WO1991016284A1 - Process for producing alkenylbenzene and derivative thereof - Google Patents

Process for producing alkenylbenzene and derivative thereof Download PDF

Info

Publication number
WO1991016284A1
WO1991016284A1 PCT/JP1991/000542 JP9100542W WO9116284A1 WO 1991016284 A1 WO1991016284 A1 WO 1991016284A1 JP 9100542 W JP9100542 W JP 9100542W WO 9116284 A1 WO9116284 A1 WO 9116284A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
butadiene
catalyst
alkylbenzene
xylene
Prior art date
Application number
PCT/JP1991/000542
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Shimada
Koji Sumitani
Seiji Itoh
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Publication of WO1991016284A1 publication Critical patent/WO1991016284A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/72Addition to a non-aromatic carbon atom of hydrocarbons containing a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals

Definitions

  • the present invention relates to a method for safely and efficiently producing alkenylbenzene by reacting alkylbenzene and butadiene in the presence of a recovery metal; more specifically, for example, the reaction of o-xylene with 1,3-butadiene.
  • This is a high industrial value chemical compound that can be converted into valuable 10-phthalene dicarboxylic acid as a polymer material by oxidation, and the present invention is a method for producing such valuable material. It is a measure
  • the present invention solves the above-mentioned problems, and aims to produce alkenylbenzene in high yield without directly using an expensive metal rim having a high risk of ignition.
  • Highly active and highly selective catalyst for reaction By reacting alkylbenzene with 1,3-butadiene, the production of by-products which is difficult and difficult to separate from the target product is suppressed, and the high-purity target product, i.e.
  • a method for producing benzylbenzene in a high yield A method for cyclizing the alkenylbenzene to produce alkyltetralin and a method for producing an alkyldephthalene by dehydrogenating the alkyltetralin. The purpose is to provide
  • the present invention relates to a catalyst obtained by reacting an alkylbenzene with 1,3-butadiene in the presence of a catalyst to produce alkenylbenzene, in which an alkali metal is dispersed as a catalyst and an inorganic lithium salt is dispersed.
  • a process for producing alkene benzene comprising reacting alkylbenzene with 1, butadiene in an environment in which oxygen and water do not substantially exist.
  • alkenylbenzene by reacting alkylbenzene with 1,3-butadiene, Alkali metal is used as a catalyst without the substantial presence of oxygen and water, and high-temperature calcination dehydration is performed.
  • Alkali metal is used as a catalyst without the substantial presence of oxygen and water, and high-temperature calcination dehydration is performed.
  • High by-products A method for producing alkenylbenzene, characterized by producing lukenylbenzene in high yield.
  • the starting material used in the method of the present invention is an alkylbenzene having 1 to 2 methyl or ethyl groups in the alkylbenzene benzene nucleus.
  • Specific examples of the compound include toluene, ethylene pentene, o-xylene, m-xylene, p-xylene.
  • Each of these alkylbenzenes is preferably used alone, and if a mixture is used, it becomes difficult to separate the target product from the reaction product, alkenylbenzene, with good purity:
  • the purity of the target product can be reduced if alkylbenzenes such as toluene, p-xylene, m-xylene, and ethyl / benzene are mixed as impurities. Therefore, the purity of o-xylene is 95% or more, preferably 98. The above is preferable. However, a small amount of hydrocarbons having no alkyl group such as benzene-cyclohexane may be mixed:
  • the purity of each single product is 95 or more, preferably 9 S ° o or more.
  • the incorporation of V-free hydrocarbons is possible:
  • the starting material alk / limezene is preferably dehydrated and used in the reaction.
  • a dehydration method for example, adsorption separation using a suitable drying agent (eg, activated aluminum, silica gel, molecular sieves, activated carbon, etc.)
  • a suitable drying agent eg, activated aluminum, silica gel, molecular sieves, activated carbon, etc.
  • There is a method of dewatering by pre-contacting with cryogenic, cryogenic metal, or metallic lithium or metal power rim There is a method of dewatering by pre-contacting with cryogenic, cryogenic metal, or metallic lithium or metal power rim.
  • the lower the amount of water in the raw material, the better, and the curl which is the usual method for measuring water content It is particularly preferable that the sensitivity is less than the measurement sensitivity of the social method, for example
  • 1,3-butadiene may be produced by any method, and 1,3-butadiene may be of any purity; for example, crude obtained by dehydrogenation of butane or butene. Butadiene can be used as it is, or 1,3-butadiene purified by a method such as extraction of the crude butadiene can be used. Also, 1,3-butadiene is dehydrated and reacted. Dehydration methods include a suitable drying agent such as activated aluminum, silica gel, molecular sieves, charcoal, etc., or cryogenic separation.] 3- The lower the water content in 'butadiene', the better, especially less than a few PP in
  • the catalyst used in the invention for the reaction between alkylbenzene and i, 3-butadiene is a catalyst obtained by dispersing an alkali metal with inorganic powder : 'pium salt fine powder.
  • the metal / recovery metal is preferably 10% metal, and the higher the purity, the better, but a trace amount of calcium.A purity that is acceptable even if it contains magnesium, preferably 99.0% or more. Is preferred
  • Potassium oxide, potassium hydroxide, potassium carbonate, chloride chloride, and mixtures thereof can be used as inorganic powders used as dispersants. Particularly preferred are potassium acid and potassium chloride. In some cases, a mixture of the two may produce a favorable effect. These charcoal it-lium and potassium chloride may contain about 10 equivalents or less of sodium carbonate, sodium chloride and potassium chloride.
  • the average particle size of the inorganic potassium salt as the dispersant is preferably 100 ⁇ m or less, particularly preferably 10 to 0 ⁇ m. The particle size can be adjusted by a sieve or the like.
  • acidium is used as a mixture of sodium carbonate and calcium, 10: 1 to 1: Used in a weight ratio of 10, preferably to 10: 1 :: 1 weight ratio:.
  • the ratio of the alkali metal and the inorganic salt of the dispersant may be dispersed and supported at the following ratio, but the final ratio of the metal 10 k "is i to 30 o by weight, preferably: 2 ⁇ ⁇ , more preferably: ⁇ 10 c
  • the inorganic potassium salts used for example KCO; i, K 2 CO 3-a.2 CO 3, KCO-:- ⁇ a. C: K 2 CO 3-KC ⁇ , etc. needs to be dried to T minutes and also improves the activity as a supported catalyst In this case, it is preferable to bake and dry at a high temperature of 500 ° C to 20C.
  • the supported catalyst comprising an alkali metal and an inorganic lithium salt used in the method of the present invention
  • a method of dispersing and supporting 10 km of metal in fine particles of an inorganic lithium salt is adopted.
  • an inert solvent dispersion-supporting method is preferred.
  • the inert solvent dispersion-supporting method is used to uniformly prepare sodium metal in an amount of 0.1 to 30% by weight based on the inorganic lithium salt.
  • a method of dispersing in a solvent by a carbon dioxide beam can also be carried out.
  • a solution obtained by emulsifying and dispersing 3 parts of metal sodium with 300 parts of o-xylene and 97 parts of potassium carbonate ( ) Mix the liquid dispersed in 700 parts of xylene.
  • Ru can also perform the method of dispersing the supported metal Juto helium 3 parts of carbonate force Riumu 4 parts c '- alkoxy;.
  • a method of mixing and dispersing a liquid dispersed in 500 parts of ren can be performed: Even when a solvent is not used, the dispersion is carried out by a master basin and a multi-layer method, and further, an inert solvent dispersion is carried out. This makes it possible to prepare a uniform catalyst having excellent activity and selectivity.
  • an inert solvent it is industrially preferable to use alkylbenzene used as a reaction raw material.
  • the dispersed catalyst uniformly dispersed and supported as described above is prepared by pretreating a mixture with an ⁇ / lekilbenzene catalyst with O to 20 GC for 1 to 5 hours before introducing 3-butadiene and reacting. This can improve activity :.
  • the reaction between alkylbenzene and 1,3-butadiene is carried out in the absence of water and oxygen. Therefore, the raw materials introduced into the reaction system from outside the system, namely, alkylbenzene and i, 3-butadiene are used. It is desirable to dehydrate as described above. Further, in order to make the space of the reaction system substantially free of oxygen and moisture, it is necessary to fill the space with a dry inert gas such as dry nitrogen or dry argon. Or under pressurized reaction conditions above the boiling point of alkylbenzene, it is desirable to fill the space with vapor such as alkylbenzene.
  • a dry inert gas such as dry nitrogen or dry argon.
  • the reaction is preferably carried out at a temperature in the range of 5 to 2 G.
  • the reaction temperature is lower than 200, the reaction time is longer, and when the reaction temperature is higher than 200, more by-products are produced.
  • Preferred reaction temperature is 80 iSG.
  • the reaction ratio of 1,3-butadiene to alkylbenzene can be selected appropriately under normal conditions-for example, alkylbenzene: 13-butadiene i: It can be carried out in the range 0.001 0., preferably 1: 0.G1 0.3, particularly preferably 1: 0.0: G.2.
  • the reaction time is in the range of 0.05 to 10 hours.
  • the reaction time is as follows: catalyst amount ⁇ g—catalyst '.' G-alkylbenzene, catalyst composition (g—deuterium g—inorganic power. Lithium salt) : '.', Which is related to the reaction temperature (in) and the ratio of alkylbenzene to 1,1-butane-diene (g-alkylbenzene 'g-1,3-butadiene).
  • An appropriate time is selected depending on the usage pattern of, for example, the presence or absence of circulating use. In general, if the value of the above factors decreases, the reaction time will be longer, but the preferred reaction time is 0.2 to S hours. Preferably G.5 4 hours
  • the catalyst is a solid fine powder catalyst obtained by dispersing a metal stream of 10 to an inorganic porous salt.
  • benzene is fed and 1,3-butadiene is introduced into ⁇ / rekirbensen to carry out a continuous reaction
  • a method in which a catalyst is dispersed in a reaction system and stirred is adopted.
  • any of a tubular reactor, a column reactor, and a tank reactor may be used.
  • a preferable continuous reaction method is to provide a plurality of reaction zones and to use 13-butadiene. It is a contract cross-flow type continuous reaction system in which a fixed amount is introduced into each reaction zone;
  • the reaction operation may be carried out as long as the alkylbenzene and:.: Butadiene can be sufficiently contacted and mixed in the presence of the catalyst, and there is no particular limitation. 1,3-butadiene is likely to adhere to a resinous or gum-like substance presumed to be a 1,3-butadiene polymer near the inlet of butadiene, causing a clogging phenomenon.
  • 1,3-butadiene mixed with alkynylene benzene for example, liquid phase mixture of liquid butadiene here / rexbenzene, gaseous 1,3—butadiene and liquid ⁇ / lekybenzene and ku) gas-liquid mixture
  • the method of introducing 1, 3-butadiene and alkirbensen 1,3-butadiene can be supplied to the reaction space or the reaction zone space, and the absorption reaction can be performed on the surface of the reaction solution where the catalyst is present to prevent the clogging phenomenon.
  • An inert gas from which oxygen and moisture have been removed such as nitrogen, argon, and hydrogen, is suitable as the carrier gas, which can be blown together with the carrier gas and increase the stirring effect at the same time.
  • the reaction can be preferably carried out by providing appropriate stirring.
  • 1,3-butadiene ′ can be introduced into the reaction system in a gaseous phase, and the gas can have a stirring effect.
  • the agitation should be of a strength necessary to uniformly disperse the catalyst in the reaction system and to uniformly mix the reaction material and the reaction product.
  • the used catalyst can be separated from the reaction product system by a known means, for example, centrifugal sedimentation, gravity sedimentation, or a liquid-solid phase at a lower temperature. Any known means such as solid phase separation from water, eg filtration, centrifugation, etc. may be used:
  • the separated catalyst can be recycled and reused in the reaction system
  • the alkenylbenzene which is the target product of the present invention, is subjected to a cyclization reaction and then dehydrogenation as described above, whereby a compound useful as a raw material for a pharmaceutical or a polymer material, that is, mosoalkylnaphthalene ′, In this case, the purity of benzene and hexene in cyclizing fluoropentene and ethanol liubenzone is a problem.
  • the position of the so-called arylalkenorefinous double bond of phenylenebenzene, phenylhexene, and triphenylene is 1 or 2, but
  • isomers having different positions of the olefinic double bond for example, in the reaction of o-xylene with butadiene, 5— (o-lithre) 1 pen 'ampine (1).
  • By-products and contaminants other toluene, ethylbenzene.
  • Alkenylbenzene ' is known per se in the known manner, by contacting acid catalysts such as silica and solid phosphoric acid. By contacting with an acid catalyst such as silica aluminum at a temperature of ⁇ 25 ° C for 10 seconds to 10 hours. ring Can be converted to alkyltetralin
  • Alkyl titraline is contacted for 5 seconds to 10 minutes at a temperature of 350 to 45 GC with a deoxidizing catalyst such as aluminum chromia, PtAi0--, etc. By dehydration, it can be reduced to alkyl 10-phthalene
  • Alkyl phthalene can be prepared by a method known per se, that is, by using a solid acid catalyst such as silica-aluminum, ZSM-5, Y-type zeolite, or H-type morphite at a temperature of 2Gi to 4 ° C for 5 seconds to 5 seconds. Can be isomerized by contacting for 10 hours, for example, 1,5-dimethylnaphthalene can be converted to 2,6-dimethyl10-phthalene
  • the catalyst used for reacting ⁇ / lekybenzene with 1,3-butane is a catalyst obtained by dispersing a metal of sodium using carbon dioxide and alkylbenzene as a solvent. It is preferable to use
  • dimethyl-10-phthalene a compound useful as a raw material for a polymer material, from alkylbenzene as follows.
  • o-xylene and 1,3-butadiene are reacted with a catalyst obtained by dispersing an alkali metal with an inorganic lithium salt to produce 5-o-trile> bentenene, and: 5 ”,“ Koiyai 5 — (o — Trinole)
  • a catalyst obtained by dispersing an alkali metal with an inorganic lithium salt to produce 5-o-trile> bentenene, and: 5 ”,“ Koiyai 5 — (o — Trinole)
  • the 1,5-dimethyl-10-phthalene can be isomerized to produce 2,6-dimethyl-10-phthalene.
  • the reaction product obtained by the method of the present invention has very few by-products which are difficult to separate, and therefore the yield of the cyclization reaction product is extremely high.
  • a metal decadmium is calcined at a high temperature and dehydrated at a specific ratio with a fine powder of an inorganic potassium salt which is dehydrated by heating at a high temperature without substantially allowing oxygen and moisture to be present.
  • Na—K Ten times, it is difficult to separate the target product from the target product without directly using a nockey alloy, with high activity and high selectivity for the alkenylation reaction.
  • the catalyst used in the method of the present invention has an advantage that the catalyst can be easily separated without troublesome and troublesome work when preparing the catalyst, but the cost is low.
  • the present invention is not limited to these examples.
  • the yield and purity of the target compound are defined as follows. Simply “parts” means parts by weight.- (Yield and purity)
  • the fraction of the alkenyl compound was analyzed by gas chromatography and the duff method, and the content of 5- (tolyl) pentene ';2:' and ⁇ ': 5— (tolyl) benten ⁇ 1) was determined. Unreacted xylene was less than or not present in the ⁇ / refractionated fraction, i: weight or less.
  • the contents of 5-phenylene retentene ⁇ 1> and 5-phenylene / lenene (2) are determined, and the yield of the desired product is calculated.
  • high-purity potassium carbonate (purity 99 or more: 30 U part was calcined and dehydrated at 200 to 400 C for 2 hours, cooled, and then turned into fine particles having a particle size of 45 m.
  • the dehydrated o-xylene was charged into 1000 parts, and the mixture was dispersed in an emulsifying and dispersing machine for 10 minutes to form a carbon dioxide-containing dispersion.
  • Examples 2 to 8 and Comparative Examples 1 to 5 were obtained by carrying out the reaction under the same conditions as in Example 1 except that the composition, ratio, amount, reaction temperature, and reaction time of the catalyst were variously changed. Are shown in Tables 1 and 2 below.
  • Example 1 O-xylene was replaced with p-xinine, and the reaction of 1,3-butadiene was performed.
  • a catalyst was used in which a 10-millimeter metal was melted, supported on solid-free fine-particle carbonic acid rim, and further dispersed in ethylbenzene. That is, high-purity lithium carbonate (purity: 99. '%) 400 parts (weight) was baked and dehydrated for 5 hours at 400 to 5C'G, and after cooling, finely divided to an average particle size of 45> urn, 15 parts of metallic deuterium was added, and the mixture was added under a high-purity nitrogen atmosphere. 110. After dispersion treatment with C for 60 minutes, the catalyst was further treated with 13G for 60 minutes in the presence of
  • reaction mixture was immediately cooled to 8 (cooled to TC, kept at that temperature, stopped stirring, and allowed to stand for 30 minutes to separate the reaction product liquid into a catalyst and a liquid phase of the target substance.
  • the reaction between toluene and 3-butadiene was carried out at a reaction temperature of 130 to 14 ° C. using a metal sodium-potassium carbonate dispersion treatment catalyst prepared under the same conditions as in the operation method of Example 17.
  • the cyclization reaction was carried out using a 10% solution of 5- (o-tolyl: 1-pentene in toluene obtained in Example 1 having a purity of 99.0%: using solid phosphoric acid as a catalyst, and the reaction temperature. 15G
  • the conversion rate of the raw material was 10ij ⁇ :
  • the selectivity for the formation of the cyclized product, 15-dimethyltetralin, was 3 ⁇ 4 or more.

