WO1992003021A1 - Imaging systems - Google Patents
Imaging systems Download PDFInfo
- Publication number
- WO1992003021A1 WO1992003021A1 PCT/GB1991/001318 GB9101318W WO9203021A1 WO 1992003021 A1 WO1992003021 A1 WO 1992003021A1 GB 9101318 W GB9101318 W GB 9101318W WO 9203021 A1 WO9203021 A1 WO 9203021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- decoder
- screen
- viewer
- decoder screen
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/305—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/307—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/31—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
Definitions
- This invention relates to an improved decoder for use in the imaging systems described in our International Patent Application No. WO90/13848 and British Patent Application No. 9015843.7 to which reference should first be made.
- a decoder screen for use in an imaging system in which a decoder screen is disposed between a viewer and a composite image containing alternate portions of two images which together form a stereoscopic pair, the decoder screen comprising a surface carrying a pattern of alternating clear and opaque areas and a plurality of lenticular elements which, in use, are in contact with the pattern-bearing surface and disposed between the viewer and the said surface; the lenticular elements being so shaped that the apparent pattern of clear and opaque areas perceived by one of the viewer's eyes is the inverse of the apparent pattern perceived by the viewer's other eye.
- the raster-lenticular hybrid decoder screen of the invention is capable of delivering two clear sharp images with the stereo differences contained between them, one to each eye.
- the raster-lenticular hybrid can produce a good 3-D effect, as each eye receives a full colour image, one of a stereo pair.
- Figures 1(a) and 1(b) show line grid and chequerboard types of decoder screen patterns
- Figure 2 illustrates a prior art system employing a decoder screen
- Figure 3 illustrates the decoder screen of the invention as perceived by the right and left eyes, respectively;
- Figure 4 shows te images as perceived by the right and left eyes when using a decoder screen ir accordance with the invention
- Figure 5 is analogous to Figure 4 but shows a screen of chequerboard pattern;
- Figure 6 shows schematically 'cross-over effect';
- Figure 7 shows a composite image of the type used in imaging systems of the kind to which the invention relates.
- FIG. 8 shows a raster-lenticular hybrid decoder in accordance with the invention.
- a composite image is formed for display to the viewer.
- the composite image includes two sets of areas which, in general, alternate, each set containing portions of one of two images separated by colour overlay, line multiplexing or a combination of the two techniques.
- a screen or 'decoder' is interposed between the image and the viewer, the decoder being such that, when the viewer looks at the image, each eye sees only one of the two sets of areas and, hence, the portions of only one of the two images.
- the two images are combined to produce a 3-D effect, as perceived by the viewer.
- FIGS 1(a) and 1(b) Two forms of decoder pattern are shown in Figures 1(a) and 1(b), the column line grid and the chequerboard.
- the decoder would be in the form of a grid of stripes of equal width, alternate stripes being clear and opaque respectively.
- This pattern is reflected in the form of the composite image with which the decoder would be used; the composite image for use with the line grid decoder of Figure 1(a) would comprise a similar arrangement of stripes, alternate stripes containing portions of each of the two images which combine to give the stereoscopic 3-D effect.
- the raster-lenticular hybrid screen or decoder of the present invention combines the action (relative to the encoded image on the screen) of a lenticular screen with that of a raster screen, that is to say, a column-line grid or chequerboard as described in our above-mentioned applications and shown in Figures 1(a) and (b).
- the column line grid or the chequerboard decoder 10 was positioned away from the pixel-phosphor screen 12 of the encoded image, the degree of displacement varying with the circumstances.
- This displacement between the plane of the decoder screen 10 and the plane of the image pixel plane 12 allowed horizontal parallax between the left and right eye, each eye looking through the clear sections 14 of the decoder screen to a different position of the encoded image, as illustrated in Figure 2.
- the different positions of the encoded images are due to the nature of the encoding itself, -.as specified in our abo- c-mentioned applications.
- Each eye sees through the clear sections 14 of the decoder screen 10 to either the left image of a stereo pair or the right image of a stereo pair, produced through pseudo stereo or through two camera-stereo recording-filming, as described in International application O90/13848.
- the raster-lenticular hybrid of the present invention employs the optical activity of its lenticular component to displace the position of the raster opponent. Consequently, the raster-lenticular hybrid decoder screen and the image plane can be in direct physical contact between the two planes with no displacement.
- Figure 4 shows a monitor 40 with a RLH screen in accordance with the invention, as well as a pair of stereoscopic images 44 and 46 and the resultant composite image 48 formed from these in the image encoding system described in International application WO90/13848 referred to previously.
- 40(1) and 40(r) show the RLH screen as perceived by the left and right eyes respectively and 48(1) and 48(r) show the composite image portions seen by each of the two eyes.
- Figure 5 is analogous to Figure 4 and shows a monitor with RLH screen, this time, of chequerboard pattern.
- 50(1) and 50(r) show the RLH screen as perceived by the left and right eyes respectively.
- the RHL decoder inverts to its raster image 180° between th two eyes. As the rlH decoder and the image screen are in direct contact, there can be a perfect alignment between the encoded composite image and the RLH decoder screen. Once this alignment ha been established it will remain unchanged and then, from any position in the viewing area, the optical properties of the RLH wil take effect by virtue of the horizontal displacement between the eyes. Each eye will see an aligned left or right image view, with the opposite eye seeing the opposite view, also aligned.
- the improved alignment of the RLH screen (which could be fitted to monitor or projection screen of the same variety (except the liquid crystal display) as line-grid decoder screens), means that if at the beginning of the programme the two images combined t form the composite encoded image are the words 'left' and 'right' and the viewer then positions himself to align their eyes accordingly, it will be possible, because of the high degree of alignment, to create the crossover vision effect (see Fig.6) which allows the brain to bring objects clearly out of the plane of the presentation screen.
- the RLH screen will enable software encoded according to the systemdescribed in the International application referred to above to create the illusion of objects eaving the screen plane, returning to the screen grid then going through and beyond into its depths.
- the RLH screen of the invention is designed as a standard lenticular dual image display of the type which are popularly used on badges and simple displays (see Figure 8).
- the image encoded on strips aligned behind the strip of semi-circular lenses 82 which are mostly of plastics material, is of the column-line and screen pattern, alternately, black and clear, that is, black and no-ink. For each eye the pattern switche its apparent black and clear pattern.
- the RLH screen may in certain circumstances consist of a series of prisms as opposed to a lenticular array.
- the net effect must be to re-align the perceived raster position for each eye, that is, effectively to invert the raster pattern by one phase shift, by 180°.
- gauges of note in this construction There are two gauge sizes of note in this construction. Firstly, there is the gauge of the decoder pattern which corresponds to the dimensions of the encoded image in the pixel plane shown in Figure 7. Secondly, there is the gauge of the semi-circular lenses 82 of the lenticular component of the RLH screen. This latter gauge determines the width of the strips of the decoder pattern image (see Fig. " 8).
- the basic principle underlying the system is believed to be that the brain does not demand stereo displacement as measured in the horizontal plane as generated by the eyes, as the only image difference acceptable for the generation of stereo 3-D images.
- the reason for this is that our evolution has involved several stages where our distant ancestor or precursor was predatory, fleet of foot (or rather limb) and far more acrobatic than any of use today are likely to be.
- a hunt for food, a chapter in survival, with boty eyes swivelling the need for the brain to generate an accurate 3-D representation of the rapidly moving world, the precise position of branches, footholds, nooks, crannies and prey itself, was vital. Under these circumstances the eyes would be comparing simultaneous left and right i gaes that had differences between them that represented rotations, distortions and with eyes blinking asynchronously - time differentiation, as well as translations in many planes.
- the pseudo-stereo provided by the imaging system works as well as it does because of this, for the brain is invited to resolve the depth puzzle and thereby create a credible sensation of 3-D, from pictures that have differences between them that are everythin but a true horizontal displacement with attendant perspectives transformations.
- Pseudo-stereo invites the brain to make an intelligent guess at what the two images and their differences mean the outcome of this process is a 3-D image not historically accurate, but indistinguishable in sensation from the sensations of 3-D reality.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Vehicle Body Suspensions (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR919106720A BR9106720A (en) | 1990-08-01 | 1991-08-01 | IMAGE FORMATION SYSTEMS |
JP91513451A JPH05508984A (en) | 1990-08-01 | 1991-08-01 | image system |
AU83208/91A AU657271B2 (en) | 1990-08-01 | 1991-08-01 | Imaging systems |
FI930396A FI930396A (en) | 1990-08-01 | 1993-01-29 | BILDLIKA SYSTEM |
NO93930333A NO930333L (en) | 1990-08-01 | 1993-01-29 | imaging system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9016902.0 | 1990-08-01 | ||
GB909016902A GB9016902D0 (en) | 1990-08-01 | 1990-08-01 | Deep vision |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992003021A1 true WO1992003021A1 (en) | 1992-02-20 |
Family
ID=10680007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1991/001318 WO1992003021A1 (en) | 1990-08-01 | 1991-08-01 | Imaging systems |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0542834A1 (en) |
JP (1) | JPH05508984A (en) |
AU (1) | AU657271B2 (en) |
BR (1) | BR9106720A (en) |
CA (1) | CA2088479A1 (en) |
FI (1) | FI930396A (en) |
GB (1) | GB9016902D0 (en) |
WO (1) | WO1992003021A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993019394A2 (en) * | 1992-03-20 | 1993-09-30 | Delta Systems Design Limited | Twin screen imaging system |
GB2271903A (en) * | 1992-10-23 | 1994-04-27 | Sharp Kk | Method of and apparatus for making a 3D print |
WO1994023340A1 (en) * | 1993-03-26 | 1994-10-13 | Technische Universität Dresden | Optical system for the two and three-dimensional display of information |
DE4433058A1 (en) * | 1994-09-16 | 1996-03-21 | Siegbert Prof Dr Ing Hentschke | Observer centred auto-stereoscopic display screen |
US5510832A (en) * | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
EP0809816A1 (en) * | 1995-01-18 | 1997-12-03 | Bruce A. Rosenthal | Lenticular optical system |
DE19827590A1 (en) * | 1998-06-20 | 1999-12-23 | Christoph Grosmann | Auto stereoscopic representation of images on display screen |
US7193773B2 (en) | 2002-02-04 | 2007-03-20 | Carl-Zeiss-Stiftung | Stereomicroscopy method and stereomicroscopy system |
WO2008095584A1 (en) * | 2007-02-07 | 2008-08-14 | Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Autostereoscopic image display appliance for producing a floating real stereo image |
US9161018B2 (en) | 2012-10-26 | 2015-10-13 | Christopher L. UHL | Methods and systems for synthesizing stereoscopic images |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU643667B3 (en) * | 1993-07-19 | 1993-11-18 | R.J. Thompson | Display view separator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3509826A1 (en) * | 1984-03-20 | 1985-09-26 | Joaquin Gomez Madrid Barquero | Arrangement for stereoscopic television |
WO1990013848A1 (en) * | 1989-04-28 | 1990-11-15 | Delta System Design Limited | Imaging systems |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3953869A (en) * | 1974-09-24 | 1976-04-27 | Dimensional Development Corporation | Stereoscopic photography apparatus |
-
1990
- 1990-08-01 GB GB909016902A patent/GB9016902D0/en active Pending
-
1991
- 1991-08-01 CA CA002088479A patent/CA2088479A1/en not_active Abandoned
- 1991-08-01 WO PCT/GB1991/001318 patent/WO1992003021A1/en not_active Application Discontinuation
- 1991-08-01 AU AU83208/91A patent/AU657271B2/en not_active Ceased
- 1991-08-01 EP EP91914417A patent/EP0542834A1/en not_active Withdrawn
- 1991-08-01 JP JP91513451A patent/JPH05508984A/en active Pending
- 1991-08-01 BR BR919106720A patent/BR9106720A/en unknown
-
1993
- 1993-01-29 FI FI930396A patent/FI930396A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3509826A1 (en) * | 1984-03-20 | 1985-09-26 | Joaquin Gomez Madrid Barquero | Arrangement for stereoscopic television |
WO1990013848A1 (en) * | 1989-04-28 | 1990-11-15 | Delta System Design Limited | Imaging systems |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993019394A3 (en) * | 1992-03-20 | 1993-10-28 | Delta System Design Ltd | Twin screen imaging system |
WO1993019394A2 (en) * | 1992-03-20 | 1993-09-30 | Delta Systems Design Limited | Twin screen imaging system |
GB2271903A (en) * | 1992-10-23 | 1994-04-27 | Sharp Kk | Method of and apparatus for making a 3D print |
US5774262A (en) * | 1993-03-26 | 1998-06-30 | Technische Universitaet Dresden | Optical system for the two- and three-dimensional representation of information |
WO1994023340A1 (en) * | 1993-03-26 | 1994-10-13 | Technische Universität Dresden | Optical system for the two and three-dimensional display of information |
US5510832A (en) * | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
DE4433058A1 (en) * | 1994-09-16 | 1996-03-21 | Siegbert Prof Dr Ing Hentschke | Observer centred auto-stereoscopic display screen |
EP0809816A1 (en) * | 1995-01-18 | 1997-12-03 | Bruce A. Rosenthal | Lenticular optical system |
EP0809816A4 (en) * | 1995-01-18 | 1998-03-25 | Bruce A Rosenthal | Lenticular optical system |
DE19827590A1 (en) * | 1998-06-20 | 1999-12-23 | Christoph Grosmann | Auto stereoscopic representation of images on display screen |
DE19827590C2 (en) * | 1998-06-20 | 2001-05-03 | Christoph Grosmann | Method and device for autostereoscopy |
US6302541B1 (en) | 1998-06-20 | 2001-10-16 | Christoph Grossmann | Method and device for autostereoscopy |
US7193773B2 (en) | 2002-02-04 | 2007-03-20 | Carl-Zeiss-Stiftung | Stereomicroscopy method and stereomicroscopy system |
WO2008095584A1 (en) * | 2007-02-07 | 2008-08-14 | Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Autostereoscopic image display appliance for producing a floating real stereo image |
US9161018B2 (en) | 2012-10-26 | 2015-10-13 | Christopher L. UHL | Methods and systems for synthesizing stereoscopic images |
Also Published As
Publication number | Publication date |
---|---|
FI930396A (en) | 1993-03-29 |
AU657271B2 (en) | 1995-03-09 |
FI930396A0 (en) | 1993-01-29 |
BR9106720A (en) | 1993-06-29 |
EP0542834A1 (en) | 1993-05-26 |
AU8320891A (en) | 1992-03-02 |
CA2088479A1 (en) | 1992-02-02 |
JPH05508984A (en) | 1993-12-09 |
GB9016902D0 (en) | 1990-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0597629B1 (en) | Autostereoscopic display | |
Holliman | 3D display systems | |
US7468838B2 (en) | Stereoscopic display for switching between 2D/3D images | |
US7342721B2 (en) | Composite dual LCD panel display suitable for three dimensional imaging | |
CN1893674B (en) | 2D/3D switchable stereoscopic display providing image with complete parallax | |
Holliman | Three-dimensional display systems | |
US5757550A (en) | Dual-view imaging product | |
US11079608B1 (en) | Three-dimensional image display | |
WO1992003021A1 (en) | Imaging systems | |
JPH08205201A (en) | Pseudo stereoscopic vision method | |
JPH11508058A (en) | Method and system for obtaining automatic stereoscopic images | |
Suyama et al. | 54.1: A Novel Direct‐Vision 3‐D Display Using Luminance‐Modulated Two 2‐D Images Displayed at Different Depths | |
CN112596261A (en) | Multi-visual-area stereoscopic display device based on double gratings | |
JP2009500649A (en) | Autostereoscopic display device with 2D-3D switching and method using this device | |
US20140268324A1 (en) | Method of displaying 3d images from 2d source images using a barrier grid | |
Hands et al. | Stereoscopic 3-D content appears relatively veridical when viewed from an oblique angle | |
EP0114406B1 (en) | System of projecting three-dimensional images | |
Peterka et al. | Dynallax: solid state dynamic parallax barrier autostereoscopic VR display | |
GB2231754A (en) | Three dimensional display system | |
Jones Jr et al. | VISIDEP (tm): visual image depth enhancement by parallax induction | |
JPH06148763A (en) | Lenticular stereoscopic display system for observation by many persons | |
JP2003295115A (en) | Stereoscopic image display device with no glasses | |
Lipton | Future of autostereoscopic electronic displays | |
CN103369340A (en) | Stereoscopic display method of multi-dimensional LED (Light Emitting Diode) display screen and multi-dimensional LED display screen | |
Hattori | On-the-wall stereoscopic liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO PL RO SD SE SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2088479 Country of ref document: CA Ref document number: 930396 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991914417 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1991914417 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1991914417 Country of ref document: EP |