WO1991009667A1 - Separation method and device using tangential microfiltration, reverse osmosis, or two-stage ultrafiltration - Google Patents

Separation method and device using tangential microfiltration, reverse osmosis, or two-stage ultrafiltration Download PDF

Info

Publication number
WO1991009667A1
WO1991009667A1 PCT/FR1990/000949 FR9000949W WO9109667A1 WO 1991009667 A1 WO1991009667 A1 WO 1991009667A1 FR 9000949 W FR9000949 W FR 9000949W WO 9109667 A1 WO9109667 A1 WO 9109667A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
tank
retentate
tangential
loop
Prior art date
Application number
PCT/FR1990/000949
Other languages
French (fr)
Inventor
Pierre Schaegis
Original Assignee
Diffusion Materiels Pour Fluides S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diffusion Materiels Pour Fluides S.A. filed Critical Diffusion Materiels Pour Fluides S.A.
Publication of WO1991009667A1 publication Critical patent/WO1991009667A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • B01D61/1471Microfiltration comprising multiple microfiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps

Definitions

  • MF frontal microfiltration
  • UF ul ⁇ trafiltration
  • the present invention aims to provide a new installation or tangential microfiltration unit, applicable both to reverse osmosis and to ultrafiltra ⁇ tion, which generally comprises only two stages.
  • the invention relates to a separation process by tangential microfiltration, reverse osmosis or ultrafiltration in two stages, the first stage being continuously supplied with liquid to be filtered and operating at constant concentration (4 or 5 times the starting concentration for example), characterized in that the retentate from the first stage is brought to a second stage functioning at increasing concentration thanks to a tank incorporated in its loop collecting the retentate from the second stage and suitable to control the assembly according to its filling speed in retentate.
  • the method according to the invention makes it possible to obtain a very high final concentration (50 to 60 times the starting concentration) with very precise control of this final concentration, thanks to the intermediate tank and the rate of rise of the retentate in this tank. This is very important for example in clarification operations where it is desired to obtain a very small loss of retentate, therefore a high concentration of the latter.
  • the method according to the invention lends itself to various automatic piloting operations, with remote interrogation if necessary, for discontinuous or continuous operation. It is possible, by making a pilot according to the invention, to define by simple tests an industrial unit and to dimension it quickly with precision.
  • the invention applies to the various usable filter media.
  • the invention also relates to a tangential filtration unit for implementing the above method.
  • the liquid to be filtered is sent to the filtration unit by a supply pump 2.
  • the output of the pump 2 is applied to the first stage 3 of the tangential filtration unit.
  • the first stage 3 comprises, in series, a pump 4, a heat exchanger 5 and one or more filtration modules 6 in series or parallel.
  • the retentate leaving the filtration module 6 is applied to the inlet of the pump 4 and to the second stage 7 of the filtration unit via a slave valve 8 for the retentate of the first stage.
  • the second stage also includes in series a pump -9, a heat exchanger 10 and one or more filtration modules 11 in series or parallel.
  • the outlet of the filtration module (s) 11 includes a controlled valve 12 for the second floor retentate.
  • the outlet of the valve 12 is applied, by a three-way valve 13, to the inlet of the pump 9 and to an intermediate tank 14.
  • the re ⁇ tentate is brought back from the intermediate tank 14 in the se ⁇ cond stage 7 by a three-way valve 15.
  • the retentate filling speed of the tank 14 is a function of the desired final concentration. This speed controls the loops.
  • the permeate outlet from the filtration module or modules 6 of the first stage 3 is applied by a rapid valve 16 to a servo valve 17 of the first stage permeate, the outlet of which passes through a flow meter 18.
  • the outlet of the permeation from the filtration modules 11 of the second stage 7 is applied by a rapid valve 19 to a life asser ⁇ valve 20 the outlet of which passes through a flow meter 21.
  • the outputs of the filtration modules 6 and 11 are furthermore connected by the intermediate of two valves 22 and 23 between which is applied an inverting pulse line 24 (back draw) intended for cleaning against the current. This back draws can be done by sending against the current a small volume of microfiltrate propelled by air pressure or displacement of a mobile piston.
  • the installation further comprises, in the first stage 3, a temperature sensor 25 and a pressure sensor 26, for the retentate at the outlet of the heat exchanger 5, a pressure sensor 27 at the outlet of the heating module. filtration 6, as well as a pressure sensor 28 for the permeate.
  • the second stage 7 comprises a temperature sensor 29 and a pressure sensor 30 at the outlet of the heat exchanger 10, a pressure sensor 31 for the retentate at the outlet of the filtration module 11, as well as a pressure sensor 32 for the permeate.
  • a sensor 33 measures the level in the tank 14.
  • the sensors have an analog output and are used for piloting the slave valves.
  • the first stage permeate outlet valve 17 is supplied with the microfiltrate flow rate FI measured by the flow meter 18, during the start-up phase.
  • valve 17 If QFI is less than Ci, valve 17 must be opened gradually.
  • valve 17 Once valve 17 is fully open, it must be disabled to remain so.
  • the second stage permeate outlet valve 20 is supplied to the microfiltrate flow F2 measured by the flow meter 21, so as to be in relation with a second setpoint value C2 specific to the second stage and to the speed filling the tank 14 as a function of time.
  • These instructions Ci and C ⁇ are also a function of the liquid to be filtered and the concentrations to be reached in the loops.
  • valve 20 If F ⁇ is greater than C2, the valve 20 must be gradually closed and it must be gradually opened when F2 is less than C. The valve 20 must be deactivated when it is fully open.
  • valves 13 and 15 are controlled by the level indicator 33 and in connection with the increase in concentration in the loop 7.
  • the retentate valve 8 of the first stage is slaved to the first stage transmembrane pressure (Ptmi ”) according to a given equation linked to a setpoint C3, specific to the evolution of this Pu over time.
  • valve 8 If Ptmi is greater than C3, the valve 8 must be opened gradually and it must be closed gradually if Pt mi is less than C3.
  • the retentate valve 12 of the second stage is slaved to Q F2 and to Q A> and in relation to the setpoint C2 •
  • valves 8 and 12 are open and the valves 17 and 20 are closed for filling the cir ⁇ cuits for a certain time.
  • valves 17 and 20 are left to open according to the regulation indicated previously.
  • the start-up phase is finished when the valve 17 is completely open.
  • the system is then automatically regulated according to the various pre-displayed instructions and the filling speed of the tank 14 which receives the retentate and controls the unit.
  • V2 of the tank 14 is less than or equal to the volume of final retentate V RF
  • V2 is greater than V RF
  • a reverse pulse (back pulse) is sent on line 24, after the start-up phase, on the first stage 3 when QFI is less than a set value QFI mi or to be set, and on the second stage when QFÎ is less than a set point QF2 mi nor to be set.
  • the adjustable valve opening time is 0.1 to 2 s.
  • the permeate outlets are closed by quick valves 16 and 19.
  • the temperature exchangers 5 and 10 are controlled respectively by the temperatures measured by the sensors 25 and 29.
  • the device which has just been described can be controlled by a computer which can be interrogated remotely by means of equations allowing the establishment of operating instructions and also of charts.
  • the method according to the invention lends itself to the production of a pilot unit in order to define, with simple tests, an industrial unit and to size it with precision.

Abstract

A separation method and device using tangential microfiltration, reverse osmosis or two-stage ultrafiltration (3, 7), wherein the first stage (3) is continuously supplied with liquid to be filtered and operates at a constant concentration. The method is characterized in that the residue from the first stage (3) is brought to a second stage (7) which operates at a growing concentration by means of a tank (14) incorporated in its loop. Said tank collects the residue which can be accurately and highly concentrated and controls the operation of the assembly according to the speed at which it fills with residue. Applications : separation processes.

Description

Procédé et unité de séparation par microfiltration tan¬ gentielle, osmose inverse ou ultrafiltration à deux éta¬ ges. Process and unit for separation by tangential microfiltration, reverse osmosis or two-stage ultrafiltration.
Dans le domaine des techniques séparatives et pour des arrêts particulaires inférieurs à 10 microns il est bien connu :In the field of separation techniques and for particulate stops smaller than 10 microns, it is well known:
- que la séparation des particules se fait par mi¬ crofiltration frontale (MF) entre 10 et 0,05 microns de diamètre de pores.- that the separation of the particles is done by frontal microfiltration (MF) between 10 and 0.05 microns in pore diameter.
- que la séparation des molécules se fait par ul¬ trafiltration (UF) entre 0,1 micron et 10 Angstroems de diamètre de pores ou d'interstices.- that the molecules are separated by ul¬ trafiltration (UF) between 0.1 microns and 10 Angstroms of pore or interstice diameter.
- qu'enfin la séparation des ions se fait par os¬ mose inverse (01) avec des passages intersticiels co -- that finally the separation of the ions is done by reverse os¬ mosis (01) with interstitial passages co -
O o pris entre 10 A et 1 A .O o taken between 10 A and 1 A.
Une nouvelle technique, s ' inspirant de l'UF est apparue il y a cinq ans environ qui est la microfiltration tan- gentielle (MFT) dans laquelle les particules à arrêter ou les gros colloïdes au lieu d'arriver perpendiculairement au milieu poreux, sont propulsés à grande vitesse paral¬ lèlement à ce même milieu poreux. Les éléments à arrêter soumis à la fois à leur poids et à la forte vitesse tan- gentielle (de 3 à 6 mètres/seconde par exemple) "atta¬ quent" la paroi sous un certain angle, ricochent sur el¬ le et se concentrent dans la boucle où se trouvent les modules poreux.A new technique, inspired by UF appeared about five years ago which is tangential microfiltration (MFT) in which the particles to stop or the large colloids instead of arriving perpendicular to the porous medium, are propelled at high speed parallel to this same porous medium. The elements to be stopped subjected both to their weight and to the high tangential speed (from 3 to 6 meters / second for example) "attack" the wall at a certain angle, ricochet off it and concentrate in the loop where the porous modules are located.
Dans des installations de microfiltration tangentielle connues, plusieurs étages de concentration constante, contenant chacun un ou plusieurs modules de microfiltra- tion tangentielle de seuil déterminé décroissant, sont disposés en série les uns après les autres. Ces installa¬ tions connues apportent les avantages inhérents de la mi¬ crofiltration tangentielle, qui sont essentiellement un fonctionnement continu par opposition aux systèmes de mi¬ crofiltration dans la masse ou en surface, qui nécessi¬ tent le remplacement des cartouches ou des décolmatages à contre-courant réguliers lorsque c'est possible. Cepen¬ dant, ces installations connues sont coûteuses et encom¬ brantes du fait du nombre d'étages qu'elles comportent.In known tangential microfiltration installations, several stages of constant concentration, each containing one or more tangential microfiltration modules of decreasing determined threshold, are arranged in series one after the other. These known installations provide the inherent advantages of tangential mi¬ crofiltration, which are essentially continuous operation as opposed to mass or surface mi¬ crofiltration systems, which require the replacement of cartridges or unclogging against -current regular when possible. However, these known installations are expensive and bulky because of the number of stages which they comprise.
La présente invention vise à fournir une nouvelle instal¬ lation ou unité de microfiltration tangentielle, s'appli¬ quant aussi bien à l'osmose inverse qu'à 1'ultrafiltra¬ tion, qui ne comporte en général que deux étages.The present invention aims to provide a new installation or tangential microfiltration unit, applicable both to reverse osmosis and to ultrafiltra¬ tion, which generally comprises only two stages.
A cet effet, l'invention a pour objet un procédé de sépa¬ ration par microfiltration tangentielle, osmose inverse ou ultrafiltration à deux étages, le premier étage étant alimenté en continu en liquide à filtrer et fonctionnant à concentration constante (4 ou 5 fois la concentration de départ par exemple), caractérisé en ce qu'on amène le rétentat issu du premier étage à un second étage fonc¬ tionnant à concentration croissante grâce à une cuve in¬ corporée dans sa boucle recueillant le rétentat du se¬ cond étage et apte à piloter l'ensemble selon sa vitesse de remplissage en rétentat.To this end, the invention relates to a separation process by tangential microfiltration, reverse osmosis or ultrafiltration in two stages, the first stage being continuously supplied with liquid to be filtered and operating at constant concentration (4 or 5 times the starting concentration for example), characterized in that the retentate from the first stage is brought to a second stage functioning at increasing concentration thanks to a tank incorporated in its loop collecting the retentate from the second stage and suitable to control the assembly according to its filling speed in retentate.
Le procédé selon l'invention, avec un coût et un encom¬ brement limité en général à deux étages, permet d'obte¬ nir une concentration finale très élevée (50 à 60 fois la concentration de départ) avec un contrôle très précis de cette concentration finale, grâce à la cuve intermédiai¬ re et à la vitesse de montée du rétentat dans cette cuve. Ceci est très important par exemple dans les opérations de clarification où l'on souhaite obtenir une très fai¬ ble perte de rétentat, donc une forte concentration de ce dernier. Le procédé selon 1 ' invention se prête à divers pilotages automatiques, avec interrogation à distance si nécessai¬ re, pour fonctionnement en discontinu ou en continu. Il est possible, en réalisant un pilote selon l'invention, de définir par des essais simples une unité industrielle et de la dimensionner rapidement avec précision.The method according to the invention, with a cost and a footprint generally limited to two stages, makes it possible to obtain a very high final concentration (50 to 60 times the starting concentration) with very precise control of this final concentration, thanks to the intermediate tank and the rate of rise of the retentate in this tank. This is very important for example in clarification operations where it is desired to obtain a very small loss of retentate, therefore a high concentration of the latter. The method according to the invention lends itself to various automatic piloting operations, with remote interrogation if necessary, for discontinuous or continuous operation. It is possible, by making a pilot according to the invention, to define by simple tests an industrial unit and to dimension it quickly with precision.
L'invention s'applique pour les divers milieux filtrants utilisables .The invention applies to the various usable filter media.
L'invention concerne également une unité de filtration tangentielle pour la mise en oeuvre du procédé précédent.The invention also relates to a tangential filtration unit for implementing the above method.
L'invention sera bien comprise à la lecture de la des- critpion suivante faite en se référant au dessin annexé dans lequel la figure unique est un schéma d'une unité selon un exemple de réalisation de l'invention.The invention will be clearly understood on reading the following description made with reference to the appended drawing in which the single figure is a diagram of a unit according to an exemplary embodiment of the invention.
A partir d'une cuve 1 (ou d'une canalisation de process), le liquide à filtrer est envoyé dans l'unité de filtra¬ tion par une pompe d'alimentation 2. La sortie de la pom¬ pe 2 est appliquée au premier étage 3 de l'unité de fil¬ tration tangentielle.From a tank 1 (or a process pipe), the liquid to be filtered is sent to the filtration unit by a supply pump 2. The output of the pump 2 is applied to the first stage 3 of the tangential filtration unit.
Le premier étage 3 comprend, en série une pompe 4, un echangeur de chaleur 5 et un ou plusieurs modules de fil- tration 6 en série ou parallèle. Le rétentat sortant du module de filtration 6 est appliqué à l'entrée de la pom¬ pe 4 et au second étage 7 de l'unité de filtration par l'intermédiaire d'une vanne asservie 8 pour le rétentat du premier étage.The first stage 3 comprises, in series, a pump 4, a heat exchanger 5 and one or more filtration modules 6 in series or parallel. The retentate leaving the filtration module 6 is applied to the inlet of the pump 4 and to the second stage 7 of the filtration unit via a slave valve 8 for the retentate of the first stage.
Le second étage comporte également en série une pompe -9, un echangeur de chaleur 10 et un ou plusieurs modules de filtration 11 en série ou parallèle. La sortie du ou des modules de filtration 11 comporte une vanne asservie 12 pour le rétentat du second étage. La sortie de la vanne 12 est appliquée, par une vanne à trois voies 13, à l'en¬ trée de la pompe 9 et à une cuve intermédiaire 14. Le ré¬ tentat est ramené de la cuve intermédiaire 14 dans le se¬ cond étage 7 par une vanne à trois voies 15.The second stage also includes in series a pump -9, a heat exchanger 10 and one or more filtration modules 11 in series or parallel. The outlet of the filtration module (s) 11 includes a controlled valve 12 for the second floor retentate. The outlet of the valve 12 is applied, by a three-way valve 13, to the inlet of the pump 9 and to an intermediate tank 14. The re¬ tentate is brought back from the intermediate tank 14 in the se¬ cond stage 7 by a three-way valve 15.
La vitesse de remplissage en rétentat de la cuve 14 est fonction de la concentration finale désirée. Cette vites¬ se pilote les boucles.The retentate filling speed of the tank 14 is a function of the desired final concentration. This speed controls the loops.
La sortie de perméat du ou des modules de filtration 6 du premier étage 3 est appliquée par une vanne rapide 16 à une vanne asservie 17 de perméat de premier étage, dont la sortie traverse un débitmètre 18. La sortie de per¬ méat du ou des modules de filtration 11 du second étage 7 est appliquée par une vanne rapide 19 à une vanne asser¬ vie 20 dont la sortie traverse un débitmètre 21. Les sor¬ ties des modules de filtration 6 et 11 sont en outre réu¬ nies par l'intermédiaire de deux vannes 22 et 23 entre lesquelles est appliquée une ligne 24 d'impulsion inver¬ se (back puise) destinée au nettoyage à contre-courant. Ce back puise peut être fait en envoyant à contre-cou¬ rant un petit volume de microfiltrat propulsé par pres¬ sion d'air ou déplacement d'un piston mobile.The permeate outlet from the filtration module or modules 6 of the first stage 3 is applied by a rapid valve 16 to a servo valve 17 of the first stage permeate, the outlet of which passes through a flow meter 18. The outlet of the permeation from the filtration modules 11 of the second stage 7 is applied by a rapid valve 19 to a life asser¬ valve 20 the outlet of which passes through a flow meter 21. The outputs of the filtration modules 6 and 11 are furthermore connected by the intermediate of two valves 22 and 23 between which is applied an inverting pulse line 24 (back draw) intended for cleaning against the current. This back draws can be done by sending against the current a small volume of microfiltrate propelled by air pressure or displacement of a mobile piston.
L'installation comprend en outre, dans le premier étage 3, un capteur de température 25 et un capteur de pression 26, pour le rétentat à la sortie de l'echangeur de chaleur 5, un capteur de pression 27 à la sortie du module de fil¬ tration 6, ainsi qu'un capteur de pression 28 pour le perméat.The installation further comprises, in the first stage 3, a temperature sensor 25 and a pressure sensor 26, for the retentate at the outlet of the heat exchanger 5, a pressure sensor 27 at the outlet of the heating module. filtration 6, as well as a pressure sensor 28 for the permeate.
De même, le second étage 7 comporte un capteur de tempé¬ rature 29 et un capteur de pression 30 à la sortie de - l'echangeur de chaleur 10, un capteur de pression 31 pour le rétentat à la sortie du module de filtration 11, ain¬ si qu'un capteur de pression 32 pour le perméat. En ou- tre, un capteur 33 mesure le niveau dans la cuve 14.Likewise, the second stage 7 comprises a temperature sensor 29 and a pressure sensor 30 at the outlet of the heat exchanger 10, a pressure sensor 31 for the retentate at the outlet of the filtration module 11, as well as a pressure sensor 32 for the permeate. In or- tre, a sensor 33 measures the level in the tank 14.
Les capteurs sont à sortie analogique et servent au pilo¬ tage des vannes asservies.The sensors have an analog output and are used for piloting the slave valves.
La vanne 17 de sortie du perméat du premier étage est as¬ servie au débit de microfiltrat FI mesuré par le débit¬ mètre 18, pendant la phase de démarrage.The first stage permeate outlet valve 17 is supplied with the microfiltrate flow rate FI measured by the flow meter 18, during the start-up phase.
Si QFI est supérieur à une valeur de consigne Ci prédé¬ terminée, la vanne 17 doit être fermée progressivement.If Q FI is greater than a predefined setpoint Ci, the valve 17 must be closed gradually.
Si QFI est inférieur à Ci , la vanne 17 doit être ouverte progressivement.If QFI is less than Ci, valve 17 must be opened gradually.
Une fois que la vanne 17 est complètement ouverte, elle doit être désactivée pour le rester.Once valve 17 is fully open, it must be disabled to remain so.
La vanne 20 de sortie de perméat du second étage est as¬ servie au débit de microfiltrat F2 mesuré par le débit¬ mètre 21, de manière à être en relation avec une seconde valeur de consigne C2 propre au second étage et à la vi¬ tesse de remplissage de la cuve 14 en fonction du temps. Ces consignes Ci et C∑ sont aussi fonction du liquide à filtrer et des concentrations à atteindre dans les bou¬ cles .The second stage permeate outlet valve 20 is supplied to the microfiltrate flow F2 measured by the flow meter 21, so as to be in relation with a second setpoint value C2 specific to the second stage and to the speed filling the tank 14 as a function of time. These instructions Ci and C∑ are also a function of the liquid to be filtered and the concentrations to be reached in the loops.
Si F∑ est supérieur à C2 , la vanne 20 doit être progres¬ sivement fermée et elle doit être progressivement ouver¬ te lorsque F2 est inférieur à C.. La vanne 20 doit être désactivée lorsqu'elle est complètement ouverte.If F∑ is greater than C2, the valve 20 must be gradually closed and it must be gradually opened when F2 is less than C. The valve 20 must be deactivated when it is fully open.
Les vannes 13 et 15 sont pilotées par l'indicateur de ni¬ veau 33 et en connexion avec la montée en concentration dans la boucle 7.The valves 13 and 15 are controlled by the level indicator 33 and in connection with the increase in concentration in the loop 7.
La vanne de rétentat 8 du premier étage est asservie à la pression transmembranaire du premier étage (Ptmi» ) selon une équation donnée reliée à une consigne C3 , propre à l'évolution de cette Pu dans le temps.The retentate valve 8 of the first stage is slaved to the first stage transmembrane pressure (Ptmi ") according to a given equation linked to a setpoint C3, specific to the evolution of this Pu over time.
Si Ptmi est supérieur à C3 , la vanne 8 doit être ouverte progressivement et elle doit être fermée progressivement si Pt mi est inférieur à C3.If Ptmi is greater than C3, the valve 8 must be opened gradually and it must be closed gradually if Pt mi is less than C3.
La vanne de rétentat 12 du second étage est asservie à QF2 et à QA > et en relation avec la consigne C2 •The retentate valve 12 of the second stage is slaved to Q F2 and to Q A> and in relation to the setpoint C2 •
Le fonctionnement de l'unité qui vient d'être décrite est le suivant.The operation of the unit which has just been described is as follows.
Au démarrage, les vannes 8 et 12 sont ouvertes et les vannes 17 et 20 sont fermées pour le remplissage des cir¬ cuits pendant un certain temps.At start-up, the valves 8 and 12 are open and the valves 17 and 20 are closed for filling the cir¬ cuits for a certain time.
Lorsque les circuits sont remplis, on laisse les vannes 17 et 20 s'ouvrir selon la régulation indiquée précédem¬ ment. La phase de démarrage est terminée lorsque la van¬ ne 17 est complètement ouverte.When the circuits are filled, the valves 17 and 20 are left to open according to the regulation indicated previously. The start-up phase is finished when the valve 17 is completely open.
Le système est régulé ensuite automatiquement en fonc¬ tion des diverses consignes préaffichées et de la vites¬ se de remplissage de la cuve 14 qui reçoit le rétentat et pilote l'unité.The system is then automatically regulated according to the various pre-displayed instructions and the filling speed of the tank 14 which receives the retentate and controls the unit.
En fin d'opération, on doit prévoir l'arrêt de la pompe d'alimentation 2 et de la pompe 4 du premier étage dès que la cuve d'alimentation 1 est vide. Si la contenance V2 totale de la cuve 14 est inférieure ou égale au volu¬ me de rétentat final VR F , on doit également arrêter la pompe 9 du second étage. Si V2 est supérieur à VR F ,on- ferme la vanne 8 et on continue la recirculation dans le second étage 7 jusqu'à ce que V2 = VRF pour atteindre la concentration finale maximale prévue. Une impulsion inverse (back puise) est envoyée sur la li¬ gne 24, après la phase de démarrage, sur le premier éta¬ ge 3 lorsque QFI est inférieur à une valeur de consigne QFI mi ni à fixer, et sur le second étage quand QFÎ est inférieur à une valeur de consigne QF2 mi ni à fixer. En variante, on peut effectuer un déclenchement à interval¬ les réguliers réglables entre 1 et 30 minutes. La durée d'ouverture de la vanne réglable est de 0,1 à 2 s. Les sorties de perméat sont fermées par les vannes rapides 16 et 19.At the end of the operation, provision must be made to stop the feed pump 2 and the pump 4 of the first stage as soon as the feed tank 1 is empty. If the total capacity V2 of the tank 14 is less than or equal to the volume of final retentate V RF , the pump 9 of the second stage must also be stopped. If V2 is greater than V RF , the valve 8 is closed and recirculation is continued in the second stage 7 until V 2 = V RF to reach the maximum expected final concentration. A reverse pulse (back pulse) is sent on line 24, after the start-up phase, on the first stage 3 when QFI is less than a set value QFI mi or to be set, and on the second stage when QFÎ is less than a set point QF2 mi nor to be set. Alternatively, it is possible to trigger at regular intervals adjustable between 1 and 30 minutes. The adjustable valve opening time is 0.1 to 2 s. The permeate outlets are closed by quick valves 16 and 19.
Les échangeurs de température 5 et 10 sont pilotés res¬ pectivement par les températures mesurées par les cap¬ teurs 25 et 29.The temperature exchangers 5 and 10 are controlled respectively by the temperatures measured by the sensors 25 and 29.
Le dispositif qui vient d'être décrit peut être piloté par un ordinateur interrogeable à distance grâce à des équations permettant l'établissement de consignes de fonctionnement et également d'abaques.The device which has just been described can be controlled by a computer which can be interrogated remotely by means of equations allowing the establishment of operating instructions and also of charts.
Le procédé selon l'invention se prête à la réalisation d'une unité pilote afin de définir, avec des essais sim¬ ples, une unité industrielle et de la dimensionner avec précision.The method according to the invention lends itself to the production of a pilot unit in order to define, with simple tests, an industrial unit and to size it with precision.
Il s'applique à tous les milieux filtrants utilisables en osmose inverse, en ultrafiltration comme en microfiltra¬ tion tangentielle. It applies to all filter media usable in reverse osmosis, in ultrafiltration as in tangential microfiltra¬ tion.

Claims

Revendications claims
1. Procédé de séparation par microfiltration tangentiel¬ le, osmose inverse ou ultrafiltration à deux étages (3,7), le premier étage (3) étant alimenté en continu en liqui¬ de à filtrer et fonctionnant à concentration constante, caractérisé en ce qu'on amène le rétentat issu du pre¬ mier étage (3) à un second étage (7) fonctionnant à con¬ centration croissante grâce à une cuve (14) incorporée dans sa boucle, ladite cuve récupérant le rétentat ainsi concentrable avec précision à des valeurs élevées et pi¬ lotant l'ensemble selon sa vitesse de remplissage en ré¬ tentat.1. Separation process by tangential microfiltration, reverse osmosis or two-stage ultrafiltration (3,7), the first stage (3) being continuously supplied with liquid to be filtered and operating at constant concentration, characterized in that the retentate from the first stage (3) is brought to a second stage (7) operating at increasing concentration thanks to a tank (14) incorporated in its loop, said tank recovering the retentate thus precisely concentrable at high values and batching the assembly according to its filling speed in re¬ tent.
2. Procédé selon la revendication 1, caractérisé en ce qu'on mesure en temps réel les débits de perméat dans chaque étage (3,7), la pression du réten¬ tat avant et après passage dans un module de microfiltra- tion tangentielle (6,11) de chaque étage (3,7) et les pressions de liquide avant et après filtration, dans cha¬ que étage (3,7), ainsi que la vitesse de déplacement du niveau dans ladite cuve (14) et on asservit l'écoulement dans les étages (3,7), entre le? étages (3,7) et entre le second étage (7) et la cuve (14) en fonction de don¬ nées préétablies et de ladite vitesse de déplacement me¬ surée.2. Method according to claim 1, characterized in that the permeate flow rates in each stage (3,7) are measured in real time, the pressure of the reten¬ tate before and after passage through a tangential microfiltra- tion module ( 6.11) of each stage (3.7) and the liquid pressures before and after filtration, in each stage (3.7), as well as the speed of movement of the level in said tank (14) and it is controlled the flow in the stages (3,7), between the? stages (3,7) and between the second stage (7) and the tank (14) as a function of pre-established data and of said measured speed of movement.
3. Unité de séparation par microfiltration tangentielle, osmose inverse ou ultrafiltration à deux étages (3,7) pour la mise en oeuvre du procédé selon l'une des reven¬ dications 1 et 2, caractérisée en ce qu'elle comprend un premier étage (3) alimenté en continu à partir d'une cuve (1) ou d'une ca¬ nalisation, ledit premier étage (3) comprenant dans sa boucle un ou plusieurs modules de filtration tangentiel¬ le en série ou parallèle (6) et fonctionnant à concentra¬ tion constante, ledit premier étage (3) étant relié au second étage (7) comprenant dans sa boucle un ou plu¬ sieurs modules de microfiltration tangentielle (11), la¬ dite boucle étant reliée à une cuve intermédiaire (14) de récupération du rétentat.3. Separation unit by tangential microfiltration, reverse osmosis or two-stage ultrafiltration (3,7) for implementing the method according to one of claims 1 and 2, characterized in that it comprises a first stage (3) supplied continuously from a tank (1) or from a pipe, said first stage (3) comprising in its loop one or more tangential filtration modules in series or parallel (6) and operating at constant concentration, said first stage (3) being connected to the second stage (7) comprising in its loop one or more tangential microfiltration modules (11), the said loop being connected to an intermediate tank (14) for retentate recovery.
4. Unité selon la revendication 3, caractérisée en ce que chaque étage (3,7) comprend une pompe de circulation (2,9) pour le mélange à filtrer, une vanne asservie (8,12) de circulation du rétentat et une vanne asservie (17,20) de circulation du perméat, lesdi- tes vannes (8,12 ; 17,20) étant asservies aux valeurs me¬ surées dans chaque étage (3,7) par des débitmètres de perméat (18,21), des capteurs de pression à l'entrée (26, 30) et de sortie (27,31) des modules de filtration (6,11), ainsi qu'à la valeur du niveau dans la cuve (14) du se¬ cond étage (7) mesurée par un capteur (33).4. Unit according to claim 3, characterized in that each stage (3,7) comprises a circulation pump (2,9) for the mixture to be filtered, a controlled valve (8,12) for circulation of the retentate and a valve controlled (17,20) permeate circulation, said valves (8,12; 17,20) being controlled by the values measured in each stage (3,7) by permeate flowmeters (18,21), pressure sensors at the inlet (26, 30) and outlet (27,31) of the filtration modules (6,11), as well as at the level value in the tank (14) on the second floor (7) measured by a sensor (33).
5. Unité selon l'une des revendications 3 et 4, caractérisée en ce qu'elle comprend une ligne (24) de dé¬ clenchement d'une impulsion inverse (back puise) sur le premier étage (3) ou le second étage (7).5. Unit according to one of claims 3 and 4, characterized in that it comprises a line (24) of triggering of a reverse pulse (back draw) on the first stage (3) or the second stage ( 7).
6. Unité selon la revendication 5, caractérisée en ce que le déclenchement de ladite impul¬ sion inverse sur l'un ou l'autre étage (3,7) est effec¬ tué lorsque le débit de perméat dans l'étage correspon¬ dant est inférieur à une valeur minimale prédéterminée.6. Unit according to claim 5, characterized in that the triggering of said reverse impul¬ sion on one or the other stage (3,7) is effec¬ killed when the permeate flow in the correspon¬ dant stage is less than a predetermined minimum value.
7. Unité selon la revendication 5, caractérisée en ce que le déclenchement de ladite impul¬ sion inverse est produit périodiquement sur les deux éta¬ ges (3,7). 7. Unit according to claim 5, characterized in that the triggering of said reverse impul¬ sion is produced periodically on the two éta¬ ages (3,7).
PCT/FR1990/000949 1989-12-29 1990-12-27 Separation method and device using tangential microfiltration, reverse osmosis, or two-stage ultrafiltration WO1991009667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR89/17422 1989-12-29
FR8917422A FR2656544B1 (en) 1989-12-29 1989-12-29 METHOD AND UNIT FOR SEPARATION BY TANGENTIAL MICROFILTRATION, REVERSE OSMOSIS OR TWO - STAGE ULTRAFILTRATION.

Publications (1)

Publication Number Publication Date
WO1991009667A1 true WO1991009667A1 (en) 1991-07-11

Family

ID=9389130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000949 WO1991009667A1 (en) 1989-12-29 1990-12-27 Separation method and device using tangential microfiltration, reverse osmosis, or two-stage ultrafiltration

Country Status (3)

Country Link
EP (1) EP0507827A1 (en)
FR (1) FR2656544B1 (en)
WO (1) WO1991009667A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001059A1 (en) 1990-07-05 1992-01-23 Celltech Limited Cdr grafted anti-cea antibodies and their production
FR2693474A1 (en) * 1992-07-09 1994-01-14 Garin Daniel Water contaminating microorganism sepn. and concn. to detect entero viruses - by on site sampling and tangential ultrafiltration for virus recovery
US6652898B2 (en) 2001-02-15 2003-11-25 Niro Holding A/S Process for producing a milk or whey product having a reduced spores and bacteria content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0095850A1 (en) * 1982-05-16 1983-12-07 Nitto Electric Industrial Co., Ltd. Process for purification of crude glyceride oil compositions
EP0250019A2 (en) * 1986-06-16 1987-12-23 Promac B.V. Device for making potable water
WO1988005444A1 (en) * 1987-01-19 1988-07-28 Casco Nobel Ab Method and plant for separation of synthetic water soluble polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0095850A1 (en) * 1982-05-16 1983-12-07 Nitto Electric Industrial Co., Ltd. Process for purification of crude glyceride oil compositions
EP0250019A2 (en) * 1986-06-16 1987-12-23 Promac B.V. Device for making potable water
WO1988005444A1 (en) * 1987-01-19 1988-07-28 Casco Nobel Ab Method and plant for separation of synthetic water soluble polymers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001059A1 (en) 1990-07-05 1992-01-23 Celltech Limited Cdr grafted anti-cea antibodies and their production
FR2693474A1 (en) * 1992-07-09 1994-01-14 Garin Daniel Water contaminating microorganism sepn. and concn. to detect entero viruses - by on site sampling and tangential ultrafiltration for virus recovery
US6652898B2 (en) 2001-02-15 2003-11-25 Niro Holding A/S Process for producing a milk or whey product having a reduced spores and bacteria content

Also Published As

Publication number Publication date
EP0507827A1 (en) 1992-10-14
FR2656544A1 (en) 1991-07-05
FR2656544B1 (en) 1994-02-25

Similar Documents

Publication Publication Date Title
EP0121105B1 (en) Filtering device for liquids
US5198116A (en) Method and apparatus for measuring the fouling potential of membrane system feeds
FR2681258A1 (en) Process and device for controlling the cleaning of a filter by reverse flow
EP0499509A1 (en) Improved process and apparatus for filtration in a tangential and unsteady liquid flow
Redkar et al. Crossflow microfiltration of yeast suspensions in tubular filters
EP2040826B1 (en) Tangential filtration device
Chen Performance of partially permeable microfiltration membranes under low fouling conditions
FR2586202A1 (en) Processes and devices for unblinding a tangential filter while operating
EP0470015B1 (en) Process for cleaning in crossflow microfiltration
US3452586A (en) Automatic fuel filter monitor
FR2571271A1 (en) METHOD AND INSTALLATION OF LONG-LASTING ULTRAFILTRATION OF A LIQUID
WO1991009667A1 (en) Separation method and device using tangential microfiltration, reverse osmosis, or two-stage ultrafiltration
Iritani et al. Analysis of dead-end ultrafiltration based on ultracentrifugation method
US6402954B1 (en) Method and apparatus for monitoring and cleaning a fluid filter system
Iritani et al. Analysis of filtration mechanism of crossflow upward and downward ultrafiltration
CN217425085U (en) Movable ultrafiltration membrane simulation evaluation device
JP2003210949A (en) Method and apparatus for detecting breakage of membrane of membrane filtration apparatus
JP7387651B2 (en) Systems and related methods for filtration
Shirato et al. Experimental analysis of flux decline mechanism of batch ultrafiltration (filtration characteristics of gel layer)
WO2020030956A1 (en) Methods and apparatus for determining a fouling index
FR2677895A1 (en) Membrane filtration plant with unblocking control
FR2924952A1 (en) Autonomous system for potabilizing brackish and/or polluted water, comprises pipes for circulating water, a unit for capturing renewable energy, a unit for controlling electronic and/or informatic set, and an automatic control unit
SU1684544A1 (en) Method and apparatus for automatic analysis of cleanness of service fluid when washing hydraulic system
Belfort et al. Automated hollow fiber ultrafiltration: pyrogen removal and phage recovery from water
FR2931146A1 (en) Controlling integrity of filtration membranes with plates or tubes or filtration membrane modules in a wastewater treatment installation, comprises circulating water through movable system for detection of leaks of suspension materials

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991901819

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991901819

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991901819

Country of ref document: EP