Abstract

A process for producing efficiently alkenylbenzene, which comprises reacting alkylbenzene with 1,3-butadiene in the presence of a catalyst prepared by the dispersion treatment of an alkali metal with an inorganic potassium salt in the substantial absence of oxygen and water.

Description

m 糸田 »  m Itoda »
《発明の名称》 《Title of Invention》
アルケニルベンゼン及びその誘導体の製造方法 Process for producing alkenylbenzene and derivatives thereof
《技術分野》 "Technical field"
本発明はアルキルベンゼンとブタジェンとを レカ リ 金属の存在下で反応せしめて、 アルケニルベンゼン を安 全に効率よく製造する方法に関する: 更に詳細には、 例 えば o—キシレンと 1 , 3 —ブタジエンとの反応:こ -' て 得られるアルケニルベンゼンである 5 — -、 o — ¾- リル:、 一ベンテンは、 それを環化してジメチルテトラ リ ン とな し、 これを脱水素し、 ジメチル十フタレン と し、 次いで 酸化することによって高分子原料と して有甩な十フタレ ンジカルボン酸に転換できる工業的価値の高い化合拘で あり、 本発明はこのよ うな有闬な原料を製造する方法に 鬨寸るものである The present invention relates to a method for safely and efficiently producing alkenylbenzene by reacting alkylbenzene and butadiene in the presence of a recovery metal; more specifically, for example, the reaction of o-xylene with 1,3-butadiene. Reaction: 5-- , o- ¾ -ryl, which is alkenylbenzene obtained by this-', 1-benthene cyclizes it to dimethyltetralin, which is dehydrogenated, and This is a high industrial value chemical compound that can be converted into valuable 10-phthalene dicarboxylic acid as a polymer material by oxidation, and the present invention is a method for producing such valuable material. It is a measure
《背景技術》  《Background technology》
従来、 アルキルベンゼンと i , 3 —ブタジエン とをアル 力 リ金属の存在下に反応せしめ、 モ ノアルケニルベンゼ ンを製造する方法は知られている 〈米国特許第 3 244 7 ^ 号明細書参照〉  Conventionally, a method for producing monoalkenyl benzene by reacting an alkylbenzene with i, 3-butadiene in the presence of an alkali metal is known (see US Pat. No. 3,247,47).
しかしながら、 上記方法は、 高収銮でモ ノア;レケ二 ベンゼン を得よ う と寸れば、 高価な金属力 リゥ を 1 に使用しなければならない欠点があった また、 こ 間 題を解決するために、 アルキルベンゼンに 1 , 3 -ブタジ ェンを吹き込んで反応させる際に、 触媒と して金属力 り ゥムと金属十卜リウムを併用すると高価な金属力リゥム の使用が少量で済む方法が提案された (特公昭 - 3 4 号公報、 米国特許第 号、 米国特許第 3 号 参照) : However, the above-mentioned method has a disadvantage that an expensive metal-based reactor must be used for 1 in order to obtain monoa with high yield; In order to solve the problem, when 1,3-butadiene is blown into alkylbenzene to cause a reaction, the use of expensive metal power lumps with the use of metal lumps and metal thotrium as catalysts is small. (See Japanese Patent Publication No. 34-34, U.S. Pat. No. 3, U.S. Pat. No. 3):
しかしながら、 これらの方法はいずれも金属力リゥム を直接使用するため、 空気, 酸素, 水等に対して反応性 が強く、 これらの化合物と接触するだけで発火.し、 災 安全上危険であり、 特に十トリウムーカリゥム 〈 -ヽ a ― K : 十、'/ク 〉 合金は酸素, 水に対して活性が高く、 微量 の〇2 , H 2 O等と接触しても発火し、 阇辺の可燃物 (石油類〉 との共存下では、 きわめて危険である - 金属カリゥムを使用しない触媒系は英国特許 126928 G 号 ( 1972年 4月 6日) に記載されている . これには、 ナ トリゥムと炭酸力リウム等の無水力リウム化合物を触媒 と して使用する、 ォレフ ィ ンによる芳香族の側鎖アルキ ル化反応において、 ジェンが反応阻害作用を有する旨爵己 载されている However, all of these methods use metal reams directly, so they are highly reactive to air, oxygen, water, etc., and ignite just by contacting these compounds, which is dangerous for disaster safety. particularly ten thorium over potassium © beam <-ヽa - K: ten, '/ click> alloy oxygen, high activity to water, even ignited in contact with 〇 2, H 2 O and the like of trace,阇Extremely dangerous in the presence of near-flammables (petroleum)-a catalyst system that does not use metal powder is described in British Patent 126928G (April 6, 1972). Gen is said to have an inhibitory effect on the side-chain alkylation of aromatics with olefins using sodium and anhydrous magnesium compounds such as potassium carbonate as catalysts.
《発明の目的》  《Object of the invention》
本発明は、 前述の課題を解決し、 高価で発火の危険性 の大きい金属力リゥムを直接使用寸ることなくアルケニ ルべンゼンを高収率で製造することを目的と寸る し もアルケニル化反応に高活性, 高選択性の触媒の存在下 で、 アルキルベンゼンと 1 , 3 —ブタジエン とを反応寸る ことによ り、 目的物から分離することが困難でかつ煩雑 な副生成物の生成を抑制し、 高純度の目的物、 即ち、 ァ ルケニルベンゼンを高収率で製造することを目的と寸る ものである .. さらに該アルケニルベンゼン を環化し、 マ ルキルテトラリンを製造する方法及び該アルキルテト リンを脱水素しアルキル十フタレンを製造する方法を提 供することを目的とする。 The present invention solves the above-mentioned problems, and aims to produce alkenylbenzene in high yield without directly using an expensive metal rim having a high risk of ignition. Highly active and highly selective catalyst for reaction By reacting alkylbenzene with 1,3-butadiene, the production of by-products which is difficult and difficult to separate from the target product is suppressed, and the high-purity target product, i.e. A method for producing benzylbenzene in a high yield. A method for cyclizing the alkenylbenzene to produce alkyltetralin and a method for producing an alkyldephthalene by dehydrogenating the alkyltetralin. The purpose is to provide
《発明の開示》 · ' ' ·  《Disclosure of the invention》
本発明は、 アルキルベンゼンと 1 , 3 —ブタジェ.ン とを 触媒の存在下で反応せしめ、 アルケニルベンゼンを製造 するに当り、 触媒と してアル力 リ金属を、 無機力 リゥム 塩と分散処理した触媒を使用し、 かつ、 酸素及び水が実 質的に存在しない環境下でアルキルベンゼン と 1 , ーブ タジェンとを反応せしめることを特徴とするアルケニ ベンゼンの製造方法である  The present invention relates to a catalyst obtained by reacting an alkylbenzene with 1,3-butadiene in the presence of a catalyst to produce alkenylbenzene, in which an alkali metal is dispersed as a catalyst and an inorganic lithium salt is dispersed. A process for producing alkene benzene, comprising reacting alkylbenzene with 1, butadiene in an environment in which oxygen and water do not substantially exist.
すなわち、 アルキルベンゼンと 1, 3 —ブタジエン とを 反応せしめ、 アルケニルベンゼンを製造するに際し、 酸 素及び水分を実質的に存在せしめることなく 、 かつ、 触 媒と してアル力 リ金属を、 高温焼成脱水乾燥した無水 炭酸力 リゥムの微粉末と特定の割合で分散処理した担持 触媒の存在下でアルキルベンゼンと 1 , 3 —ブタジエン と を反応せしめることによ り 、 目的物から分離するこ こ 困難でかつ煩雑な副生成物の生成を抑制し、 高純度のマ ルケニルベンゼンを高収率で製造ォることを特徴と寸る アルケニルベンゼンの製造方法である。 以下、 本発明を 詳細に説明ォる: That is, in the production of alkenylbenzene by reacting alkylbenzene with 1,3-butadiene, Alkali metal is used as a catalyst without the substantial presence of oxygen and water, and high-temperature calcination dehydration is performed. By reacting alkylbenzene and 1,3-butadiene in the presence of a dried fine carbonic anhydride powder and a supported catalyst dispersed at a specific ratio, it is difficult and cumbersome to separate it from the target product. High by-products A method for producing alkenylbenzene, characterized by producing lukenylbenzene in high yield. Hereinafter, the present invention will be described in detail:
本発明方法で用いる原料のアルキルべンゼン ベンゼ ン核に 1〜 2個のメチル基又はェチル基を持つアルキル ベンゼンであり、 具体的な化合物と してはトルエン 、 ェ チ レペン ン、 o—キシレン 、 m —キシレン 、 p —キシ レンがあげられる。 これらのアルキルベンゼン 、 それ ぞれ単品で使用することが好ま しく 、 混合物を使 ffiする と反応生成物であるアルケニルベンゼンから目的物を純 度よく分離することが困難になる:  The starting material used in the method of the present invention is an alkylbenzene having 1 to 2 methyl or ethyl groups in the alkylbenzene benzene nucleus. Specific examples of the compound include toluene, ethylene pentene, o-xylene, m-xylene, p-xylene. Each of these alkylbenzenes is preferably used alone, and if a mixture is used, it becomes difficult to separate the target product from the reaction product, alkenylbenzene, with good purity:
例えば o —キシレンと 1 , 3 —ブタジェンの反応におい ては、 トルエンや p—キシレン, m —キシレン , ェチ/レ ベンゼン等のアルキルべンゼンが不純物と して混入寸る と目的物の純度を著しく低下させる要因となる 従 、て o—キシレンの純度は 9 5 %以上、 好ましくは 98 。以上 ' ものが好ましい. ただし、 ベンゼンゃシクロへキサン等 のアルキル基を有しない微量の炭化水素の混入は差支 ない:.  For example, in the reaction of o-xylene and 1,3-butadiene, the purity of the target product can be reduced if alkylbenzenes such as toluene, p-xylene, m-xylene, and ethyl / benzene are mixed as impurities. Therefore, the purity of o-xylene is 95% or more, preferably 98. The above is preferable. However, a small amount of hydrocarbons having no alkyl group such as benzene-cyclohexane may be mixed:
同様にトノレェン , ェチ レベンゼン , m—キシレン . ーキシレンを闬いる場合においても、 それぞれの単品 純度は 9 5 以上、 好ましくは 9 S °o以上のものが好ま し ベンゼンゃシク口へキサン等のアルキル基を有しない V 量の炭化水素の混入は差支えない: 出発原料であるアルキ /レベンゼンは脱水して、 反応に 用いることが好ま しい: 脱水方法と して 、 例えば適 な乾燥剤 (例えば活性アルミ十, シリカゲル , モレキュ ラーシ一ブス, 活性炭等) による吸着分離、 深冷分 、 あるいは金属十ト リウム, 金属力 リゥムと予め接触させ て脱水する方法等がある、 原料中の舍水量は、 低けれは 低い程好ま しく、 通常の含水量の測定法であるカール ィ 、ソ シヤー法の測定感度以下、 例えば数 P P m 以下が特に ' 好ま しい. ' ' : ' Similarly, in the case of using tonolen, ethylene benzene, m-xylene.-xylene, the purity of each single product is 95 or more, preferably 9 S ° o or more. The incorporation of V-free hydrocarbons is possible: The starting material alk / lebenzene is preferably dehydrated and used in the reaction. As a dehydration method, for example, adsorption separation using a suitable drying agent (eg, activated aluminum, silica gel, molecular sieves, activated carbon, etc.) There is a method of dewatering by pre-contacting with cryogenic, cryogenic metal, or metallic lithium or metal power rim. The lower the amount of water in the raw material, the better, and the curl which is the usual method for measuring water content It is particularly preferable that the sensitivity is less than the measurement sensitivity of the social method, for example, several PPm or less.
本発明において、 1, 3 —ブタジエンは、 如何なる方法 で製造されたものでもよく 、 また 1 , 3 —ブタジエンの純 度は如何なるものであってもよい; 例えばブタン または ブテンの脱水素によって得られる粗ブタジェンをそのま ま闬いることもできる し、 また該粗ブタジエンを抽出等 の方法によって精製した 1 , 3 —ブタジェンであつてもよ い... また 1 , 3 —ブタジエンは、 脱水して反応に^いるこ とが好ま しい . 脱水方法と しては適当な乾燥剤、 例えば 活性アルミ十, シリカゲル, モレキュラーシ一ブス, 话 性炭等による吸着分離あるいは深冷分离 等がある 】. 3 -ブタジエン'中の含水量は、 低ければ低い程好ま し く 、 数 P P in 以下が特に好ま しい  In the present invention, 1,3-butadiene may be produced by any method, and 1,3-butadiene may be of any purity; for example, crude obtained by dehydrogenation of butane or butene. Butadiene can be used as it is, or 1,3-butadiene purified by a method such as extraction of the crude butadiene can be used. Also, 1,3-butadiene is dehydrated and reacted. Dehydration methods include a suitable drying agent such as activated aluminum, silica gel, molecular sieves, charcoal, etc., or cryogenic separation.] 3- The lower the water content in 'butadiene', the better, especially less than a few PP in
:*:発明においてアルキルベンゼン と i , 3 一—ブタジェニ との反応に用いられる触媒は、 アル リ金属を無機力 : ' ゥム塩微粉末と分散処理した触媒である ァ /レカ リ金属は金属十ト リゥムが好ま し く 、 その純度 は高いものほどよいが微量のカルシウム . マゲネシゥ丄 を含有していてもさしつかえない 純度と して 0 上、 できれば 99. 0%以上が好ましい : *: The catalyst used in the invention for the reaction between alkylbenzene and i, 3-butadiene is a catalyst obtained by dispersing an alkali metal with inorganic powder : 'pium salt fine powder. The metal / recovery metal is preferably 10% metal, and the higher the purity, the better, but a trace amount of calcium.A purity that is acceptable even if it contains magnesium, preferably 99.0% or more. Is preferred
分散剤と して用いられる無機力 リゥム塩と しては酸化 カリウム, 水酸化カリウム, 炭酸カ リウム, 塩化力 リ ム、 これらの混合物があげられる 特に好ま しいものは、 酸カ リウム, 塩化カリウムであり、 またこの両者の 合物が好ま しい効果を出す場合もある これらの炭 it - リウム, 塩化カリウムには、 炭酸十ト リウム , 塩化十 , リウムを当量程度又はそれ以下含有してもさしつ^えな い この分散剤と しての無機カリ ム塩の平均粒径は 10 0 u m以下が好ましく 、 特に 10〜; 0 mが好ましい 粒 径の調整はふるい等ですることができる  Potassium oxide, potassium hydroxide, potassium carbonate, chloride chloride, and mixtures thereof can be used as inorganic powders used as dispersants. Particularly preferred are potassium acid and potassium chloride. In some cases, a mixture of the two may produce a favorable effect. These charcoal it-lium and potassium chloride may contain about 10 equivalents or less of sodium carbonate, sodium chloride and potassium chloride. The average particle size of the inorganic potassium salt as the dispersant is preferably 100 μm or less, particularly preferably 10 to 0 μm. The particle size can be adjusted by a sieve or the like.
炭酸力 リゥム中の炭酸十ト リウム . 塩化十 リゥム 場合によつては触媒の機能を向上させることもある 酸力リウムを炭酸十ト リウムの混合枸と して用いる場合、 10: 1 〜 1 : 10の重量比、 好ましくは 10: 1へ : : 1 重量比で使用される :.  Carbonate in calcium carbonate. Lithium chloride. In some cases, the function of the catalyst may be improved. When acidium is used as a mixture of sodium carbonate and calcium, 10: 1 to 1: Used in a weight ratio of 10, preferably to 10: 1 :: 1 weight ratio:.
アル力リ金属と分散剤の無機力リゥム塩との割合はと のよ うな割合で分散担持してもよいが、 金属十 k " の最終割合は重量にして i 〜30 o、 好ましく : .、 2ΰ ο、 さらに好ま しくは: 〜 10 cである The ratio of the alkali metal and the inorganic salt of the dispersant may be dispersed and supported at the following ratio, but the final ratio of the metal 10 k "is i to 30 o by weight, preferably: 2ΰ ο, more preferably: ~ 10 c
使用される無機カ リウム塩、 例えば K C O ; . i , K 2 C O 3 - a.2 C O 3 , K C O -: - \ a. C : K 2 C O 3 - K C 〗 等は T分に乾燥しておく必要があ また担体触媒と して活性を向上させるためには、 20C へ 500 °cの高温で焼成乾燥することが好ま しい The inorganic potassium salts used, for example KCO; i, K 2 CO 3-a.2 CO 3, KCO-:-\ a. C: K 2 CO 3-KC 等, etc. needs to be dried to T minutes and also improves the activity as a supported catalyst In this case, it is preferable to bake and dry at a high temperature of 500 ° C to 20C.
本発明方法において用いられるアル力 リ金属と無機力 リウム塩からなる担持触媒の調製は、 例えば、 十 k り ム金属を無機力リウム塩の微粒子に分散担持寸る方法が と られる ..、  For the preparation of the supported catalyst comprising an alkali metal and an inorganic lithium salt used in the method of the present invention, for example, a method of dispersing and supporting 10 km of metal in fine particles of an inorganic lithium salt is adopted.
その方法と しては、 不活性溶媒分散担持法が好ま しい 不活性溶媒分散担持法によ り、 金属ナト リウムが無機力 リゥム塩に対し 0. 1 〜30重量%となるよ うに均一に調製 するためにはマスターバ チ法, 個別分散液を混合ォる 方法を採用するのが好ま しい 即ち、 例えば金属十 リ ゥム 3重量 5 を分散担持する場合に、 金属十ト リウム 3 部に分散剤となる炭酸力リゥム 97部を溶媒 o —キシレン 1000部に同時に入れて 110 〜13G で高速撹拌する方法 が採用されるが、 あらかじめ適当な分散比で分散させ 分散液を作成しておき、 それをさらに溶媒中で炭酸力 リ ゥムによ り分散させる方法を行う こと もでき る また、 金属十ト リウム 3部を o —キシレン 300 部で乳化分散し た液と 97部の炭酸カ リウムを()一キシレン 700 部に分散 した液を混合し.分散担持する方法を行うこと もでき る 金属十ト リウム 3部と炭酸力 リゥム 4 部 c' - キシ ;. As the method, an inert solvent dispersion-supporting method is preferred. The inert solvent dispersion-supporting method is used to uniformly prepare sodium metal in an amount of 0.1 to 30% by weight based on the inorganic lithium salt. For this purpose, it is preferable to adopt the masterbatch method or the method of mixing individual dispersion liquids. That is, for example, when 3 weight 5 of metal is dispersed and supported, 3 parts of metal A method is adopted in which 97 parts of carbonic acid lime is simultaneously added to 1000 parts of solvent o-xylene and stirred at a high speed of 110 to 13 G, but a dispersion is prepared in advance by dispersing at an appropriate dispersion ratio, and the dispersion is prepared. Further, a method of dispersing in a solvent by a carbon dioxide beam can also be carried out. Also, a solution obtained by emulsifying and dispersing 3 parts of metal sodium with 300 parts of o-xylene and 97 parts of potassium carbonate ( ) Mix the liquid dispersed in 700 parts of xylene. . And Ru can also perform the method of dispersing the supported metal Juto helium 3 parts of carbonate force Riumu 4 parts c '- alkoxy;.
500 部に乳化分散した液と炭酸力 リゥム 50部を oーキシ レン 500 部に分散した液を混合分散する方法を行う こと ができる: 溶媒を用いない場合においてもマスターバ、·' チ法によ り分散担持を実施し、 さらに不活性溶媒分散担 持法を行うことによって均一で活性, 選択性に優れた触 媒を調製することができる .. 不活性溶媒と しては、 反応 原料と して用いるアルキルベンゼンを用いることが工業 的には好ましい 500 parts of liquid emulsified and dispersed and 50 parts of carbon dioxide A method of mixing and dispersing a liquid dispersed in 500 parts of ren can be performed: Even when a solvent is not used, the dispersion is carried out by a master basin and a multi-layer method, and further, an inert solvent dispersion is carried out. This makes it possible to prepare a uniform catalyst having excellent activity and selectivity. As an inert solvent, it is industrially preferable to use alkylbenzene used as a reaction raw material.
このように均一分散担持した分散触媒は:, 3 -ブタジ ェンを導入して反応する前にァ /レキルべン ゼン 触媒と の混合物を O 〜20 G Cで 1〜 5時間前処理して反応す ると活性を向上させることができる:.  The dispersed catalyst uniformly dispersed and supported as described above is prepared by pretreating a mixture with an α / lekilbenzene catalyst with O to 20 GC for 1 to 5 hours before introducing 3-butadiene and reacting. This can improve activity :.
本発明方法では、 アルキルベンゼンと 1 , 3 —ブタジェ ンとの反応は水分及び酸素を実質的に存在せしめないで 行なう . 従って、 系外から反応系に導入される原料即ち アルキルベンゼン及び i , 3 —ブタジエンは、 前述の如く 脱水することが望ま しい— 更に、 反応系の空間部は酸素 や水分を実質上存在せしめないために、 例えば乾燥窒素, 乾燥アルゴン等の如き乾燥不活性ガスで充たすか、 ある いはアルキルベンゼンの沸点以上の加圧反応条件では、 空間部をアルキルベンゼン等の蒸気で満たすことが望ま しい  In the method of the present invention, the reaction between alkylbenzene and 1,3-butadiene is carried out in the absence of water and oxygen. Therefore, the raw materials introduced into the reaction system from outside the system, namely, alkylbenzene and i, 3-butadiene are used. It is desirable to dehydrate as described above. Further, in order to make the space of the reaction system substantially free of oxygen and moisture, it is necessary to fill the space with a dry inert gas such as dry nitrogen or dry argon. Or under pressurized reaction conditions above the boiling point of alkylbenzene, it is desirable to fill the space with vapor such as alkylbenzene.
本発明において反応は 5り〜 2 ! G の範囲の温度で つ ことが好ましい.. 反応温度が 以下では反応時間が長 くなり 200 て:を越えると副反応生成物が多くなり好ま し くない: 好ま しい反応温度は 80 iSG である . ま ルキルベンゼンに対する 1, 3 一ブタジェンの反応モ,' 比 は通常の条件内で適当に選択できる― 例えばアルキルべ ンゼン : 1 3 —ブタジェン i : 0.001 0. 、 好ま し くは 1 : 0. G1 0.3 、 特に好ましくは 1 : 0.0: G.2 範囲で実施し得る。 In the present invention, the reaction is preferably carried out at a temperature in the range of 5 to 2 G. When the reaction temperature is lower than 200, the reaction time is longer, and when the reaction temperature is higher than 200, more by-products are produced. Not: Preferred reaction temperature is 80 iSG. The reaction ratio of 1,3-butadiene to alkylbenzene can be selected appropriately under normal conditions-for example, alkylbenzene: 13-butadiene i: It can be carried out in the range 0.001 0., preferably 1: 0.G1 0.3, particularly preferably 1: 0.0: G.2.
反応時間は、 0.05 10時間の範囲の時間が採^される 反応時間は、 触媒量 〈 g—触媒 '.' g一アルキルベンゼン 、 触媒組成 ( g—十ト リウム g—無機力.リ ' ム塩 :'.'、 反応温度 (で〉 およびアルキルベンゼンと 1, 一ブ夕ジ ェンの比 ( g—アルキルベンゼン ' g - 1, 3 一ブタジェ ン) とそれぞれ関連があり、 目的生成物の純度や触媒の 使用様式、 例えば循環使用の有無等から適当な時間が採 Wされる . 一般には上記要因の数値が減少すれば反応 間は長くなるが、 好ま しい反応時間は 0.二 〜S時間、 特 に好ま しくは G.5 4時間である  The reaction time is in the range of 0.05 to 10 hours. The reaction time is as follows: catalyst amount <g—catalyst '.' G-alkylbenzene, catalyst composition (g—deuterium g—inorganic power. Lithium salt) : '.', Which is related to the reaction temperature (in) and the ratio of alkylbenzene to 1,1-butane-diene (g-alkylbenzene 'g-1,3-butadiene). An appropriate time is selected depending on the usage pattern of, for example, the presence or absence of circulating use. In general, if the value of the above factors decreases, the reaction time will be longer, but the preferred reaction time is 0.2 to S hours. Preferably G.5 4 hours
反応は、 最初から原料であるアルキルベンゼン , i.3 一ブタジエンおよび触媒を同時に仕込み反応させる 'ベ、'-' チ反応、 最初にアルキルベンゼンと触媒を仕込み、 次に 1, 3 一ブタジエン を反応時間の経過と共に定量導入する セミバッチ反応、 反応器にアルキルベンゼン , : - フ タジェンおよび触媒を連続的に導入する連続反応 ぃナ れの反応方式を採用してもよく またそれらを il当に組み 合わせたものでもよいが、 セミバ、、'チ反応または、 連^ 反応が好ましい In the reaction, starting from the beginning, alkylbenzene, i.3 monobutadiene and a catalyst are simultaneously charged and reacted. 'Be -'-' reaction, alkylbenzene and catalyst are charged first, and then 1,3-butadiene is reacted for a short time. Semi-batch reaction to introduce quantitatively as the process progresses, continuous reaction to continuously introduce alkylbenzene,:-phthalene and catalyst into the reactor ぃ It is possible to adopt the above reaction method, or to combine them in the same way. Good, but Semiba ,, 'Ji reaction or Ren ^ Reaction is preferred
連続反応には二つの形式が採用される s ち本 ¾明 ) 方法においては触媒が金属十ト リゥムを無機力リゥム塩 に分散処理した固体微粉末触媒であるため触媒の固定 に連続的にアルキルべンゼンを流し 、 ァ/レキルべンゼン 中に 1 , 3 —ブタジエンを導入しながら連続反応を実施す る方法と、 触媒を反応系中に分散撹拌下に反応を実施す る方法がある .  In the continuous reaction, two types are adopted. (Cimoto's method) In the method, the catalyst is a solid fine powder catalyst obtained by dispersing a metal stream of 10 to an inorganic porous salt. There are two methods: a method in which benzene is fed and 1,3-butadiene is introduced into α / rekirbensen to carry out a continuous reaction, and a method in which a catalyst is dispersed in a reaction system and stirred.
連続反応形式では、 管形反応器、 塔形式の反応器およ び糟形式の反応器のいずれの形式でもよい 連続反応で 好ましい方式は、 複数個の反応区域を設け、 1 3 —ブタ ジェンを各反応区域に定量導入する所請十字流形連続反 応方式である;  In the continuous reaction mode, any of a tubular reactor, a column reactor, and a tank reactor may be used. A preferable continuous reaction method is to provide a plurality of reaction zones and to use 13-butadiene. It is a contract cross-flow type continuous reaction system in which a fixed amount is introduced into each reaction zone;
反応操作は、 触媒の存在下にアルキルベンゼン と :.: 一ブタジエンとが十分接触混合できればよく 、 特别な 約はないが、 触媒の存在寸る反応系へ 1. 3 - ブタジエン を導入する導入方式は、 1 , 3 —ブタジエンの導入口付近 に 1 , 3 一ブタジエンの重合物と推測される樹脂状ま は ガム状物が付着して、 閉塞現象を起す傾向があるので、 触媒の存在する反応系へ、 1 , 3 —ブタジエン とアルキヌレ ベンゼン との混合相、 例えば液状ブタジエン ヒア/レキ ベンゼン との液相混合物、 気体状 1 , 3 —ブタジエン と ¾ 体状ァ /レキルベンゼン とク〕気一液混合物などク 形態て 、 1 , 3 — ブタジエンと ァルキルべンゼン を導入寸る方式が 好ま しい あるいは反応域空間部に、 1 , 3 —ブタジエン を供給して、 触媒の存在する反応液表面で吸収反応を行 なわせることによつて閉塞現象を防止寸ること もできる またブタジエンの導入の際にキャ リァガスと共に吹き込 むと同時に撹拌効果を増加させることもできる キヤ リ ァガスと しては酸素, 水分を除去した不活性ガス、 例え ば窒素, アルゴン, 水素が適当である The reaction operation may be carried out as long as the alkylbenzene and:.: Butadiene can be sufficiently contacted and mixed in the presence of the catalyst, and there is no particular limitation. 1,3-butadiene is likely to adhere to a resinous or gum-like substance presumed to be a 1,3-butadiene polymer near the inlet of butadiene, causing a clogging phenomenon. 1,3-butadiene mixed with alkynylene benzene, for example, liquid phase mixture of liquid butadiene here / rexbenzene, gaseous 1,3—butadiene and liquid α / lekybenzene and ku) gas-liquid mixture The method of introducing 1, 3-butadiene and alkirbensen 1,3-butadiene can be supplied to the reaction space or the reaction zone space, and the absorption reaction can be performed on the surface of the reaction solution where the catalyst is present to prevent the clogging phenomenon. An inert gas from which oxygen and moisture have been removed, such as nitrogen, argon, and hydrogen, is suitable as the carrier gas, which can be blown together with the carrier gas and increase the stirring effect at the same time.
: に反応は、 適当な攪拌を設けることによって、 好ま しく行なう ことができるが、 1 , 3 —ブタジエン 'を気相て 反応系に導入し、 該ガスで攪拌効果をもたせさこと もで きる .. 撹拌は、 触媒を反応系内に均一に分散し、 更に、 k応原料と反応生成物とを均一に混合するために必要な 強さであることが望ま しい.. 液相分散反応系で反応した 場合、 反応後、 使用した触媒を反応生成物系から分高 iす るには、 例えば遠心沈降, 重力沈降等の公知の手段、 あ るいは、 よ り低い温度においての液一固相からの固相ク' 分離、 例えば沪過, 遠心分離等の公知の手段を用いれば よい:. 分離した触媒は反応系に循環再使用することがで きる  The reaction can be preferably carried out by providing appropriate stirring. However, 1,3-butadiene ′ can be introduced into the reaction system in a gaseous phase, and the gas can have a stirring effect. The agitation should be of a strength necessary to uniformly disperse the catalyst in the reaction system and to uniformly mix the reaction material and the reaction product. In the liquid phase dispersion reaction system In the case of reaction, after the reaction, the used catalyst can be separated from the reaction product system by a known means, for example, centrifugal sedimentation, gravity sedimentation, or a liquid-solid phase at a lower temperature. Any known means such as solid phase separation from water, eg filtration, centrifugation, etc. may be used: The separated catalyst can be recycled and reused in the reaction system
触媒が失活して触媒機能が失われた時、 炭酸力 リウム . 塩化力 リゥムの相は金属十ト リゥムが失活してお . 一 部水酸化物になって作用している: 従って有機枸付着 まま酸化焼成して、 炭酸塩に転換されることによって^ 生し、 再使用することができる . *発明方法によれば、 トルエン と i , 3 —ブタジエンお 反応においては 5—フヱニルーベンテンが合成され、 ま た、 o —キシレンと 1 , 3 —ブタジエンの反応では — When the catalyst deactivates and loses its catalytic function, the phase of lithium carbonate and chloride is partly dehydrated due to the deactivation of the metal trim. Oxidized and baked with glutin adhered, converted to carbonates, it can be produced and reused. * According to the inventive method, 5-toluene-benthene is synthesized in the reaction of toluene with i, 3-butadiene, and in the reaction of o-xylene with 1,3-butadiene,
( o —卜リブレ) 一ペンテンカ p—キシレンと丄, 3 —フ タジェンの反応においては 5 — ( p — ト リル〉 一ベンチ ンが、 in —キシレンと 1 , 3 —ブタジエンの反応において は 5 — ( m— 卜リノレ〉 ぺンテンが、 ェチルベンゼン とブ タジェンの反応においては 5— (フエニル) 一 へキセン がそれぞれ合成される  (o-trible) 1-pentenka p-xylene and 丄, 3—phthalene reaction 5— (p—tolyl) 1 benchin is in—xylene and 1,3-butadiene 5— (m-trinole) Penten is synthesized, and 5- (phenyl) -hexene is synthesized in the reaction between ethylbenzene and butadiene.
本発明の目的生成物であるアルケニルベンゼンは前述 の如く 、 環化反応させ、 次いで脱水素することによ り 、 医薬品や高分子材料の原料と して有用な化合物、 即ち、 モソアルキルナフタレン', ジアルキル十フ夕レンにする ことができる この場合、 フ 二ルーペンテン , エ二 ルーへキセンゃト リルーベンテンを環化する時のベン干 ンやへキセンの純度が問題となる . 即ち、 主目的物 る フエ二ヌレ一ベンテン', フ エ二ルーへキセン , ト リル'一ベ ンテン類のいわゆるァリ一ルアルケンォレフィ ン性二重 結合の位置が 1又は2の位置のものでぁるが、 従来公知 の方法ではォレフ ィ ン性二重結合の位置の異なる異性体、 例えば o—キシレン とブタジェンの反応では 5 — ( o - リスレ ) 一ペン'アン■■一 ( 1 ) . つ 一 ( o— r- リル' ― ゝ ン丁ノ、 一 \ ) 、 τ> — \ — !、 リ / ,、 一ベン丁 ノ ー '. > ' 、 5— ( o — ト リル) 一ペン干ンー 4 ) 等がかな つ、. 量副生し、 混入する: 他のトルエン , ェチルベンゼン .The alkenylbenzene, which is the target product of the present invention, is subjected to a cyclization reaction and then dehydrogenation as described above, whereby a compound useful as a raw material for a pharmaceutical or a polymer material, that is, mosoalkylnaphthalene ′, In this case, the purity of benzene and hexene in cyclizing fluoropentene and ethanol liubenzone is a problem. The position of the so-called arylalkenorefinous double bond of phenylenebenzene, phenylhexene, and triphenylene is 1 or 2, but In the conventionally known method, isomers having different positions of the olefinic double bond, for example, in the reaction of o-xylene with butadiene, 5— (o-lithre) 1 pen 'ampine (1). — R-ril ' ― 丁 丁 、) τ> — \ —! , Ri /, ichibencho no '.>', 5-(o-tori) ichi pen dry 4) etc. By-products and contaminants: other toluene, ethylbenzene.
P—キシレン , m —キシレン とブタジエンの反応で合成 されるフエ二ルペンテン, フエ二ルへキセン . 1、 リルへ ンテンにおいても才レフ ィ ン性二重結合の位置の異なる 異性体が副生し、 混合する これらの異性体のうちォレ フ ィ ン性二重結合が 1又は 2の位置にあるものは環化さ れてアルキルテトラリンに転化し得るが、 他のものはァ ルキルテトラリンに転化しないのみならず、 目的物たる アルキルテ卜ラ リンと反応して高沸点生成物 なり 目的 - 物の収率を低下させる。 . ' Phenylpentene and phenylhexene synthesized by the reaction of P-xylene, m-xylene and butadiene. Also in lylhthene, isomers with different olefinic double bond positions are by-produced. Among these isomers, those in which the olefinic double bond is in the 1 or 2 position can be cyclized to be converted to alkyltetralin, while others are converted to alkyltetralin. Not only does it not react with the target product, alkyltetralin, but also as a high-boiling product, reducing the yield of the target product. '
しかも本発明方法の目的生成物のアルケニルベンゼン から前記ォレフ ィ ン性二重結合が 3 , 4 , 5の位置にあ る異性体を除去することは極めて困難である 例えば o 一キシレンと I , 3 一ブタジェンとの反応混合枸 、': 目的生 成物は 5 — ( o — ト リル〉 一ペン テン 一 ( 2 ) と 5 - - 〈 o — ト リル) 一ベンテン一 ( 1 ) である ) を粗蒸留し たものを理論段数 5 0段の精留塔を用いて還流比 2〔!で精 留しても、 前記異性体はほとんど分離できない これに 対し、 本発明方法によって得られた反応物中には、 かか る分離困難な副反応物が極めて少なく 、 従って環化反応 生成物の収案も極めて高いという特長がある  Moreover, it is extremely difficult to remove the isomer in which the above-mentioned olefinic double bond is located at positions 3, 4, and 5 from alkenylbenzene as the target product of the method of the present invention. For example, o-xylene and I, 3 Reaction mixture with 1-butadiene, ': The target products are 5-(o-tolyl) 1-pentene-one (2) and 5-- <o-tolyl) 1-pentene-one (1)) The crude distillation was performed using a rectification column with 50 theoretical plates and a reflux ratio of 2 [! On the other hand, the isomers can hardly be separated even by rectification in the reaction. On the other hand, in the reactants obtained by the method of the present invention, there are very few such difficult-to-separate by-products. Is very high
ァルケニルベンゼン'はそれ自体公知の方法、 寸なわ 酸, 固体リ ン酸. シリカアルミ十の如き酸触媒と: 〜25 ϋ て:の温度で 1 0秒〜 1 0時間接触させることによ 環 化してアルキルチ卜ラ リ ンとすることができる Alkenylbenzene 'is known per se in the known manner, by contacting acid catalysts such as silica and solid phosphoric acid. By contacting with an acid catalyst such as silica aluminum at a temperature of ~ 25 ° C for 10 seconds to 10 hours. ring Can be converted to alkyltetralin
アルキルチトラ リ ンは、 それ自体公知の方法、 寸な r> ち、 アルミ十一クロミヤ, P t A i 0 -- 等の脱 ^素 触媒と 350 〜45G Cの温度で 5秒〜 10分間接触させるこ とによ り脱水素されアルキル十フタレン と寸ることがで きる  Alkyl titraline is contacted for 5 seconds to 10 minutes at a temperature of 350 to 45 GC with a deoxidizing catalyst such as aluminum chromia, PtAi0--, etc. By dehydration, it can be reduced to alkyl 10-phthalene
アルキル十フタレンはそれ自体公知の方法、 すなわち、 シリカ—アルミ十, Z S M— 5, Y型ゼオラィ ト, H型 モルディ十ィ ト等の固体酸触媒と 2G i 〜4 ノ Cの温度で 5秒〜 10時間接触させることによ り、 異性化することが できる, 例えば 1, 5 —ジメチルナフタレンを 2, 6 —ジメ チル十フタレンとすることができる  Alkyl phthalene can be prepared by a method known per se, that is, by using a solid acid catalyst such as silica-aluminum, ZSM-5, Y-type zeolite, or H-type morphite at a temperature of 2Gi to 4 ° C for 5 seconds to 5 seconds. Can be isomerized by contacting for 10 hours, for example, 1,5-dimethylnaphthalene can be converted to 2,6-dimethyl10-phthalene
《発明実施するための最良の形態》  << Best mode for carrying out the invention >>
本発明において、 ァ /レキルベンゼンと 1, 3 —ブ夕ジェ ン とを反応させる際に使闬ォる触媒は、 金属十ト リ ウム を炭酸力リゥムとアルキルベンゼンを溶媒と して分散処 ¾した触媒を使用'することが好ましい  In the present invention, the catalyst used for reacting α / lekybenzene with 1,3-butane is a catalyst obtained by dispersing a metal of sodium using carbon dioxide and alkylbenzene as a solvent. It is preferable to use
本発明によればアルキルベンゼンから高分子材料の原 料と して有用な化合物であるジメチル十フタレン を以下 のように製造することが可能となる  ADVANTAGE OF THE INVENTION According to the present invention, it is possible to produce dimethyl-10-phthalene, a compound useful as a raw material for a polymer material, from alkylbenzene as follows.
すなわち、 o—キシレン と 1 , 3 —ブタジエン とをア ' 力 リ金属を無機力 リウム塩と分散処理した触媒によ り反 応せしめ、 5 - o — ト リ レ〉 一ベンテン を製造し 、 : いて"、 言亥 5 — ( o — ト リノレ) 一ベンテンをそ l_自体^知 の方法で環化せしめ、 1, 5 —ジメチルテ卜ラ リ ン を製造 し、 その後、 該 1, 5 —ジメチルテ卜ラ リ ンをそれ自体公 知の方法で脱水素し、 1, 5 —ジメチル十フタレン を製造 し、 その後、 該 1, 5 —ジメチル十フタレンを異性化して 2, 6 —ジメチル十フタレンを製造寸ることができる . That is, o-xylene and 1,3-butadiene are reacted with a catalyst obtained by dispersing an alkali metal with an inorganic lithium salt to produce 5-o-trile> bentenene, and: 5 ”,“ Koiyai 5 — (o — Trinole) To produce 1,5-dimethyltetralin, and then dehydrogenate the 1,5-dimethyltetralin in a manner known per se to give 1,5-dimethyltetralin. After producing phthalene, the 1,5-dimethyl-10-phthalene can be isomerized to produce 2,6-dimethyl-10-phthalene.
さらに該 2, 6 —ジメチル十フタレンを酸化することに よ り、 十フタレン— 2, 6 —ジカルボン酸を製造すること ができる,  Further, by oxidizing the 2,6-dimethyl-10-phthalene, ten-phthalene-2,6-dicarboxylic acid can be produced.
《発明の効果》 . '- '  "The invention's effect" . '- '
本発明方法によって得られた反応生成物中には.、 分離 困難な副反応物が極めて少なく 、 従って環化反応生成物 の収率も極めて高い.,  The reaction product obtained by the method of the present invention has very few by-products which are difficult to separate, and therefore the yield of the cyclization reaction product is extremely high.
本発明方法によれば、 酸素と水分を実質的に存在せし めないで、 触媒と して金属十ト リウムを、 高温焼成して 脱水した無機力 リウム塩の微粉末と特定割合で分散処理 した触媒の存在下で、 アルキルベンゼンと 1, 3 —ブタジ ェンとを反応せしめることによってアルケニルベンゼン の製造が可能となった 本発明方法によれば高価で発火 の危険性の大きい金属十ト リゥムーカ リゥム く N a— K : 十 、、ノ ク 合金を直接使闬寸ることなく 、 しかもアルケニ ル化反応に高活性で高選択性が高く 、 徒って目的物か- 分離することが困難でかつ煩雑な、 副生成物の生成を抑 制し、 高純度の目的物を高収率で製造ォることが可能に なった . 本発明方法で使用する触媒は触媒調整の際、 十 -、 ク よ うに分難に手間がかかることなく容易に分離可能でし かもコストが安いという利点を有している According to the method of the present invention, a metal decadmium is calcined at a high temperature and dehydrated at a specific ratio with a fine powder of an inorganic potassium salt which is dehydrated by heating at a high temperature without substantially allowing oxygen and moisture to be present. According to the method of the present invention, it is possible to produce alkenylbenzene by reacting alkylbenzene with 1,3-butadiene in the presence of a catalyst which has been prepared, and it is expensive and has a high risk of ignition. Na—K: Ten times, it is difficult to separate the target product from the target product without directly using a nockey alloy, with high activity and high selectivity for the alkenylation reaction. The production of complicated by-products was suppressed, and it was possible to produce high-purity target products in high yields. The catalyst used in the method of the present invention has an advantage that the catalyst can be easily separated without troublesome and troublesome work when preparing the catalyst, but the cost is low.
《実施例》  "Example"
以下、 実施例を挙げて本発明を詳述する .  Hereinafter, the present invention will be described in detail with reference to examples.
なお、 本発明はかかる実施例に限定されるものではな いことはいうまでもない. 以下の実施例および比較例に おいて、 目的物の収率, 純度は以下の定義に^う また、 単に 「部」 とあるのは、 重量部を意味する . - (収率および純度〉  Needless to say, the present invention is not limited to these examples. In the following examples and comparative examples, the yield and purity of the target compound are defined as follows. Simply "parts" means parts by weight.- (Yield and purity)
全反応混合物を常温で沪過後、 約 5 G 0 gをウイ ドマー 精留塔で 22mm H g 〈 ab s :!の減圧下で蒸留し、 精留塔頂温度 が 75 C以下の留分、 ?5〜170 の留分、 および残留物に 分離した: そして 〜Π て:の留分を、 キンレンを i . 3 ーブタジェンでアルケニル化したアルケニル化物と して 採取した: このアルケニル化物留分のサンプル中で ήめ る割合から全反応混合物中のアルケニ/レ化物の収量を計 算した:  After filtering the entire reaction mixture at room temperature, about 5 G 0 g was distilled under a reduced pressure of 22 mm Hg <abs :! in a Widmer rectification column, and a fraction with a rectification column top temperature of 75 C or less,? A fraction of 5 to 170 and a residue were separated: and a fraction of above: was collected as alkenylate of quinylene alkenylated with i.3-butadiene: in a sample of this alkenylate fraction The yield of alkenyl / leuide in the total reaction mixture was calculated from the proportions determined in:
また、 前記アルケニル化物の留分をガスクロマ 、ダ フ法で分析し、 5— 〈 ト リル) 一ベンテン '; 2 :' およ匸': 5 — ( ト リル) ベンテン 〈 1 ) の含有量 、重 .' r ·· め、 目的物の収量を計算した なお、 該ァ/レヶ二 化 留分中には、 未反応のキシレンは i : 重量 以下 か 有されていなかった― トルエンとブタジェンの反応物についても同様に 5 - フエ二 レベンテン 〈 1 ) 及ひ 5— フ ニ二 /レ一 ン ン ( 2 〉 の含有量を求めて、 目的物の収量を計算し - アルキルべンゼンと してキシレン類 ¾びェチ 'へ'、ン セ ンを用いた時の収率は下記の式で計算した 目的物収量(g Further, the fraction of the alkenyl compound was analyzed by gas chromatography and the duff method, and the content of 5- (tolyl) pentene ';2:' and 匸 ': 5— (tolyl) benten <1) was determined. Unreacted xylene was less than or not present in the α / refractionated fraction, i: weight or less. Similarly, for the reaction product of toluene and butadiene, the contents of 5-phenylene retentene <1> and 5-phenylene / lenene (2) are determined, and the yield of the desired product is calculated. The yield when using xylenes' ゼ ン へ へ へ ン ゼ ン ゼ ン 、 は 、 、 ン ン ン 、 、 、 ン ン ン ン ン ン ン
収率 =  Yield =
ブタジェン使用量 ;'  Butadiene usage; '
54 ( 1, 3 —ブタジエンの分子量 .'' 54 (1, 3 — molecular weight of butadiene. ''
160 (目的物の分子量) ' トルエンとブタジエンの反応物の計算は次式で計算 た: 目的物収量 )  160 (Molecular weight of target product) '' The calculation of the reaction product of toluene and butadiene was calculated by the following formula: Yield of target product)
収率二  Yield two
1, 3 一ブタジェン使用量(g1' 1, 3 Amount of butadiene (g 1 '
54 ( ί, 3 一ブタジエンの分子量:' 54 (ί, 3 Molecular weight of butadiene: '
·.146 (目的物の分子量〉  ..146 (Molecular weight of target substance)
〈実施例 1  <Example 1
( A ) 金属十ト リゥムの微粒子分散液の調製  (A) Preparation of fine metal particle dispersion
予め金属十ト リゥムの存在下で加熱還流後、 蒸留して 更にモレキュラシ一ブで脱水した実質的に水分を含まな い o—キシレン 1000部に、 乾燥高純度窒素 (酸素含有 : pm 以下、 水分含有率 G. ί pm 以下) を吹 、 溶存 Ifi 素を追い出し除去したのち、 金属十ト リウム (純度 99.95 °o ) 9.0 部を入れ、 上記窒素雰囲気下 、:- て:で乳化分散機を用いて 30分間、 乳化分散し、 金属ナト リゥムの乳化分散液を調製した After heating and refluxing in the presence of a metal stream in advance, distillation and dehydration with a molecular sieve, 1000 parts of substantially water-free o-xylene, dry high-purity nitrogen (containing oxygen: pm or less, Content G. 以下 pm or less), removes and removes dissolved Ifi, and then removes the metal 99.95 ° o) 9.0 parts were added, and emulsified and dispersed using an emulsifying and dispersing machine under the above nitrogen atmosphere for 30 minutes to prepare an emulsified dispersion of metallic sodium.
一方、 高純度炭酸カリウム (純度 99, 以上 :' 30U 部を 200 〜400 Cで 2時間焼成脱水し、 冷却後、 ^"均粒 度 45 mに微粒子化して、 上記高純度窒素雰囲気下、 上 記脱水 o—キシレン 1000部中に投入し、 乳化分散機を S いて 10分間分散した炭酸力 リゥム分散液と した  On the other hand, high-purity potassium carbonate (purity 99 or more: 30 U part was calcined and dehydrated at 200 to 400 C for 2 hours, cooled, and then turned into fine particles having a particle size of 45 m. The dehydrated o-xylene was charged into 1000 parts, and the mixture was dispersed in an emulsifying and dispersing machine for 10 minutes to form a carbon dioxide-containing dispersion.
( B ) 金属十ト リウムー炭酸力リゥム混合分.散液の調製 上記金属ナト リウムの微粒子分散液を高速攪拌下、 上 記炭酸カ リウムの分散液を投入し、 14G まで加熱し 140 で 1時間加熱処理して触媒分散液と した  (B) Mixture of metal sodium carbonate and carbon dioxide spheres.Preparation of dispersion The above sodium carbonate fine particle dispersion is stirred at high speed, the above potassium carbonate dispersion is added, heated to 14G, and heated at 140 for 1 hour. Heat treatment to form catalyst dispersion
( C ) 5 - ( o—卜 リ レ) ベンテンの合成反応  (C) 5-(o-trile) Benthene synthesis reaction
上記 〈 B ) で調製した触媒調製液に上記の如く脱水精 製した o—キシレン 2000部を窒素雰囲気中、 撹拌下に投 入し ( o—キシレンの合計 4000部〉 14 G 〜 0 :で ] 間、 撹拌処理した後、 1, 3 - ブタジエン 20G 部を 2.; 時 間かけて導入して反応せしめた:  2,000 parts of o-xylene dehydrated and purified as described above is added to the catalyst preparation solution prepared in <B) above with stirring in a nitrogen atmosphere (total 4000 parts of o-xylene> 14 G to 0: After stirring for a while, 20 g of 1,3-butadiene 2. were introduced over a period of time and allowed to react:
反応終了後、 速やかに 11ΰ でに冷却後、 iiG て:に保つ たまま撹拌を停止して 30分間餑置し、 反応生成物液を触 媒と目的物液相とに分高 した 目的物 5— i o - - リル ) ベンテン を 22删 Hg abs減圧条件で蒸留して、 5 - o - After completion of the reaction, immediately cool to 11 ° C, stop stirring and keep for 30 minutes while maintaining at iiG, to separate the reaction product solution into the catalyst and the target product liquid phase. — Io--Lil) Bentene is distilled under reduced pressure of 22 删 Hg abs to obtain 5-o-
K ') Vv ) ベンテンク)収率および純度 求めた 結杲をK ') Vv) Bentenc) Yield and Purity
1 に示す: く実施例 2〜 S、 比較例 1〜 5 〉 Shown in 1: Examples 2 to S, Comparative Examples 1 to 5>
に実施例 2〜8および比較例—丄 〜 5 と し て触媒の組 成, 割合, 量, 反応温度, 反応時間を種々変更する他 上記実施例 1 と同じ条件で反応を行なって得た結果を次 の表 1及び表 2に示す  Examples 2 to 8 and Comparative Examples 1 to 5 were obtained by carrying out the reaction under the same conditions as in Example 1 except that the composition, ratio, amount, reaction temperature, and reaction time of the catalyst were variously changed. Are shown in Tables 1 and 2 below.
表 1からわか!'よ うに本発明方法によれば高収 で高 純度の 5 — ( o —ト リル〉 ペンテンが得られることがわ カゝる . . See Table 1! Thus, according to the method of the present invention, it is possible to obtain high-yield and high-purity 5— (o-tolyl) pentene.
Figure imgf000022_0001
Figure imgf000022_0001
Every time
'·,») . ) 8.0 .3 .1
Figure imgf000023_0001
'·, »).) 8.0 .3 .1
Figure imgf000023_0001
C実施例 9 1 6 ¾び比較例 〕 C Example 9 16 and Comparative Example)
実施例 1 において O—キシレン かわ に p - キシ ニンを用いて、 1, 3 —ブタジエン によるマ/レ ケニ レ化反 を行つた  In Example 1, O-xylene was replaced with p-xinine, and the reaction of 1,3-butadiene was performed.
触媒の調製及び反応は実施例 '] と同様な条^, ¾作 法で実施した:  The preparation and reaction of the catalyst were carried out in the same manner as in Example '].
その結果を表 3及び表 4に示寸  The results are shown in Tables 3 and 4.
っ ノ又し、 ^ フ Ά)フ尸 ο :リ にノ 4ゝ ψί un ' 1 ,一 Tsu Roh was also, ^ off Ά) off Shikabane ο: Bruno 4ゝψί u n '1 to Li, one
高収率で高純度の 5— ( p—ト リル〉 ベン High yield and high purity 5- (p-tolyl) ben
ることか'わ力 sる . . Ru Rukoto or 'Wa force s..
1 ,." 1,. "
Figure imgf000025_0001
Figure imgf000025_0001
i i
>  >
c、  c,
m で i  m then i
一 ;  One;
;
;
• ■ ; マ • ■;
¾ ■ 1 - !  ¾ ■ 1-!
z z
I = ! ; X (:実施例 1 7 > I =! ; X (: Example 17>
( A ) 触媒の調製  (A) Preparation of catalyst
本実施例においては、 金属十 リゥムを溶融して固休 微粒子炭酸力 リゥムに担持し、 さらにェチルベンゼン 中 で分散処理した触媒を用いた,, すなわち、 高純度炭酸力 リウム (純度 99. '% ) 400 部 (重量) を 400 〜5C'G て:で 5時間焼成脱水し、 冷却後、 平均粒度 45>u rnに微粒子化 して、 金属十ト リウム 15部を加え高純度窒素雰 気下、 110 。Cで 60分間分散処理した後、 更に工手ルベンゼン 存在下 13G で 60分間処理して触媒を調製した ·  In the present embodiment, a catalyst was used in which a 10-millimeter metal was melted, supported on solid-free fine-particle carbonic acid rim, and further dispersed in ethylbenzene. That is, high-purity lithium carbonate (purity: 99. '%) 400 parts (weight) was baked and dehydrated for 5 hours at 400 to 5C'G, and after cooling, finely divided to an average particle size of 45> urn, 15 parts of metallic deuterium was added, and the mixture was added under a high-purity nitrogen atmosphere. 110. After dispersion treatment with C for 60 minutes, the catalyst was further treated with 13G for 60 minutes in the presence of
( Β ) δ - ( フエニル) 一へキセンの合成反応  (Β) δ-(Phenyl) monohexene synthesis
上記 ( Α ) で調製した触媒に実施例 1 の如く脱水精製 したエチレンベンゼン 4000部を加え 135 〜145 て:で】.3 一ブタジエン 205 部を 時間かけて導入し反応せしめ た:.  To the catalyst prepared in (Α) above, 4,000 parts of ethylenebenzene dehydrated and purified as in Example 1 was added, and 135 to 145 parts were added. 205 parts of 1-butadiene was introduced and reacted over a period of time.
反応終了後、 速やかに 8(TCに冷却後、 その温度に保 、 たまま撹拌を停止して 30分間静置し、 反応生成物液を触 媒と目的物液相と して分離した、. 目的物 5 —フ 二ルー へキセンを 25niDiHg abs減圧条件で蒸留して、 収率及び純 度を求めた結果、 純度 98. 5¾で収率 88. 5%であった - く:比較例 1 ϋ、  After completion of the reaction, the reaction mixture was immediately cooled to 8 (cooled to TC, kept at that temperature, stopped stirring, and allowed to stand for 30 minutes to separate the reaction product liquid into a catalyst and a liquid phase of the target substance. The desired product 5—Fluene hexene was distilled under reduced pressure of 25 niDiHg abs to determine the yield and purity. As a result, the purity was 98.5 98 and the yield was 88.5%. ,
また、 比較のため、 金属十ト リウムを溶融して、 固体 微粒子炭酸カ リウムに担持させただけの触媒を Sいて同 様の反応を行った . すなわち、 高純度炭酸 リ ウム 〈純 度 99.9 c, ) 400 部 (重量〉 を 40G 50G て:で 5時間焼成 脱水し、 冷却後、 粒径約 30G 50() バ mに微粒子化して、 金属十ト リウム 15部を加え高純度窒素雰囲気下、 11G て: で 60分間分散処理した触媒を使用し、 実施例 1 7と同様 に反応を行ったところ、 目的物の収率は? 0 °0であつた く実施例 1 8〉 For comparison, a similar reaction was carried out using a catalyst in which only metallic tantalum was melted and supported on solid fine-grain potassium carbonate, that is, high-purity lithium carbonate <pure Degree 99.9 c,) 400 parts (weight) baked for 5 hours at 40G 50G: After dehydration, after cooling, atomized to a particle size of about 30G 50 () bam, add 15 parts of metallic sodium to 15 parts and add high purity nitrogen When the reaction was carried out in the same manner as in Example 17 using a catalyst which had been subjected to a dispersion treatment at 11 G for 60 minutes in an atmosphere, the yield of the desired product was 0 ° 0.
実施例 1 7の操作方法と同様な条件下で調製した金属 ナト リウム—炭酸カリウム分散処理触媒を ¾いて、 反応 温度 130 14ョ °Cでトルエンと;, 3 —ブタジエンの反応 を行った,  The reaction between toluene and 3-butadiene was carried out at a reaction temperature of 130 to 14 ° C. using a metal sodium-potassium carbonate dispersion treatment catalyst prepared under the same conditions as in the operation method of Example 17.
その結果 δ5?0収率で純度 9δ. 5%の 5—フヱニルーベン テンが得られた。 Consequently .DELTA.5? 0 yield purity 9δ. 5% of 5-Fuweniruben Ten were obtained.
〈実施例 1 〉  <Example 1>
本例は 5 — 〈 ο—ト リル) 一ベンテンの環化反応及び 脱水素反応、 異性化反応によ り 2, 6 —ジメチル'十フタレ ンの合成を行う例である:  This example describes the synthesis of 2,6-dimethyl'-dephthalene by cyclization, dehydrogenation, and isomerization of 5-<o-tolyl) monobenthene:
( A ) 5 - ( o _ト リル) 一ペンテンの環化反応による 1 , 5—ジメチルテトラリンの合成  (A) Synthesis of 1,5-dimethyltetralin by cyclization of 5- (o_tolyl) -pentene
実施例 1で得られた純度 99.0%の 5— ( o - ト リル:、 一ペンテンのトルエン 10%溶液を用いて環化反応を行つ た: 触媒と して固体リン酸を用い、 反応温度 15G  The cyclization reaction was carried out using a 10% solution of 5- (o-tolyl: 1-pentene in toluene obtained in Example 1 having a purity of 99.0%: using solid phosphoric acid as a catalyst, and the reaction temperature. 15G
て:で窒素雰囲気中で実施した結果、 原料の転化率 10ij <: 環化生成物である 1 5—ジメチルテトラ リ ンの生成選 択率は ¾以上であった 2フ As a result, the conversion rate of the raw material was 10ij <: The selectivity for the formation of the cyclized product, 15-dimethyltetralin, was ¾ or more. 2f
( B i, 5 一ジメチルテトラリ ンの脱水素反応による:, ό ージメチル十フタレ ンの合成 (Dehydrogenation of B i, 5 -dimethyltetralin: Synthesis of ό-dimethyldecaphthalene
上記 ( A ) の方法で得られた;, ϊ ージメチ 、ラ り ンの ルエン 10?。溶液を用いて脱水素反応 行った 水素触媒と して 0.3 ?o P ί , A i O 3 触媒を いて水 素雰囲気中で 40G て;で脱水素した結果、 U - ジメチ/ テ ラ リ ンの転化率 99 で 1.5 —ジメチル十フタレ ン Obtained by the method of the above (A); The dehydrogenation reaction was performed using a solution of 0.3-o P,, AiO 3 as the hydrogen catalyst, and 40G in a hydrogen atmosphere. 1.5-dimethyl 10-phthalene at conversion 99
、F.P, +Π O -r;> ι -) jh 1 ' l^i. Β_ . , --. , F.P, + Π O -r;> ι-) jh 1 'l ^ i. Β_.,-.
八竿 4 / ;- 0 、 丄' : ー ン - フ.ノ ' ノ ノ レ ノ ΛΤ 1寸 ,:) Hachisao 4 /; - 0,丄':. Over emissions - non-placement' Bruno Bruno Reno ΛΤ 1 cun, :)
( C ) 1, 5 —ジメチル十フタレンの異性化に.よる 2, π·一 ジメチルナフタレンの合成  (C) Synthesis of 2, π-Dimethylnaphthalene by Isomerization of 1,5-Dimethyl-10-phthalene
上記 ( B ) の方法で脱水素して得られた 1, 5 一ジメチ ルナフタレンを異性化して 2, 6 —ジメチル十フタレン を 合成する実験を行った。  An experiment was performed to synthesize 2,6-dimethyl-10-phthalene by isomerizing 1,5-dimethylnaphthalene obtained by dehydrogenation according to the method (B) described above.
1, -ジメチル十フタレンの 10 oト /レエン溶液を闬ぃ て、 350 〜 し' て:の温度で H型モルテ 'チイ ト 3G:' 舍 アルミ十分散触媒の存.在下、 窒素雰囲気下で異性化反応 を実施した結果、 - ジメチル十フタレン i0 、 H-type morte 'Tith 3G : ' at a temperature of 350 ° C / 10 ° / leene solution of 1, -dimethyldecaphthalene at a temperature of 350 ° C. As a result of carrying out the isomerization reaction,-dimethyl dephthalene i0,
ジメチル十フタレン' 43?。、 1, 0 —ジメチル十 タ ン 44%、 その他の十フタレン化合物 3 οの 且成の ¾合物か' 得られた . これを結晶化分离きした所、 純度' c. -、 - ジメチル十フタレンの 50οοが ^収された Dimethyl dephthalene '43 ?. , 1,0-dimethyl 10 tan 44% and other 10-phthalene compound 3ο were obtained as a compound. This was crystallized and purified to give a purity of 'c.-, -Dimethyl 10 50 ο ο of phthalene collected

Claims

言青求 の 範 囲 The scope of the requiem
1 . アルキルベンゼンと 1 , 3 —ブタジエンとを触媒ク) 存在下で反応せしめ、 アルケニルベンゼンを製造するに あたり、 触媒として、 アル力リ金属を無機力リウム塩と 分散処理した触媒を使用し、 かつ、 酸素及び水が実質的 に存在しない環境下でアルキルベンゼンと 1 , 3 一ブタジ ェンとを反応せしめることを特徴とするアルケニルベン ゼンの製造方法 1. When alkylbenzene and 1,3-butadiene are reacted in the presence of a catalyst to produce alkenylbenzene, a catalyst obtained by dispersing an alkali metal salt with an inorganic lithium salt is used as a catalyst, and A method for producing alkenylbenzene, comprising reacting alkylbenzene with 1,3-butadiene in an environment substantially free of oxygen and water.
2 . アルキルベンゼンがトルエン ·, ェチルベンゼン , ' o—キシレン, p—キシレン, m—キシレンのいずれカ 1種である請求の範囲第 1項記載の製造方法。  2. The method according to claim 1, wherein the alkylbenzene is at least one of toluene, ethylbenzene, 'o-xylene, p-xylene, and m-xylene.
3 . アル力リ金属がナトリゥムである請求の範囲第 1 項 1記載の製造方法。  3. The method according to claim 1, wherein the aluminum metal is sodium.
4 . 無機力リウム塩が炭酸力リゥム及び 又は塩化力 リゥムである請求の範囲第 1項記載の製造方法- 4. The production method according to claim 1, wherein the inorganic lithium salt is a carbonated lime and / or a chlorided lime.
5 . 分散処理を不活性溶媒分散担持法によ り行う請求 の範囲第 1項記載の製造方法。 5. The production method according to claim 1, wherein the dispersion treatment is performed by an inert solvent dispersion supporting method.
b . 不活性溶媒としてアルキルベンゼンを用いる請求 の範囲第 5項記載の製造方法:  b. The method according to claim 5, wherein alkylbenzene is used as the inert solvent.
7 . 請求の範囲第 1項記載の方法により得られたアル ケニルベンゼンを環化することからなるアルキルテトラ リンの製造方法  7. A method for producing alkyltetralin, comprising cyclizing alkenylbenzene obtained by the method according to claim 1.
8 . 請求の範囲第 7項記載の方法により得られたアル キルテトラ リンを脱水素寸ることからなるアルキル十 タレンの製造方法 8. Al obtained by the method described in claim 7 Process for producing alkyl tertalene by dehydrogenating quiltetralin
PCT/JP1991/000542 1990-04-25 1991-04-23 Process for producing alkenylbenzene and derivative thereof WO1991016284A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10765990 1990-04-25
JP2/107660 1990-04-25
JP2/107659 1990-04-25
JP10766090 1990-04-25

Publications (1)

Publication Number Publication Date
WO1991016284A1 true WO1991016284A1 (en) 1991-10-31

Family

ID=26447686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000542 WO1991016284A1 (en) 1990-04-25 1991-04-23 Process for producing alkenylbenzene and derivative thereof

Country Status (1)

Country Link
WO (1) WO1991016284A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575724A1 (en) * 1992-06-22 1993-12-29 Mitsubishi Gas Chemical Company, Inc. Process for producing monoalkenyl aromatic hydrocarbon compound
US5329058A (en) * 1990-04-25 1994-07-12 Teijin Limied Process for producing alkenylbenzene
JPH0967277A (en) * 1995-08-30 1997-03-11 Nippon Oil Co Ltd Production of monoalkenylbenzene
EP1280748A1 (en) * 2000-05-09 2003-02-05 Basf Aktiengesellschaft Method for the sidechain alkylation of alkylbenzenes
US7148177B2 (en) 2000-12-14 2006-12-12 Basf Aktiengesellschaft Method for producing alkali metal catalyst and use thereof for the side-chain alklation of alkyl aromatics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244758A (en) * 1963-03-20 1966-04-05 Sun Oil Co Reaction of aromatic hydrocarbons with diolefins
JPS61263643A (en) * 1985-05-17 1986-11-21 Mitsui Petrochem Ind Ltd Preparation of catalyst deposited with alkali metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244758A (en) * 1963-03-20 1966-04-05 Sun Oil Co Reaction of aromatic hydrocarbons with diolefins
JPS61263643A (en) * 1985-05-17 1986-11-21 Mitsui Petrochem Ind Ltd Preparation of catalyst deposited with alkali metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329058A (en) * 1990-04-25 1994-07-12 Teijin Limied Process for producing alkenylbenzene
EP0575724A1 (en) * 1992-06-22 1993-12-29 Mitsubishi Gas Chemical Company, Inc. Process for producing monoalkenyl aromatic hydrocarbon compound
US5334794A (en) * 1992-06-22 1994-08-02 Mitsubishi Gas Chemical Company, Inc. Process for producing monoalkenyl aromatic hydrocarbon compound
JPH0967277A (en) * 1995-08-30 1997-03-11 Nippon Oil Co Ltd Production of monoalkenylbenzene
EP1280748A1 (en) * 2000-05-09 2003-02-05 Basf Aktiengesellschaft Method for the sidechain alkylation of alkylbenzenes
US7148177B2 (en) 2000-12-14 2006-12-12 Basf Aktiengesellschaft Method for producing alkali metal catalyst and use thereof for the side-chain alklation of alkyl aromatics

Similar Documents

Publication Publication Date Title
EP0693046B1 (en) Multi-stage olefin isomerization
CN111825544A (en) Method for preparing 2-alkyl anthracene by alkylation of anthracene and preparing 2-alkyl anthraquinone by catalytic oxidation process
WO1991016284A1 (en) Process for producing alkenylbenzene and derivative thereof
US5329058A (en) Process for producing alkenylbenzene
JP2887011B2 (en) Catalytic alkenylbenzene cyclization
JPH04211618A (en) Method for conversion of toluene and butadiene into styrene and 1-pentene
JPH05112476A (en) Production of alkenylbenzene and its derivative
EP0547336B1 (en) Process for producing alkenylbenzene
JP2980759B2 (en) Process for producing alkenylbenzene and derivatives thereof
JP2911669B2 (en) Process for producing alkenylbenzene and derivatives thereof
JP2980758B2 (en) Process for producing alkenylbenzene and derivatives thereof
JP2980760B2 (en) Process for producing alkenylbenzene and derivatives thereof
JPH05140006A (en) Production of monoalkenyl benzene and its derivative
JPH04225927A (en) Production of alkenylbenzene and its derivative
JPH05170674A (en) Production of alkenylbenzene and its derivative
JP3162471B2 (en) Process for producing monoalkenylbenzene and its derivatives
EP0664277B1 (en) Process for producing a monoalkenyl aromatic hydrocarbon compound
JPH05194284A (en) Production of alkenylbenzene and its derivative
JPH0597722A (en) Production of alkenylbenzene and its derivative
JPH05112478A (en) Production of alkenylbenzene and its derivative
JPH05163172A (en) Production of alkenylbenzene and its derivative
JPH05148167A (en) Production of alkenylbenzene and its derivative
JP3327712B2 (en) Method for producing alkenyl compound
JPH05310614A (en) Production of alkenylbenzene and its derivative
JPH05213791A (en) Alkenylbenzene and production of its derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA