WO1991013966A1 - Binary azeotropes of hydrogen-containing halocarbons with methyl formate - Google Patents

Binary azeotropes of hydrogen-containing halocarbons with methyl formate Download PDF

Info

Publication number
WO1991013966A1
WO1991013966A1 PCT/US1991/000575 US9100575W WO9113966A1 WO 1991013966 A1 WO1991013966 A1 WO 1991013966A1 US 9100575 W US9100575 W US 9100575W WO 9113966 A1 WO9113966 A1 WO 9113966A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl formate
weight percent
dichloro
trifluoroethane
hcfc
Prior art date
Application number
PCT/US1991/000575
Other languages
French (fr)
Inventor
Philip Lee Bartlett
Joseph Anthony Creazzo
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Publication of WO1991013966A1 publication Critical patent/WO1991013966A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02809Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing chlorine and fluorine
    • C23G5/02825Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing chlorine and fluorine containing hydrogen
    • C23G5/02829Ethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5077Mixtures of only oxygen-containing solvents
    • C11D7/5086Mixtures of only oxygen-containing solvents the oxygen-containing solvents being different from alcohols, e.g. mixtures of water and ethers

Definitions

  • This invention relates to azeotropes of 1,1-di- chloro-2,2,2-trifluoroethane (HCFC-123), 1,2-dichloro- 1,1,2-trifluoroethane (HCFC-123a) and 1 ,1-dichloro- 1-fluoroethane (HCFC-141b) with methyl formate and their use as cleaning solvents and blowing agents for polymer foams.
  • HCFC-123 1,1-di- chloro-2,2,2-trifluoroethane
  • HCFC-123a 1,2-dichloro- 1,1,2-trifluoroethane
  • HCFC-141b 1 ,1-dichloro- 1-fluoroethane
  • Closed-cell polyurethane foams are widely used for insulation purposes in building construction and in the manufacture of energy efficient electrical appliances.
  • polyurethane (poly- isocyanurate) board stock is used in roofing and siding for its insulation and load-carrying capabilities.
  • Poured and sprayed polyurethane foams are also used in construction. Sprayed polyurethane foams are widely used for insulating large structures such as storage tanks, etc.
  • Pour-in-place polyurethane foams are used, for example, in appliances such as refrigerators and freezers plus they are used in making refrigerated trucks and railcars.
  • polyurethane foams reguire expansion agents (blowing agents) for their manufacture.
  • Insulating foams depend on the use of halocarbon blowing agents, not only to foam the poly ⁇ mer, but primarily for their low vapor thermal conduc ⁇ tivity, a very important characteristic for insulation value.
  • polyurethane foams are made with CFC-11 (CFC1 ) as the primary blowing agent.
  • a second important type of insulating foam is phenolic foam. These foams, which have very attractive flammability characteristics, are generally made with CFC-11 and l,l,2-trichloro-l,2,2-trifluoroethane (CFC-113) blowing agents.
  • solder fluxes generally consist of rosin, either used alone or with activating additives, such as amine hydrochlorides and oxalic acid derivatives.
  • Defluxing solvents should have the following characteristics: Have a low boiling point, have low toxicity and have high solvency power, so that flux and flux-residues can be removed without damaging the substrate being cleaned.
  • vapor defluxing and degreasing systems act as a still. Unless the solvent composition ex ⁇ hibits a constant boiling point, i.e., is a single material, or is azeotropic, fractionation will occur and undesirable solvent distributions will result, which could detrimentally affect the safety and effi ⁇ cacy of the cleaning operation.
  • U.S. Patent No. 3,903,009 discloses the ternary azeotrope of 1,1,2- trichloro-l,2,2-trifluoroethane with ethanol and nitro ethane
  • U.S. Patent No. 2,999,815 discloses the binary azeotrope of 1,1,2-trichloro-l,2,2-trifluoro- ethane and acetone
  • 2,999,916 discloses the binary azeotrope of 1,1 2-trichloro-l 2 2-tri- fluoroethane and methyl alcohol;
  • U.S. Patent No. 4,767,561 discloses the ternary azeotrope of l,l,2-trichloro-l,2,2-trifluoroethane, methanol and 1,2-dichloroethylene.
  • Halocarbons such as HCFC-123, HCFC-123a and HCFC-141b are environmentally acceptable in that they theoretically have minimal effect on ozone depletion. (Although these values have not been calculated for HCFC-123a, it is estimated that they would be similar to those for HCFC-123.)
  • azeotropes of l,l-dichloro-2,2,2-trifluoroethane (HCFC-123), 1,2-di- chloro-l,l,2-trifluoroethane (HCFC-123a) and 1,1-di- chloro-1-fluoroethane (HCFC-1 1b) with methyl formate have been discovered. Also included in the invention are processes for using these azeotropes as cleaning agents and foam blowing agents, e.g., to expand a polymer.
  • All of the azeotropes with methyl formate are maximum boiling azeotropes except for that of HCFC-l4lb which is a minimum boiling azeotrope.
  • maximum boiling azeotropes the boiling point is higher than that for the individual components; whereas, the vapor pressure at a particular temperature is lower than that for the components.
  • minimum boiling azeotrope the boiling point is lower than that for the individual components; whereas, the vapor pressure at a particular temperature is higher than that for the components.
  • azeotropes of the invention have the composi ⁇ tions as defined in the following table:
  • compositions consist essentially of
  • the invention comprises methods of ex ⁇ panding polymer foams, as well as methods of cleaning substrates with the azeotropic compositions of the invention.
  • the azeotropic composition may be dissolved in a polyol containing a surfactant and a catalyst to form a B-side system (polyol, catalyst, surfactant and blowing agent) , and subsequently mixed with an isocyanate to produce a foam, e.g., polyure ⁇ thane foam.
  • the azeotropic composition may be combined with an isocyanate to form one component and subsequently reacted with a polyol, surfactant, and catalyst to produce a foam, e.g., a polyurethane foam.
  • Typical polyols include polyester polyols, polyether polyols, mixed polyether/polyester polyols, aminopolyols, sugar-based polyols, polyols derived from polyethylene oxide and/or polypropylene oxide polymers.
  • Typical catalysts include tin salts for the production of polyurethanes, amines for the production of polyurethanes and/or polyureas and alkali metal salts for the production of polyisocyanurates.
  • Typical surfactants include silicon-based surfactants used conventionally to control foam size.
  • Typical isocyanates include toluene diisocyanates (TDI) and ethylene diisocyanates (MDI) , e.g., in the production of polyurethane foams.
  • the blowing agent is used in an amount of about 1-30% by weight of the total polymer foam HCFC-123 may contain as much as about 20.0 wt. % l,2-dichloro-l,l,2-trifluoroethane (HCFC-123a) .
  • an azeotropic composition consistin essentially of is intended to include mixtures which contain all the components of the azeotrope of this invention (in any amounts) and which, if fractionally distilled, would produce an azeotrope containing all the components of this invention in at least one fraction, alone or in combination with another compound, e.g., one which distills at substantially the same temperature as said fraction.
  • Foam tests are conducted on a polyisocyanurate foam formulation with the azeotropes of HCFC-123 and HCFC-141b with methyl formate.
  • the polyisocyanurate foam formulation (250 index) is described in Table I.
  • the quantities of blowing agents and the densities of the resultant foams are summarized in Table II.
  • Dabco dimethylaminomethyl
  • blowing agents are shown in Table II. CFC-11 is used as the reference blowing agent.
  • Each blowing agent or azeotrope is used at a concentration which would result in essentially the same number of moles of gas as represented by 13.4 wt. % CFC-11.
  • Each foam is uniform, closed-cell and with fine cell structure.
  • HCFC-123 in this foam contains about 10 wt. % HCFC-123a.
  • Boards are fluxed with activated rosin, are preheated to 200 ⁇ F (93*C), and soldered at 500°F (260*C) prior to cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)

Abstract

Disclosed are azeotropes of one of HCFC-123, HCFC-123a or HCFC-141b with methyl formate and their use as cleaning agents and foam blowing agents.

Description

BINARY AZEOTROPES OF HYDROGEN-CONTAINING HALOCARBONS WITH METHYL FORMATE
Background of the Invention This invention relates to azeotropes of 1,1-di- chloro-2,2,2-trifluoroethane (HCFC-123), 1,2-dichloro- 1,1,2-trifluoroethane (HCFC-123a) and 1 ,1-dichloro- 1-fluoroethane (HCFC-141b) with methyl formate and their use as cleaning solvents and blowing agents for polymer foams.
Closed-cell polyurethane foams are widely used for insulation purposes in building construction and in the manufacture of energy efficient electrical appliances. In the construction industry, polyurethane (poly- isocyanurate) board stock is used in roofing and siding for its insulation and load-carrying capabilities. Poured and sprayed polyurethane foams are also used in construction. Sprayed polyurethane foams are widely used for insulating large structures such as storage tanks, etc. Pour-in-place polyurethane foams are used, for example, in appliances such as refrigerators and freezers plus they are used in making refrigerated trucks and railcars.
All of these various types of polyurethane foams reguire expansion agents (blowing agents) for their manufacture. Insulating foams depend on the use of halocarbon blowing agents, not only to foam the poly¬ mer, but primarily for their low vapor thermal conduc¬ tivity, a very important characteristic for insulation value. Historically, polyurethane foams are made with CFC-11 (CFC1 ) as the primary blowing agent.
A second important type of insulating foam is phenolic foam. These foams, which have very attractive flammability characteristics, are generally made with CFC-11 and l,l,2-trichloro-l,2,2-trifluoroethane (CFC-113) blowing agents.
As modern electronic circuit boards evolve toward increased circuit and component densities, thorough board cleaning after soldering becomes a more important criterion. Current industrial processes for soldering electronic components to circuit boards involve coating the entire circuit side of the board with flux and thereafter passing the flux-coated board over pre- heaters and through molten solder. The flux cleans the conductive metal parts and promotes solder fusion. Commonly used solder fluxes generally consist of rosin, either used alone or with activating additives, such as amine hydrochlorides and oxalic acid derivatives.
After soldering, which thermally degrades part of the rosin, the flux-residues are often removed from the circuit boards with an organic solvent. The require¬ ments for such solvents are very stringent. Defluxing solvents should have the following characteristics: Have a low boiling point, have low toxicity and have high solvency power, so that flux and flux-residues can be removed without damaging the substrate being cleaned.
While boiling point, flammability and solvent power characteristics can be adjusted by preparing solvent mixtures, these mixtures are often unsatis¬ factory because they fractionate to an undesirable degree during use. Such solvent mixtures also frac¬ tionate during solvent distillation, which makes it virtually impossible to recover a solvent mixture with the original composition. On the other hand, azeotropes with their constant compositions, have been found to be very useful for these applications. Azeotropes do not fractionate on evaporation or boiling. These characteristics are also important when using solvent compositions to remove solder fluxes and flux-residues from printed circuit boards. Preferential evaporation of the more volatile solvent mixture components would occur if the mixtures were not azeotropes. This could result in mixtures with changed compositions and less-desirable solvency properties, such as lower rosin flux solvency and lower inertness toward the electrical components being cleaned. This character is also desirable in vapor degreasing operations, where redistilled solvent is generally employed for final rinse cleaning.
Many solvent compositions used industrially for cleaning electronic circuit boards and for general metal, plastic and glass cleaning are based upon CFC-113.
In summary, vapor defluxing and degreasing systems act as a still. Unless the solvent composition ex¬ hibits a constant boiling point, i.e., is a single material, or is azeotropic, fractionation will occur and undesirable solvent distributions will result, which could detrimentally affect the safety and effi¬ cacy of the cleaning operation.
A number of halocarbon based azeotropic composi¬ tions have been discovered and in some cases used as solvents for solder flux and flux-residue removal from printed circuit boards and also for miscellaneous degreasing applications. For example: U.S. Patent No. 3,903,009 discloses the ternary azeotrope of 1,1,2- trichloro-l,2,2-trifluoroethane with ethanol and nitro ethane; U.S. Patent No. 2,999,815 discloses the binary azeotrope of 1,1,2-trichloro-l,2,2-trifluoro- ethane and acetone; U.S. Patent No. 2,999,916 discloses the binary azeotrope of 1,1 2-trichloro-l 2 2-tri- fluoroethane and methyl alcohol; U.S. Patent No. 4,767,561 discloses the ternary azeotrope of l,l,2-trichloro-l,2,2-trifluoroethane, methanol and 1,2-dichloroethylene.
In the early 1970's, concern began to be expressed that the stratospheric ozone layer (which provides protection against penetration of the earth's atmosphere by ultraviolet radiation) was being depleted by chlorine atoms introduced to the atmosphere from the release of fully halogenated chlorofluorocarbons. These chlorofluorocarbons are used as propellants in aerosols, as blowing agents for foams, as refrigerants and as cleaning/drying solvent systems. Because of the great chemical stability of fully halogenated chloro¬ fluorocarbons , according to the ozone depletion theory, these compounds do not decompose in the earth's atmosphere but reach the stratosphere where they slowly degrade liberating chlorine atoms which in turn react with the ozone.
Concern reached such a level that in 1978 the U.S. Environmental Protection Agency (EPA) placed a ban on nonessential uses of fully halogenated chlorofluoro¬ carbons as aerosol propellants. This ban resulted in a dramatic shift in the U.S. away from chlorofluorocarbon propellants (except for exempted uses) to primarily hydrocarbon propellants. However, since the rest of the world did not join the U.S. in this aerosol ban, the net result has been to shift the uses of chloro¬ fluorocarbons in aerosols out of the U.S., but not to permanently reduce the world-wide total chlorofluoro¬ carbon production, as sought. In fact, in the last few years the total amount of chlorofluorocarbons manufac¬ tured worldwide has exceeded the level produced in 1978 (before the U.S. ban).
During the period of 1978-1987, much research was conducted to study the ozone depletion theory. Because of complexity of atmospheric chemistry, many questions relating to this theory remained unanswered. However, assuming the theory to be valid, the health risks which would result from depletion of the ozone layer are significant. This, coupled with the fact that world¬ wide production of chlorofluorocarbons has increased, has resulted in international efforts to reduce chloro¬ fluorocarbon use. Particularly, in September, 1987, the United Nations through its Environment Programme (UNEP) issued a tentative proposal calling for a 50 percent reduction in world-wide production of fully halogenated chlorofluorocarbons by the year 1998. This proposal was ratified January 1, 1989 and became effective on July 1, 1989.
Because of this proposed reduction in availability of fully halogenated chlorofluorocarbons such as CFC-11, dichlorodifluoromethane (CFC-12) and CFC-113, alternative, more environmentally acceptable, products are urgently needed.
As early as the 1970's with the initial emergence of the ozone depletion theory, it was known that the introduction of hydrogen into previously fully halo¬ genated chlorofluorocarbons markedly reduced the chemical stability of these compounds. Hence, these now destabilized compounds would be expected to degrade in the lower atmosphere and not reach the stratosphere and the ozone layer. The accompanying Table lists the ozone depletion potential for a variety of fully and partially halogenated halocarbons. Halocarbon Global Warming Potential data (potential for reflecting infrared radiation (heat) back to earth and thereby raising the earth's surface temperature) are also shown. OZONE DEPLETION AND HALOCARBON GLOBAL WARMING POTENTIALS
Halocarbon Global
Depletion Warming
Blowing Agent Potential Potential
CFC-11 (CFC13) 1. ,0 1.0 CFC-12 (CF2C12) 1. ,0 2.8 HCFC-22 (CHF2C1) 0. ,05 0.3 HCFC-123 (CF3CHC12) 0. ,02 0.02 HCFC-124 (CF3CHFC1) 0. ,02 0.09 HFC-134a (CF3CH2F) 0 0.3 HCFC-141b (CFC12CH3) 0. ,1 0.09 HCFC-142b (CF2C1CH3) 0. ,06 0.3 HFC-152a (CHF2CH3) 0 0.03 CFC-113 (CF2C1-CFC12) 0. ,8-0.9 1.4
Halocarbons such as HCFC-123, HCFC-123a and HCFC-141b are environmentally acceptable in that they theoretically have minimal effect on ozone depletion. (Although these values have not been calculated for HCFC-123a, it is estimated that they would be similar to those for HCFC-123.)
Unfortunately, as recognized in the art, it is not possible to predict the formation of azeotropes.
This fact obviously complicates the search for new azeotropes which have application in the field. Nevertheless, there is a constant effort in the art to discover new azeotropic compositions, which have desirable characteristics.
Summary of the Invention
According to the present invention, azeotropes of l,l-dichloro-2,2,2-trifluoroethane (HCFC-123), 1,2-di- chloro-l,l,2-trifluoroethane (HCFC-123a) and 1,1-di- chloro-1-fluoroethane (HCFC-1 1b) with methyl formate have been discovered. Also included in the invention are processes for using these azeotropes as cleaning agents and foam blowing agents, e.g., to expand a polymer.
All of the azeotropes with methyl formate are maximum boiling azeotropes except for that of HCFC-l4lb which is a minimum boiling azeotrope. With maximum boiling azeotropes, the boiling point is higher than that for the individual components; whereas, the vapor pressure at a particular temperature is lower than that for the components. With a minimum boiling azeotrope, the boiling point is lower than that for the individual components; whereas, the vapor pressure at a particular temperature is higher than that for the components.
The azeotropes of the invention have the composi¬ tions as defined in the following table:
AZEOTROPIC COMPOSITIONS
Atmospheric Components Composition Boiling Point
HCFC-123/Methyl 71.0/29.0 (±1.3 wt. %) 33.5°C
Formate HCFC-123a/Methyl 74.1/25.9 (±1.8 wt. %) 33.5βC
Formate HCFC-14lb/Methyl 61.7/38.3 (±3.4 wt. %) 28.4"C
Formate
Therefore, the compositions consist essentially of
(a) about 69.7 to 72.3 weight percent 1,1-di- chloro-2,2,2-trifluoroethane and about 27.7 to 30.3 weight percent methyl'formate,
(b) about 72.3 to 75.9 weight percent 1,2-di- chloro-l,l,2-trifluoroethane and about 24.1 to 27.7 weight percent methyl formate, or
(c) about 58.3 to 65.1 weight percent 1,1-di- chloro-1-fluoroethane and about 34.9 to 41.7 weight percent methyl formate. The azeotropes of HCFC-123 and HCFC-141b with methyl formate are useful as cleaning solvents and as blowing agents for polyurethane and phenolic foams. Accordingly, the invention comprises methods of ex¬ panding polymer foams, as well as methods of cleaning substrates with the azeotropic compositions of the invention.
For example, the azeotropic composition may be dissolved in a polyol containing a surfactant and a catalyst to form a B-side system (polyol, catalyst, surfactant and blowing agent) , and subsequently mixed with an isocyanate to produce a foam, e.g., polyure¬ thane foam. Alternatively, the azeotropic composition may be combined with an isocyanate to form one component and subsequently reacted with a polyol, surfactant, and catalyst to produce a foam, e.g., a polyurethane foam.
Production of such foams as discussed above is wholly conventional, from components as disclosed in, e.g., The ICI Polyurethane Book (Wiley & Sons, 1987) and Modern Plastics Encyclopedia 1988-1989 (McGraw-Hill) . Typical polyols include polyester polyols, polyether polyols, mixed polyether/polyester polyols, aminopolyols, sugar-based polyols, polyols derived from polyethylene oxide and/or polypropylene oxide polymers. Typical catalysts include tin salts for the production of polyurethanes, amines for the production of polyurethanes and/or polyureas and alkali metal salts for the production of polyisocyanurates. Typical surfactants include silicon-based surfactants used conventionally to control foam size. Typical isocyanates include toluene diisocyanates (TDI) and ethylene diisocyanates (MDI) , e.g., in the production of polyurethane foams.
Generally, the blowing agent is used in an amount of about 1-30% by weight of the total polymer foam HCFC-123 may contain as much as about 20.0 wt. % l,2-dichloro-l,l,2-trifluoroethane (HCFC-123a) .
The language "an azeotropic composition consistin essentially of..." is intended to include mixtures which contain all the components of the azeotrope of this invention (in any amounts) and which, if fractionally distilled, would produce an azeotrope containing all the components of this invention in at least one fraction, alone or in combination with another compound, e.g., one which distills at substantially the same temperature as said fraction.
Without further elaboration, it is believed that one skilled in the art can, using the preceding de¬ scription, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
In the foregoing and in the following examples, all temperatures are set forth uncorrected in degrees Celsius and unless otherwise indicated, all parts and percentages are by weight.
The entire disclosure of all applications, patents and publications, cited above and below, are hereby incorporated by reference.
EXAMPLES
Example 1
Foam tests are conducted on a polyisocyanurate foam formulation with the azeotropes of HCFC-123 and HCFC-141b with methyl formate. The polyisocyanurate foam formulation (250 index) is described in Table I. The quantities of blowing agents and the densities of the resultant foams are summarized in Table II.
TABLE I k
POLYISOCYANURATE FOAM'
Ingredient Equivalent Weight Weight Used, g. Polyester polyol 197.0 100.0
DC-193a 1.5
Hex-Cem" 977b 2.7
TMR-30C 0.3
Isocyanate (MDI) 136.5 179.2
Blowing Agent d
* 250 Index Polyisocyanurate foam. a Silicone surfactant, Dow Corning Corporation.
Potassium octanoate, Mooney Chemicals, Incorporated.
Dabco" tris (Dimethylaminomethyl) phenol. Air Products and Chemicals, Incorporated
The quantities of blowing agents are shown in Table II. CFC-11 is used as the reference blowing agent.
TABLE II
POLYISOCYANURATE FOAMS
4 Foam Density
Blowing Agent Wt. % lb./cu. ft.
CFC-11 13.4 2.02
HCFC-123/Methyl Formate 7.2/3.2 2.19
HCFC-123**/Methyl Formate 7.2/3.2 2.19
HCFC-14lb/Methyl Formate 5.6/3.5 2.26
Each blowing agent or azeotrope is used at a concentration which would result in essentially the same number of moles of gas as represented by 13.4 wt. % CFC-11. Each foam is uniform, closed-cell and with fine cell structure.
**
HCFC-123 in this foam contains about 10 wt. % HCFC-123a.
Example 2
Cleaning tests are performed on single-sided circuit boards and nut/washer assemblies using HCFC-123/methyl formate (71.0/29.0), HCFC-123a/methyl formate (74.1/25.9) and HCFC-1 lb/methyl formate (61.7/38.3) azeotropes. The test results are shown in Table III.
TABLE III CLEANING TESTS
Solvent Substrate Results
HCFC-123/Methyl Formate Single-sided Boards clean (71.0/29.0) circuit boards with no vis¬ ible residue
HCFC-123/Methyl Formate Nuts/washers Clean, no oil (71.0/29.0) assemblies
HCFC-123a/Methyl Formate Single-sided Boards clean (74.1/25.9) circuit boards with no vis¬ ible residue
HCFC-123a/Methyl Formate Nuts/washers Clean, no oil (74.1/25.9) assemblies
HCFC-14lb/Methyl Formate Single-sided Boards clean (61.7/38.3) circuit boards with no vis¬ ible residue
HCFC-14lb/Methyl Formate Nuts/washers Clean, no oil (61.7/38.3) assemblies
Boards are fluxed with activated rosin, are preheated to 200βF (93*C), and soldered at 500°F (260*C) prior to cleaning.
Assemblies are dipped in Oak Drawing Oil No. 78-1 prior to cleaning.
The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims

WHAT IS CLAIMED IS:
1. An azeotropic composition consisting essentially of
(a) about 69.7 to 72.3 weight percent 1,1-di- chloro-2,2,2-trifluoroethane and about 27.7 to 30.3 weight percent methyl formate,
(b) about 72.3 to 75.9 weight percent 1,2-di- chloro-l,l,2-trifluoroethane and about 24.1 to 27.7 weight percent methyl formate, or
(c) about 58.3 to 65.1 weight percent 1,1-di- chloro-1-fluoroethane and about 34.9 to 41.7 weight percent methyl formate.
2. An azeotrope of Claim 1 consisting essentially of 1,l-dichloro-2,2,2-trifluoroethane and methyl formate.
3. An azeotrope of Claim 1 consisting essentially of l,2-dichloro-l,l,2-trifluoroethane and methyl formate.
4. An azeotrope of Claim 1 consisting essentially of 1,1-dichloro-l-fluoroethane and methyl formate.
5. An azeotrope of Claim 2, consisting essentially of about 71.0% 1,l-dichloro-2,2,2-tri- fluoroethane and about 29.0% methyl formate. - 14 -
6. An azeotrope of Claim 3, consisting essen¬ tially of about 74.1% l,2-dichloro-l,l,2-trifluoro¬ ethane and about 25.9% of methyl formate.
7. An azeotrope of Claim 4, consisting essentially of about 61.7% l,l-dichloro-l,-fluoroethane and about 38.3% methyl formate.
8. In a process for preparing a polymer foam comprising utilizing a blowing agent to expand a polymer, the improvement wherein the blowing agent is an azeotropic composition of Claim 1.
9. The process of Claim 8 wherein the amount of the azeotropic composition used as a blowing agent is 1 to 30 wt. % of the total polymer foam formulations.
10. The process of Claim 8 wherein the polymer foam is a polyurethane foam, or a phenolic foam.
11. The process of Claim 10 wherein the azeotropic composition is first dissolved in a polyol containing a surfactant and catalyst to form a B-side system which is, in turn, reacted with an isocyanate to produce polyurethane foam.
12. The process of Claim 10 wherein an effective amount of the azeotropic composition is combined with an isocyanate to form one component and, thereafter, the component is reacted with a polyol, surfactant and a catalyst to produce a polyurethane foam.
13. In a process for cleaning a substrate comprising subjecting said substrate to a cleaning solvent composition, the improvement wherein the solvent is an HCFC-123/methyl formate, HCFC-123a/methyl formate or HCFC-141b/methyl formate azeotrope of Claim 1.
14. The process of Claim 13, wherein the substrat being cleaned is a printed circuit board contaminated with flux and flux-residues.
15. The process of Claim 13, wherein the substrat being cleaned is metal, glass or plastic.
16. The composition of Claim 1, consisting essentially of
(a) about 70.3 to 71.7 weight percent 1,l-di¬ chloro-2,2,2-trifluoroethane and about 28.3 to 29.7 weight percent methyl formate,
(b) about 73.2 to 75.0 weight percent 1,2-di- chloro-l,l,2-trifluoroethane and about 25.0 to 26.8 weight percent methyl formate, or
(c) about 60.0 to 63.4 weight percent 1,1-di- chloro-1-fluoroethane and about 36.6 to 40.0 weight percent methyl formate.
17. The composition of claim 1, consisting of
(a) about 69.7 to 72.3 weight percent
1,l-dichloro-2,2,2-trifluoroethane and about 27.7 to 30.3 weight percent methyl formate,
(b) about 72.3 to 75.9 weight percent l,2-dichloro-l,l,2-trifluoroethane and about 24.1 to 27.7 weight percent methyl formate, or
(c) about 58.3 to 65.1 weight percent 1,1-dichloro-l-fluoroethane and about 34.9 to 41.7 weight percent methyl formate.
18. The composition of claim 1, wherein if said mixture is fractionally distilled it would produce an azeotrope containing only (a) l,l-dichloro-2,2,2-trifluoroethane and methyl formate,
(b) l,2-dichloro-l,l,2-trifluoroethane and methyl formate or
(c) l,l-dichloro-l-fluoroethane and methyl formate, in at least one fraction.
PCT/US1991/000575 1990-03-12 1991-02-04 Binary azeotropes of hydrogen-containing halocarbons with methyl formate WO1991013966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49157890A 1990-03-12 1990-03-12
US491,578 1990-03-12

Publications (1)

Publication Number Publication Date
WO1991013966A1 true WO1991013966A1 (en) 1991-09-19

Family

ID=23952816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/000575 WO1991013966A1 (en) 1990-03-12 1991-02-04 Binary azeotropes of hydrogen-containing halocarbons with methyl formate

Country Status (1)

Country Link
WO (1) WO1991013966A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152913A (en) * 1990-02-07 1992-10-06 Societe Atochem Cleaning composition based on 1,1-dichloro-1-fluoroethane, methyl formate and methanol
US5308528A (en) * 1990-02-07 1994-05-03 Societe Atochem Cleaning composition based on 1,1-dichloro-1-fluoroethane and methyl formate
WO2006028890A1 (en) * 2004-09-03 2006-03-16 Pactiv Corporation Thermoplastic foams made with methyl formate-based blowing agents
US7307105B2 (en) 2004-09-03 2007-12-11 Pactiv Corporation Thermoplastic foams made with methyl formate-based blowing agents
US7312253B2 (en) 2004-09-03 2007-12-25 Pactiv Corporation Insulating thermoplastic foams made with methyl formate-based blowing agents
US9453090B2 (en) 2004-09-03 2016-09-27 The Trustees Of Columbia University In The City Of New York Reduced-VOC and non-VOC blowing agents for making expanded and extruded thermoplastic foams

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904542A (en) * 1973-03-06 1975-09-09 Phillips Petroleum Co Azeotropic composition of fluorocarbon
US3936387A (en) * 1972-02-04 1976-02-03 Phillips Petroleum Company Azeotrope of 1,2-dichloro-1-fluoroethane and methanol
US4816175A (en) * 1988-04-25 1989-03-28 Allied-Signal Inc. Azeotrope-like compositions of dichlorotrifluoroethane, methanol, cyclopentane and nitromethane
US4842764A (en) * 1988-05-03 1989-06-27 Allied-Signal Inc. Azeotrope-like compositions of 1,1-dichloro-1-fluoroethane and methanol
DE3900804A1 (en) * 1989-01-13 1990-07-19 Kali Chemie Ag Cleaning compositions
US4954290A (en) * 1989-06-12 1990-09-04 E. I. Du Pont De Nemours And Company Azeotropes of a hydrogen-containing halocarbon with pentanes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936387A (en) * 1972-02-04 1976-02-03 Phillips Petroleum Company Azeotrope of 1,2-dichloro-1-fluoroethane and methanol
US3904542A (en) * 1973-03-06 1975-09-09 Phillips Petroleum Co Azeotropic composition of fluorocarbon
US4816175A (en) * 1988-04-25 1989-03-28 Allied-Signal Inc. Azeotrope-like compositions of dichlorotrifluoroethane, methanol, cyclopentane and nitromethane
US4842764A (en) * 1988-05-03 1989-06-27 Allied-Signal Inc. Azeotrope-like compositions of 1,1-dichloro-1-fluoroethane and methanol
DE3900804A1 (en) * 1989-01-13 1990-07-19 Kali Chemie Ag Cleaning compositions
US4954290A (en) * 1989-06-12 1990-09-04 E. I. Du Pont De Nemours And Company Azeotropes of a hydrogen-containing halocarbon with pentanes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152913A (en) * 1990-02-07 1992-10-06 Societe Atochem Cleaning composition based on 1,1-dichloro-1-fluoroethane, methyl formate and methanol
US5308528A (en) * 1990-02-07 1994-05-03 Societe Atochem Cleaning composition based on 1,1-dichloro-1-fluoroethane and methyl formate
WO2006028890A1 (en) * 2004-09-03 2006-03-16 Pactiv Corporation Thermoplastic foams made with methyl formate-based blowing agents
US7307105B2 (en) 2004-09-03 2007-12-11 Pactiv Corporation Thermoplastic foams made with methyl formate-based blowing agents
US7312253B2 (en) 2004-09-03 2007-12-25 Pactiv Corporation Insulating thermoplastic foams made with methyl formate-based blowing agents
US9453090B2 (en) 2004-09-03 2016-09-27 The Trustees Of Columbia University In The City Of New York Reduced-VOC and non-VOC blowing agents for making expanded and extruded thermoplastic foams

Similar Documents

Publication Publication Date Title
EP0552225B1 (en) Binary azeotropic compositions of (cf3chfchfcf2cf3) with methanol or ethanol or isopropanol
EP0552286B1 (en) Ternary azeotropic compositions of 43-10mee (cf 3?chfchfcf 2?cf 3?) and trans 1,2-dichloroethylene with methanol or ethanol
US5023010A (en) Binary azeotropic compositions of 1,1,1,2,3,3-hexafluoro-3-methoxypropane with methanol or isopropanol or N-propanol
US5037572A (en) Ternary azeotropic compositions of n-perfluorobutylethylene and trans-1,2-dichloroethylene with methanol or ethanol or isopropanol
US5023009A (en) Binary azeotropic compositions of 1,1,1,2,3,3-hexafluoro-3-methoxypropane and 2,2,3,3,3-pentafluoropropanol-1
US5037573A (en) Binary azeotropic compositions of 1,1-dichloro-1-fluoroethane and n-perfluorobutylethylene
US5026497A (en) Azeotropic compositions of perfluoro-1,2-dimethylcyclobutane with methanol and 1,1-dichloro-1-fluoroethane or dichlorotrifluoroethane
US5039445A (en) Ternary azeotropic compositions of N-perfluorobutylethylene and cis-1,2-dichloroethylene with methanol or ethanol or isopropanol
JP2806632B2 (en) Ternary azeotropic composition of dichloropentafluoropropane and trans-1,2-dichloroethylene with methanol or ethanol or isopropanol
US5100572A (en) Binary azeotropic compositions of polyfluoropentanes and methanol
EP0527740B1 (en) Azeotropic composition of perfluoro-1,2-dimethylcyclobutane with 1,1-dichloro-1-fluoroethane
US5098595A (en) Ternary azeotropic compositions of 1,1,1,2,3,3-hexafluoro-3-methoxypropane and cis-1,2-dichloroethylene with methanol or ethanol or isopropanol or n-propanol
US5026499A (en) Ternary azeotropic compositions of hexafluoropropylene/ethylene cyclic dimer with trans-1,2-dichloroethylene and methanol
US5035830A (en) Binary azeotropic compositions of hexafluoropropylene/ethylene cyclic dimer with methanol or ethanol
US5318716A (en) Azeotrope-like mixtures of 1,1-dichloro-2,2,2-trifluoroethane and 1,1-dichloro-1-fluoroethane
US4954290A (en) Azeotropes of a hydrogen-containing halocarbon with pentanes
WO1991013966A1 (en) Binary azeotropes of hydrogen-containing halocarbons with methyl formate
US5034149A (en) Binary azeotropic compositions of 3-chloro-1,1,1-trifluoropropane with methanol or ethanol, or trans-1,2-dichloroethylene
US5066418A (en) Binary azeotropic compositions of 3-chloro-1,1,1-trifluoropropane with methanol or ethanol, or trans-1,2-dichloroethylene
US5240634A (en) Ternary azeotropic compositions of 1,1-dichloro-1,2-difluoroethane and cis-1,2-dichloroethylene with methanol or ethanol or n-propanol
WO1992006800A1 (en) Binary azeotropic mixtures of 1,2-difluoroethane with 1,1-dichloro-2,2,2-trifluoroethane or 1,2-dichloro-1,2,2-trifluoroethane or methylene chloride or trichlorofluoromethane or methanol
AU7258791A (en) Ternary azeotropic compositions of dichloropentafluoropropane and trans-1,2-dichloroethylene with methanol or ethanol or isopropanol
EP0487222A1 (en) Azeotropic compositions of dichloropentafluoropropane and chloroform

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA