WO1991008614A1 - Device generating a frequency modulated signal of the 'ramp signal' type using a surface wave dispersive filter generation - Google Patents

Device generating a frequency modulated signal of the 'ramp signal' type using a surface wave dispersive filter generation Download PDF

Info

Publication number
WO1991008614A1
WO1991008614A1 PCT/FR1990/000868 FR9000868W WO9108614A1 WO 1991008614 A1 WO1991008614 A1 WO 1991008614A1 FR 9000868 W FR9000868 W FR 9000868W WO 9108614 A1 WO9108614 A1 WO 9108614A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
loop
frequency
voltage
Prior art date
Application number
PCT/FR1990/000868
Other languages
French (fr)
Inventor
Michel Chomiki
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Publication of WO1991008614A1 publication Critical patent/WO1991008614A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/173Wobbulating devices similar to swept panoramic receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B23/00Generation of oscillations periodically swept over a predetermined frequency range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0092Measures to linearise or reduce distortion of oscillator characteristics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop

Definitions

  • the present invention relates to a device for generating a frequency modulated signal of the kind
  • Pulse compression devices which equip almost all modern radars
  • FOURIER transformers which put implement the algorithm known as “Chirp Transform”.
  • the operation of these devices includes the generation of one or more signals, of fixed duration T, frequency modulated according to a linear law or not, e * that to simplify, we will call in what follows “ramp signals” .
  • dispersive filter SAW dispersive filter with surface waves
  • SAW dispersive filter
  • It is an analog filter, for example of the "RAC” type, comprising two acoustic channels provided with grooves engraved at 45 degrees.
  • Such surface wave filters are for example described in the article by Messrs RC Willia son and HL Smith “Large time bandwidth product surface waveroue compressor employing reflective gratings", published in the British review "Electronics Letters", volume 8, N ° 16, August 1972, pages 401 and 402.
  • a radar installation today very common, known as “pulse compression”, has been shown schematically.
  • the radar pulse 1 is applied in 2 to an electronic unit 3, comprising a dispersive filter SAW, therefore capable of transforming the fine pulse 1 into a signal 5 of duration T linearly modulated in frequency, and which will be conventionally called by the following "ramp signal” (although this designation is actually rather used in spectrum analyzers of the Transformer type of FOURIER), then to the transmitter 4.
  • This signal 5 is emitted by the transmitting antenna 6 towards the target 7, on which it is reflected to be, in return, received by the receiving antenna 8 of the installation (which can moreover be confused with the antenna 6).
  • the received signal is then applied to an electronic reception block 9, which includes a SAW dispersive filter complementary to that contained in block 4 (ie with an identical frequency / delay curve but with a slope of opposite sign), and which is therefore able to transform the ramp signal 5 back into a "fine" pulse, the real appearance of which is represented at 10.
  • a SAW dispersive filter complementary to that contained in block 4 (ie with an identical frequency / delay curve but with a slope of opposite sign), and which is therefore able to transform the ramp signal 5 back into a "fine" pulse, the real appearance of which is represented at 10.
  • the ramp signal generator concerned by the invention is therefore, in this application example, the electronic unit 3 (or, at least, contained in this electronic unit).
  • the characteristics of the compressed pulse output strongly depend on the residual phase error, i.e. on the difference between the phase of the signal obtained and the phase theoretical desired. In fact, this phase error creates malfunctions at the output, in particular poor reproducibility of the time-frequency law and distortions of the shape of the compressed pulse.
  • the multiplication-convolution part of a spectrum analyzer called "FOURIER transformer" with SAW dispersive filters has been represented schematically.
  • the electrical signal to be analyzed is applied at 11 to a multiplier 12 which receives at its other input 13 a ramp signal similar to the signal 5 of FIG.
  • the compressed pulse is altered by the phase error of the SAW dispersive filter 15 used to generate the ramp signal from the brief electric pulse 14.
  • This filter has residual phase errors which , after manufacture and acoustic correction (conventionally carried out by depositing on the substrate a metallic film of phase correction), nevertheless remain of the order of one to ten RMS degrees.
  • the invention aims to remedy these drawbacks due to the phase error of the SAW dispersive filters.
  • She relates to this effect to a frequency modulated signal generator of the "ramp signal” type, using a generation by dispersive surface wave filter, or "SAW dispersive filter”, this generator comprising a phase locked loop whose reference is constituted by the useful signal from this SAW dispersive filter and which receives a pre-positioning electrical voltage which is modulated by an instantaneous voltage representative of the inverse of the phase error, measured in advance, generated by this filter dispersive SAW, so that this phase locked loop reacts by introducing a phase shift which compensates for this phase error.
  • FIG. 3 is a block diagram of a first embodiment of this frequency modulated ramp signal generator
  • FIG. 5 is a block diagram of another embodiment of this frequency modulated ramp signal generator.
  • this device comprises a conventional device 19 for generating the ramp signal 20, comprising a dispersive filter SAW, driven, to generate this signal 20, by a fine pulse, or pulse of DIRAC, 21, and including conventional electronics (including, for example, an amplifier, a filter and possibly an Automatic Gain Control).
  • the ramp signal 20 is used as the reference signal of a phase locked loop 22 which operates as a phase shifter adjusted to correct the phase error of the SAW dispersive filter contained in block 19.
  • This phase locked loop includes a Voltage Controlled Oscillator, or VCO, 23, of which (conventionally) part of the output voltage at 24 is taken by a coupler 25 to be applied to a first input 26 of a comparator of phase 27.
  • the second input 28 of this comparator receives the reference signal which is constituted by the ramp signal 20, marred by the phase error to be corrected.
  • This phase error ⁇ is represented, as a function of time t and during the duration T of the signal modulated linearly in frequency 20, in diagram A of FIG. 4.
  • the error voltage at output 29 of the phase comparator 27 is applied to the first input of an adder 30, the other input 31 of which receives a prepositioning voltage Vp, whose variation curve as a function of time t and during the the aforementioned time period T is represented in diagram C of FIG. 4.
  • This variation law C is very particular, because it results from the modulation of a sawtooth voltage 32 (in phantom in Figure 4), which is itself capable of controlling the VCO 23 so that its voltage output 24 follows the same linear law of frequency variation as that followed by the ramp signal 20, by a variable voltage V / K, represented in diagram B of FIG. 4, which is equal to the inverse of the error according to diagram A but converted into voltage, K being the sensitivity of the phase comparator 27 in volts / degrees.
  • This law of variation comes from digital data recorded, after laboratory measurements, of the phase error specific to the SAW component used in block 19, in a PROM memory 37, and converted into pre-positioning voltage Ve according to curve C by a digital-analog converter 33.
  • this prepositioning signal Vp is adjusted as a function of the particular characteristics of the phase loop 22 (slope of the phase comparator 27, gain between the output 29 of this phase comparator and the control input 34 of the VCO 23, relative position of adder 30 and loop filter 36).
  • the output signal at 35 from the adder 30 is conventionally applied, via a loop filter 36, to the control input 34 of the V.C.O.
  • . in memory 37 is first loaded the voltage frequency law 32 of VCO 23; . at output 29 of the phase comparator 27 is measured the error error law C of the loop during the time interval T, law which is converted into phase taking into account the sensitivity K of the phase comparator 27; . the loading of the memory 37 is then modified point by point until the law noted 29 reproduces the inverse of the phase error ⁇ , possibly smoothed.
  • the bandwidth and the parameters of the loop are chosen so as to allow the correction of the phase error in the necessary band: in general only the relatively slow errors (some oscillations during the period T) are to be corrected.
  • the invention is not limited to the embodiment which has just been described.
  • the input (adder 30) of the prepositioning signal can be placed at another location between the output 29 of the comparator 27 and the control input 34 VCO 23, in this case after the loop filter 36 and not before.
  • the prepositioning and phase correction inputs can be separated: - prepositioning just before the VCO command input;
  • a frequency divider by N 38 can be incorporated between the coupler 25 and the input 26 of the phase comparator 27, so as to obtain the equivalent of a dispersive filter of bandwidth Bp / N followed by a frequency multiplier by N: in fact, the frequency band Bp covered by the ramp signal which is effectively at 24 is then, due to the divider 38, multiplied by the factor N.
  • the filter 36 advantageously includes a frequency band widening device to accelerate the repositioning of the VCO 23 during the return (falling edge) of the sawtooth 32, such a device being known per se.
  • the frequency modulated signal generator which has just been described can also be used as a ramp signal generator in the multiplication-convolution part of a spectrum analyzer of the transformer type of FOURIER, as well as as emission signal generator. of a pulse compression device.

Abstract

Generator producing a frequency modulated signal of the 'ramp signal' type (20) by means of SAW dispersive filter generation (19). The phase error inherent in the SAW component is corrected by a phase lock loop (22) which receives a prepositioning voltage (31) modulated by the inverse curve of this phase error. This prepositioning voltage is preloaded into a PROM memory (37).

Description

DISPOSITIF GENERATEUR D'UN SIGNAL MODULE EN DEVICE FOR GENERATING A MODULATED SIGNAL
FREQUENCE DU GENRE "SIGNAL DE RAMPE", UTILISANTFREQUENCY OF TYPE "RAMP SIGNAL", USING
UNE GENERATION PAR FILTRE DISPERSIF A ONDES DEA GENERATION BY DISPERSITIVE WAVE FILTER
SURFACEAREA
La présente invention se rapporte à un dispositif pour générer un signal modulé en fréquence du genreThe present invention relates to a device for generating a frequency modulated signal of the kind
"signal de rampe", ce dispositif utilisant une génération par filtre dispersif à ondes de surface, ou "filtre dispersif SAW"."ramp signal", this device using a generation by dispersive surface wave filter, or "SAW dispersive filter".
Des générateurs de ce type sont utilisés principalement d'une part dans les dispositifs de "compression d'impulsion" qui équipent la quasi-totalité des radars modernes, et d'autre part dans les analyseurs de spectre dits "transformateurs de FOURIER" qui mettent en oeuvre l'algorithme connu sous le nom de "Chirp Transform" . Le fonctionnement de ces dispositifs inclut la génération d'un ou plusieurs signaux, de durée T déterminée, modulés en fréquence selon une loi linéaire ou non, e* que pour simplifier, l'on appelera dans ce qui va suivre "signaux de rampe" .Generators of this type are used mainly on the one hand in "pulse compression" devices which equip almost all modern radars, and on the other hand in spectrum analyzers called "FOURIER transformers" which put implement the algorithm known as "Chirp Transform". The operation of these devices includes the generation of one or more signals, of fixed duration T, frequency modulated according to a linear law or not, e * that to simplify, we will call in what follows "ramp signals" .
Pour générer des signaux de ce type, le procédé qui est de loin le plus rapide à l'heure actuelle, consiste à utiliser un filtre dispersif à ondes de surface, ou filtre dispersif SAW. Il s'agit d'un filtre analogique, par exemple du type "RAC", comportant deux voies acoustiques munies de sillons gravés à 45 degrés. De tels filtres à ondes de surface sont par exemple décrits dans l'article de Messieurs R.C. Willia son et H.L. Smith "Large time bandwidth product surface wave puise compressor employing reflective gratings", paru dans la revue britanique "Electronics Letters", volume 8, N°16, Août 1972, pages 401 et 402.To generate signals of this type, the process which is by far the fastest at present, consists in using a dispersive filter with surface waves, or dispersive filter SAW. It is an analog filter, for example of the "RAC" type, comprising two acoustic channels provided with grooves engraved at 45 degrees. Such surface wave filters are for example described in the article by Messrs RC Willia son and HL Smith "Large time bandwidth product surface wave puise compressor employing reflective gratings", published in the British review "Electronics Letters", volume 8, N ° 16, August 1972, pages 401 and 402.
Sur la figure 1 jointe, on a représenté schématiquement une installation radar, aujourd'hui très courante, dite "à compression d'impulsion". L'impulsion radar 1 est appliquée en 2 à un bloc électronique 3, comportant un filtre dispersif SAW, donc apte à transformer l'impulsion fine 1 en un signal 5 de durée T modulé linéairement en fréquence, et que l'on appellera conventionnellement par la suite "signal de rampe" (bien que cette appellation soit en réalité plutôt utilisée dans les analyseurs de spectre du genre Transformateur de FOURIER), puis à l'émetteur 4.In attached FIG. 1, a radar installation, today very common, known as "pulse compression", has been shown schematically. The radar pulse 1 is applied in 2 to an electronic unit 3, comprising a dispersive filter SAW, therefore capable of transforming the fine pulse 1 into a signal 5 of duration T linearly modulated in frequency, and which will be conventionally called by the following "ramp signal" (although this designation is actually rather used in spectrum analyzers of the Transformer type of FOURIER), then to the transmitter 4.
Ce signal 5 est émis par l'antenne émettrice 6 vers la cible 7, sur laquelle il se réfléchit pour être, en retour, capté par l'antenne réceptrice 8 de l'installation (qui peut d'ailleurs être confondue avec l'antenne émettrice 6) .This signal 5 is emitted by the transmitting antenna 6 towards the target 7, on which it is reflected to be, in return, received by the receiving antenna 8 of the installation (which can moreover be confused with the antenna 6).
Le signal reçu est alors appliqué à un bloc électronique de réception 9, qui comporte un filtre dispersif SAW complémentaire de celui contenu dans le bloc 4 (c'est à dire de courbe fréquence/retard identique mais de pente de signe contraire) , et qui est donc apte à retransformer le signal de rampe 5 en une impulsion "fine" dont l'allure réelle est représentée en 10.The received signal is then applied to an electronic reception block 9, which includes a SAW dispersive filter complementary to that contained in block 4 (ie with an identical frequency / delay curve but with a slope of opposite sign), and which is therefore able to transform the ramp signal 5 back into a "fine" pulse, the real appearance of which is represented at 10.
Le générateur de signal de rampe concerné par l'invention est donc, dans cet exemple d'application, le bloc électronique 3 (ou, au moins, contenu dans ce bloc électronique) . Dans ces systèmes à compression d'impulsion, les caractéristiques de l'impulsion comprimée en sortie dépendent fortement de l'erreur de phase résiduelle, c'est à dire de l'écart entre la phase du signal que l'on obtient et la phase théorique désirée. En effet, cette erreur de phase crée en sortie des défauts de fonctionnement, notamment une mauvaise reproductibilité de la loi temps-fréquence et des distorsions de forme de l'impulsion comprimée. Sur la figure 2 jointe a été représentée schématiquement la partie multiplication-convolution d'un analyseur de spectre dit "transformateur de FOURIER" à filtres dispersifs SAW. Le signal électrique à analyser est appliqué en 11 à un multiplicateur 12 qui reçoit sur son autre entrée 13 un signal de rampe semblable au signal 5 de la figure 1 et généré par une impulsion fine 14 appliquée à un filtre dispersif SAW 15, suivi d'un bloc électronique 16 comportant (ou constituant) le dispositif de l'invention. De manière classique, ce multiplicateur 12 est suivi d'un autre filtre dispersif SAW 17 et d'un bloc électronique de sortie 18.The ramp signal generator concerned by the invention is therefore, in this application example, the electronic unit 3 (or, at least, contained in this electronic unit). In these pulse compression systems, the characteristics of the compressed pulse output strongly depend on the residual phase error, i.e. on the difference between the phase of the signal obtained and the phase theoretical desired. In fact, this phase error creates malfunctions at the output, in particular poor reproducibility of the time-frequency law and distortions of the shape of the compressed pulse. In the attached FIG. 2, the multiplication-convolution part of a spectrum analyzer called "FOURIER transformer" with SAW dispersive filters has been represented schematically. The electrical signal to be analyzed is applied at 11 to a multiplier 12 which receives at its other input 13 a ramp signal similar to the signal 5 of FIG. 1 and generated by a fine pulse 14 applied to a SAW dispersive filter 15, followed by an electronic unit 16 comprising (or constituting) the device of the invention. Conventionally, this multiplier 12 is followed by another SAW dispersive filter 17 and by an electronic output unit 18.
Dans un tel transformateur de FOURIER, l'impulsion comprimée est altérée par l'erreur de phase du filtre dispersif SAW 15 utilisé pour générer le signal de rampe à partir de l'impulsion électrique brève 14. Ce filtre présente des erreurs résiduelles de phase qui, après fabrication et correction acoustique (réalisées classiquement par dépôt sur le substrat d'un film métallique de correction de phase) , restent malgré tout de l'ordre de un à dix degrés RMS.In such a FOURIER transformer, the compressed pulse is altered by the phase error of the SAW dispersive filter 15 used to generate the ramp signal from the brief electric pulse 14. This filter has residual phase errors which , after manufacture and acoustic correction (conventionally carried out by depositing on the substrate a metallic film of phase correction), nevertheless remain of the order of one to ten RMS degrees.
Il a déjà été proposé, selon le document FR-A- 2612711, une correction électronique de ces erreurs au moyen d'un filtre électrique placé en aval. Cette solution, si elle résoud une grande partie du problème, reste compliquée puisqu'il faut effectuer les mesures des erreurs, puis fabriquer le filtre électrique pour que sa fonction de transfert corrige ces erreurs. De plus cette technique s'avère inefficace en hautes fréquences car les erreurs de fabrication et de synthèse du filtre électrique deviennent de même ordre de grandeur que celles à corriger.It has already been proposed, according to document FR-A-2612711, an electronic correction of these errors by means of an electric filter placed downstream. This solution, if it solves a large part of the problem, remains complicated since it is necessary to carry out the measurements of the errors, then to manufacture the electric filter so that its transfer function corrects these errors. In addition, this technique is ineffective at high frequencies because the manufacturing and synthesis errors of the electric filter become of the same order of magnitude as those to be corrected.
L'invention vise à remédier à ces inconvénients dus à l'erreur de phase des filtres dispersifs SAW. Elle se rapporte à cet effet à un générateur de signal modulé en fréquence du genre "signal de rampe", utilisant une génération par filtre dispersif à ondes de surface, ou "filtre dispersif SAW", ce générateur comportant une boucle à verrouillage de phase dont la référence est constituée par le signal utile issu de ce filtre dispersif SAW et qui reçoit une tension électrique de prépositionnement qui est modulée par une tension instantanée représentative de l'inverse de l'erreur de phase, mesurée à l'avance, engendrée par ce filtre dispersif SAW, de telle sorte que cette boucle à verrouillage de phase réagisse en introduisant un déphasage qui vient compenser cette erreur de phase.The invention aims to remedy these drawbacks due to the phase error of the SAW dispersive filters. She relates to this effect to a frequency modulated signal generator of the "ramp signal" type, using a generation by dispersive surface wave filter, or "SAW dispersive filter", this generator comprising a phase locked loop whose reference is constituted by the useful signal from this SAW dispersive filter and which receives a pre-positioning electrical voltage which is modulated by an instantaneous voltage representative of the inverse of the phase error, measured in advance, generated by this filter dispersive SAW, so that this phase locked loop reacts by introducing a phase shift which compensates for this phase error.
L'invention sera bien comprise, et ses avantages et autres caractéristiques ressortiront, lors de la description suivante de deux exemples non limitatifs de réalisation, en référence au dessin schématique annexe dans lequel :The invention will be clearly understood, and its advantages and other characteristics will emerge during the following description of two nonlimiting exemplary embodiments, with reference to the appended schematic drawing in which:
- Figure 3 est un schéma synoptique d'une première forme de réalisation de ce générateur de signal de rampe modulé en fréquence ;- Figure 3 is a block diagram of a first embodiment of this frequency modulated ramp signal generator;
- Figure 4 est un ensemble de trois courbes explicatives du fonctionnement de ce générateur ; et- Figure 4 is a set of three explanatory curves for the operation of this generator; and
- Figure 5 est un schéma synoptique d'une autre forme de réalisation de ce générateur de signal de rampe modulé en fréquence.- Figure 5 is a block diagram of another embodiment of this frequency modulated ramp signal generator.
En se reportant tout d'abord aux figures 3 et 4, ce dispositif comporte un dispositif classique 19 de génération du signal de rampe 20, comportant un filtre dispersif SAW, attaqué, pour générer ce signal 20, par une impulsion fine, ou impulsion de DIRAC, 21, et incluant une électronique classique (dont, par exemple, un amplificateur, un filtre et éventuellement un Contrôle Automatique de Gain) . Conformément à l'invention, le signal de rampe 20 est utilisé comme signal de référence d'une boucle à verrouillage de phase 22 qui fonctionne en déphaseur réglé pour corriger l'erreur de phase du filtre dispersif SAW contenu dans le bloc 19.Referring first to Figures 3 and 4, this device comprises a conventional device 19 for generating the ramp signal 20, comprising a dispersive filter SAW, driven, to generate this signal 20, by a fine pulse, or pulse of DIRAC, 21, and including conventional electronics (including, for example, an amplifier, a filter and possibly an Automatic Gain Control). According to the invention, the ramp signal 20 is used as the reference signal of a phase locked loop 22 which operates as a phase shifter adjusted to correct the phase error of the SAW dispersive filter contained in block 19.
Cette boucle à verrouillage de phase comporte un Oscillateur Commandé en Tension, ou V.C.O., 23, dont (classiquement) une partie de la tension de sortie en 24 est prélevée par un coupleur 25 pour être appliquée à une première entrée 26 d'un comparateur de phase 27. La seconde entrée 28 de ce comparateur reçoit le signal de référence qui est constitué par le signal de rampe 20, entaché de l'erreur de phase à corriger.This phase locked loop includes a Voltage Controlled Oscillator, or VCO, 23, of which (conventionally) part of the output voltage at 24 is taken by a coupler 25 to be applied to a first input 26 of a comparator of phase 27. The second input 28 of this comparator receives the reference signal which is constituted by the ramp signal 20, marred by the phase error to be corrected.
Cette erreur de phase Δφ est représentée, en fonction du temps t et pendant la durée T du signal modulé linéairement en fréquence 20, sur le diagramme A de la figure 4.This phase error Δφ is represented, as a function of time t and during the duration T of the signal modulated linearly in frequency 20, in diagram A of FIG. 4.
La tension d'erreur en sortie 29 du comparateur de phase 27 est appliquée à la première entrée d'un additionneur 30 dont l'autre entrée 31 reçoit une tension de prépositionnement Vp, dont la courbe de variation en fonction du temps t et pendant le laps de temps T précité est représentée au diagramme C de la figure 4.The error voltage at output 29 of the phase comparator 27 is applied to the first input of an adder 30, the other input 31 of which receives a prepositioning voltage Vp, whose variation curve as a function of time t and during the the aforementioned time period T is represented in diagram C of FIG. 4.
Cette loi de variation C est très particulière, car elle résulte de la modulation d'une tension en dents de scie 32 (en traits mixtes sur la figure 4) , qui est elle-même apte à commander le V.C.O. 23 pour que sa tension de sortie 24 suive la même loi linéaire de variation de fréquence que celle suivie par le signal de rampe 20, par une tension variable V/K, représentée sur le diagramme B de la figure 4, qui est égale à l'inverse de l'erreur de phase selon le diagramme A mais convertie en tension, K étant la sensibilité du comparateur de phase 27 en volts/degrés. Cette loi de variation est issue de données numériques enregistrées, après mesures en laboratoire, de l'erreur de phase propre au composant SAW utilisé dans le bloc 19, dans une mémoire PROM 37, et converties en tension de prépositionnement Ve selon la courbe C par un convertisseur numérique-analogique 33. Bien entendu, ce signal de prépositionnement Vp est ajusté en fonction des caractéristiques particulières de la boucle de phase 22 (pente du comparateur de phases 27, gain entre la sortie 29 de ce comparateur de phase et l'entrée de commande 34 du V.C.O. 23, position relative de l'additionneur 30 et du filtre de boucle 36) .This variation law C is very particular, because it results from the modulation of a sawtooth voltage 32 (in phantom in Figure 4), which is itself capable of controlling the VCO 23 so that its voltage output 24 follows the same linear law of frequency variation as that followed by the ramp signal 20, by a variable voltage V / K, represented in diagram B of FIG. 4, which is equal to the inverse of the error according to diagram A but converted into voltage, K being the sensitivity of the phase comparator 27 in volts / degrees. This law of variation comes from digital data recorded, after laboratory measurements, of the phase error specific to the SAW component used in block 19, in a PROM memory 37, and converted into pre-positioning voltage Ve according to curve C by a digital-analog converter 33. Of course, this prepositioning signal Vp is adjusted as a function of the particular characteristics of the phase loop 22 (slope of the phase comparator 27, gain between the output 29 of this phase comparator and the control input 34 of the VCO 23, relative position of adder 30 and loop filter 36).
Comme on le voit par ailleurs sur le dessin, le signal de sortie en 35 de l'additionneur 30 est classiquement appliqué, via un filtre de boucle 36, sur l'entrée de commande 34 du V.C.O.As seen elsewhere in the drawing, the output signal at 35 from the adder 30 is conventionally applied, via a loop filter 36, to the control input 34 of the V.C.O.
Ce dispositif fonctionne de la façon suivante : Compte tenu de la tension en dents de scie 32, le V.C.O. s'accroche facilement sur la référence 20. L'erreur de phase de ce signal de référence en 28 est celle représentée sur la courbe A.This device works as follows: Given the sawtooth tension 32, the V.C.O. easily hooks onto reference 20. The phase error of this reference signal at 28 is that shown on curve A.
Le V.C.O. étant accroché, sa fréquence de sortie en 24 ne peut plus bouger. Comme on lui impose en 34 une modulation de commande correspondant à la courbe BThe V.C.O. being hung, its output frequency in 24 can no longer move. As we impose in 34 a control modulation corresponding to the curve B
(inverse de l'erreur de phase), il réagit en déphasant son signal de sortie en 24 d'une valeur tendant à annuler cette modulation, c'est à dire d'une valeur inverse de l'erreur de phase de signal référence 20 : ce signal de sortie en 24 est donc corrigé en phase de l'erreur de phase du signal de référence 20. A noter que la courbe B représente alors la tension d'erreur en sortie 29 du comparateur de phase 27.(inverse of the phase error), it reacts by shifting its output signal at 24 by a value tending to cancel this modulation, that is to say by an inverse value of the phase error of the reference signal 20 : this output signal at 24 is therefore corrected in phase with the phase error of the reference signal 20. Note that curve B then represents the error voltage at output 29 of the phase comparator 27.
Un moyen commode pour obtenir le signal de prépositionnement C est le suivant :A convenient way to get the preposition signal C is as follows:
. dans la mémoire 37 est tout d'abord chargée la loi fréquence tension 32 du V.C.O. 23 ; . en sortie 29 du comparateur de phases 27 est mesurée la loi C d'erreur de la boucle durant l'intervalle de temps T, loi qui est convertie en phase en tenant compte de la sensibilité K du comparateur de phase 27 ; . le chargement de la mémoire 37 est alors modifié point par point jusqu'à ce que la loi relevée 29 reproduise l'inverse de l'erreur de phase Δφ , éventuellement lissée .. in memory 37 is first loaded the voltage frequency law 32 of VCO 23; . at output 29 of the phase comparator 27 is measured the error error law C of the loop during the time interval T, law which is converted into phase taking into account the sensitivity K of the phase comparator 27; . the loading of the memory 37 is then modified point by point until the law noted 29 reproduces the inverse of the phase error Δφ, possibly smoothed.
Bien entendu, la bande passante et les paramètres de la boucle sont choisis de façon à permettre la correction de l'erreur de phase dans la bande nécessaire : en général seules les erreurs relativement lentes (quelques oscillations durant la période T) sont à corriger. Comme il va de soi, l'invention n'est pas limitée à l'exemple de réalisation qui vient d'être décrit. C'est ainsi que, par exemple, selon la variante de réalisation schématisée figure 5, l'entrée (additionneur 30) du signal de prépositionnement peut être placée en un autre endroit compris entre la sortie 29 du comparateur 27 et l'entrée de commande 34 du V.C.O. 23, en l'espèce après le filtre de boucle 36 et non pas avant. De même les entrées prépositionnement et correction de phase peuvent être dissociées : - prépositionnement juste avant l'entrée commande du VCO ;Of course, the bandwidth and the parameters of the loop are chosen so as to allow the correction of the phase error in the necessary band: in general only the relatively slow errors (some oscillations during the period T) are to be corrected. It goes without saying that the invention is not limited to the embodiment which has just been described. Thus, for example, according to the variant embodiment shown diagrammatically in FIG. 5, the input (adder 30) of the prepositioning signal can be placed at another location between the output 29 of the comparator 27 and the control input 34 VCO 23, in this case after the loop filter 36 and not before. Similarly, the prepositioning and phase correction inputs can be separated: - prepositioning just before the VCO command input;
- correction de phase juste après la sortie du comparateur de phase.- phase correction just after the output of the phase comparator.
Comme représenté, un diviseur de fréquences par N 38 peut être incorporé entre le coupleur 25 et l'entrée 26 du comparateur de phase 27, de manière à obtenir l'équivalent d'un filtre dispersif de bande passante Bp/N suivi d'un multiplicateur de fréquences par N : en effet, la bande de fréquences Bp couverte par le signal de rampe qui est effectivement en 24 est alors, en raison du diviseur 38, multipliée par le facteur N. Ceci est économiquement avantageux, car un diviseur de fréquences est un composant beaucoup moins onéreux qu'un multiplicateur de fréquences. De plus le filtre 36 comporte avantageusement un dispositif d'élargissement de bande de fréquences pour accélérer le repositionnement du V.C.O. 23 lors du retour (front de descente) de la dent de scie 32, un tel dispositif étant connu en soi. Le générateur de signal modulé en fréquence qui vient d'être décrit peut aussi bien être utilisé comme générateur de signal de rampe dans la partie multiplication-convolution d'un analyseur de spectre du genre transformateur de FOURIER, que comme générateur de signal d'émission d'un dispositif à compression d'impulsion. As shown, a frequency divider by N 38 can be incorporated between the coupler 25 and the input 26 of the phase comparator 27, so as to obtain the equivalent of a dispersive filter of bandwidth Bp / N followed by a frequency multiplier by N: in fact, the frequency band Bp covered by the ramp signal which is effectively at 24 is then, due to the divider 38, multiplied by the factor N. This is economically advantageous, because a frequency divider is a much less expensive component than a frequency multiplier. In addition, the filter 36 advantageously includes a frequency band widening device to accelerate the repositioning of the VCO 23 during the return (falling edge) of the sawtooth 32, such a device being known per se. The frequency modulated signal generator which has just been described can also be used as a ramp signal generator in the multiplication-convolution part of a spectrum analyzer of the transformer type of FOURIER, as well as as emission signal generator. of a pulse compression device.

Claims

REVENDICATIONS
1 - Générateur de signal modulé en fréquence du genre "signal de rampe" (20), utilisant une génération (19) par filtre dispersif à ondes de surface, ou "filtre dispersif SAW", caractérisé en ce qu'il comporte une boucle à verrouillage de phase (22) dont la référence (28) est constituée par le signal utile (20) issu de ce filtre dispersif SAW et qui reçoit une tension électrique de prépositionnement (32) qui est modulée par une tension instantanée (B) représentative de l'inverse de l'erreur de phase (A), mesurée à l'avance, engendrée par ce filtre dispersif SAW, de telle sorte que cette boucle à verrouillage de phase (22) réagisse en introduisant un déphasage qui vient compenser cette erreur de phase.1 - Frequency modulated signal generator of the "ramp signal" type (20), using a generation (19) by dispersive surface wave filter, or "SAW dispersive filter", characterized in that it comprises a loop with phase lock (22), the reference (28) of which is constituted by the useful signal (20) from this SAW dispersive filter and which receives a prepositioning electrical voltage (32) which is modulated by an instantaneous voltage (B) representative of the reverse of the phase error (A), measured in advance, generated by this SAW dispersive filter, so that this phase-locked loop (22) reacts by introducing a phase shift which compensates for this error of phase.
2 - Générateur de signal modulé en fréquence selon la revendication 1, caractérisé en ce que cette tension de prépositionnement modulée (C) est issue de valeurs préalablement mesurées et introduites numériquement dans une mémoire programmable (37) .2 - Frequency modulated signal generator according to claim 1, characterized in that this modulated prepositioning voltage (C) comes from values previously measured and entered digitally into a programmable memory (37).
3 - Générateur de signal modulé en fréquence selon la revendication 1 ou la revendication 2, caractérisé en ce que la boucle à verrouillage de phase (22) comporte, dans son circuit de retour, un diviseur de fréquences (38) apte à entraîner un élargissement de la bande passante (Bp) couverte par ce signal modulé en fréquence. 4 - Générateur selon l'une des revendications 1 à3 - frequency modulated signal generator according to claim 1 or claim 2, characterized in that the phase locked loop (22) comprises, in its return circuit, a frequency divider (38) capable of causing an enlargement of the bandwidth (B p ) covered by this frequency modulated signal. 4 - Generator according to one of claims 1 to
3, caractérisé en ce que le filtre de boucle (36) de ladite boucle à verrouillage de phase (22) comporte un dispositif apte à élargir la bande de fréquences, afin d'accélérer le repositionnement de l'Oscillateur Commandé en Tension (23) de cette boucle (22) lors du front de descente dudit signal de prépositionnement (32) .3, characterized in that the loop filter (36) of said phase-locked loop (22) comprises a device capable of widening the frequency band, in order to accelerate the repositioning of the Voltage Controlled Oscillator (23) of this loop (22) during the falling edge of said prepositioning signal (32).
5 - Procédé d'obtention de la tension de prépositionnement modulée (C) pour un générateur de signal modulé en fréquence selon la revendication 2 ou la revendication 3, caractérisé par la séquence suivante :5 - Method for obtaining the modulated prepositioning voltage (C) for a signal generator frequency modulated according to claim 2 or claim 3, characterized by the following sequence:
. dans la mémoire (37) est tout d'abord chargée la loi fréquence-tension (32) du V.C.O. (23) de la boucle à verrouillage de phase (22) ;. in the memory (37) is first loaded the frequency-voltage law (32) of the V.C.O. (23) of the phase locked loop (22);
. en sortie (29) du comparateur de phases (27) de cette boucle (22), est mesurée la loi (C) d'erreur de la boucle durant la durée (T) du signal utile (20), loi qui est convertie en phase en tenant compte de la sensibilité (K) du comparateur de phase (27) ; le chargement de la mémoire (37) est alors modifié point par point jusqu'à ce que la loi relevée (C) reproduise l'inverse de l'erreur de phase (Δφ) ,éventue1lement lissée. 6 - Dispositif à compression d'impulsion, caractérisé en ce qu'il comporte un générateur (4) de signal modulé en fréquence selon l'une des revendications 1 à 4.. at the output (29) of the phase comparator (27) of this loop (22), the law (C) of error of the loop during the duration (T) of the useful signal (20) is measured, law which is converted into phase taking into account the sensitivity (K) of the phase comparator (27); the loading of the memory (37) is then modified point by point until the noted law (C) reproduces the inverse of the phase error (Δφ), possibly smoothed. 6 - Pulse compression device, characterized in that it comprises a generator (4) of frequency modulated signal according to one of claims 1 to 4.
7 - Analyseur de spectre du genre "transformateur de FOURIER", caractérisé en ce que sa partie "multiplication-convolution" (11 à 18) comporte un générateur de signal de rampe (15, 16) selon l'une des revendications 1 à 4. 7 - Spectrum analyzer of the "FOURIER transformer" type, characterized in that its "multiplication-convolution" part (11 to 18) comprises a ramp signal generator (15, 16) according to one of claims 1 to 4 .
PCT/FR1990/000868 1989-12-01 1990-11-30 Device generating a frequency modulated signal of the 'ramp signal' type using a surface wave dispersive filter generation WO1991008614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR89/15888 1989-12-01
FR8915888A FR2655494A1 (en) 1989-12-01 1989-12-01 DEVICE FOR GENERATING A MODULATED FREQUENCY SIGNAL OF THE "RAMP SIGNAL" TYPE, USING SURFACE WAVE DISPERSITIVE FILTER GENERATION.

Publications (1)

Publication Number Publication Date
WO1991008614A1 true WO1991008614A1 (en) 1991-06-13

Family

ID=9388046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000868 WO1991008614A1 (en) 1989-12-01 1990-11-30 Device generating a frequency modulated signal of the 'ramp signal' type using a surface wave dispersive filter generation

Country Status (2)

Country Link
FR (1) FR2655494A1 (en)
WO (1) WO1991008614A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386273A (en) * 2002-03-01 2003-09-10 Lear Corp Frequency modulated transmission
US6933898B2 (en) 2002-03-01 2005-08-23 Lear Corporation Antenna for tire pressure monitoring wheel electronic device
CN103954933A (en) * 2014-04-29 2014-07-30 中国人民解放军国防科学技术大学 Radar signal processing method based on terahertz wave band

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667151A (en) * 1984-12-07 1987-05-19 Hughes Aircraft Company Calibrated radio frequency sweep
US4747095A (en) * 1986-07-02 1988-05-24 Hughes Aircraft Company Saw demodulator employing corrective feedback timing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667151A (en) * 1984-12-07 1987-05-19 Hughes Aircraft Company Calibrated radio frequency sweep
US4747095A (en) * 1986-07-02 1988-05-24 Hughes Aircraft Company Saw demodulator employing corrective feedback timing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electric Components & Applications, vol. 7, no. 4, 1985, (Eindhoven, NL), A.H.H.J. Nillesen: "Line-locked digital colour decoding", pages 239-245 *
IEE Proceedings Sections A à I, vol. 130, no. 7, partie H, decembre 1983, (Old Woking, Surrey, GB), M. Lewis et al.: "Phase-locked up-convertors in synthesisers for agile pulse-compression radars", pages 456-462 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386273A (en) * 2002-03-01 2003-09-10 Lear Corp Frequency modulated transmission
GB2386273B (en) * 2002-03-01 2004-06-02 Lear Corp A tire pressure monitiring or remote keyless entry system using a RF transmitter for FM transmission
US6933898B2 (en) 2002-03-01 2005-08-23 Lear Corporation Antenna for tire pressure monitoring wheel electronic device
CN103954933A (en) * 2014-04-29 2014-07-30 中国人民解放军国防科学技术大学 Radar signal processing method based on terahertz wave band

Also Published As

Publication number Publication date
FR2655494A1 (en) 1991-06-07

Similar Documents

Publication Publication Date Title
EP0120775B1 (en) Ranging and doppler measuring laser apparatus using pulse compression
EP0219392B1 (en) Shifting, non-recursive, discrete fourier transform computing device, and its use in a radar system
EP0513313B1 (en) Method for resetting the local oscillators of a receiver and device for implementing such method
EP0258917B1 (en) Frequency-modulated continuous-wave radar for distance measurement
EP0732803A1 (en) Method and device for demodulation by sampling
FR2687522A1 (en) FREQUENCY SYNTHESIZER WITH NUMBER N FRACTIONARY EMPLOYING SEVERAL ACCUMULATORS WITH RECOMBINATION IN SERIES, METHOD OF IMPLEMENTATION, AND RADIOTELEPHONE USING THE SAME.
FR2754604A1 (en) High linearity frequency modulated ramp generator for radar altimeter
FR2586481A1 (en) APPARATUS FOR MEASURING HYPERFREQUENCY NOISE
FR2644016A1 (en) FREQUENCY SYNTHESIZER
EP0561690B1 (en) Method and apparatus for detecting a point reflector passing a preselected range utilising the propagation time of a continuous wave
EP0251387A1 (en) Radar apparatus for measuring the distance to a surface
EP0709959B1 (en) Correction of a frequency offset
EP0207859B1 (en) Discrete and shifting fourier transform calculating device, for using in a radar system
EP1079514A1 (en) Frequency synthesizer comprising a phase loop
EP0872740A1 (en) Device for self-test of the emission and reception chains of a radar mainly for automotive vehicles
EP0573321B1 (en) Method and device for the automatical compensation of non-linearity of the linear modulation slope of a swept-frequency radar
WO1991008614A1 (en) Device generating a frequency modulated signal of the 'ramp signal' type using a surface wave dispersive filter generation
FR2492193A2 (en) ELASTIC SURFACE WAVE RECURSIVE FILTER USING ACTIVE LOOP DELAY LINE
EP1782536B1 (en) Method of generating a digital signal that is representative of match errors in an analogue-to-digital conversion system with time interleaving, and an analogue-to-digital converter with time interleaving using same
EP0624954B1 (en) Arrangement for reducing the spurious spectral lines contained in a digital frequency synthesizer output signal
EP0473731B1 (en) Method and device for comparing two variable analog signals
EP0012056B1 (en) Telemetry device and use thereof in a tracking radar
FR2745388A1 (en) Satellite altitude measuring device
FR2655789A1 (en) Device generating a frequency-modulated signal of the "lamp signal" type, using generation by dispersive filter or digital generation
EP4006571A1 (en) Radar detection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE