WO1991009229A1 - Accurate peristaltic pump - Google Patents
Accurate peristaltic pump Download PDFInfo
- Publication number
- WO1991009229A1 WO1991009229A1 PCT/US1990/002336 US9002336W WO9109229A1 WO 1991009229 A1 WO1991009229 A1 WO 1991009229A1 US 9002336 W US9002336 W US 9002336W WO 9109229 A1 WO9109229 A1 WO 9109229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubing
- diameter
- peristaltic
- pump
- infusion
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14212—Pumping with an aspiration and an expulsion action
- A61M5/14228—Pumping with an aspiration and an expulsion action with linear peristaltic action, i.e. comprising at least three pressurising members or a helical member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/08—Machines, pumps, or pumping installations having flexible working members having tubular flexible members
- F04B43/082—Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular flexible member being pressed against a wall by a number of elements, each having an alternating movement in a direction perpendicular to the axes of the tubular member and each having its own driving mechanism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/60—General characteristics of the apparatus with identification means
- A61M2205/6036—General characteristics of the apparatus with identification means characterised by physical shape, e.g. array of activating switches
Definitions
- the present invention relates in general to peristaltic pumps and in particular to Improving the accuracy of such peristaltic pumps.
- Intravenous fluids to a patient is well known in the art.
- a solution such as saline, glucose or electrolyte in a glass or flexible container is fed to a patient's venous access site via a length of flexible plastic tubing such as polyvinyl chloride (PVC) tubing.
- PVC polyvinyl chloride
- the rate of flow of the fluid is controlled by a roller clamp which is adjusted to restrict the flow lumen of the tubing until the desired flow rate is obtained.
- Flow from the container to the patient may also be regulated by means other than a roller clamp. It is becoming more and more common to use an electronically controlled pump.
- One type of pump that is used for Intravenous fluid is regulated by means other than a roller clamp.
- administration is a peristaltic-type pump.
- peristaltic pumping action is particularly well suited for the medical field. This is because peristaltic pumping action can be applied externally of the tubing carrying the intravenous fluid. This maintains the sterile condition of the intravenous fluid within the tubing while imparting fluid propulsion on the fluid. The peristaltic pumping action can also be applied at any point on the tubing.
- a peristaltic pump is also particularly useful as the pump can be applied at any point on tubing to provide fluid propulsion.
- a driving motor is connected to an array of cams angularly spaced from each other.
- the cams in turn drive cam followers connected to corresponding pressure fingers.
- These elements cooperate to impart a linear wave motion on the pressure fingers.
- a pressure plate 1s secured juxtaposed and spaced from the pressure fingers. The pressure plate holds the tubing against the reciprocating pressure fingers to Impart the wave motion on the tubing to propel the fluid.
- a problem associated with peristaltic pumps of this type is that over long periods of infusion such as 24 hours or longer, the diameter of the tubing can vary. If the diameter of the tube changes, the flow rate will also change. This variance can result from a change in the temperature of the fluid being infused, a change in the air temperature in the room, a variance in the downstream pressure from the patient resistance, a variance in the upstream pressure from the source of fluid, and a breakdown in the resiliency in the tubing subject to the pumping action.
- Hysteresis can be solved manually by changing the orientation of the tubing, thereby exposing a different length of tubing to the pumping action. This solution is not satisfactory for several reasons. Initially, moving the tubing results in an Interruption of the fluid flow. Additionally, a nurse or other hospital worker must take the time to move the tubing.
- Another solution is to speed up the rate of the motor during infusion according to a predetermined schedule. While this will result in an improved delivery accuracy, it is also not entirely satisfactory for several reasons. Initially, small variances in the tubing width can result in a different infusion rate from one segment of tubing to another. In addition, each segment of tubing exhibits a different rate of breakdown in resiliency. Further, if the tubing is replaced or the orientation of the pressure fingers is changed on the same tubing, the predetermined schedule of rate increase may actually result in a decrease in accuracy. Finally, this system falls to account for other causes of diameter variance.
- the present invention provides a method and apparatus for improving the accuracy of fluid flow in a peristaltic pump.
- a method is provided for changing the speed of the driving motor as a function of changes in the minor diameter of the tubing carrying the fluid.
- the method includes measuring the minor diameter of the tubing, comparing the measurement of the tubing minor diameter with a previous measurement of the minor diameter of the tubing, and changing the motor drive speed as a function of the change in the diameter of the tubing in conjunction with the time elapsed and the selected rate of infusion.
- An apparatus is provided to effectuate this method.
- the apparatus of the present invention includes a standard
- peristaltic pumping apparatus driven by a drive motor.
- Juxtaposed opposite the pressure fingers is a pressure plate which secures the tubing between the pressure plate and the pressure fingers.
- the device includes means for measuring the diameter of the tubing, which in a preferred embodiment is a linear variable differential transformer (LVDT) mounted in the pressure plate of the peristaltic pump juxtaposed to the pressure fingers.
- the measuring means Includes an output which is fed into a microprocessing means.
- the microprocessing means includes a comparator means.
- the comparator means compares the minor diameter of the tubing as measured at various time intervals to a previous reading of the tubing minor diameter derived from the measuring means.
- the microprocessor regulates the speed of the driving motor, changing the driving speed as a function of the change in minor diameter of the tubing in conjunction with the elapsed time and the selected rate of infusion.
- FIGURE 1 is a perspective view of an intravenous pump set utilizing a peristaltic pumping apparatus
- FIGURE 2 is a schematic of a peristaltic pumping apparatus in accordance with the principles of the present invention
- FIGURE 3 is a block diagram of the operating electronics of a peristaltic pumping apparatus
- FIGURE 4 is a flow chart of a method of operation in accordance with the principles of the present invention
- FIGURE 5 is a graph showing the improved flow rate of a peristaltic pump utilizing the principles of the present invention over time.
- FIGURE 1 is an Illustration of an intravenous
- Pump 20 which is provided with a pump operating mechanism and operating electronics (not shown), is mounted on an I.V. stand 22 which also serves as a support for the intravenous fluid container 24.
- An administration set 10 provides a flow path from container 24 to the patient via pump 20.
- Set 10 includes a segment of flexible plastic tubing 26 such as polyvinyl chloride (PVC) tubing.
- PVC polyvinyl chloride
- Tubing 26 at its proximal end is attached to a drip chamber 28 that in turn is attached via a spike (not shown) to an outlet port 30 of container 24.
- a clamping means such as a roller clamp 32 is positioned on tubing 26 at a point between pump 20 and container 24.
- Tubing 26 has connected at Its distal end means for connecting set 10 to a vein access device, such as a catheter or needle (not shown).
- Pump 20 includes a hinged door 36 which covers the peristaltic pumping apparatus hardware. To set up pump 20, door 36 is opened, tubing 26 is inserted into the peristaltic pumping apparatus as described in detail below, door 36 is closed, and pump 20 is activated. Pump 20 also defines apertures 38 at the upper and lower (not shown) peripheries of the door 36 through which the tubing 26 extends when door 36 is closed. While the embodiment depicted in FIGURE 1 includes a dual drive peristaltic pump, the present Invention contemplates use of any number of pump drives in a single peristaltic pump.
- FIGURE 2 a general schematic of a peristaltic pumping apparatus is seen.
- a driving motor 42 is connected to a plurality of cams 44a-h via a drive shaft 46. While in the embodiment depicted in FIGURE 2 eight cams are utilized, any number of cams are contemplated in the present invention.
- Each cam 44 is angularly displaced from the adjacent cam.
- the plurality of angularly displaced cams 44a-h are journaled in housing 48 which enables rotation in
- a plurality of reciprocating pressure fingers 50a-h are provided, the number of which correspond to the number of cams 44a-h.
- Each pressure finger 50 cooperates with a corresponding cam 44 by acting as a cam follower to reciprocally drive the pressure finger 50.
- the rotational movement of the drive shaft 46 1s thus converted Into a linear wave movement of the plurality of reciprocating pressure fingers 50a-h.
- a pressure plate 54 is provided located juxtaposed to the pressure fingers 50a-h and extending parallel to the axis of the cams. Tubing 26 is contained between the pressure fingers 50 and the pressure plate 54. Fluid propulsion is effectuated by the pressure fingers 50a-h squeezing the tubing 26 in the linear wave movement Imparted by the angular orientation of the cams 44a-h.
- the present device further includes means for measuring the diameter of the tubing 26 positioned juxtaposed to the pressure fi ngers 50.
- the measuring means is a linear variable differential transformer (LVDT) 54 as known in the art.
- LVDT linear variable differential transformer
- Such linear variable differential transformer (LVDT) 54 devi ce measures and converts linear displacement into an analog signal.
- use of other types of measuring means such as, for example, optical, ultrasonic, hydraulic, mechanical, or electrical, are also contemplated by the present invention.
- FIGURE 3 a schematic block diagram of the control circuit of a device in accordance with the principles of the present invention is shown.
- a standard entry keyboard 100 as known i n the art i s provi ded which is used to input user controlled parameters of the infusion, such as, for example, the flow rate of infusion, the time of infusion, etc., into a microprocessor 110.
- the user controlled parameters are stored in random access memory (RAM) provided in the
- mi croprocessor 110 A standard di splay 120 i s provided as known in the art which displays the users' chosen parameters.
- the drive motor 42 is controlled via a driving signal generated by the microprocessor 110.
- a power source 130 provides power to the various components.
- the adjustment to the driving motor is made as a function of time of infusion (t), the rate of infusion (R), and the change in tubing diameter ( ⁇ D), as seen below:
- the rate of infusion is preselected by the user or inputted via keyboard into the microprocessor.
- the time of infusion is measured via means provided in the microprocessor.
- the change in tubing diameter is provided to the microprocessor as measured by means for measuring the external diameter of tubing.
- the means for measuring the external diameter of the tubing is a linear variable differential transformer (LVDT) 54.
- the analog signal from the linear variable differential transformer (LVDT) is entered Into the microprocessor 110 random access memory (RAM) to be utilized in generating the driving signal, as will be discussed in detail below.
- FIGURE 4 a flow diagram of a method of infusion in accordance with the present invention is seen.
- the variables RTDC, RBDC, as well as the time variable T are set 212 to zero while an initial delay period counter DLCTR is initialized 214 to a predetermined number.
- the Initial delay is provided so that Initial transients in the motor driving system as well as in the tubing resiliency behavior are eliminated.
- the delay period can be five (5) minutes.
- the delay counter 218 proceeds to count down.
- the delay counter is then compared 220 to the set parameter zero.
- an initial diameter reading of the tubing is taken by the linear variable differential transformer (LVDT).
- a measurement is taken at the top dead center 222 of the pump cycle, which is assigned the variable RTDC, as well as at the bottom dead center 224 of the pump cycle, which is assigned the variable RBDC.
- the top dead center refers to the external diameter of the portion of the tubing to which the peristaltic action is applied when no pressure fingers are contacting the tubing.
- the bottom dead center refers to the external diameter of the portion of the tubing to which the peristaltic action is applied when that portion of the tubing is occluded. While it is the internal diameter of this tubing that effects the flow rate of the fluid and the external diameter of the tubing is being measured, the change in tubing thickness over time is negligible. Thus, the difference in the external diameter of the tubing at top dead center and bottom dead center gives the change in minor diameter of the tubing internally and
- the initially circular tubing slowly changes from a circle to an ellipse to an oval.
- the minor diameter of the tubing is measured as the smallest diameter of the tubing as the circular tubing slowly changes from a circle to an ellipse to an oval.
- the difference between these readings D t is determined 226 and is stored in microprocessor random access memory (RAM).
- countdown variable HRCTR is Initialized 228 to a predetermined time period after which a new measurement of the minor diameter of the tubing will be made. In the preferred embodiment, this countdown variable is set at one hour.
- time variable T is incremented 230 by one count, which keeps tabs on the number of time periods which have passed.
- the microprocessor begins counting down 232.
- the countdown variable HRCTR is then compared 234 to the set parameter zero.
- a second diameter reading of the tube is taken by the linear variable differential transformer (LVDT). Again, a reading is taken at top dead center RTDC 236 and at the bottom dead center RBDC 238.
- the bottom dead center reading RBDC is subtracted from the top dead center reading RTDC to determine 240 a second minor diameter reading D t+1 of the tube.
- the adjustment of the driving motor is made as a function of time of infusion, rate of infusion, and the change in diameter.
- the rate of infusion as preselected by the user is read 242 from the random access memory (RAM) while the time variable T is utilized for the time of infusion.
- RAM random access memory
- the change in tube diameter ⁇ D is determined 246 by taking the difference between the initial diameter D t
- variable A is then used to adjust 250 the speed of the driving motor.
- the time variable T is compared 252 with an upper time limit which is determined as the length of time after which the tube should be replaced.
- upper time limit can be about seventy-two (72) hours. If the time variable T exceeds the upper time limit, an alarm 2541s sounded in the pump display instructing the user to replace the IV set. If the upper time limit Is not exceeded, the count down variable HRCTR is again initialized 228 and the time variable T is incremented 230 by one for an additional tube diameter measurement D (t+2).
- the flow rate R is again read 242.
- the change in tube diameter ⁇ D is determined 246 by taking the difference between the previous diameter reading D (t+ 1) of the tubing and the new diameter reading D (t+2) of the tubing.
- the change in tubing diameter ⁇ D at any time t is calculated as follows:
- the change is again determined 248 by the microprocessor and the speed of the driving motor is adjusted 250 to maintain a constant infusion rate in accordance with the preferred formula. This process is repeated until the time variable T exceeds 252 the upper time limit and the alarm 254 is sounded to replace the Intravenous set.
- FIGURE 5 a graph is shown demonstrating the increase in accuracy of a peristaltic pump in accordance with the present invention.
- the graph depicts the percentage error in flow rate of a peristaltic pump as a function of time of infusion in hours.
- Line A a standard IV tubing available as a set from Baxter Healthcare Corporation, Deerfield, Illinois 60015, was tracked for 100 hours at a flow rate of 70 ml/hr. utilizing a standard prior art pump.
- Line B shows the rate of infusion as calculated in accordance with the preferred formula of the present invention.
- the improvement in accuracy decay in this example is seen with a resultant accuracy drop of about 1%.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Reciprocating Pumps (AREA)
- Fluid-Driven Valves (AREA)
- Jet Pumps And Other Pumps (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02507799A JP3127377B2 (en) | 1989-12-14 | 1990-04-30 | High precision peristaltic pump |
DE69010194T DE69010194T2 (en) | 1989-12-14 | 1990-04-30 | PRECISION PERISTAL PUMP. |
EP90907702A EP0458910B1 (en) | 1989-12-14 | 1990-04-30 | Accurate peristaltic pump |
NO913146A NO178084C (en) | 1989-12-14 | 1991-08-13 | Method for cycle-dependent fluid transfer of pump, and pump apparatus and device for infusion of fluid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/451,269 US5018945A (en) | 1989-12-14 | 1989-12-14 | Accurate peristaltic pump |
US451,269 | 1989-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991009229A1 true WO1991009229A1 (en) | 1991-06-27 |
Family
ID=23791523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/002336 WO1991009229A1 (en) | 1989-12-14 | 1990-04-30 | Accurate peristaltic pump |
Country Status (8)
Country | Link |
---|---|
US (1) | US5018945A (en) |
EP (1) | EP0458910B1 (en) |
JP (1) | JP3127377B2 (en) |
AU (1) | AU631877B2 (en) |
CA (1) | CA2045609C (en) |
DE (1) | DE69010194T2 (en) |
NO (1) | NO178084C (en) |
WO (1) | WO1991009229A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0513421A1 (en) * | 1991-05-17 | 1992-11-19 | Fresenius AG | Device for measuring the volume of blood treated during haemodialysis |
WO1995010310A1 (en) * | 1993-10-11 | 1995-04-20 | Gambro Ab | Method for calibrating a pump segment used in a peristaltic pump and a medical machine adapted for carrying out the method |
US7648477B2 (en) | 2001-12-27 | 2010-01-19 | Gambro Lundia Ab | Process for controlling blood flow in an extracorporeal blood circuit |
US8388567B2 (en) | 2007-04-12 | 2013-03-05 | Gambro Lundia Ab | Apparatus for extracorporeal blood treatment |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5803712A (en) | 1988-05-17 | 1998-09-08 | Patient Solutions, Inc. | Method of measuring an occlusion in an infusion device with disposable elements |
US5813842A (en) * | 1989-09-22 | 1998-09-29 | Tamari; Yehuda | Pressure sensitive valves for extracorporeal pumping-3 |
US5458578A (en) * | 1991-12-02 | 1995-10-17 | I-Flow Corporation | Infusion pump tube |
ATE226282T1 (en) * | 1992-06-09 | 2002-11-15 | Baxter Int | PROGRAMMABLE INFUSION PUMP WITH INTERCHANGEABLE TUBING |
JP3320179B2 (en) * | 1993-12-17 | 2002-09-03 | シャープ株式会社 | Infusion pump |
US5609575A (en) * | 1994-04-11 | 1997-03-11 | Graseby Medical Limited | Infusion pump and method with dose-rate calculation |
US5628619A (en) * | 1995-03-06 | 1997-05-13 | Sabratek Corporation | Infusion pump having power-saving modes |
US5795327A (en) * | 1995-03-06 | 1998-08-18 | Sabratek Corporation | Infusion pump with historical data recording |
US5904668A (en) * | 1995-03-06 | 1999-05-18 | Sabratek Corporation | Cassette for an infusion pump |
US5620312A (en) * | 1995-03-06 | 1997-04-15 | Sabratek Corporation | Infusion pump with dual-latching mechanism |
US5637093A (en) * | 1995-03-06 | 1997-06-10 | Sabratek Corporation | Infusion pump with selective backlight |
JP3698277B2 (en) * | 1995-11-28 | 2005-09-21 | テルモ株式会社 | Infusion pump |
US5782805A (en) * | 1996-04-10 | 1998-07-21 | Meinzer; Randolph | Medical infusion pump |
US6129876A (en) * | 1996-05-03 | 2000-10-10 | Baxter International Inc. | Heat setting of medical tubings |
US6328716B1 (en) | 1996-05-03 | 2001-12-11 | Baxter International Inc. | Method of using medical tubings in fluid administration sets |
US5741452A (en) * | 1996-05-03 | 1998-04-21 | Baxter International Inc. | Orienting extrusion processes for medical tubing applications |
US6187400B1 (en) | 1996-05-03 | 2001-02-13 | Baxter International Inc. | Medical tubing and pump performance enhancement by ionizing radiation during sterilization |
US5954702A (en) * | 1996-05-03 | 1999-09-21 | Baxter International Inc. | Interface geometry for adhesive bonds |
US5932307A (en) * | 1996-05-03 | 1999-08-03 | Baxter International Inc. | Oriented medical tubing |
US6036676A (en) * | 1996-05-03 | 2000-03-14 | Baxter International Inc. | Surface modified polymeric material formulation |
US6506333B1 (en) | 1996-05-03 | 2003-01-14 | Baxter International Inc. | Method of surface modifying a medical tubing |
US20030094736A1 (en) * | 1996-05-03 | 2003-05-22 | Chuan Qin | Method of surface modifying a medical tubing |
US6503221B1 (en) * | 1997-06-12 | 2003-01-07 | Abbott Laboratories | Temperature compensation system for regulating flow through tubing in a pump |
US6468242B1 (en) | 1998-03-06 | 2002-10-22 | Baxter International Inc. | Medical apparatus with patient data recording |
IL141137A0 (en) * | 2001-01-28 | 2002-02-10 | Caesaria Med Electronics Ltd | Liquid pump |
IL142446A (en) * | 2001-04-04 | 2009-07-20 | Caesarea Medical Electronics Ltd | Flow set and a method to identify said flow set by a liquid pump |
TW480733B (en) * | 2001-04-10 | 2002-03-21 | Ind Tech Res Inst | Self-aligned lightly doped drain polysilicon thin film transistor |
WO2003006101A2 (en) * | 2001-07-10 | 2003-01-23 | Medrad, Inc. | Devices, systems and method for infusion of fluids |
DE10246469A1 (en) | 2002-10-04 | 2004-04-15 | Applica Gmbh | Pump with peristaltic drive for medical applications, has cam segments with defined ratio between lamella height and stroke |
US20070088269A1 (en) * | 2005-09-30 | 2007-04-19 | Sherwood Services Ag | Medical pump with lockout system |
US7534099B2 (en) | 2005-09-30 | 2009-05-19 | Covidien Ag | Aliquot correction for feeding set degradation |
JP4924235B2 (en) * | 2006-08-01 | 2012-04-25 | セイコーエプソン株式会社 | Fluid transport system, fluid transport device |
US8517990B2 (en) | 2007-12-18 | 2013-08-27 | Hospira, Inc. | User interface improvements for medical devices |
US8105269B2 (en) * | 2008-10-24 | 2012-01-31 | Baxter International Inc. | In situ tubing measurements for infusion pumps |
US8137083B2 (en) * | 2009-03-11 | 2012-03-20 | Baxter International Inc. | Infusion pump actuators, system and method for controlling medical fluid flowrate |
US8277196B2 (en) | 2010-06-11 | 2012-10-02 | Tyco Healthcare Group Lp | Adaptive accuracy for enteral feeding pump |
US8858185B2 (en) * | 2010-06-23 | 2014-10-14 | Hospira, Inc. | Fluid flow rate compensation system using an integrated conductivity sensor to monitor tubing changes |
US8771228B2 (en) * | 2011-01-06 | 2014-07-08 | Carefusion 303, Inc. | IV pump adapted for generic tubing |
WO2013028497A1 (en) | 2011-08-19 | 2013-02-28 | Hospira, Inc. | Systems and methods for a graphical interface including a graphical representation of medical data |
US10022498B2 (en) | 2011-12-16 | 2018-07-17 | Icu Medical, Inc. | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
JP6306566B2 (en) | 2012-03-30 | 2018-04-04 | アイシーユー・メディカル・インコーポレーテッド | Air detection system and method for detecting air in an infusion system pump |
ES2743160T3 (en) | 2012-07-31 | 2020-02-18 | Icu Medical Inc | Patient care system for critical medications |
US9056166B2 (en) * | 2013-01-21 | 2015-06-16 | Baxter International Inc. | Infusion pump and method to enhance long term medication delivery accuracy |
US10046112B2 (en) | 2013-05-24 | 2018-08-14 | Icu Medical, Inc. | Multi-sensor infusion system for detecting air or an occlusion in the infusion system |
WO2014194065A1 (en) | 2013-05-29 | 2014-12-04 | Hospira, Inc. | Infusion system and method of use which prevents over-saturation of an analog-to-digital converter |
ES2838450T3 (en) | 2013-05-29 | 2021-07-02 | Icu Medical Inc | Infusion set that uses one or more sensors and additional information to make an air determination relative to the infusion set |
US10132302B2 (en) * | 2013-07-22 | 2018-11-20 | Baxter International Inc. | Infusion pump including reverse loading protection |
AU2015222800B2 (en) | 2014-02-28 | 2019-10-17 | Icu Medical, Inc. | Infusion system and method which utilizes dual wavelength optical air-in-line detection |
WO2015184366A1 (en) | 2014-05-29 | 2015-12-03 | Hospira, Inc. | Infusion system and pump with configurable closed loop delivery rate catch-up |
US11344668B2 (en) | 2014-12-19 | 2022-05-31 | Icu Medical, Inc. | Infusion system with concurrent TPN/insulin infusion |
WO2016133912A2 (en) * | 2015-02-16 | 2016-08-25 | The Regents Of The University Of Colorado, A Body Corporate | Pump with external controlled compression and methods of pumping with external controlled compression |
US10850024B2 (en) | 2015-03-02 | 2020-12-01 | Icu Medical, Inc. | Infusion system, device, and method having advanced infusion features |
US11357966B2 (en) * | 2015-04-23 | 2022-06-14 | B. Braun Medical Inc. | Compounding device, system, kit, software, and method |
EP3454922B1 (en) | 2016-05-13 | 2022-04-06 | ICU Medical, Inc. | Infusion pump system with common line auto flush |
EP3468635B1 (en) | 2016-06-10 | 2024-09-25 | ICU Medical, Inc. | Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion |
CN110267697B (en) | 2017-02-10 | 2022-04-29 | 巴克斯特国际公司 | Volume-based flow compensation techniques for infusion therapy |
US10089055B1 (en) | 2017-12-27 | 2018-10-02 | Icu Medical, Inc. | Synchronized display of screen content on networked devices |
WO2019155453A1 (en) | 2018-02-11 | 2019-08-15 | Avoset Health Ltd. | Flex-stroke infusion pump |
IL273061B2 (en) | 2019-03-04 | 2024-01-01 | Avoset Health Ltd | In cycle pressure measurement |
US11890451B2 (en) | 2019-03-05 | 2024-02-06 | Eitan Medical Ltd. | Anti-free-flow valve |
PL3715632T3 (en) * | 2019-03-26 | 2023-07-17 | Grifols, S.A. | Method for calibrating a peristaltic pump, method for dispensing a quantity of liquid by means of a peristaltic pump and device for producing sterile preparations that can execute said methods |
US11278671B2 (en) | 2019-12-04 | 2022-03-22 | Icu Medical, Inc. | Infusion pump with safety sequence keypad |
US20210178062A1 (en) * | 2019-12-11 | 2021-06-17 | Avoset Health Ltd. | Tube diameter recognition |
AU2021311443A1 (en) | 2020-07-21 | 2023-03-09 | Icu Medical, Inc. | Fluid transfer devices and methods of use |
US11135360B1 (en) | 2020-12-07 | 2021-10-05 | Icu Medical, Inc. | Concurrent infusion with common line auto flush |
CN117957370A (en) * | 2021-07-23 | 2024-04-30 | 沃特世科技公司 | Peristaltic pump with temperature compensated volume delivery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4210138A (en) * | 1977-12-02 | 1980-07-01 | Baxter Travenol Laboratories, Inc. | Metering apparatus for a fluid infusion system with flow control station |
US4231707A (en) * | 1978-01-31 | 1980-11-04 | Pilot Man-Nen-Hitsu Kabushiki Kaisha | Fluid supplying device |
US4299541A (en) * | 1977-11-29 | 1981-11-10 | Nikkiso Co., Ltd. | Infusion solution injecting pump |
US4373525A (en) * | 1980-02-12 | 1983-02-15 | Terumo Corporation | Method and apparatus for detecting occlusion in fluid-infusion tube of peristaltic type fluid-infusion pump |
US4604034A (en) * | 1983-05-03 | 1986-08-05 | Peritronic Medical Industries Plc | Peristaltic pumps |
US4702675A (en) * | 1984-08-07 | 1987-10-27 | Hospal A.G. | Peristaltic pump provided with a pressure measurement device |
US4715786A (en) * | 1984-12-14 | 1987-12-29 | Cole-Parmer Instrument Company | Control method and apparatus for peristaltic fluid pump |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3582234A (en) * | 1969-07-14 | 1971-06-01 | Technicon Corp | Method and apparatus for the calibration of tubing to provide for a desired flow rate therethrough |
US4217993A (en) * | 1977-12-02 | 1980-08-19 | Baxter Travenol Laboratories, Inc. | Flow metering apparatus for a fluid infusion system |
US4205238A (en) * | 1978-02-17 | 1980-05-27 | Baxter Travenol Laboratories, Inc. | Digital electronic apparatus and casette sized for intravenous fluid-flow limiting equipment |
US4213345A (en) * | 1978-07-25 | 1980-07-22 | W. C. Lamb | Pipe inspection system and method |
US4233549A (en) * | 1978-12-08 | 1980-11-11 | Baxter Travenol Laboratories, Inc. | Speed and torque control for fractional horsepower motors |
US4227420A (en) * | 1979-06-11 | 1980-10-14 | Baxter Travenol Laboratories, Inc. | Pressure coupling mechanism in a pressure monitoring assembly |
US4254460A (en) * | 1979-06-20 | 1981-03-03 | Baxter Travenol Laboratories, Inc. | Programmable controller |
US4394862A (en) * | 1980-08-25 | 1983-07-26 | Baxter Travenol Laboratories, Inc. | Metering apparatus with downline pressure monitoring system |
US4346705A (en) * | 1980-10-09 | 1982-08-31 | Baxter Travenol Laboratories, Inc. | Metering apparatus having rate compensation circuit |
JPS622898Y2 (en) * | 1981-06-09 | 1987-01-23 | ||
US4554492A (en) * | 1983-12-15 | 1985-11-19 | Baxter Travenol Laboratories, Inc. | Motor control system |
US4604166A (en) * | 1984-08-28 | 1986-08-05 | Amdev, Inc. | Apparatus and process for reducing peristaltic pump noise in a high impedance electrochemical measuring system |
US4692145A (en) * | 1984-10-15 | 1987-09-08 | American Hospital Supply Corporation | Power system for infusion pumps |
JPS6232969A (en) * | 1985-08-05 | 1987-02-12 | 日機装株式会社 | Infusion apparatus |
CA1274737A (en) * | 1985-08-08 | 1990-10-02 | Joanna Schoon | Method and apparatus for automatic profiled infusion in cyclic tpn |
US4690673A (en) * | 1985-11-26 | 1987-09-01 | Imed Corporation | Dual mode I.V. infusion device with distal sensor |
US4617014A (en) * | 1985-11-26 | 1986-10-14 | Warner-Lambert Company | Dual mode I. V. infusion device |
US4648869A (en) * | 1985-12-04 | 1987-03-10 | American Hospital Supply Corporation | Automatic infiltration detection system and method |
US4725205A (en) * | 1987-01-30 | 1988-02-16 | Fisher Scientific Group Inc. | Peristaltic pump with cam action compensator |
US4846792A (en) * | 1988-03-08 | 1989-07-11 | Baxter International Inc. | Automatic infiltration detection system and method |
-
1989
- 1989-12-14 US US07/451,269 patent/US5018945A/en not_active Expired - Lifetime
-
1990
- 1990-04-30 JP JP02507799A patent/JP3127377B2/en not_active Expired - Fee Related
- 1990-04-30 AU AU56662/90A patent/AU631877B2/en not_active Ceased
- 1990-04-30 DE DE69010194T patent/DE69010194T2/en not_active Expired - Fee Related
- 1990-04-30 CA CA002045609A patent/CA2045609C/en not_active Expired - Fee Related
- 1990-04-30 WO PCT/US1990/002336 patent/WO1991009229A1/en active IP Right Grant
- 1990-04-30 EP EP90907702A patent/EP0458910B1/en not_active Expired - Lifetime
-
1991
- 1991-08-13 NO NO913146A patent/NO178084C/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4299541A (en) * | 1977-11-29 | 1981-11-10 | Nikkiso Co., Ltd. | Infusion solution injecting pump |
US4210138A (en) * | 1977-12-02 | 1980-07-01 | Baxter Travenol Laboratories, Inc. | Metering apparatus for a fluid infusion system with flow control station |
US4231707A (en) * | 1978-01-31 | 1980-11-04 | Pilot Man-Nen-Hitsu Kabushiki Kaisha | Fluid supplying device |
US4373525A (en) * | 1980-02-12 | 1983-02-15 | Terumo Corporation | Method and apparatus for detecting occlusion in fluid-infusion tube of peristaltic type fluid-infusion pump |
US4604034A (en) * | 1983-05-03 | 1986-08-05 | Peritronic Medical Industries Plc | Peristaltic pumps |
US4702675A (en) * | 1984-08-07 | 1987-10-27 | Hospal A.G. | Peristaltic pump provided with a pressure measurement device |
US4715786A (en) * | 1984-12-14 | 1987-12-29 | Cole-Parmer Instrument Company | Control method and apparatus for peristaltic fluid pump |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0513421A1 (en) * | 1991-05-17 | 1992-11-19 | Fresenius AG | Device for measuring the volume of blood treated during haemodialysis |
WO1995010310A1 (en) * | 1993-10-11 | 1995-04-20 | Gambro Ab | Method for calibrating a pump segment used in a peristaltic pump and a medical machine adapted for carrying out the method |
US5733257A (en) * | 1993-10-11 | 1998-03-31 | Gambro Ab | Method for calibrating a pump segment used in a peristaltic pump and a medical machine adapted for carrying out the method |
US7648477B2 (en) | 2001-12-27 | 2010-01-19 | Gambro Lundia Ab | Process for controlling blood flow in an extracorporeal blood circuit |
US7824354B2 (en) | 2001-12-27 | 2010-11-02 | Gambro Lundia Ab | Process for controlling blood flow in an extracorporeal blood circuit |
US7993297B2 (en) | 2001-12-27 | 2011-08-09 | Gambro Lundia Ab | Apparatus for controlling blood flow in an extracorporeal blood circuit |
US8388567B2 (en) | 2007-04-12 | 2013-03-05 | Gambro Lundia Ab | Apparatus for extracorporeal blood treatment |
Also Published As
Publication number | Publication date |
---|---|
CA2045609C (en) | 1996-09-10 |
JP3127377B2 (en) | 2001-01-22 |
NO178084C (en) | 1996-01-17 |
DE69010194D1 (en) | 1994-07-28 |
JPH06510918A (en) | 1994-12-08 |
NO178084B (en) | 1995-10-09 |
NO913146D0 (en) | 1991-08-13 |
EP0458910B1 (en) | 1994-06-22 |
EP0458910A1 (en) | 1991-12-04 |
AU5666290A (en) | 1991-07-18 |
AU631877B2 (en) | 1992-12-10 |
NO913146L (en) | 1991-08-13 |
US5018945A (en) | 1991-05-28 |
EP0458910A4 (en) | 1992-03-11 |
CA2045609A1 (en) | 1991-06-15 |
DE69010194T2 (en) | 1994-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU631877B2 (en) | Accurate peristaltic pump | |
US6582393B2 (en) | Compensating drug delivery system | |
US4199307A (en) | Medical infusion system | |
US4313439A (en) | Automated, spring-powered medicament infusion system | |
US20040019321A1 (en) | Compensating drug delivery system | |
US5181910A (en) | Method and apparatus for a fluid infusion system with linearized flow rate change | |
US4559036A (en) | Apparatus for controlling administration of multiple intravenous solutions and medications | |
US4319568A (en) | Liquid dispensing apparatus | |
US5190522A (en) | Device for monitoring the operation of a delivery system and the method of use thereof | |
EP2190500B1 (en) | High precision infusion pumps | |
US20060181695A1 (en) | Compensating liquid delivery system and method | |
AU2006309126B2 (en) | Infusion pump having function keys | |
WO2009113075A1 (en) | Devices and methods for improving accuracy of fluid delivery | |
JP2887418B2 (en) | Peristaltic pump monitoring device and method | |
EP1135179B1 (en) | Flow regulator | |
Pankhurst et al. | Evaluation of a novel portable micro-pump and infusion system for drug delivery | |
US5105140A (en) | Peristaltic pump motor drive | |
GB2035094A (en) | Liquid dispensing apparatus | |
Voss | Parenteral infusion devices | |
GB2060401A (en) | Tube assembly for use in liquid dispensing apparatus | |
US20220370713A1 (en) | Infusion controller using inline feedback through integral flow measurement in tubing | |
Webb | Contemporary comments on infusion pumps | |
Palazzo et al. | Modern infusion pumps: are they accurate? | |
WO1986001413A1 (en) | Apparatus for feeding metered amount of liquid | |
CN115227905A (en) | Mechanical logic control method of extrusion type precision control infusion pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2045609 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990907702 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990907702 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1990907702 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: CA Ref document number: 2045609 Kind code of ref document: A Format of ref document f/p: F |