WO1992004886A1 - Fat emulsion for intravenous injection - Google Patents

Fat emulsion for intravenous injection Download PDF

Info

Publication number
WO1992004886A1
WO1992004886A1 PCT/JP1991/001283 JP9101283W WO9204886A1 WO 1992004886 A1 WO1992004886 A1 WO 1992004886A1 JP 9101283 W JP9101283 W JP 9101283W WO 9204886 A1 WO9204886 A1 WO 9204886A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat emulsion
glycol
fat
emulsion
particle size
Prior art date
Application number
PCT/JP1991/001283
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tanimura
Yoshio Maniwa
Katsunari Takifuji
Original Assignee
Meito Sangyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meito Sangyo Co., Ltd. filed Critical Meito Sangyo Co., Ltd.
Publication of WO1992004886A1 publication Critical patent/WO1992004886A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers

Definitions

  • the present invention relates to a lipid emulsion for intravenous injection which is metabolized immediately after administration, has a low possibility of causing emboli in the retinal system such as lung, liver, spleen, etc., has a small particle size, and is excellent in stability. Things.
  • Fat emulsions are used parenterally as a source of energy or essential fatty acids to provide nutrition to patients.
  • Oils and fats are emulsified with an emulsifier and provided in the form of fine particles.
  • Intralipid a commercially available intravenous fat emulsion (trade name sold by Otsuka Pharmaceutical Co., Ltd.)) developed by Wret liquid in 1960. Since then, fat emulsion has been based on soybean oil or safflower oil. Emulsions with lecithin or egg yolk lecithin dominate and have not changed much in the last 20 years. Currently, MCT fat emulsions and fat emulsions using chemically synthesized structured lipids are being studied.
  • the particle diameter of the fat particles is irregular, ranging from 0.2 to 1.2 m, and sometimes large, exceeding 5 x m.
  • microemboli may be caused in tissues of the retina such as lung, spleen, and liver Kupffer cell (Kupffer cell).
  • liver failure the metabolism in the liver is slow, and in the case of cirrhosis, the incorporation of exogenous fat emulsion particles is reduced due to the decrease and narrowing of hepatic endothelial cell pores through which fat particles pass. Because of the hindrance, only the endogenous fat could be used.
  • conventional fat emulsions have a relatively low metabolic rate, which increases the triglyceride concentration in liver tissue, which limits the administration to patients with liver disease.
  • conventional fat emulsions have poor stability at high temperatures or during long-term storage, and have the problem of flocculation and creaming.
  • phosphatidylated polyvalent alcohol a compound in which the hydroxyl group of a specific polyvalent alcohol is substituted with a phosphatidyl group (hereinafter referred to as phosphatidylated polyvalent alcohol). ) was used as the main emulsifier to find that an excellent fat emulsion satisfying the above requirements was obtained, and completed the present invention.
  • the present invention provides, as a main emulsifier, at least one selected from the group consisting of phosphatidylglycerol, phosphatidylpolyglycerol, phosphatidylethylene glycol, diphosphatidylethylene glycol, phosphatidylpolyethylene glycol, and diphosphatidylpolyethylene glycol.
  • Another object of the present invention is to provide a fat emulsion for intravenous injection characterized in that it contains.
  • FIG. 1 shows changes in serum neutral fat concentration after intravenous administration of a fat emulsion.
  • FIG. 2 shows the change in neutral fat concentration in liver tissue after intravenous administration of a fat emulsion.
  • phosphatidyl glycerol and phosphatidyl polyglycerol used in the present invention are represented by the following general formula (1)
  • phosphatidylethylene glycol and phosphatidyl polyethylene glycol are represented by the following general formula (2)
  • diphosphatidylethylene glycol and diphosphatidyl Polyethylene glycol has a structure represented by the following general formula (3).
  • R ′, R 2 , R 3 and R 4 may be the same or different, and each represents a saturated or unsaturated acyl group having 6 to 32 carbon atoms, preferably 12 to 18 carbon atoms, and m represents 1 to A number of 10 and n is an integer of 1 -150.
  • the phosphatidylglycerol used in the present invention is widely distributed in nature and is particularly present in a large amount in plants and bacteria, and can be synthesized and prepared therefrom by an extraction operation.
  • Chemistry Experiment Lecture 3 Lipid Chemistry pp. 294-295 (Tokyo Kagaku Dojin) 1974, etc.] and reacting phospholipase D with lecithin contained in soybean, egg yolk, etc. as raw material in the presence of glycerol Can be easily prepared. Further, these phospholipids after the transfer can be purified by solvent fractionation, high performance liquid chromatography, etc., if necessary.
  • the phosphatidylpolyglycerol, phosphatidylethylene glycol, phosphatidylpolyethylene glycol, diphosphatidylethylene blendol and diphosphatidylpolyethylene glycol used in the present invention are also contained in, for example, soybeans, egg yolks, etc. according to known methods.
  • the polyglycerin used herein include those having a degree of condensation of 2 to 10, and polyethylene glycol.
  • the glycol include diethylene glycol, triethylene glycol, and various polyethylene glycols having an average molecular weight of 200 to 6,000.
  • emulsifiers can be used alone or in combination of two or more.
  • the use amount thereof is not particularly limited, but is preferably about 0.1 to 5% by weight based on the fat emulsion.
  • the emulsifier for the fat emulsion of the present invention basically, only the above-mentioned phosphatidylated polyvalent alcohol is used, but other emulsifiers may be blended within a range of less than 40% by weight.
  • the resulting phosphatidylated polyvalent alcohol may contain lecithin as a raw material, but the remaining amount is less than 40% by weight. It is particularly desirable that the content be less than 20% by weight.
  • the concentration of the phosphatidylated polyvalent alcohol is a value quantified according to the description of the standard method for analysis of fats and oils (edited by Japan Oil Chemists' Society).
  • the lipid used in the present invention may be any liquid at room temperature, and is not particularly limited. Among them, soybean oil, sesame oil, rapeseed oil, cottonseed oil, safflower oil, and olive oil Oil, structured lipid, etc. are preferred.
  • the amount of the lipid used is not particularly limited, but is preferably about 5 to 25% by weight based on the fat emulsion.
  • the intravenous fat emulsion of the present invention is produced, for example, as follows. That is, first, coarse emulsification is carried out by a liquid crystal dispersion method using an oil droplet dispersion phase in a liquid crystal, using the phosphatidylated polyvalent alcohol [(1), (2) or (3) as an emulsifier. It is carried out by fine emulsification by the method. To carry out the coarse emulsification, first, the above-mentioned phosphatidylated polyvalent alcohol (1), (2) or (3) is mixed with glycerin and water in an amount of about twice each, and a surfactant is added. Allow a phase to form.
  • a lamellar liquid crystal phase is formed by adding a small amount of a lipid such as soybean oil to the surfactant phase while stirring the same amount or twice as much as the surfactant phase. Add 3 to 10 times the amount of water to this liquid crystal phase while stirring little by little, and use Ultra Homo Mixer on lOOOOrpm 1
  • an oil-in-water emulsion is obtained by coarse emulsification at 5000 rpm or more for 10 minutes or more.
  • an oil-in-water emulsion having a small particle diameter can be obtained by emulsification using a high-pressure homogenizer or an ultrasonic homogenizer.
  • the conditions for milking are not particularly limited, but in the case of ultrasonic emulsification, emulsification at 100 W or more, preferably 200 W or more, preferably for 10 minutes or more is preferable.
  • these refining means in the case of mass production, it is preferable to use a high-pressure homogenizer.
  • the resulting emulsion can be adjusted to pH with aqueous rukari solution. After adjusting to ⁇ 8, filtration is continued several times with a membrane filter with a pore size of 1 to 5 ⁇ , and finally, once with a membrane filter with a pore size of 0.4 to 0.5 / im.
  • a fat emulsion having a particle size of 0.3 / m or less and having a relatively uniform particle size can be obtained. This is dispensed under a nitrogen atmosphere, and then sterilized using an autoclave, thereby obtaining a fat emulsion that can be injected intravenously into a living body without largely changing the particle size before and after sterilization.
  • Example 1 Phosphatidylglycerol derived from soybean lecithin as an emulsifier (prepared by allowing phospholipase D to act on soybean lecithin in the presence of glycerol: “Standard fat and oil test analysis method” (edited by Japan Oil Chemists' Society) [5.3.3 Composition of phospholipids] 1.2 g was used and mixed with 2.5 g of 98.5% glycerin and 2.5 g of distilled water.
  • Example 1 phosphatidylglycerol was replaced by 1.2 g of phosphatidylglycerol, and phosphatidylpolyethylene glycol 400 derived from soybean lecithin (prepared by allowing phospholipase D to act on soybean lecithin in the presence of polyethyleneglycol 400: the same as in Example 1) A fat emulsion having a small particle size and excellent storage stability was obtained in the same manner as in Example 1 by using 1.2 g of the compound (purity according to analytical method: 83 mol%).
  • a corresponding fat emulsion was obtained in the same manner as in Example 1, except that 1.2 g of purified egg yolk lecithin was used instead of 1.2 g of phosphatidylglycerol in Example 1.
  • Test example 1 high temperature stability test
  • Tables 1 and 2 show changes in pH and average particle size of each fat emulsion before and after the autoclave sterilization treatment (121, 20 minutes) in the final stage of the production process in Examples 1 and 2 and Comparative Example 1.
  • the pH was measured with a digital PH meter 225 (manufactured by Iwaki Glass Co., Ltd.), and the average particle size was measured using a Coulter Counter (manufactured by Coulter Electronics, Coulter Model N4).
  • the fat emulsions obtained in Examples 1 and 2 and Comparative Example 1 and a commercially available intravenous fat emulsion Intralipid (manufactured by Otsuka Pharmaceutical Co., Ltd.) was tested for changes in PH and average particle size during long-term storage at 4: and 37 :. Measurements were made immediately after production and at 10, 30 and 60 days after storage.
  • Example 1 The average particle size, maximum particle size, particle size distribution, zeta potential and viscosity of the fat emulsions obtained in Example 1 and Comparative Example 1 were also measured. The results are shown in Table 2. Table 3 shows the results of the long-term storage stability test. The maximum particle size and particle size distribution were determined by scanning electron microscopy using a fat emulsion particle fixation method (Miki, Tanimura, H .; J. Clin. Electron Microscopy, 12: 855-856 (1979)), and computer It was calculated by image processing.
  • the average particle size of the fat emulsion of the present invention was 190 ⁇ 2.5 ⁇ , which was significantly smaller than that of the fat emulsion using lecithin as an emulsifier, 2 to 2 ⁇ 10 nm ( P 0.01). .
  • particles having a particle size of 0.5 jum or less were 94.1 ⁇ 2.5% in the fat emulsion of the present invention and 91.0 ⁇ 1.5% in the emulsion of Comparative Example 1, which was a problem.
  • the ratio of particles of 1 im or more was also small.
  • the zeta potential of the fat emulsion of the present invention showed a low value, and the viscosity showed a somewhat high value.
  • the fat emulsion of the present invention showed little change in particle size even after long-term storage.
  • fat emulsions using lecithin as an emulsifier coalesce most of the particles into giant particles of about lO ⁇ in, and some of them were destroyed and the surface became coarse.
  • the fat emulsion of the present invention did not show any giant particles or a destructive image considered to be fused.
  • the fat emulsion obtained in the same manner as in Example 1 and Comparative Example 1 was administered to a rat via a bolus vein, and the pharmacokinetics and metabolic rate of the fat emulsion were examined.
  • FIG. 1 shows changes in serum neutral fat concentration after administration of the fat emulsion.
  • the serum neutral fat increased sharply to 391 ⁇ 53 mg / ⁇ in the fat emulsion of Comparative Example 1, whereas it increased only slightly to 146 ⁇ 12 mgZo3 ⁇ 4 in the fat emulsion of the present invention. (P ⁇ 0.01).
  • Fig. 2 shows the change in neutral fat concentration in liver tissue.
  • triglyceride in liver tissue showed a small increase in triglyceride from 5 minutes to 120 minutes after administration, and little accumulation of triglyceride in liver tissue.
  • Table 4 the distribution rate of the administered 3 H-labeled emulsifier to the main tissues was higher in the liver of the fat emulsion of the present invention than in the fat emulsion of Comparative Example 1 5 minutes after administration, as shown in Table 4. .
  • Comparative Example 1 138 zCi / kg (2.5 ml / kg as fat emulsion)
  • the fat particles of the present invention were actively taken up by hepatocytes, and most of the fat particles were metabolized 60 minutes after administration.
  • the metabolic rate in the liver was faster than in the fat emulsion of Example 1.
  • the fat emulsion of the present invention is rapidly taken up by the liver after administration, so that it is rapidly eliminated from the blood, and is well metabolized in liver tissue.
  • the intravenous fat emulsion of the present invention has a small particle size, the change in the particle size of the fat particles is small even under high temperature or long-term storage, and the pH of PH which is an indicator of peroxide production is small.
  • the degree of reduction is very stable, equivalent to or lower than that of a conventional fat emulsion containing egg yolk lecithin as an emulsifier.
  • the intravenous fat emulsion of the present invention (1) is less likely to cause emboli such as the reticular system due to its fine particle size, and (2) accumulates in the liver because of its rapid metabolism in blood and liver. It can be administered to patients with liver dysfunction without using it.
  • the decomposition product is glycerin, which has advantages such as being used as an energy source.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

A fat emulsion for intravenous injection containing as the main emulsifier at least one compound selected from the group consisting of phosphatidylglycerol, phosphatidylpolyglycerol, phosphatidylethylene glycol, phosphatidylpolyethylene glycol and diphosphatidylpolyethylene glycol. The diameter of the fat particle is small and little changes even at high temperature or after being stored for long. This emulsion metabolizes so rapidly that there is only a reduced risk of microembolism caused in the lung, spleen, reticuloendothelial tissue, etc., and is so highly safe that it can be administered to the patients with hepatic diseases.

Description

明 細 書  Specification
静脈注射用脂肪乳剤  Fat emulsion for intravenous injection
技術分野 Technical field
本発明は、 投与後速やかに代謝され、 肺、 肝、 脾等の網内系において塞栓を起 こす可能性の少ない、 小粒径で、 かつ安定性に優れた静脈注射用脂肪乳剤に関す るものである。  The present invention relates to a lipid emulsion for intravenous injection which is metabolized immediately after administration, has a low possibility of causing emboli in the retinal system such as lung, liver, spleen, etc., has a small particle size, and is excellent in stability. Things.
背景技術 Background art
脂肪乳剤は、 エネルギー源または必須脂肪酸源として患者への栄養補給のため に非経口的に使用されるもので、 油脂を乳化剤により乳化させ、 微粒子の形態で 供せられる。  Fat emulsions are used parenterally as a source of energy or essential fatty acids to provide nutrition to patients. Oils and fats are emulsified with an emulsifier and provided in the form of fine particles.
1960年、 Wret l i ndの開発したィントラ リピッ ド 〔市販静注用脂肪乳剤 (大塚製 薬 (株) 販売の商品名) 〕 ^来、 脂肪乳剤は、 大豆油またはサフラワー油を原料 とし、 大豆レシチンまたは卵黄レシチンで乳化したものが主流を占め、 ここ 20年 間大きな変化がなかった。 現在は、 MCT 脂肪乳剤及び化学的に合成された structured l ipi dを用いた脂肪乳剤が検討されつつある。  Intralipid (a commercially available intravenous fat emulsion (trade name sold by Otsuka Pharmaceutical Co., Ltd.)) developed by Wret liquid in 1960. Since then, fat emulsion has been based on soybean oil or safflower oil. Emulsions with lecithin or egg yolk lecithin dominate and have not changed much in the last 20 years. Currently, MCT fat emulsions and fat emulsions using chemically synthesized structured lipids are being studied.
上記従来の脂肪乳剤は、 その脂肪粒子の粒径が 0. 2 〜1. 2 mと不揃いであり、、 ときには 5 x mを超える大きなものもあった。 このため、 かかる脂肪乳剤を静脈 注射すると、 肺、 脾臓、 肝クッパー細胞 (Kupffer cel l) 等の網内系組織に微小 塞栓を起こすことがあった。 さらに、 肝不全の場合には、 肝内での代謝が緩徐な ため、 また肝硬変の場合は脂肪粒子が通過する肝内皮細胞小孔の減少、 狭小化の ため外因性の脂肪乳剤粒子の取り込みが妨げられるため、 内因性の脂肪以外は使 用することができなかった。  In the above-mentioned conventional fat emulsion, the particle diameter of the fat particles is irregular, ranging from 0.2 to 1.2 m, and sometimes large, exceeding 5 x m. For this reason, when such a fat emulsion is injected intravenously, microemboli may be caused in tissues of the retina such as lung, spleen, and liver Kupffer cell (Kupffer cell). Furthermore, in the case of liver failure, the metabolism in the liver is slow, and in the case of cirrhosis, the incorporation of exogenous fat emulsion particles is reduced due to the decrease and narrowing of hepatic endothelial cell pores through which fat particles pass. Because of the hindrance, only the endogenous fat could be used.
また、 従来の脂肪乳剤は代謝速度が比較的緩徐であるため、 肝組織内中性脂肪 濃度が上昇しゃすく、 肝疾患の患者への投与が制限されるという P 題があつた。 さらに、 従来の脂肪乳剤は高温時や長期保存時の安定性に劣り、 凝集ゃク リ— ミングを生じてしまうという ^3題があつた。  In addition, conventional fat emulsions have a relatively low metabolic rate, which increases the triglyceride concentration in liver tissue, which limits the administration to patients with liver disease. In addition, conventional fat emulsions have poor stability at high temperatures or during long-term storage, and have the problem of flocculation and creaming.
このため、 代謝が速く、 脂肪粒子が小粒径で、 かつ安定性に優れた静脈注射用 脂肪乳剤の開発が望まれていた。 For this reason, it is used for intravenous injection because of its fast metabolism, small fat particles and excellent stability The development of a fat emulsion has been desired.
. かかる実情において、 本発明者らは上記課題を解決すべく銳意研究を重ねた結 果、 特定の多価了ルコールの水酸基をホスファチジル基で置換した化合物 (以下、 ホスファチジル化多価了ルコールという。 ) を主乳化剤として使用すると、 上記 要件を満たす優れた脂肪乳剤が得られることを見出し、 本発明を完成した。  Under these circumstances, the present inventors have conducted extensive research to solve the above-described problems, and as a result, have found that a compound in which the hydroxyl group of a specific polyvalent alcohol is substituted with a phosphatidyl group (hereinafter referred to as phosphatidylated polyvalent alcohol). ) Was used as the main emulsifier to find that an excellent fat emulsion satisfying the above requirements was obtained, and completed the present invention.
発明の開示 Disclosure of the invention
すなわち本発明は、 ホスファチジルグリセロール、 ホスファチジルポリグリセ ロール、 ホスファチジルエチレングリコール、 ジホスファチジルエチレングリ コ ール、 ホスファチジルポ リエチレングリコール及びジホスファチジルポリェチレ ングリコ一ルからなる群より選ばれる少なくとも一種を主乳化剤として含有する ことを特徵とする静脈注射用脂肪乳剤を提供するものである。  That is, the present invention provides, as a main emulsifier, at least one selected from the group consisting of phosphatidylglycerol, phosphatidylpolyglycerol, phosphatidylethylene glycol, diphosphatidylethylene glycol, phosphatidylpolyethylene glycol, and diphosphatidylpolyethylene glycol. Another object of the present invention is to provide a fat emulsion for intravenous injection characterized in that it contains.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は脂肪乳剤静脈内投与後の血清中性脂肪濃度変化を示す。  FIG. 1 shows changes in serum neutral fat concentration after intravenous administration of a fat emulsion.
図 2は脂肪乳剤静脈内投与後の肝組織中性脂肪濃度変化を示す。  FIG. 2 shows the change in neutral fat concentration in liver tissue after intravenous administration of a fat emulsion.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明に使用されるホスファチジルグリセロール及びホスファチジルポリグリ セロールは下記一般式 ( 1 ) 、 ホスファチジルエチレングリ コール及びホスファ チジルポリエチレングリ コールは下記一般式 ( 2 ) 、 ジホスファチジルエチレン グリ コ一ル及びジホスファチジルポリエチレングリ コールは下記一般式 ( 3 ) で 示される構造を有するものである。  The phosphatidyl glycerol and phosphatidyl polyglycerol used in the present invention are represented by the following general formula (1), phosphatidylethylene glycol and phosphatidyl polyethylene glycol are represented by the following general formula (2), and diphosphatidylethylene glycol and diphosphatidyl Polyethylene glycol has a structure represented by the following general formula (3).
R' 0CH2 R '0CH 2
R2QCH 0 OH R 2 QCH 0 OH
I 1! I  I 1! I
CH2-0-P-0- (CH2-CH-CH20) m-H ( 1 ) CH 2 -0-P-0- (CH 2 -CH-CH 20 ) m -H (1)
Q一
Figure imgf000005_0001
Q
Figure imgf000005_0001
CH2-0-P-0- (CH2CH20) n-H ( 2 ) CH 2 -0-P-0- (CH 2 CH 2 0) n -H (2)
0一  0 one
R'OCHa H2OR: R'OCHa H 2 OR :
R2OCH 0 0 CHOR R 2 OCH 0 0 CHOR
CH2-0-P-0- (CH2CH20) n-P-0-CH2 ( 3 ) CH 2 -0-P-0- (CH 2 CH 2 0) n -P-0-CH 2 (3)
0一 D一  0 one D one
(式中、 R '、 R2、 R3及び R4は、 同一でも異なってもよく、 それぞれ炭素数 6〜32、 好ましくは 12〜18の飽和または不飽和のァシル基を、 mは 1〜10の数を、 nは 1 -150 の整数を示す。 ) (In the formula, R ′, R 2 , R 3 and R 4 may be the same or different, and each represents a saturated or unsaturated acyl group having 6 to 32 carbon atoms, preferably 12 to 18 carbon atoms, and m represents 1 to A number of 10 and n is an integer of 1 -150.)
本発明で用いられるホスファチジルグリセロールは、 自然界に広く分布し、 特 に植物体や細菌中に多く存在しており、 これらから抽出操作により单雜、 調製す ることもできるが、 公知の方法 〔生化学実験講座 3 脂質の化学 294 - 295頁 (東 京化学同人) 1974年等〕 に従い、 例えば大豆、 卵黄等に含まれるレシチンを原料 として、 グリセ口一ルの存在下にホスホリパーゼ Dを作用させることによって容 易に調製することもできる。 また、 これらの転移後のリン脂質は必要に応じて溶 剤分画、 高速液体クロマトグラフィ一等により精製することができる。  The phosphatidylglycerol used in the present invention is widely distributed in nature and is particularly present in a large amount in plants and bacteria, and can be synthesized and prepared therefrom by an extraction operation. Chemistry Experiment Lecture 3 Lipid Chemistry pp. 294-295 (Tokyo Kagaku Dojin) 1974, etc.], and reacting phospholipase D with lecithin contained in soybean, egg yolk, etc. as raw material in the presence of glycerol Can be easily prepared. Further, these phospholipids after the transfer can be purified by solvent fractionation, high performance liquid chromatography, etc., if necessary.
本発明で用いられるホスファチジルポ リグリセロール、 ホスファチジルェチレ ングリ コール、 ホスファチジルポ リエチレングリ コール、 ジホスファチジルェチ レンダリコール及びジホスファチジルポ リエチレングリコールもまた、 公知の方 法に従い、 例えば大豆、 卵黄等に含まれるレシチンを原料として、 ポリグリセ リ ン、 エチレングリ コ一ルもしくはポリエチレングリ コ一ルの存在下にホスホ リノ、。 ーゼ DMを作用させることによって容易に調製することができる。 ここで用いられ るポリグリセリンとしては縮合度 2〜10のものが挙げられ、 ポリエチレングリコ ールとしては、 ジエチレングリ コール、 ト リエチレングリコール等及び平均分子 量 200 から 6000までの各種ポリエチレングリコ一ルが舍まれる。 The phosphatidylpolyglycerol, phosphatidylethylene glycol, phosphatidylpolyethylene glycol, diphosphatidylethylene blendol and diphosphatidylpolyethylene glycol used in the present invention are also contained in, for example, soybeans, egg yolks, etc. according to known methods. Phosphoric acid in the presence of polyglycerin, ethylene glycol or polyethylene glycol, starting from lecithin. It can be easily prepared by the action of DM. Examples of the polyglycerin used herein include those having a degree of condensation of 2 to 10, and polyethylene glycol. Examples of the glycol include diethylene glycol, triethylene glycol, and various polyethylene glycols having an average molecular weight of 200 to 6,000.
' これらの乳化剤は単独で、 または二種以上を組み合わせて使用することができ、 その使用量は特に限定されないが脂肪乳剤に対して 0. 1〜 5重量%程度が好まし い。  'These emulsifiers can be used alone or in combination of two or more. The use amount thereof is not particularly limited, but is preferably about 0.1 to 5% by weight based on the fat emulsion.
本発明の脂肪乳剤の乳化剤としては、 基本的には前記のホスファチジル化多価 了ルコールのみが用いられるが 40重量%未満の範囲内で他の乳化'剤が配合されて いてもよい。 例えばホスファチジル化多価了ルコールをレシチンを原料として製 造した場合、 生成するホスファチジル化多価了ルコール中には原料であるレシチ ンが残存する場合があるが、 その残存量は 40重量%未満、 特に 20重量%未満であ ることが望ましい。 上記の乳化剤以外の乳化剤が 40重量%以上含まれている場合 には、 脂肪乳剤の粒径、 代謝速度等の面で充分満足できる効果が得られない。 な お、 本発明においてホスファチジル化多価了ルコールの濃度は、 基準油脂試験分 析法 (日本油化学協会編) の記載に従って定量した値である。  As the emulsifier for the fat emulsion of the present invention, basically, only the above-mentioned phosphatidylated polyvalent alcohol is used, but other emulsifiers may be blended within a range of less than 40% by weight. For example, when phosphatidylated polyvalent alcohol is produced using lecithin as a raw material, the resulting phosphatidylated polyvalent alcohol may contain lecithin as a raw material, but the remaining amount is less than 40% by weight. It is particularly desirable that the content be less than 20% by weight. When an emulsifier other than the above-mentioned emulsifier is contained in an amount of 40% by weight or more, a satisfactory effect cannot be obtained in terms of the particle size and metabolic rate of the fat emulsion. In the present invention, the concentration of the phosphatidylated polyvalent alcohol is a value quantified according to the description of the standard method for analysis of fats and oils (edited by Japan Oil Chemists' Society).
また、 本発明で使用される脂質としては、 常温で液犾のものであればよく、 特 に限定されるものではないが、 中でも大豆油、 ゴマ油、 菜種油、 綿実油、 紅花油、、 オリ—ブ油、 structured l ipid等が好ましい。 脂質の使用量は特に限定されない が、 脂肪乳剤に対して 5〜25重量%程度が好ましい。  The lipid used in the present invention may be any liquid at room temperature, and is not particularly limited. Among them, soybean oil, sesame oil, rapeseed oil, cottonseed oil, safflower oil, and olive oil Oil, structured lipid, etc. are preferred. The amount of the lipid used is not particularly limited, but is preferably about 5 to 25% by weight based on the fat emulsion.
本発明の静脈注射用脂肪乳剤は、 例えば^下のようにして製造される。 すなわ ち、 まず前記ホスファチジル化多価了ルコール 〔 (1 ) 、 (2 ) または (3 ) を 乳化剤として用いて、 液晶中油滴分散相を経由する液晶分散法により粗乳化を行 い、 次いで常法により精乳化することにより行われる。 粗乳化を実施するには、 まず、 前記ホスファチジル化多価了ルコール (1 ) 、 (2 ) または (3 ) を、 そ れぞれ約 2倍量のグリセリ ン及び水と混合し、 界面活性剤相を形成させる。 これ に界面活性剤相と等量ないし 2倍量の大豆油等の脂質を少量ずつ攪拌しながら加 えることによりラメラ型液晶相が形成される。 この液晶相に対し 3倍量ないし 10 倍量の水を少量ずつかき混ぜながら加え、 ウルトラホモミキサーで lOOOrpm 1上、 好ましくは 5000 rpm 以上で 10分間以上粗乳化することにより水中油型エマルショ ンが得られる。 精乳化は、 高圧ホモジナイザーや超音波ホモジナイザーを用いて 乳化することにより、 小粒径の水中油型エマルシヨンとすることができる。 精乳 化の条件については特に制限はないが、 超音波乳化の場合、 100W以上、 できれば 200W以上で 10分間以上乳化することが好ましい。 これらの精乳化手段のうち、 大 量生産の場合には高圧ホモジナイザーによるのが好ましい。 The intravenous fat emulsion of the present invention is produced, for example, as follows. That is, first, coarse emulsification is carried out by a liquid crystal dispersion method using an oil droplet dispersion phase in a liquid crystal, using the phosphatidylated polyvalent alcohol [(1), (2) or (3) as an emulsifier. It is carried out by fine emulsification by the method. To carry out the coarse emulsification, first, the above-mentioned phosphatidylated polyvalent alcohol (1), (2) or (3) is mixed with glycerin and water in an amount of about twice each, and a surfactant is added. Allow a phase to form. A lamellar liquid crystal phase is formed by adding a small amount of a lipid such as soybean oil to the surfactant phase while stirring the same amount or twice as much as the surfactant phase. Add 3 to 10 times the amount of water to this liquid crystal phase while stirring little by little, and use Ultra Homo Mixer on lOOOOrpm 1 Preferably, an oil-in-water emulsion is obtained by coarse emulsification at 5000 rpm or more for 10 minutes or more. In the fine emulsification, an oil-in-water emulsion having a small particle diameter can be obtained by emulsification using a high-pressure homogenizer or an ultrasonic homogenizer. The conditions for milking are not particularly limited, but in the case of ultrasonic emulsification, emulsification at 100 W or more, preferably 200 W or more, preferably for 10 minutes or more is preferable. Among these refining means, in the case of mass production, it is preferable to use a high-pressure homogenizer.
得られたエマルシヨ ンは、 了ルカリ水溶液で PHを?〜 8に調整した後、 孔径 1 ~ 5 ί πιのメ ンブランフィルタ一で数回続けて濾過し、 最終的に孔径 0. 4〜0. 5 /i mのメンブランフィルターで一度濾過することにより、 0. 3 / m以下でしかも 比較的均一な粒径をもつた脂肪乳剤とすることができる。 これを窒素雰囲気下で 分注後、 ォ一トクレーブを用いて滅菌することにより、 滅菌前後で粒径が大きく 変化することなく、 生体に対して静脈注射が可能な脂肪乳剤が得られる。  The resulting emulsion can be adjusted to pH with aqueous rukari solution. After adjusting to ~ 8, filtration is continued several times with a membrane filter with a pore size of 1 to 5ίπι, and finally, once with a membrane filter with a pore size of 0.4 to 0.5 / im. A fat emulsion having a particle size of 0.3 / m or less and having a relatively uniform particle size can be obtained. This is dispensed under a nitrogen atmosphere, and then sterilized using an autoclave, thereby obtaining a fat emulsion that can be injected intravenously into a living body without largely changing the particle size before and after sterilization.
実施例 Example
以下、 実施例を挙げてさらに詳細に説明するが、 本発明はこれらに限定される ものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例 1 、 乳化剤として大豆レシチン由来のホスファチジルグリセ口ール (グリセロール の存在下に大豆レシチンにホスホリパーゼ Dを作用させることにより調製したも の : 「基準油脂試験分析法」 (日本油化学協会編) 〔5. 3. 3 リ ン脂質組成〕 記載 の方法による純度 85モル%) 1. 2gを用い、 98. 5%グリセ リ ン 2. 5g及び蒸留水 2. 5g と共に混合した。 そこへ大豆油 10 gを少量ずつかき混ぜながら加え、 続いて蒸留 氷 83. 3 gを少量ずつかき混ぜながら加えたのち、 ウルト ラホモミキサー (特殊器 化工業社製) にて 9000rPm で 30分間粗乳化した。 さらにこれを、 超音波ホモジナ ィザ一 (ブランソン社製) を用い冷却しながら、 240Wにて 30分間超音波乳化した。 0. I N水酸化ナト リウム水溶液にて PHを 7. 4 に調整したのち、 孔径 3 / m、 1. 2 u τη、 0. 45 mのメ ンブランフィルターで続けて攄過した。 これを窒素雰囲気下で 分注後、 オートクレープを用いて 121 °C、 20分間滅菌することにより、 小粒径で かつ保存安定性に優れた脂肪乳剤を得た。 Example 1 Phosphatidylglycerol derived from soybean lecithin as an emulsifier (prepared by allowing phospholipase D to act on soybean lecithin in the presence of glycerol: “Standard fat and oil test analysis method” (edited by Japan Oil Chemists' Society) [5.3.3 Composition of phospholipids] 1.2 g was used and mixed with 2.5 g of 98.5% glycerin and 2.5 g of distilled water. Added with stirring in small portions soybean oil 10 g thereto, followed by distillation ice 83.3 After added with stirring in small portions g, Ultra Rahomomikisa (special unit Kogyo Co., Ltd.) for 30 minutes the crude emulsion at 9000r P m did. This was further ultrasonically emulsified at 240 W for 30 minutes while cooling using an ultrasonic homogenizer (manufactured by Branson). After adjusting the pH to 7.4 with a 0. IN sodium hydroxide aqueous solution, the solution was continuously filtered through a membrane filter with a pore size of 3 / m, 1.2 uτη, and 0.45 m. This is dispensed under a nitrogen atmosphere, and sterilized in an autoclave at 121 ° C for 20 minutes to obtain a small particle size. A fat emulsion having excellent storage stability was obtained.
実施例 2 Example 2
実施例 1 においてホスファチジルグリセロール 1. 2gの代わりに大豆レシチン由 来のホスファチジルポリエチレングリ コール 400 (ポリエチレングリコール 400 の存在下に大豆レシチンにホスホリパーゼ Dを作用させることにより調製したも の:実施例 1と同じ分析法による純度 83モル%) 1. 2gを用い、 実施例 1と同様の 方法により、 小粒径でかつ保存安定性に優れた脂肪乳剤を得た。  In Example 1, phosphatidylglycerol was replaced by 1.2 g of phosphatidylglycerol, and phosphatidylpolyethylene glycol 400 derived from soybean lecithin (prepared by allowing phospholipase D to act on soybean lecithin in the presence of polyethyleneglycol 400: the same as in Example 1) A fat emulsion having a small particle size and excellent storage stability was obtained in the same manner as in Example 1 by using 1.2 g of the compound (purity according to analytical method: 83 mol%).
比較例 1 Comparative Example 1
実施例 1においてホスファチジルグリセロール 1. 2gの代わりに精製卵黄レシチ ン 1. 2gを用い、 実施例 1と同様の方法により、 对応する脂肪乳剤を得た。  A corresponding fat emulsion was obtained in the same manner as in Example 1, except that 1.2 g of purified egg yolk lecithin was used instead of 1.2 g of phosphatidylglycerol in Example 1.
試験例 1 (高温安定性試験) Test example 1 (high temperature stability test)
実施例 1、 2及び比較例 1において、 製造工程の最終段階のオートクレーブ滅 菌処理 (121 , 20分間) の前後における各脂肪乳剤の PH及び平均粒径の変化を 表 1に示す。  Tables 1 and 2 show changes in pH and average particle size of each fat emulsion before and after the autoclave sterilization treatment (121, 20 minutes) in the final stage of the production process in Examples 1 and 2 and Comparative Example 1.
なお、 PHはデジタル PHメーター 225 型 (岩城ガラス社製) により、 平均粒径は コールターカウンター (コールターエレク トロニクス社製, コールターモデル N4) により測定した。  The pH was measured with a digital PH meter 225 (manufactured by Iwaki Glass Co., Ltd.), and the average particle size was measured using a Coulter Counter (manufactured by Coulter Electronics, Coulter Model N4).
表 1  table 1
Figure imgf000008_0001
Figure imgf000008_0001
試験例 2 (長期保存安定性試験) Test Example 2 (Long-term storage stability test)
実施例 1、 2及び比較例 1で得られた脂肪乳剤並びに市販静注用脂肪乳剤 (ィ ントラリピッ ド、 大塚製薬 (株) 製) について、 4 :及び 37 :で長期保存したと きの PH及び平均粒径の変化を試験した。 測定は、 製造直後並びに保存後 10日、 30 Id及び 60日に行った。 The fat emulsions obtained in Examples 1 and 2 and Comparative Example 1 and a commercially available intravenous fat emulsion Intralipid (manufactured by Otsuka Pharmaceutical Co., Ltd.) was tested for changes in PH and average particle size during long-term storage at 4: and 37 :. Measurements were made immediately after production and at 10, 30 and 60 days after storage.
なお、 実施例 1及び比較例 1で得られた脂肪乳剤については、 平均粒径、 最大 粒径、 粒径分布、 ゼータ電位及び粘度についても測定したのでその結果を表 2に 示す。 長期保存安定性試験の結果は表 3に示す。 なお、 最大粒径、 粒径分布は脂 肪乳剤粒子固定法 (Miki, , Tanimura, H. ; J. Clin. Electron Microscopy, 12: 855 -856 (1979) ) による走査電顕観察及びこれのコンピューター画像処理 により算出した。 The average particle size, maximum particle size, particle size distribution, zeta potential and viscosity of the fat emulsions obtained in Example 1 and Comparative Example 1 were also measured. The results are shown in Table 2. Table 3 shows the results of the long-term storage stability test. The maximum particle size and particle size distribution were determined by scanning electron microscopy using a fat emulsion particle fixation method (Miki, Tanimura, H .; J. Clin. Electron Microscopy, 12: 855-856 (1979)), and computer It was calculated by image processing.
表 2 Table 2
Figure imgf000010_0001
mean±SD * Pく 0.01
Figure imgf000010_0001
mean ± SD * P + 0.01
表 3 Table 3
4 t 37t 脂肪乳剤 保存期間 4 t 37 t fat emulsion storage period
PH 平均粒径 (nm) H 平均粒径 (run) PH average particle size (nm) H average particle size (run)
(直後) 6.63 190 ±2.5 6.63 190±2.5 (10曰) 6.69 219±9.2 5.65 222 ±2.2 実施例 1 (Immediately) 6.63 190 ± 2.5 6.63 190 ± 2.5 (10 statements) 6.69 219 ± 9.2 5.65 222 ± 2.2 Example 1
(30曰) 6.32 238±3.7 3.48 257 ±12.1 (60曰) 6.23 215±5.3 3.31 252 ±7.8 6.30 238 ± 3.7 3.48 257 ± 12.1 (60) 6.23 215 ± 5.3 3.31 252 ± 7.8
(直後) 6.44 218 ±11.8 6.44 218 ±11.8 (10曰) 6.66 234±11.6 5.44 241 ±2.9 実施例 2 (Immediately) 6.44 218 ± 11.8 6.44 218 ± 11.8 (10) 6.66 234 ± 11.6 5.44 241 ± 2.9 Example 2
(30曰) 6.28 265±2.9 3.41 248 ±3.4 (60曰) 6.18 233 ±4.1 3.23 264±3.1 (30) 6.28 265 ± 2.9 3.41 248 ± 3.4 (60) 6.18 233 ± 4.1 3.23 264 ± 3.1
(直後) 6.35 272±10.0 6.35 272±10.0 (10曰) 6.46 314±10.4 5.72 290 ±5.4 比較例 1 (Immediately) 6.35 272 ± 10.0 6.35 272 ± 10.0 (10) 6.46 314 ± 10.4 5.72 290 ± 5.4 Comparative Example 1
(30曰) 5.79 357 ±8.2 3.49 337 ±27.2 (60曰) 4.56 318 ±8.0 3.09 302±8.0 (30) 5.79 357 ± 8.2 3.49 337 ± 27.2 (60) 4.56 318 ± 8.0 3.09 302 ± 8.0
(直後) 7.52 231 ±13.4 7.52 231±13.4 (10曰) 7.49 265 ±11.6 4.81 272 ±2.1 イ ン トラ リ (Immediately) 7.52 231 ± 13.4 7.52 231 ± 13.4 (10) 7.49 265 ± 11.6 4.81 272 ± 2.1
ピッ ド (30曰) 6.40 330±12.5 3.72 316±11.6 Pid (30) 6.40 330 ± 12.5 3.72 316 ± 11.6
(60曰) 6.24 295±8.0 3.59 3?1±4.9 (60) 6.24 295 ± 8.0 3.59 3-1 ± 4.9
表 2により、 本発明脂肪乳剤の平均粒径は 190 ± 2. 5ππι であり、 レシチンを乳 化剤として用いた脂肪乳剤の 2?2 ± 10nmに比べ有意に小さかった (Pく 0. 01) 。 また、 粒径分布については、 0. 5 ju m以下の粒子は本発明脂肪乳剤で 94. 1 ± 2. 5 %、 比較例 1の乳剤で 91. 0 ± 1. 5 %であり、 問題となる 1 i m以上の粒子の割合 も少なかった。 さらに、 本発明脂肪乳剤のゼ一タ電位は低値を示し、 粘度はやや 高値を示した。 According to Table 2, the average particle size of the fat emulsion of the present invention was 190 ± 2.5ππι, which was significantly smaller than that of the fat emulsion using lecithin as an emulsifier, 2 to 2 ± 10 nm ( P 0.01). . Regarding the particle size distribution, particles having a particle size of 0.5 jum or less were 94.1 ± 2.5% in the fat emulsion of the present invention and 91.0 ± 1.5% in the emulsion of Comparative Example 1, which was a problem. The ratio of particles of 1 im or more was also small. Further, the zeta potential of the fat emulsion of the present invention showed a low value, and the viscosity showed a somewhat high value.
また、 表 3より本発明脂肪乳剤は長期間保存後も粒径の変化が少ないものであ つた。 また、 3?でで 30日 £1上保存するとレシチンを乳化剤として用いた脂肪乳剤 は大半の粒子が癒合して lO ^ in程度の巨大粒子となり、 破壊されて表面が粗造と なったものも存在したが、 本発明脂肪乳剤は癒合したと考えられる巨大粒子及び 破壊像も認められなかつた。  Further, from Table 3, it was found that the fat emulsion of the present invention showed little change in particle size even after long-term storage. In addition, when stored for 1 day at 3 日 for 30 days, fat emulsions using lecithin as an emulsifier coalesce most of the particles into giant particles of about lO ^ in, and some of them were destroyed and the surface became coarse. Although present, the fat emulsion of the present invention did not show any giant particles or a destructive image considered to be fused.
試験例 3 (過酷遠心条件での安定性試験) Test example 3 (stability test under severe centrifugal conditions)
実施例 1及び比較例 1で得られ 脂肪乳剤を 37 :、 1572 X gで 6時間遠心した ときの粒子の状態を観察した。 その結果、 比較例 1の脂肪乳剤は脂肪粒子が強い 凝集傾向を示したのに対し、 本発明脂肪乳剤は凝集傾向が弱く、 粒子破壊もほと んど認められなかった。  The state of the particles when the fat emulsion obtained in Example 1 and Comparative Example 1 was centrifuged at 37: 1572 X g for 6 hours was observed. As a result, the fat emulsion of Comparative Example 1 showed a strong tendency of agglomeration of fat particles, whereas the fat emulsion of the present invention had a weak tendency of agglomeration and almost no particle destruction was observed.
試験例 4 (体内動態) Test Example 4 (Pharmacokinetics)
乳化剤として3 H標識体を用い、 実施例 1及び比較例 1と同様にして得られた 脂肪乳剤をラッ トに bolus 静脈により投与し、 脂肪乳剤の体内動態、 代謝速度に ついて検討した。 Using a 3 H-labeled product as an emulsifier, the fat emulsion obtained in the same manner as in Example 1 and Comparative Example 1 was administered to a rat via a bolus vein, and the pharmacokinetics and metabolic rate of the fat emulsion were examined.
脂肪乳剤投与後の血清中性脂肪濃度の変化を図 1に示す。 その結果、 血清中性 脂肪は投与 5分後に、 比較例 1の脂肪乳剤で 391 ± 53mg/^と急上昇したのに対 し、 本発明脂肪乳剤では 146 ± 12mgZo¾とわずかに上昇しただけであった (p < 0. 01) 。  FIG. 1 shows changes in serum neutral fat concentration after administration of the fat emulsion. As a result, 5 minutes after administration, the serum neutral fat increased sharply to 391 ± 53 mg / ^ in the fat emulsion of Comparative Example 1, whereas it increased only slightly to 146 ± 12 mgZo¾ in the fat emulsion of the present invention. (P <0.01).
肝組織内中性脂肪濃度変化を図 2に示す。 その結果、 肝組織内中性脂肪は、 本 発明脂肪乳剤では投与 5分後から 120 分後にかけて中性脂肪の上昇が少なく、 肝 組織への中性脂肪の蓄積が少ないことが判明した。 また、 投与した3 H標識乳化剤の主要組織への分布率は、 表 4に示すように本 発明脂肪乳剤では比較例 1の脂肪乳剤に比べ投与 5分後よりすでに肝に高い分布 率を示した。 Fig. 2 shows the change in neutral fat concentration in liver tissue. As a result, it was found that, in the lipid emulsion of the present invention, triglyceride in liver tissue showed a small increase in triglyceride from 5 minutes to 120 minutes after administration, and little accumulation of triglyceride in liver tissue. Also, as shown in Table 4, the distribution rate of the administered 3 H-labeled emulsifier to the main tissues was higher in the liver of the fat emulsion of the present invention than in the fat emulsion of Comparative Example 1 5 minutes after administration, as shown in Table 4. .
表 4 肺 肝 脾 腎 脳 実施例 1 5分 3.22 ±0.34 19.8 ±1.46 0.96 ±0.04 1.45 ±0.13 0.25 + 0.017 Table 4 Lung Liver Spleen Kidney Brain Example 1 5 minutes 3.22 ± 0.34 19.8 ± 1.46 0.96 ± 0.04 1.45 ± 0.13 0.25 + 0.017
60分 0.72 ±0.02 40.4土-1.88 2.57 ±0.24 0.64±0.02 0.28 ±0.009 60 minutes 0.72 ± 0.02 40.4 Sat-1.88 2.57 ± 0.24 0.64 ± 0.02 0.28 ± 0.009
120分 0.53 ±0.07 39.2 ±1· 45 1.68±0.11 0.62士 0.03 0.32±0· 021 比較例 1 5分 0.75±0.20 7.7 + 0.65 1.17 ±0.17 0.71 ±0.12 0.19 ±0.007 120 minutes 0.53 ± 0.07 39.2 ± 1 45 1.68 ± 0.11 0.62 person 0.03 0.32 ± 0.021 Comparative example 1 5 minutes 0.75 ± 0.20 7.7 + 0.65 1.17 ± 0.17 0.71 ± 0.12 0.19 ± 0.007
60分 0.52±0.05 22.4±1.70 1.70 ±0.05 0.97 ±0.06 0.13±0.005 60 minutes 0.52 ± 0.05 22.4 ± 1.70 1.70 ± 0.05 0.97 ± 0.06 0.13 ± 0.005
120分 0.81 ±0.08 31.7 ±2.00 1.87 + 0.17 1.55 ±0.04 0.15 ±0.003 mean土 SB 120 min 0.81 ± 0.08 31.7 ± 2.00 1.87 + 0.17 1.55 ± 0.04 0.15 ± 0.003 mean Sat SB
投与量:実施例 1 29;uCi/kg (脂肪乳剤として 2.5ml/kg)  Dosage: Example 1 29; uCi / kg (2.5 ml / kg as fat emulsion)
比較例 1 138 zCi/kg (脂肪乳剤として 2.5ml/kg) Comparative Example 1 138 zCi / kg (2.5 ml / kg as fat emulsion)
また、 肝組織での脂肪粒子の代謝過程を電子顕微鏡で観察すると、 本発明脂肪 乳剤では脂肪粒子は肝細胞に活発に取り込まれ、 投与 60分後になると、 大半の脂 肪粒子は代謝され、 比較例 1の脂肪乳剤に比べ肝での代謝速度が速やかであった。 つまり、 本発明脂肪乳剤は投与後肝に速やかに取り込まれるため血中よりの消 失も速く、 しかも肝組織でよく代謝される。 When the metabolic process of fat particles in the liver tissue was observed by an electron microscope, the fat particles of the present invention were actively taken up by hepatocytes, and most of the fat particles were metabolized 60 minutes after administration. The metabolic rate in the liver was faster than in the fat emulsion of Example 1. In other words, the fat emulsion of the present invention is rapidly taken up by the liver after administration, so that it is rapidly eliminated from the blood, and is well metabolized in liver tissue.
産業上の利用可能性 Industrial applicability
以上のように、 本発明の静脈注射用脂肪乳剤は小粒径で、 高温下や長期保存に おいても脂肪粒子の粒径の変化が小さく、 また過酸化物の産生の指標となる PHの 低下の程度も、 従来の卵黄レシチンを乳化剤とする脂肪乳剤と同等またはそれ以 下と、 非常に安定なものである。 また、 本発明の静脈注射用脂肪乳剤は、 ( 1 ) 粒子径が微細であるため網内系などの塞栓を起こしにくい、 (2 ) 血中及び肝内 での代謝が速いため、 肝に蓄積せず肝機能障害患者にも投与でき、 (3 ) 従来の レシチンを主乳化剤として用いた脂肪乳剤に比べてリ ン脂質自体の蓄積性がなく、 ( 4 ) 特にホスファチジルグリセロールを用いた場合には分解産物がグリセリン であり、 これ自体もエネルギー源として利用される等の利点を有する。  As described above, the intravenous fat emulsion of the present invention has a small particle size, the change in the particle size of the fat particles is small even under high temperature or long-term storage, and the pH of PH which is an indicator of peroxide production is small. The degree of reduction is very stable, equivalent to or lower than that of a conventional fat emulsion containing egg yolk lecithin as an emulsifier. In addition, the intravenous fat emulsion of the present invention (1) is less likely to cause emboli such as the reticular system due to its fine particle size, and (2) accumulates in the liver because of its rapid metabolism in blood and liver. It can be administered to patients with liver dysfunction without using it. (3) There is no accumulation of phospholipid itself compared with the conventional fat emulsion using lecithin as the main emulsifier. (4) Especially when phosphatidylglycerol is used. The decomposition product is glycerin, which has advantages such as being used as an energy source.

Claims

請求の範囲 The scope of the claims
1. ホスファチジルグリセ π—ル、 ホスファチジルポリグリセロール、 ホスファ チジルェチレングリ コール、 ジホスファチジルェチレングリ コール、 ホスファチ ジルポリエチレングリ コール及ぴジホスファチジルポリエチレングリコールから なる群より選ばれる少なくとも一種を主乳化剤として含有することを特徴とする 静脈注射用脂肪乳剤。  1. At least one selected from the group consisting of phosphatidylglycerol, phosphatidylpolyglycerol, phosphatidylethylene glycol, diphosphatidylethylene glycol, phosphatidyl polyethylene glycol, and diphosphatidyl polyethylene glycol as a main emulsifier. A fat emulsion for intravenous injection, characterized by comprising:
2. 乳化剤の 60重量%以上が、 ホスファチジルグリセロール、 ホスファチジルポ リグリセロール、 ホスファチジルエチレングリ コール、 ジホスファチジルェチレ ングリ コ一ル、 ホスファチジルポリエチレングリ コ一ル及びジホスファチジルポ リエチレングリコールからなる群より選ばれる少なくとも一種である請求項 1記 載の静脈注射用脂肪乳剤。  2. 60% by weight or more of the emulsifier is selected from the group consisting of phosphatidylglycerol, phosphatidylpolyglycerol, phosphatidylethylene glycol, diphosphatidylethylene glycol, phosphatidylpolyethylene glycol and diphosphatidylpolyethylene glycol. 2. The fat emulsion for intravenous injection according to claim 1, which is at least one kind.
PCT/JP1991/001283 1990-09-26 1991-09-26 Fat emulsion for intravenous injection WO1992004886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/256733 1990-09-26
JP25673390 1990-09-26

Publications (1)

Publication Number Publication Date
WO1992004886A1 true WO1992004886A1 (en) 1992-04-02

Family

ID=17296692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001283 WO1992004886A1 (en) 1990-09-26 1991-09-26 Fat emulsion for intravenous injection

Country Status (1)

Country Link
WO (1) WO1992004886A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851510A (en) * 1994-05-16 1998-12-22 The Board Of Regents Of The University Of Michigan Hepatocyte-selective oil-in-water emulsion
US8334321B2 (en) 2006-09-05 2012-12-18 Q.P. Corporation Prostaglandin fat emulsion, method for producing the same, method for stabilizing the same, and emulsifying agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283911A (en) * 1976-01-01 1977-07-13 Ajinomoto Co Inc Fat emulsion for intravenous injection
JPS5283912A (en) * 1976-01-01 1977-07-13 Ajinomoto Co Inc Fat emulsion for intravenous injection
JPS60501557A (en) * 1983-06-17 1985-09-19 フアーマ―ロジツク・インコーポレイテツド Microdroplets containing water-insoluble drugs
JPS61289026A (en) * 1985-06-18 1986-12-19 Nippon Oil & Fats Co Ltd Fatty emulsion for intravenous injection
JPS6416716A (en) * 1987-07-13 1989-01-20 Asahi Chemical Ind Production of emulsion pharmaceutical containing sparingly soluble drug sealed therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283911A (en) * 1976-01-01 1977-07-13 Ajinomoto Co Inc Fat emulsion for intravenous injection
JPS5283912A (en) * 1976-01-01 1977-07-13 Ajinomoto Co Inc Fat emulsion for intravenous injection
JPS60501557A (en) * 1983-06-17 1985-09-19 フアーマ―ロジツク・インコーポレイテツド Microdroplets containing water-insoluble drugs
JPS61289026A (en) * 1985-06-18 1986-12-19 Nippon Oil & Fats Co Ltd Fatty emulsion for intravenous injection
JPS6416716A (en) * 1987-07-13 1989-01-20 Asahi Chemical Ind Production of emulsion pharmaceutical containing sparingly soluble drug sealed therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851510A (en) * 1994-05-16 1998-12-22 The Board Of Regents Of The University Of Michigan Hepatocyte-selective oil-in-water emulsion
US5985941A (en) * 1994-05-16 1999-11-16 University Of Michigan Method of making hepatocyte-selective oil-in-water emulsion
US6126946A (en) * 1994-05-16 2000-10-03 University Of Michigan, The Board Of Regents Hepatocyte-selective oil-in-water emulsion
US8334321B2 (en) 2006-09-05 2012-12-18 Q.P. Corporation Prostaglandin fat emulsion, method for producing the same, method for stabilizing the same, and emulsifying agent

Similar Documents

Publication Publication Date Title
CA1142089A (en) Fat emulsion for intravenous injection
US20240139201A1 (en) Methods of use of emulsion formulations of aprepitant
JPS60149524A (en) Prostaglandin fat emulsion
Krafft et al. The design and engineering of oxygen-delivering fluorocarbon emulsions
TW416849B (en) New pharmaceutical composition based on taxoids
FR2622442A1 (en) MEDICATION MEDIA
JPS59216820A (en) Fat emulsion of prostaglandin
US5684050A (en) Stable emulsions of highly fluorinated organic compounds
JP2001010958A (en) Intravenously injectable prostaglandin fat emulsion
JP5028564B2 (en) Retentive blood multiphase emulsion preparation for treating or preventing liver disease and method for producing the same
JP2005225818A (en) Medicinal composition of paclitaxel or docetaxel
JPH0566929B2 (en)
JPH09241153A (en) Lipid emulsion for intravenous injection
US5514720A (en) Stable emulsions of highly fluorinated organic compounds
WO1992004886A1 (en) Fat emulsion for intravenous injection
JP3132085B2 (en) Fat emulsion
JPS58162517A (en) Fat-soluble vitamin-containing fatty emulsion
JPH04356417A (en) Fat emulsion for intravenous injection
NO312432B1 (en) Pharmaceutical emulsion suitable for parenteral administration of bioactive steroids
JP4008965B2 (en) Preparation of lecithin-containing fat emulsion
JP3611130B2 (en) Preparation method of fat emulsion
Rosoff Specialized Pharmaceutical Emulsions
JPH0513926B2 (en)
JPH0157095B2 (en)
JPH0676315B2 (en) W / O / W composite emulsion for injection and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA