WO1990015336A1 - Accelerometer - Google Patents
Accelerometer Download PDFInfo
- Publication number
- WO1990015336A1 WO1990015336A1 PCT/DE1990/000408 DE9000408W WO9015336A1 WO 1990015336 A1 WO1990015336 A1 WO 1990015336A1 DE 9000408 W DE9000408 W DE 9000408W WO 9015336 A1 WO9015336 A1 WO 9015336A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- holder
- accelerometer according
- main plane
- accelerometer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P1/00—Details of instruments
- G01P1/006—Details of instruments used for thermal compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/093—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0808—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
- G01P2015/0811—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
- G01P2015/0814—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
Definitions
- the invention relates to an accelerometer with a mass suspended linearly movably on springs in a rigid holder, a damping device effective between the mass and the holder, and an optoelectronic measuring device for measuring the displacement of the mass in the holder.
- Accelerometers of this type are used for seismic measurements and for the detection and monitoring of low-frequency building vibrations, e.g. B. of vibrations on oil rigs.
- the object of the invention is to provide an accelerometer of the specified type which is distinguished by a high measuring accuracy and a low sensitivity to temperature fluctuations.
- the holder, the mass, the springs and the transmitter of the measuring device are arranged in such a way that their thermally neutral planes, from which they are in the direction (—Y) of the movement sensitivity expand the mass symmetrically, lie in a common main plane (X, Z).
- the mass has a central connecting element, on the opposite ends of which mass bodies are fastened, which are arranged in chambers of the holder filled with damping liquid.
- This arrangement favors the temperature-stable construction and enables simple implementation of suitable damping characteristics in accordance with the accelerations and frequencies to be measured in each case. Furthermore, the assembly of the measuring device is facilitated by this arrangement.
- the chambers completely filled with damping liquid are closed on their side facing the central plane by annular membranes of low rigidity, the edges of which are clamped to the mass and to the holder. This arrangement compensates for changes in the volume of the damping fluid without having any significant influence on the resilient mounting of the mass.
- the mass is preferably mounted on leaf springs provided separately from the membranes, which springs are symmetrical and parallel at two bearing points. are arranged parallel to the main plane and connect the mass to the holder in several directions.
- the spring arrangement according to the invention enables a low hysteresis, the linearity of its characteristic and a high rigidity in relation to forces which endeavor to displace the mass transversely to its axis of movement.
- Leaf springs can be manufactured with a high degree of accuracy and give the designer a great deal of freedom in choosing a suitable material.
- a one-piece leaf spring formed from a sheet metal disk with radially arranged spring arms is preferably provided, which are connected to one another at their ends directly or by sections of the sheet metal disk.
- This configuration facilitates the assembly of the leaf springs and fixes their installation position in relation to the mass and the holder with great accuracy.
- this spring design ensures that the mass is forced to move exactly along its central axis.
- the leaf springs and the holder have the same or approximately the same expansion coefficients. Fluctuations in the spring rate only lead to very small changes in the measuring accuracy even under unfavorable conditions.
- a light signal is fed to the optical transmitter of the measuring device via an optical fiber which is connected to the the mass-connected end of the fiber emerges in the main plane (X, Z), is received by a twin filter connected to the holder and, after leaving the filter, is fed to an evaluation unit via a second optical fiber, the twin filter lying on either side of one in the main plane Division joint.
- This configuration of the encoder ensures thermal insensitivity and enables simple. Assembly and adjustment of the optical components. Since the spring-loaded mass can only be connected to one end of an optical fiber, there is no need for complex mechanical couplings. The adjustment is limited to the parts connected to the holder, it being possible to use clamping devices which can be adjusted using micrometer screws.
- the twin filter is preferably arranged on a deflection prism connected to the holder, the thermally neutral plane of which lies in the main plane and coincides with the central plane of the beam path.
- the prism causes the light signal to be deflected in a direction parallel to the input direction, thus simplifying the construction of the measuring device.
- the optical fibers can thus be symmetrical and of the same length and can be routed to a common light cable connection.
- the entry end of the second optical fiber is also symmetrical to the main plane. arranges.
- the optical transmitter of the accelerometer according to the invention receives light signals from two different wavelengths in rapid, alternating succession from the optoelectronic measuring device, which after passing through the transmitter are fed back to an evaluation unit in which the received signals have a wavelength those of the other wavelength are compared in terms of their intensity.
- the holder can, according to the invention, be mounted on a heat-insulating support which is connected to a base plate which can be fastened to the measurement object. Furthermore, it can be provided that the holder with its internals is tightly enclosed by a housing and that the interior space of the housing with a dry, inert gas, for. B. nitrogen is filled. In this way, impairment, especially of the optical processes, by temperature and weather influences is largely prevented.
- the inner wall of the housing can additionally be coated with a heat-insulating material.
- FIG. 1 shows a schematic sectional illustration of the overall arrangement of an accelerometer according to the invention
- FIG. 2 shows a more detailed sectional view of the mechanical components of an accelerometer according to the invention
- Figure 3 - a view in the direction Z of the arrangement of the optical encoder
- Figure 4 - a view in the direction Y of the encoder according to Figure 3.
- the accelerometer (1) shown in FIG. 1 is mounted on a heat-insulating support (2) which is firmly connected to a base plate (3).
- the base plate (3) is connected to an element (4) of a building, the vibration behavior of which is to be measured or monitored.
- the accelerometer is surrounded by a cylindrical housing (5) made of stainless steel, which is provided on the inside with a heat-insulating layer (6).
- O-ring seals (7) seal the housing (5) from the base plate (3).
- the interior of the housing (5) is filled with a dry, inert gas via the connections (7, 8) and then sealed tightly in order to ensure the cleanliness of the optical surfaces and to prevent liquid precipitation there.
- the accelerometer (1) contains a mass (9) suspended linearly movably on springs in a rigid holder, the respective position of which is measured by an optical transmitter (10).
- the optical encoder (10) is over optical fibers (11) connected to an optoelectronic device, which is not shown.
- Hermetically sealed fiber connection heads (12) with respect to the interior of the housing (5) enable the accelerometer and measuring device to be separated.
- the symmetrical structure of the accelerometer (1) can be seen from FIG. On both sides of a main plane defined by the axes X, Z, the mechanical components of the accelerometer (1) are provided in a symmetrical arrangement.
- the accelerometer (1) has a holder (20) which is composed of a central part (21), two caps (22) and two intermediate rings (23). The outer lateral surfaces of the holder (20) are cylindrical.
- a rod-shaped connecting element (25) which has cylindrical mass bodies (26) at its two opposite ends, which are arranged in chambers (27) in the caps (22) are.
- the connecting element (25) and the mass body (26) form a uniform mass (28) which is movable in the direction of the axis Y relative to the holder (20).
- the mass (28) is suspended from leaf springs (29) which are formed by a thin, circular and perforated sheet metal disc.
- the leaf springs are clamped between the middle part (21) and the intermediate rings (23) and are attached to the mass (28) by means of the connecting element (25).
- attached mass body (26) held.
- the chambers (27) are closed by annular membranes (30) which are at a distance from the leaf springs (29). The radially outer edges of the membranes (30) are held in annular grooves between the intermediate rings (23) and the caps (22).
- the radially inner edges of the membranes (30) are also held in annular grooves between the mass bodies (26) and a ring (31) resting on the leaf springs (29).
- the chambers (27) are completely filled with a silicone oil, changes in volume of the enclosed silicone oil are compensated for by elastic deformations of the membranes (30).
- a prism (33), which forms part of the optical transmitter, is arranged on a carrier (32) in a central, recessed area of the central part (21).
- the prism (33) has its greatest extent in the direction of the main plane X, Z, its thermally neutral plane coinciding with the main plane X, Z.
- the end (34) of an optical fiber (35) is arranged in a transverse bore in the connecting element.
- the fiber end (34) also runs in the main plane X, Z and is aligned perpendicular to the end face of the prism (33). Parallel to the end (34) of the fiber (35) is not visible in the drawing the end of a second optical fiber which receives a light signal transmitted via the fiber (35) after leaving the prism.
- the mode of operation of the optical transmitter (10) is shown in the schematic illustration in FIGS. 3 and 4.
- a twin filter (36) which has a different filter effect on both sides of a division joint lying in the main plane X, Z, that is, it is permeable to light of a different wavelength.
- the light signal (S) contains a wavelength that is absorbed, for example, by the upper section of the twin filter (36), then only half of the emitted beam can exit through the lower section of the twin filter (36).
- the emitted light signal has a wavelength which is absorbed by the lower section of the twin filter (36). If the light signal now contains both wavelengths, provided that the input intensity is the same, the intensity of the light components of both wavelengths that can be detected at the output of the twin filter is the same if the center of the beam lies exactly in the main plane X, Z or the division joint of the twin filter.
- the fiber (35) shifts the beam (S) of the light signal in direction Y, a larger portion of the light of one wavelength, but only a smaller portion of light of the other wavelength, can pass through the twin filter (36). This difference is detected by an optoelectronic measuring device and converted into a suitable electrical measuring signal, which then represents a measure of the displacement of the mass (28).
- the light signal emerging at the twin filter (36) is also transmitted to the evaluation unit via an optical fiber.
- the described system enables a high measuring accuracy and linear resolution of movements for small deflections, in the range of - 50 ⁇ m, to be achieved.
- a measuring principle for slow movements and even static conditions has thus been developed.
- a pressure sensor can also be implemented with the described system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Optical Transform (AREA)
Abstract
An accelerometer contains a mass (28) suspended on springs (29) in a rigid holder (20). The mass can move linearly in a (±Y) direction. The position of the mass is measured by an optical sensor (33, 34). In order to compensate the interferences due to temperature fluctuations, the support (20), the mass (28), the springs (29) and the optical sensor (33, 34) are arranged so that their thermally neutral planes, from which they extend symmetrically in the (±Y) direction of movement of the mass (28), lie in a common principal (XZ) plane.
Description
Beschleunigungsmesser Accelerometer
Die Erfindung betrifft einen Beschleunigungsmesser mit einer an Federn in einem starren Halter linear beweglich aufgehängten Masse, einer zwischen der Mas¬ se und dem Halter wirksamen Dämpfungsvorrichtung und einer optoelektronischen Meßeinrichtung zur Messung der Verlagerung der Masse im Halter.The invention relates to an accelerometer with a mass suspended linearly movably on springs in a rigid holder, a damping device effective between the mass and the holder, and an optoelectronic measuring device for measuring the displacement of the mass in the holder.
Beschleunigungsmesser dieser Art werden für seismi¬ sche Messungen und für die Erfassung und Überwachung von niederfrequenten Gebäudeschwingungen, z. B. von Schwingungen an Bohrinseln verwendet.Accelerometers of this type are used for seismic measurements and for the detection and monitoring of low-frequency building vibrations, e.g. B. of vibrations on oil rigs.
Aufgabe der Erfindung ist es einen Beschleunigungs¬ messer der angegebenen Art zu schaffen, der sich durch eine hohe Meßgenauigkeit und eine geringe Em¬ pfindlichkeit gegenüber Temperaturschwankungen aus¬ zeichnet .The object of the invention is to provide an accelerometer of the specified type which is distinguished by a high measuring accuracy and a low sensitivity to temperature fluctuations.
Zur Lösung dieser Aufgabe ist erfindungsgemäß vorge¬ sehen, daß der Halter, die Masse, die Federn und der Geber der Meßeinrichtung derart angeordnet sind, daß ihre thermisch neutralen Ebenen, von denen aus sie sich in der Richtung (—Y) der Bewegungsempfindlich¬ keit der Masse symmetrisch ausdehnen, in einer gemeinsamen Hauptebene (X, Z) liegen.
Mit der Erfindung wird erreicht, daß relative Verla¬ gerungen der einzelnen Bauteile zueinander, die durch Temperaturäπderungen bedingt sind, auf ein Minimum reduziert werden, im Prinzip sogar den Wert 0 errei¬ chen können. Temperaturschwankungen von mehr als 100°C bleiben daher auf die Meßgenauigkeit des erfin-To achieve this object it is provided according to the invention that the holder, the mass, the springs and the transmitter of the measuring device are arranged in such a way that their thermally neutral planes, from which they are in the direction (—Y) of the movement sensitivity expand the mass symmetrically, lie in a common main plane (X, Z). With the invention it is achieved that relative displacements of the individual components relative to one another, which are caused by temperature changes, are reduced to a minimum, and in principle can even reach the value 0. Temperature fluctuations of more than 100 ° C therefore remain due to the measuring accuracy of the invented
* dungsgemäßen Beschleunigungsmessers ohne Einfluß.* Accelerometer according to the invention without influence.
In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß die Masse ein mittiges Verbindungs¬ element aufweist, an .dessen entgegengesetzten Enden Massekörper befestigt sind, die in mit Dämpfungsflüs¬ sigkeit gefüllten Kammern des Halters angeordnet sind. Diese Anordnung begünstigt die temperaturstabi¬ le Bauweise und ermöglicht mit einfachen Mitteln die Verwirklichung einer geeigneten Dämpfungscharakte¬ ristik entsprechend den jeweils zu messenden Beschleunigungen und Frequenzen. Weiterhin wird durch diese Anordnung der Zusammenbau des Meßgeräts er¬ leichtert. Die vollständig mit Dämpfungsflüssigkeit gefüllten Kammern sind erfindungsgemäß auf ihrer der Mittelebene zugekehrten Seite durch ringförmige Mem¬ branen geringer Steifigkeit verschlossen, deren Ränder an der Masse und an dem Halter eingespannt sind. Diese Anordnung gleicht Änderungen des Volumens der Dämpfungsflüssigkeit aus, ohne dabei einen nen¬ nenswerten Einfluß auf die federnde Lagerung der Mas¬ se auszuüben.In a further embodiment of the invention, it is provided that the mass has a central connecting element, on the opposite ends of which mass bodies are fastened, which are arranged in chambers of the holder filled with damping liquid. This arrangement favors the temperature-stable construction and enables simple implementation of suitable damping characteristics in accordance with the accelerations and frequencies to be measured in each case. Furthermore, the assembly of the measuring device is facilitated by this arrangement. According to the invention, the chambers completely filled with damping liquid are closed on their side facing the central plane by annular membranes of low rigidity, the edges of which are clamped to the mass and to the holder. This arrangement compensates for changes in the volume of the damping fluid without having any significant influence on the resilient mounting of the mass.
Erfindungsgemäß ist die Masse vorzugsweise an ge¬ trennt von den Membranen vorgesehenen Blattfedern ge¬ lagert, die an zwei Lagerstellen sy etrisch und pa-
rallel zur Hauptebene angeordnet sind und in mehreren Richtungen die Masse mit dem Halter verbinden. Die erfindungsgemäße Federanordnung ermöglicht eine geringe Hysterese, die Linearität ihrer Kenπung und eine hohe Steifigkeit gegenüber Kräften, die das Bestreben haben, die Masse quer zu ihrer Bewegungs¬ achse zu verlagern. Blattfedern lassen sich mit hoher Genauigkeit herstellen und lassen dem Konstrukteur viel Freiheit bei der Wahl eines geeigneten Werk¬ stoffs. Vorzugsweise ist an jeder Lagerstelle eine einteilige, aus einer Blechscheibe geformte Blattfe¬ der mit radial angeordneten Federarmen vorgesehen, die an ihren Enden unmittelbar oder durch Abschnitte der Blechscheibe -miteinander verbunden sind. Durch diese Ausbildung wird die Montage der Blattfedern er¬ leichtert und ihre Einbaulage in Bezug auf die Masse und den Halter mit großer Genauigkeit fixiert. Gleichzeitig gewährleistet diese Federausbildung, daß die Masse gezwungen wird sich genau entlang ihrer Mittelachse zu bewegen. Um auch eine temperaturbe¬ dingte Änderung der Federrate der Blattfedern zu vermeiden, kann erfindungsgemäß weiterhin vorgesehen sein, daß die Blattfedern und der Halter gleiche oder annähernd gleiche Ausdehnungskoeffizienten haben. Schwankungen hinsichtlich der Federrate führen jedoch auch unter ungünstigen Bedingungen nur zu sehr kleinen Änderungen der Meßgenauigkeit.According to the invention, the mass is preferably mounted on leaf springs provided separately from the membranes, which springs are symmetrical and parallel at two bearing points. are arranged parallel to the main plane and connect the mass to the holder in several directions. The spring arrangement according to the invention enables a low hysteresis, the linearity of its characteristic and a high rigidity in relation to forces which endeavor to displace the mass transversely to its axis of movement. Leaf springs can be manufactured with a high degree of accuracy and give the designer a great deal of freedom in choosing a suitable material. At each bearing point, a one-piece leaf spring formed from a sheet metal disk with radially arranged spring arms is preferably provided, which are connected to one another at their ends directly or by sections of the sheet metal disk. This configuration facilitates the assembly of the leaf springs and fixes their installation position in relation to the mass and the holder with great accuracy. At the same time, this spring design ensures that the mass is forced to move exactly along its central axis. In order to avoid a temperature-related change in the spring rate of the leaf springs, it can further be provided according to the invention that the leaf springs and the holder have the same or approximately the same expansion coefficients. Fluctuations in the spring rate only lead to very small changes in the measuring accuracy even under unfavorable conditions.
Erfiπdungsgemäß ist weiterhin vorgesehen, daß dem op¬ tischen Geber der Meßeinrichtung über eine optische Faser ein Lichtsigπal zugeführt wird, das an dem mit
der Masse verbundenen Ende der Faser in der Hauptebene (X, Z) austritt, von einem mit dem Halter verbundenen Zwilliπgsfilter empfangen und nach Ver¬ lassen des Filters über eine zweite optische Faser einer Auswerteeinheit zugeführt wird, wobei das Zwillingsfilter beiderseits einer in der Hauptebene liegenden Teilungsfuge . unterschiedliche, auf die Wellenlängen des Signals abgestimmte Filtereigen¬ schaften hat. Diese Ausgestaltung des Gebers gewährleistet thermische Unempfindlichkeit und ermög¬ licht eine einfache . Montage und Justierung der optischen Bauelemente. Da die federnd gelagerte Masse lediglich mit einem Ende einer optischen Faser zu verbinden ist, entfallen aufwendige mechanische Kupp¬ lungen. Die Justierung beschränkt sich auf die mit dem Halter verbundenen Teile, wobei über Mikrometer¬ schrauben einstellbare Spannvorrichtungen verwendet werden können.According to the invention it is further provided that a light signal is fed to the optical transmitter of the measuring device via an optical fiber which is connected to the the mass-connected end of the fiber emerges in the main plane (X, Z), is received by a twin filter connected to the holder and, after leaving the filter, is fed to an evaluation unit via a second optical fiber, the twin filter lying on either side of one in the main plane Division joint. has different filter properties matched to the wavelengths of the signal. This configuration of the encoder ensures thermal insensitivity and enables simple. Assembly and adjustment of the optical components. Since the spring-loaded mass can only be connected to one end of an optical fiber, there is no need for complex mechanical couplings. The adjustment is limited to the parts connected to the holder, it being possible to use clamping devices which can be adjusted using micrometer screws.
Das Zwillingsfilter ist erfindungsgemäß vorzugsweise an einem mit dem Halter verbundenen Umlenkprisma angeordnet, dessen thermisch neutrale Ebene in der Hauptebene liegt und mit der Mittelebene des Strah¬ lengangs zusammen fällt. Durch das Prisma wird eine Umlenkung des Lichtsigπals in eine zur Eingangsrich¬ tung parallele Richtung bewirkt und damit der konstruktive Aufbau der Meßvorrichtung vereinfacht. Die optischen Fasern können somit symetrisch und in gleicher Länge ausgebildet sein und an einen gemein¬ samen Lichtkabelanschluß geführt werden. Das Ein'trittsende der zweiten optischen Faser ist erfin¬ dungsgemäß ebenfalls symetrisch zur Hauptebene ange-
ordnet .According to the invention, the twin filter is preferably arranged on a deflection prism connected to the holder, the thermally neutral plane of which lies in the main plane and coincides with the central plane of the beam path. The prism causes the light signal to be deflected in a direction parallel to the input direction, thus simplifying the construction of the measuring device. The optical fibers can thus be symmetrical and of the same length and can be routed to a common light cable connection. According to the invention, the entry end of the second optical fiber is also symmetrical to the main plane. arranges.
Der optische Geber des erfindungsgemäßen Beschleuni¬ gungsmessers erhält von der optoelektronischen Mess¬ einrichtung in rascher, wechselnder Folge Lichtsigna¬ le zweier verschiedener Wellenlängen, die nach Durch¬ laufen des Gebers an eine Auswerteeinheit zurückge¬ führt werden, in der die empfangenen Signale einer Wellenlänge mit denen der anderen Wellenlänge hin¬ sichtlich ihrer Intensität verglichen werden.The optical transmitter of the accelerometer according to the invention receives light signals from two different wavelengths in rapid, alternating succession from the optoelectronic measuring device, which after passing through the transmitter are fed back to an evaluation unit in which the received signals have a wavelength those of the other wavelength are compared in terms of their intensity.
Um vom Meßobjekt ausgehende Temperatureinflüsse zu dämpfen kann der Halter erfindungsgemäß auf einem wär eisoliereπden - Träger angebracht sein, der mit einer an dem Meßobjekt befestigbaren Grundplatte ver¬ bunden ist. Weiterhin kann vorgesehen sein, daß der Halter mit seinen Einbauten von einem Gehäuse dicht umschlossen ist und daß der Inneπraum des Gehäuses mit einem trockenen, inerten Gas, z. B. Stickstoff gefüllt ist. Auf diese Weise wird eine Beeinträchti¬ gung vor allem der optischen Vorgänge durch Tempera¬ tur- und Witterungseinflüsse weitgehend unterbunden. Die Innenwand des Gehäuses kann zusätzlich mit einem wärmeisolierenden Material beschichtet sein.In order to dampen temperature influences originating from the measurement object, the holder can, according to the invention, be mounted on a heat-insulating support which is connected to a base plate which can be fastened to the measurement object. Furthermore, it can be provided that the holder with its internals is tightly enclosed by a housing and that the interior space of the housing with a dry, inert gas, for. B. nitrogen is filled. In this way, impairment, especially of the optical processes, by temperature and weather influences is largely prevented. The inner wall of the housing can additionally be coated with a heat-insulating material.
Die Erfindung wird nachfolgend anhand in der Zeichnung dargestellter Ausführungsbeispiele im ein¬ zelnen näher erläutert. Es zeigenThe invention is explained in more detail below with reference to exemplary embodiments shown in the drawing. Show it
Figur 1 - eine schematische Schnittdarstellung der Gesamtanordnung eines erfindungsgemässen Beschleunigungsmessers,
Figur 2 - eine detailliertere Schnittansicht der mechanischen Bauelemente eines erfindungsgemäßen Beschleunigungsmessers,FIG. 1 shows a schematic sectional illustration of the overall arrangement of an accelerometer according to the invention, FIG. 2 shows a more detailed sectional view of the mechanical components of an accelerometer according to the invention,
Figur 3 - eine Ansicht in Richtung Z der Anordnung des optischen Gebers undFigure 3 - a view in the direction Z of the arrangement of the optical encoder and
Figur 4 - eine Ansicht in Richtung Y des Gebers gemäß Figur 3.Figure 4 - a view in the direction Y of the encoder according to Figure 3.
Der in Figur 1 gezeigte Beschleunigungsmesser (1) ist auf einem wärmeisolierendeπ Träger (2) angebracht, der fest mit einer Grundplatte (3) verbunden ist. Die Grundplatte (3) ist mit einem Element (4) eines Bauwerks verbunden, dessen Schwingungsverhalten gemessen bzw. überwacht werden soll. Zum Schutz gegen Einflüsse von außen ist der Beschleunigungsmesser von einem zylindrischen Gehäuse (5) aus rostfreiem Stahl umgeben, das auf seiner Innenseite mit einer wärmeisolierenden Schicht (6) versehen ist. O-Ring-Dichtungen (7) dichten das Ge¬ häuse (5) gegenüber der Grundplatte (3) ab. Das Inne¬ re des Gehäuses (5) wird über die Anschlüsse (7, 8) mit einem trockenen inerten Gas gefüllt und an¬ schließend dicht verschlossen, um die Sauberkeit der optischen Flächen zu gewährleisten und einen Flüssig¬ keitsniederschlag dort zu vermeiden. Der Beschleuni¬ gungsmesser (1) enthält eine an Federn in einem star¬ ren Halter linear beweglich aufgehängte Masse (9) , deren jeweilige Position von einem optischen Geber (10) gemessen wird. Der optische Geber (10) ist über
optische Fasern (11) mit einer optoelektronischen Einrichtung verbunden, die nicht näher dargestellt ist. Gegenüber dem Innenraum des Gehäuses (5) hermetisch abgedichtete Faseranschlußköpfe (12) ermöglichen eine Trennung von Beschleunigungsmesser und Meßeinrichtung.The accelerometer (1) shown in FIG. 1 is mounted on a heat-insulating support (2) which is firmly connected to a base plate (3). The base plate (3) is connected to an element (4) of a building, the vibration behavior of which is to be measured or monitored. To protect against external influences, the accelerometer is surrounded by a cylindrical housing (5) made of stainless steel, which is provided on the inside with a heat-insulating layer (6). O-ring seals (7) seal the housing (5) from the base plate (3). The interior of the housing (5) is filled with a dry, inert gas via the connections (7, 8) and then sealed tightly in order to ensure the cleanliness of the optical surfaces and to prevent liquid precipitation there. The accelerometer (1) contains a mass (9) suspended linearly movably on springs in a rigid holder, the respective position of which is measured by an optical transmitter (10). The optical encoder (10) is over optical fibers (11) connected to an optoelectronic device, which is not shown. Hermetically sealed fiber connection heads (12) with respect to the interior of the housing (5) enable the accelerometer and measuring device to be separated.
Aus Figur 2 ist der symmetrische Aufbau des Beschleu¬ nigungsmessers (1) zu ersehen. Beiderseits einer durch die Achsen X, Z definierten Hauptebene sind in symmetrischer Anordnung die mechanischen Bauelemente des Beschleunigungsmessers (1) vorgesehen. Der Beschleunigungsmesser (1) weist einen Halter (20) auf, der aus einem Mittelteil (21) , zwei Kappen (22) und zwei Zwischenringen (23) zusammengesetzt ist. Die äußeren Mantelflächen des Halters (20) sind zylindrisch ausgebildet. In einer zur Hauptebene X, Z senkrechten, zylindrischen Mittelbohrung (24) befindet sich ein stabför iges Verbindungselement (25) , das an seinen beiden entgegengesetzten Enden zylindrische Massekörper (26) aufweist, die in Kammern (27) in den Kappen (22) angeordnet sind. Das Verbindungselement (25) und die Massekörper (26) bilden eine einheitliche Masse (28) , die in Richtung der Achse Y gegenüber dem Halter (20) beweglich ist. Die Masse (28) ist an Blattfedern (29) aufgehängt, die von einer dünnen, kreisförmigen und mit urchbrüchen versehenen Blechscheibe gebildet werden. Die Blattfedern sind zwischen dem Mittelteil (21) und den Zwischenringen (23) eingespannt und werden an der Masse (28) durch die auf das Verbinduπgselement (25)
aufgesetzten Massekörper (26) gehalten. Die Kammern (27) sind durch ringförmige Membranen (30) verschlossen, die sich in einem Abstand von den Blattfedern (29) befinden. Die radial äußeren Ränder der Membranen (30) sind zwischen den Zwischenringen (23) und den Kappen (22) in Ringnuten gehalten. Die radial inneren Ränder der Membranen (30) sind eben¬ falls in Ringnuten zwischen den Massekörpern (26) und einem auf den Blattfedern (29) aufliegenden Ring (31) gehalten. Die Kammern (27) sind vollständig mit einem Silikonöl gefüllt, Volumenänderungen des eingeschlos¬ senen Silikonöls werden durch elastische Verformungen der Membranen (30) ausgeglichen.The symmetrical structure of the accelerometer (1) can be seen from FIG. On both sides of a main plane defined by the axes X, Z, the mechanical components of the accelerometer (1) are provided in a symmetrical arrangement. The accelerometer (1) has a holder (20) which is composed of a central part (21), two caps (22) and two intermediate rings (23). The outer lateral surfaces of the holder (20) are cylindrical. In a cylindrical central bore (24) perpendicular to the main plane X, Z there is a rod-shaped connecting element (25) which has cylindrical mass bodies (26) at its two opposite ends, which are arranged in chambers (27) in the caps (22) are. The connecting element (25) and the mass body (26) form a uniform mass (28) which is movable in the direction of the axis Y relative to the holder (20). The mass (28) is suspended from leaf springs (29) which are formed by a thin, circular and perforated sheet metal disc. The leaf springs are clamped between the middle part (21) and the intermediate rings (23) and are attached to the mass (28) by means of the connecting element (25). attached mass body (26) held. The chambers (27) are closed by annular membranes (30) which are at a distance from the leaf springs (29). The radially outer edges of the membranes (30) are held in annular grooves between the intermediate rings (23) and the caps (22). The radially inner edges of the membranes (30) are also held in annular grooves between the mass bodies (26) and a ring (31) resting on the leaf springs (29). The chambers (27) are completely filled with a silicone oil, changes in volume of the enclosed silicone oil are compensated for by elastic deformations of the membranes (30).
In einem zentralen, ausgesparten Bereich des Mittelteils (21) ist auf einem Träger (32) ein Prisma (33) angeordnet, das einen Teil des optischen Gebers bildet. Das Prisma (33) hat seine größte Ausdehnung in Richtung der Hauptebene X, Z, wobei seine ther¬ misch neutrale Ebene mit der Hauptebene X, Z zusam¬ men fällt. Gegenüber dem Prisma (33) ist in einer Querbohrung im Verbindungselement das Ende (34) einer optischen Faser (35) angeordnet. Das Faserende (34) verläuft ebenfalls in der Hauptebene X, Z und ist senkrecht zur Stirnfläche des Prismas (33) ausgerichtet. Parallel zum Ende (34) der Faser(35) befindet sich in der Zeichnung nicht sichtbar das Ende einer zweiten optischen Faser, welche ein über die Faser (35) gesendetes Lichtsignal nach dem Verlassen des Prismas empfängt.
Die Wirkungsweise des optischen Gebers (10) ist der schematischen Darstellung der Figuren 3 und 4 zu entnehmen. Das Prisma (33), welches auf dem Träger (32) befestigt ist, enthält ein Zwillingsfilter (36), das beiderseits einer in der Hauptebene X, Z liegenden Teilungsfuge eine unterschiedliche Filterwirkung hat, d. h. jeweils für Licht einer anderen Wellenlänge durchlässig ist. Wird nun über die im Verbinduπgselement (25) der Masse (28) angeordnete Faser (35). ein Lichtsignal in Form eines Strahlenbündels (S) ausgesendet, so wird dieses im Prisma um 180° derart umgelenkt, daß es in der Haupt¬ ebene X, Z parallel verschoben durch das Zwillings¬ filter (36) wieder austritt. Enthält das Lichtsignal (S) eine Wellenlänge, die beispielsweise von dem oberen Abschnitt des Zwillingsfilters (36) absorbiert wird, so kann über den unteren Abschnitt des Zwillingsfilters (36) nur noch die Hälfte des ausgesendeten Strahlenbündels austreten. Umgekehrt verhält es sich, wenn das ausgesendete Lichtsignal eine Wellenlänge hat, die von dem unteren Abschnitt des Zwillingsfilters (36) absorbiert wird. Enthält nun das Lichtsignal beide Wellenlängen, so ist, gleiche Eingangsintensität vorausgesetzt, die am Ausgang des Zwillingsfilters erfaßbare Intensität der Lichtanteile beider Wellenlängen gleich, wenn das Zentrum des Strahlenbündels genau in der Hauptebene X, Z bzw. der Teilungsfuge des Zwillingsfilters liegt. Wird durch eine Verlagerung der Masse (28) mit dem Verbindungselement (25) und damit auch des Endes (34)
der Faser (35) das Strahlenbündel (S) des Lichtsignals in Richtung Y verschoben, so kann von dem Licht der einen Wellenlänge ein größerer Anteil, von Licht der anderen Wellenlänge hingegen nur ein kleinerer Anteil das Zwillingsfilter (36) passieren. Diese Differenz wird von einer optoelektronischen Meßeinrichtung erfaßt und in ein geeignetes elektrisches Meßsignal umgewandelt, welches dann ein Maß für die Verlagerung der Masse (28) darstellt. Das am Zwillingsfilter (36) austretende Lichtsignal wird dabei ebenfalls über eine optische Faser zur Auswerteeinheit übertragen.A prism (33), which forms part of the optical transmitter, is arranged on a carrier (32) in a central, recessed area of the central part (21). The prism (33) has its greatest extent in the direction of the main plane X, Z, its thermally neutral plane coinciding with the main plane X, Z. Opposite the prism (33), the end (34) of an optical fiber (35) is arranged in a transverse bore in the connecting element. The fiber end (34) also runs in the main plane X, Z and is aligned perpendicular to the end face of the prism (33). Parallel to the end (34) of the fiber (35) is not visible in the drawing the end of a second optical fiber which receives a light signal transmitted via the fiber (35) after leaving the prism. The mode of operation of the optical transmitter (10) is shown in the schematic illustration in FIGS. 3 and 4. The prism (33), which is attached to the carrier (32), contains a twin filter (36), which has a different filter effect on both sides of a division joint lying in the main plane X, Z, that is, it is permeable to light of a different wavelength. Now over the fiber (35) arranged in the connecting element (25) of the mass (28). If a light signal is emitted in the form of a beam (S), this is deflected in the prism by 180 ° in such a way that it emerges again in the main plane X, Z, parallel to one another, through the twin filter (36). If the light signal (S) contains a wavelength that is absorbed, for example, by the upper section of the twin filter (36), then only half of the emitted beam can exit through the lower section of the twin filter (36). The reverse is true if the emitted light signal has a wavelength which is absorbed by the lower section of the twin filter (36). If the light signal now contains both wavelengths, provided that the input intensity is the same, the intensity of the light components of both wavelengths that can be detected at the output of the twin filter is the same if the center of the beam lies exactly in the main plane X, Z or the division joint of the twin filter. Is by a displacement of the mass (28) with the connecting element (25) and thus also the end (34) If the fiber (35) shifts the beam (S) of the light signal in direction Y, a larger portion of the light of one wavelength, but only a smaller portion of light of the other wavelength, can pass through the twin filter (36). This difference is detected by an optoelectronic measuring device and converted into a suitable electrical measuring signal, which then represents a measure of the displacement of the mass (28). The light signal emerging at the twin filter (36) is also transmitted to the evaluation unit via an optical fiber.
Durch das beschriebene System kann eine hohe Meßge¬ nauigkeit und lineare Auflösung von Bewegungen für kleine Ausleπkungen , im Bereich von — 50 μm, erreicht werden. Es ist damit ein Meßprinzip für langsame Be¬ wegungen und sogar statische Zustände entwickelt worden. Auch ein Drucksensor ist mit dem beschrie¬ benen System realisierbar.
The described system enables a high measuring accuracy and linear resolution of movements for small deflections, in the range of - 50 μm, to be achieved. A measuring principle for slow movements and even static conditions has thus been developed. A pressure sensor can also be implemented with the described system.
Claims
Beschleunigungsmesser mit einer an Federn in einem starren Halter linear beweglich aufgehäng¬ ten Masse, einer zwischen der Masse und dem Halter wirksamen Dämpfungsvorrichtung und einer optoelektronischen Meßeinrichtung zur Messung der Verlagerung der Masse im Halter, dadurch gekennzeichnet, daß der Halter, die Masse, die Feder und der Geber der Meßeinrichtung derart angeordnet sind, daß ihre thermisch neutralen Ebenen, von denen aus sie sich in Richtung (— Y) der Bewegungsempfindlichkeit der Masse symme¬ trisch ausdehnen, in einer gemeinsamen Hauptebene (X, Z) liegen.Accelerometer with a mass suspended linearly movably on springs in a rigid holder, a damping device acting between the mass and the holder and an optoelectronic measuring device for measuring the displacement of the mass in the holder, characterized in that the holder, the mass, the spring and the encoder of the measuring device are arranged in such a way that their thermally neutral planes, from which they expand symmetrically in the direction (- Y) of the movement sensitivity of the mass, lie in a common main plane (X, Z).
Beschleunigungsmesser nach Anspruch 1, dadurch gekennzeichnet, daß die Masse ein mittiges Ver¬ bindungselement (25) aufweist, an dessen ent¬ gegengesetzten Enden Massekörper (26) befestigt sind, die in mit Dämpfungsflüssigkeit gefüllten Kammern (27) des Halters (20) angeordnet sind. Accelerometer according to Claim 1, characterized in that the mass has a central connecting element (25), to the opposite ends of which mass bodies (26) are fastened, which are arranged in chambers (27) of the holder (20) filled with damping liquid .
Beschleunigungsmesser nach Anspruch 2, dadurch gekennzeichnet, daß die vollständig mit Däm¬ pfungsflüssigkeit gefüllten Kammern (27) durch ringförmige Membranen (30) geringer Steifigkeit verschlossen sind, deren Ränder an der Masse (28) und an dem Halter (20) dicht eingespannt sind. Accelerometer according to claim 2, characterized in that the chambers (27) completely filled with damping liquid are closed by annular membranes (30) of low rigidity, the edges of which are tightly clamped to the mass (28) and to the holder (20).
Beschleunigungsmesser nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß die Masse (28) an getrennt von den Membranen (30) vorgesehenen Blattfedern (29) gelagert ist, die an zwei Lagerstellen symmetrisch und parallel zur Hauptebene angeordnet sind und in mehreren Richtungen die Masse mit dem Halter verbinden.Accelerometer according to one of the preceding claims, characterized in that the mass (28) is mounted on leaf springs (29) which are provided separately from the membranes (30) and which are arranged symmetrically and parallel to the main plane at two bearing points and in several directions Connect the earth to the holder.
Beschleunigungsmesser nach Anspruch 4, dadurch gekennzeichnet, daß die Blattfedern (29) einer Lagerstelle einteilig aus einer Blechscheibe geformt ist und radial angeordnete Federarme aufweist, die an ihren Enden unmittelbar oder durch Abschnitte der Blechscheibe miteinander verbunden sind.Accelerometer according to Claim 4, characterized in that the leaf springs (29) of a bearing point are formed in one piece from a sheet-metal disk and have radially arranged spring arms which are connected to one another at their ends or by sections of the sheet-metal disk.
Beschleunigungsmesser nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß die Blattfedern (29) und der Halter (20) gleiche oder annähernd gleiche Ausdehnungskoeffizienten haben. Accelerometer according to one of the preceding claims, characterized in that the leaf springs (29) and the holder (20) have the same or approximately the same expansion coefficients.
Beschleunigungsmesser nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß dem optischen Geber (10) der Meßeinrichtung über eine optische Faser (11, 35) ein Lichtsignal zugeführt wird, das an dem mit der Masse (28) verbundenen Ende (34) der Faser (11, 35) in der Hauptebene (X, Z) austritt, von einem mit dem Halter (20) verbundenen Zwillingsfilter (36) empfangen und nach Verlassen des Zwillingsfilters über eine zweite optische Faser einer Auswerteeinheit zuge¬ führt wird, wobei das Zwillingsfilter (36) beiderseits einer in der Hauptebene (X, Z) liegenden Teilungsfuge unterschiedliche, auf verschiedene Wellenlängen des Signals abgestimmte Filtereigenschaften hat. Accelerometer according to one of the preceding claims, characterized in that a light signal is fed to the optical transmitter (10) of the measuring device via an optical fiber (11, 35), which at the end (34) connected to the mass (28) Fiber (11, 35) emerges in the main plane (X, Z), is received by a twin filter (36) connected to the holder (20) and, after leaving the twin filter, is fed to an evaluation unit via a second optical fiber, the twin filter (36) has different filter properties on both sides of a dividing line in the main plane (X, Z), which are matched to different wavelengths of the signal.
Beschleunigungsmesser nach Anspruch 7, dadurch gekennzeichnet, daß das Zwillingsfilter (36) an einem mit dem Halter verbundenen Umlenkprisma (33) angeordnet ist, dessen im Strahlengang lie¬ gende, thermisch neutrale Ebene in der Hauptebene (X, Z) liegt.Accelerometer according to Claim 7, characterized in that the twin filter (36) is arranged on a deflection prism (33) connected to the holder, the thermally neutral plane of which lies in the beam path and lies in the main plane (X, Z).
Beschleunigungsgeber nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß das Eintrittsende der zweiten optischen Faser symme¬ trisch zur Hauptebene (X, Z) angeordnet ist. Accelerometer according to one of the preceding claims, characterized in that the entry end of the second optical fiber is arranged symmetrically to the main plane (X, Z).
10. Beschleunigungsmesser nach einem der vorherge¬ henden Ansprüche, dadurch gekennzeichnet, daß die optoelektronische Meßeinrichtung in rascher, wechselnder Folge Lichtsignale zweier verschiede¬ ner Wellenlängen aussendet, die nach Durchlaufen des optischen Gebers an eine Auswerteeinheit zurückgeführt werden, in der die empfangenen Sig¬ nale einer Wellenlänge mit denen der anderen Wel¬ lenlänge hinsichtlich ihrer Intensität verglichen werden.10. Accelerometer according to one of the preceding claims, characterized in that the optoelectronic measuring device emits light signals of two different wavelengths in rapid, alternating succession, which, after passing through the optical transmitter, are returned to an evaluation unit in which the received signals one wavelength can be compared with those of the other wavelength with regard to their intensity.
11. Beschleunigungsmesser nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß der Halter auf einem wärmeisolierenden Träger (2) angebracht ist, der mit einer an dem Meßobjekt11. Accelerometer according to one of the preceding claims, characterized in that the holder is attached to a heat-insulating support (2), which with one on the measurement object
(4) befestigten Grundplatte (3) verbunden ist.(4) attached base plate (3) is connected.
12. Beschleunigungsmesser nach einem der vorhergehen¬ den Ansprüche, dadurch gekennzeichnet, daß der Halter mit seinen Einbauten von einem Gehäuse (5) dicht umschlossen ist und daß der Innenraum des Gehäuses (5) mit einem trockenen inerten Gas, z. B. Stickstoff gefüllt ist.12. Accelerometer according to one of the preceding claims, characterized in that the holder with its internals is tightly enclosed by a housing (5) and that the interior of the housing (5) with a dry inert gas, for. B. nitrogen is filled.
13. Beschleunigungsmesser nach Anspruch 12, dadurch gekennzeichnet, daß die Innenwand des Gehäuses13. Accelerometer according to claim 12, characterized in that the inner wall of the housing
(5) mit einem wärmeisolierenden Material (6) be¬ schichtet ist. (5) is coated with a heat-insulating material (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3918194.4 | 1989-06-03 | ||
DE19893918194 DE3918194A1 (en) | 1989-06-03 | 1989-06-03 | ACCELEROMETER |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990015336A1 true WO1990015336A1 (en) | 1990-12-13 |
Family
ID=6382035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1990/000408 WO1990015336A1 (en) | 1989-06-03 | 1990-05-31 | Accelerometer |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE3918194A1 (en) |
WO (1) | WO1990015336A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112946317B (en) * | 2021-01-26 | 2022-12-13 | 哈尔滨工程大学 | Push-pull type optical fiber accelerometer with double-side double-reed supporting structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595830A (en) * | 1983-07-11 | 1986-06-17 | Sperry Corporation | Multimode optical fiber accelerometer |
FR2582404A1 (en) * | 1985-05-22 | 1986-11-28 | Boge Gmbh | ACCELEROMETRE |
EP0228773A1 (en) * | 1985-10-10 | 1987-07-15 | British Aerospace Public Limited Company | Movement sensing |
-
1989
- 1989-06-03 DE DE19893918194 patent/DE3918194A1/en not_active Withdrawn
-
1990
- 1990-05-31 WO PCT/DE1990/000408 patent/WO1990015336A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595830A (en) * | 1983-07-11 | 1986-06-17 | Sperry Corporation | Multimode optical fiber accelerometer |
FR2582404A1 (en) * | 1985-05-22 | 1986-11-28 | Boge Gmbh | ACCELEROMETRE |
EP0228773A1 (en) * | 1985-10-10 | 1987-07-15 | British Aerospace Public Limited Company | Movement sensing |
Also Published As
Publication number | Publication date |
---|---|
DE3918194A1 (en) | 1990-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3930314C2 (en) | ||
DE69527339T2 (en) | Sensor and method for measuring distances to a medium and / or its physical properties | |
DE69814568T2 (en) | BOURDON PRESSURE GAUGE WITH INTEGRATED OPTICAL STRETCH SENSORS FOR MEASURING TENSION OR PRESSURE EXPANSION | |
DE2853771C2 (en) | Length measuring device | |
DE69106326T2 (en) | ACCELEROMETER WITH INSULATING BENDING JOINTS. | |
DE69318757T2 (en) | Seal monitoring with sloping surface | |
DE4136510C2 (en) | ||
DE2657119A1 (en) | PRESSURE SENSOR FOR FIBER OPTICS | |
DE3713236C2 (en) | ||
EP0152149B1 (en) | Optical pressure sensor | |
EP3938749B1 (en) | Measurement system for installation between torque- and/or force-transmitting machine parts | |
EP3344967A1 (en) | Pressure sensor assembly and measurement converter for process instrumentation, comprising such a pressure sensor assembly | |
DE19608310C1 (en) | Differential pressure transmitter unit with an overload protection system | |
DE2748173C3 (en) | Accelerometer | |
DE69201072T2 (en) | Force measuring device and apparatus for detecting the current of a track transition using this device. | |
WO1990015336A1 (en) | Accelerometer | |
DE3640519A1 (en) | OPTICAL POSITION SENSOR | |
DE69209412T2 (en) | sensor | |
DE19743156C2 (en) | Position or displacement sensor | |
EP0126172A1 (en) | Damping means for force tranducers | |
DE4200835A1 (en) | Angle measurement transducer, esp. for rotating parts, - contains opto=electronic units and reflector mounted eccentrically on rotating part | |
WO2018149859A1 (en) | Fiber-optic vibration and acceleration sensor | |
DE19529396C2 (en) | Measuring device for measuring the flow rate of a medium flowing in a flow cross section | |
DE4124685A1 (en) | Optical measurement of force on elastic spring element - involves opto-electronic detection of displacement of point of impact of beam emitted from cantilevered light guide | |
DE3904634A1 (en) | Fibre-optic scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |