注目画素近傍の画素の重み付け係数は、 上に説明した例 に限らないこ とは当然であり、 参照する誤差の範囲も上に説明した 例に限らない。  Further, the weighting coefficient of the pixel near the target pixel is not limited to the example described above, and the range of the error to be referred to is not limited to the example described above.
図 10は、 本発明の擬似中間調画像処理装置を用いたプリ ン ト装置 の概略を示すブ a ク図てある。 プリ ン ト部】 4は 、 n階調の画像を プリ ン 卜可能な装置であればよ く 、 たとえば、 モ ノ ク ロプリ ンタ 、 面順次または線順次に印字する力 ラ ープリ ンタをあげる こ とができ る。 FIG. 10 shows a printing apparatus using the pseudo halftone image processing apparatus of the present invention. FIG. The print section 4 may be any device capable of printing an image of n gradations, and examples thereof include a monochromic printer and a force lap printer that prints in a line-sequential or line-sequential manner. Can be done.
m値の多階調の画像データ は、 入力手段 21を轻て、 画像データ記 憶手段 11に一旦記憶され、 記憶データ読出手段 12よ り本発明にかか る擬似中間調画像処理装置 20に入力される。  The m-value multi-gradation image data is temporarily stored in the image data storage means 11 via the input means 21, and is stored in the pseudo halftone image processing apparatus 20 according to the present invention by the stored data read means 12. Is entered.
擬似中間調画像処理装置 20は、 すでに述ベた搆成によ り上記 m値 の階調の画像デー タを n値の擬似中間調画像テ ー タ に変換してプリ ン 卜制御手段 13へ出力する c リ : ト制'御手段: 3は , 変換された 値 O階調の擬似中間調画像テ—タをプリ ン トき !314用にさ らに変換し てプリ ン ト部 14へ出力する。 上記出力を受けて、 ブ リ ン ト 部 14は η 階調の擬似中間調画像データをプリ ン ト ア ウ トする。 The pseudo-halftone image processing device 20 converts the m-value gradation image data into an n-value pseudo-halftone image data according to the above-described method, and sends it to the print control means 13. Output c : Control means: 3 is for converting the converted value O gradation pseudo halftone image data for printing! 314 to print section 14 Output. In response to the output, the print unit 14 prints out pseudo halftone image data of η gradation.
図 11は、 本発明の擬似中間調画像処理装置 20を 3色同時に印字す るカ ラ一プリ ンタに適用 した一例を示すブ口 ... ク図てある。  FIG. 11 is a block diagram showing an example in which the pseudo halftone image processing device 20 of the present invention is applied to a color printer that prints three colors simultaneously.
画像テ一タ入力手段 21よ り画像デー タ -記 1,き手段 11に入力された m 階調の画像テータ は . 一旦 ;: こに記憶される。 記憶テ—タ読出手段 12 、 画像データ記情手段 iiよ り m値の階^ Ο画像 一タを色別 The m-gradation image data input to the image data-recording means 11 by the image data input means 21 is stored once. The storage data reading means 12 and the image data writing means ii have m-valued floors.
( R、 G、 E ) に読み出し、 それぞれ、 R、 G . , B O各色を受け持 つ擬似中間調画像処理装置 20R、 20G、 20Bへ出力する。 上記擬似 中間調画像処理装置 20F 20G、 20B は、 入力された m値の階調の 画像データをそれぞれ R、 G、 B の n値の階調の擬似中間調画像デ ータに変換してプリ ン ト制御手段 13に出力する。 プリ ン ト制御手段 13は、 n値の階調に変換された R、 G、 Bの画像デ一夕をプリ ン ト 部 14用にさ らに変換して、 シァ ン マゼ ンタ 、 ェ ロ ーへの補色変 換を行い、 プリ ン ト部 14に出力し プリ ン ト部 14は n階調の擬似中 間調画像デ一タをプリ ン トする。 (R, G, E), and output them to the pseudo halftone image processing devices 20R, 20G, and 20B, respectively, which handle the R, G., and B O colors, respectively. The pseudo halftone image processing devices 20F 20G and 20B convert the input m-value gradation image data into pseudo halftone image data having R, G, and B n-value gradations, respectively, and pre-convert them. Output to the point control means 13. The print control unit 13 further converts the image data of R, G, and B converted to the n-valued gradation for the print unit 14, and outputs the image data to the cyan magenta and the yellow. , And outputs it to the print unit 14, which prints pseudo-halftone image data of n gradations.
以上の説明において 、 、 G B の画像 ータを入力し、 プリ ン ト制御手段 13にて補色変換を行ったか、 直接、 イ エロ — .、 マゼン タ、 シア ンの画像データを入力し、 プリ ン ト制御手段 13ての補色変 換を行わな く ても同様の効果がある。 また .、 補色変換は、 入力手段 21や記憶デ一タ読出手段 12で行つても同様の効果がある。 In the above explanation, input the image data of, GB and The same applies if the complementary color conversion is performed by the print control means 13 or the image data of yellow —., Magenta, cyan is directly input and the complementary color conversion is not performed by the print control means 13. Has the effect. The same effect can be obtained even if the complementary color conversion is performed by the input means 21 or the storage data reading means 12.
図 12は.、 本発明のカ ラ—表示装置の概略を示すプロ 'ン ク図である。 m値の多階調の画像データは、 入力手段 21を経て画像データ記憶手 段 11に一旦記憶され、 記憶データ読出手段 12より本発明にかかる擬 . 似中間調画像処理装置 20に入力される。  FIG. 12 is a block diagram schematically showing the color display device of the present invention. The m-value multi-gradation image data is temporarily stored in the image data storage means 11 via the input means 21 and is input from the storage data reading means 12 to the pseudo halftone image processing device 20 according to the present invention. .
擬似中間調画像処理装置 20は、 すでに述べた構成により上記 m値 の階調の画像デ—タを n値の擬似中間調画像テ —タに変換して表示 制御手段 15へ出力する。 表示制御手段 15は、 変換された n値の階調 の擬似中間調画像デ一タを表示部 16用にさ らに変換して表示部 16へ 出力する。 上記出力を受けて、 表示部 16は n階調の擬似中間調画像 データを表 ¾する。 ―  The pseudo halftone image processing device 20 converts the m-value gradation image data into n-value pseudo halftone image data and outputs it to the display control means 15 by the above-described configuration. The display control means 15 further converts the converted pseudo halftone image data of n-valued gradation for the display unit 16 and outputs the data to the display unit 16. In response to the output, the display unit 16 displays the pseudo halftone image data of n gradations. ―
なお、 表示部 16と しては液晶表示装置、 C R Tなど各種の表示装 置が適用可能である。  As the display unit 16, various display devices such as a liquid crystal display device and a CRT can be applied.
図 13は、 各色毎に分担する本発明の擬似 Φ間調画像処理装置 20 R、 20 G、 20 Bにより表示する場合の例を示すブ ' つ ク図 ある。  FIG. 13 is a block diagram showing an example of a case where display is performed by the pseudo-Φ halftone image processing devices 20R, 20G, and 20B of the present invention, which are assigned to each color.
R、 G、 Bの各色毎に分離された m値 Ο階調の画像データ は、 各 入力手段 21 R、 21 G、 21 Bを経てそれぞれの各色を受け持つ擬似中 間調画像処理装置 20R、 20G、 20B に入力される。 上記擬似中間調 画像処理装置 20R、 20G、 20B は、 入力された m値の階調の画像デ —タをそれぞれ R、 G、 Bの n値の階調の擬似中間調に変換して表 示制御手段 15に出力する。 表示制御手段 15は、 n値の階調に変換さ れた R、 G、 B の画像テータを表示部 16用にさ らに変換して出力し-、 表示部 16は n階調の擬似中間調画像データを画面に出力する。 産業上の利用可能性 The m-value / gradation image data separated for each of the colors R, G, and B is supplied to each of the input means 21R, 21G, and 21B. , 20B is entered. The pseudo halftone image processing devices 20R, 20G, and 20B convert the input m-value gradation image data into pseudo halftones of R, G, and B n-value gradations, respectively, and display them. Output to control means 15. The display control means 15 further converts the R, G, and B image data converted to the n-valued gradation for the display unit 16 and outputs the converted data. Outputs the toned image data to the screen. Industrial applicability
以上のよ う に、 本発明にかかる擬似中間調画像処理装置 .、 m値 の画像データで表わされた画像を n値 ( m > n > 2 、 m , η は整数) の擬似中間調画像デー タ に変換する のて、 モ ノ ク 口 プ リ ンタ ある い はカ ラープリ ンタや液晶表示装置、 C R Τなどの表示装置の画像デ As described above, the pseudo-halftone image processing apparatus according to the present invention converts an image represented by m-value image data into a pseudo-halftone image having n values (m> n> 2, m and η are integers). It is converted to data, and is used for image data on display devices such as color printers, color printers, liquid crystal display devices, and CR II.
—タ処理装置と して有用である。 -It is useful as a data processor.

Claims

請 求 の 範 囲 . 注目画素の画素データを入力する入力手段と、 An input means for inputting pixel data of a pixel of interest;
上記画素データ と補正値算出手^から出力される補正値とを加算 して修正値を算出する修正値算出手段と、 Correction value calculating means for calculating a correction value by adding the pixel data and the correction value output from the correction value calculating means;
上記修正値を複数の蘭値と比較する複数蘭値比較手段と、 上記複数閻値比較手段の比較結果に対応 Lて出力値を出力する 出力手段と、  A plurality of orchid value comparing means for comparing the corrected value with a plurality of orchid values; an output means for outputting an output value corresponding to a comparison result of the plurality of orchid value comparing means;
上記出力値 対応した、 上記修正値との誤差の算出に用いる、 誤差算出基準値を記億する誤差算出基準値記情手段と、  An error calculation reference value storage means for storing an error calculation reference value corresponding to the output value and used for calculating an error with the correction value;
上記誤差算出基準値に基づき上記複数閾値比較手段で用いる閻 値を算出、 記憶する閾値算出記憶手段と、  A threshold calculation storage unit that calculates and stores a value used by the multiple threshold comparison unit based on the error calculation reference value;
上記修正値と上記誤差箕出基準値との差を誤差として算出する 誤差算出手段と、  Error calculating means for calculating a difference between the corrected value and the error reference value as an error,
上記誤差算出手段により算出された誤差を記憶する誤差記憶手 HV 、  An error storage means HV for storing the error calculated by the error calculation means,
上記誤差記憶手段の誤差に基づいて補正値を算出する上記補正 値算出手段とを具備したこ とを特徽とする擬似中間調画像処理装 置。  A pseudo-halftone image processing apparatus, comprising: the correction value calculating means for calculating a correction value based on an error of the error storage means.
. 請求項 1記載の擬似中間調画像処理装置の誤差算出基準値記憶 手段、 閾値算出記憶手段および誤差算出手段において、 複数組の 基準値の設定、 記憶およびそれらを用いた誤差算出が可能な擬似 中間調画像処理装置。 The error calculation reference value storage means, the threshold value calculation storage means and the error calculation means of the pseudo halftone image processing apparatus according to claim 1, wherein a plurality of sets of reference values are set and stored, and a pseudo error capable of calculating an error using them is provided. Halftone image processing device.
. 請求項 1 記載の擬似中間調画像処理装置の出力手段にプリ ン ト 部を接続したこ とを特徴とするプリ ン ト装置。  A printing apparatus, characterized in that a printing section is connected to the output means of the pseudo halftone image processing apparatus according to claim 1.
. 請求項 1記載の擬似中間調画像処理装置の出力手段に表示部を 接続したこ とを特徴とする表示装置。  A display device, wherein a display unit is connected to the output means of the pseudo halftone image processing device according to claim 1.
PCT/JP1991/001274 1990-09-26 1991-09-25 Pseudo-halftone picture processing equipment WO1992005659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25606890 1990-09-26
JP2/256068 1990-09-26

Publications (1)

Publication Number Publication Date
WO1992005659A1 true WO1992005659A1 (en) 1992-04-02

Family

ID=17287457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001274 WO1992005659A1 (en) 1990-09-26 1991-09-25 Pseudo-halftone picture processing equipment

Country Status (1)

Country Link
WO (1) WO1992005659A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476365A (en) * 1987-09-18 1989-03-22 Matsushita Electric Ind Co Ltd Image signal processor
JPH01157166A (en) * 1987-12-14 1989-06-20 Canon Inc Image processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476365A (en) * 1987-09-18 1989-03-22 Matsushita Electric Ind Co Ltd Image signal processor
JPH01157166A (en) * 1987-12-14 1989-06-20 Canon Inc Image processor

Similar Documents

Publication Publication Date Title
JP2500837B2 (en) Pixel value quantization method
US5070413A (en) Color digital halftoning with vector error diffusion
US5325211A (en) Error diffusion with output and input based feedback
US5243443A (en) Halftoning with error feedback and image dependent enhancement
US5321525A (en) Clustered halftoning with dot-to-dot error diffusion
JP3823424B2 (en) Image processing apparatus and image processing method
US6373990B1 (en) Image processing utilizing luminance-density conversion
US7286267B2 (en) Method for rendering an image comprising multi-level pixels
JPH0730772A (en) Image processor
JPH05336373A (en) Image recorder
JPH06178096A (en) Pseudo color picture output system
JP3639397B2 (en) Color image processing device by image area, image output device, image processing method, and storage medium
JP3979372B2 (en) Image processing apparatus, image processing method, and image processing program
JP4127281B2 (en) Image processing apparatus and image processing method
WO1992005659A1 (en) Pseudo-halftone picture processing equipment
US6891641B1 (en) Method and apparatus for converting number of colors and processing image data
JP3245600B2 (en) Image processing device
US6006011A (en) Target patterns controlled error management
JP4176053B2 (en) Image processing method, image processing apparatus, image forming apparatus, and computer program
JP2800071B2 (en) Color image forming equipment
JP2690086B2 (en) Color image processing equipment
JP4176656B2 (en) Image processing apparatus, image processing method, image forming apparatus, image processing program, and recording medium recording the program
JP3501533B2 (en) Color image forming equipment
JP3190527B2 (en) Color image processing equipment
JP3332433B2 (en) Pseudo color gradation expression method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB