WO1990010519A1 - Laser output control system - Google Patents
Laser output control system Download PDFInfo
- Publication number
- WO1990010519A1 WO1990010519A1 PCT/JP1990/000280 JP9000280W WO9010519A1 WO 1990010519 A1 WO1990010519 A1 WO 1990010519A1 JP 9000280 W JP9000280 W JP 9000280W WO 9010519 A1 WO9010519 A1 WO 9010519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- output
- output control
- command
- temperature
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/408—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35247—Mode selection between two machining modes, laser beam and laser shutter control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45165—Laser machining
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49353—Control of output power of tool, laser beam
Definitions
- the present invention relates to a laser output control method of an NC laser device in which a numerical control device (CNC) is combined with a gas laser oscillator, and more particularly to a laser output control method capable of saving energy and obtaining high processing accuracy.
- CNC numerical control device
- Laser output control methods are roughly classified into a so-called shutter control method and a beam control method.
- Conventional laser devices are provided with either control method depending on the application.
- the shutter control method is a method of controlling the opening and closing of a shutter provided in the middle of the output path of laser light to the outside based on a processing command. Since the laser is emitted at a constant output before the start of machining and during machining interruption, the inner wall temperature of the discharge tube is always in a steady state. Therefore, the output mode of laser light is stable from the beginning of processing, and it is used especially for thin material processing where processing accuracy is important.
- the laser oscillator when machining is not performed, the laser oscillator is in a base discharge state, and when a machining command is input, the output command value is increased and a laser is output. Therefore, compared to the shutter control method, it is energy saving type, generates less heat, and has a longer life of optical components.
- the advantages of each control system described above are disadvantageous in the other control systems.
- the shutter control method has a low operating efficiency and a short life of optical components. Also, the control performance is poor due to the slow opening and closing speed of the shutter.
- the beam control method tends to be in a lower-order mode because the temperature of the inner wall of the discharge tube is low at the beginning of machining, and machining accuracy during this period decreases. Disclosure of the invention
- the present invention has been made in view of such a point, and an object of the present invention is to provide a laser output control method which is energy saving and can obtain high processing accuracy.
- a first output control mode and a second output control mode are provided in a laser output control method of an NC laser device in which a numerical controller (CNC) and a gas laser oscillator are combined.
- CNC numerical controller
- the first output control mode machining is performed.
- shut off the laser output path to the outside pre-oscillate the laser, detect the laser gas temperature with the temperature detector and compare it with the set temperature.Laser output so that the laser gas temperature rises to the set temperature Controlling the laser gas temperature to maintain the inner wall temperature of the discharge tube in a steady state, and after inputting a machining command, turning on the base discharge state, opening the laser output path, and
- the laser output path is not interrupted, the preliminary oscillation, and the temperature control are not performed, and after a processing command is input, a base discharge state is established, the laser output path is opened, and a laser is output at a predetermined output commanded by the processing
- the laser gas temperature is raised by pre-oscillating the laser with the shutter closed before machining starts to maintain the inner wall temperature of the discharge tube in a steady state.
- the system is once set to the base discharge state, then the shutter is opened and the output command value is increased to output the laser.
- the second output control mode is equivalent to the conventional beam control method, and provides energy saving, low heat generation, and long life output control.
- FIGS. 1 (a) and 1 (b) are flow charts of a laser output control system according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration of a hard disk of an NC laser device for carrying out the present invention
- FIG. 3 is an example of a timing chart of each instruction when the ⁇ mode is selected in one embodiment of the present invention.
- FIG. 4 is an example of a time chart of each command when the B mode is selected in one embodiment of the present invention.
- BEST MODE FOR CARRYING OUT THE INVENTION hereinafter, an embodiment of the present invention will be described with reference to the drawings.
- FIG. 2 is a block diagram showing a configuration of a hardware of an NC laser device for implementing the laser output control method of the present invention.
- a processor 1 controls the operation of the entire NC laser device based on a machining command of a machining program (not shown).
- the output control circuit 2 has a built-in DZA converter and converts the output command PC output from the processor 1 into a current command value and outputs it. After rectifying the commercial power supply, the laser power supply 3 performs a switching operation to generate a high-frequency voltage, and supplies a high-frequency current corresponding to the current command value to the discharge tube 4.
- a laser gas 19 is circulated inside the discharge tube 4, and when a high-frequency current is supplied from the laser power supply 3, a discharge occurs to excite the laser gas 19.
- the rear mirror 5 is a mirror made of germanium (Ge) with a reflectivity of 99.5%
- the output mirror 6 is a mirror made of zinc selenium (ZnSe) with a reflectivity of 40 to 55%.
- a Fabry-Perot resonator is configured to amplify the 10.6 um light emitted from the excited laser gas molecules and output a part of the light as laser light 7 from the output mirror 6 to the outside.
- the output laser beam ⁇ changes its direction by a vendor mirror 8 when a shutter 23 a described later is open, and is condensed by a condensing lens 9 to a spot of 0.2 mm or less, and a work 17 The surface is irradiated.
- Memory 10 is a memory for storing machining programs and various parameters, and uses a battery backed-up CMOS or the like.
- the position control circuit 11 decodes the feed command CC output from the processor 1, controls the rotation of the servo motor 13 via the servo amplifier 12, and controls the table 1 by the ball screw 14 and the nut 15.
- the movement of 6 is controlled and the position of work 17 is controlled. In the figure, only one axis is shown, and the other axes are omitted.
- a CRT or a liquid crystal display device is used.
- a parameter setting screen or a laser condition setting screen is displayed on this display screen. When an operator operates an operation key (not shown), one of two output control modes described later is interactively operated. You can select by format.
- Roots blower or the like is used for blower 20 and laser gas 1
- coolers 21a and 21b are coolers for cooling the laser gas 19 which has become high temperature by performing laser oscillation, and the cooler 21b is a cooler for removing heat of compression by the blower 20. .
- the shutter control circuit 22 opens and closes the shutter 23 a based on the shutter opening and closing command SC output from the processor 1.
- the shutter 23a is made of a copper plate or an aluminum plate having a gold-plated surface, and when closed, reflects the laser light 7 output from the output mirror 6 and closes the beam absorber 2a. Absorb to 3b.
- the power sensor 24 is composed of a thermoelectric or photoelectric conversion element or the like, inputs a laser beam transmitted through a part of the rear mirror 5, and measures the output power of the laser beam 7.
- a radiation thermometer is used for the temperature sensor 25, and measures the temperature of the laser gas 19 ⁇ The temperature of the laser gas 19 is measured to estimate the inner wall temperature of the discharge tube 4.
- the switch 26 switches between the output of the power sensor 24 and the output of the temperature sensor 2.5 according to a command from the processor 1.
- the AZD converter 27 converts the output of the switch 26 into a digital value and inputs it to the processor 1.
- [S11] Set the output command value to 0 to set the base discharge state. At the same time, switch 26 is switched to the side of power sensor 24.
- [S1 2] Outputs shutter open / close command SC and opens shutter 2 3a.
- Output command PC and feed command CC are output based on machining command MC, and execute machining.
- FIG. 3 is an example of a time chart of each command when the A mode is selected in the above embodiment.
- the output command PC commands a predetermined output value.
- the output command value decreases and becomes a constant value p 0.
- the output command PC commands the base discharge, and the shutter opening / closing command SC is output.
- the output command PC is set.
- a predetermined output command value issued by the machining command MC is output, and the laser beam 7 is irradiated on the peak 1.
- the shutter opening / closing command SC is turned off, and the output command PC is reset again. Command discharge.
- the output command PC When the machining command MC commands “G 0 1” (cutting), the output command PC once again commands the base discharge, and the shutter opening / closing command SC is output.
- the output command PC and the feed command CC output predetermined command values based on the machining command MC, respectively, so that the workpiece 17 is cut.
- the laser output is detected by the power sensor 24 and feedback is performed so that the laser output is controlled to match the output command value.
- the shutter opening / closing command SC is turned off, and the output command PC commands the base discharge again.
- Fig. 4 shows an example of the time chart of each command when B mode is selected.
- the output command PC issues a base discharge command
- the shutter opening / closing command SC is output
- the shutter 23a opens.
- the output command PC outputs a predetermined output command value
- the work 17 is irradiated with the laser beam 7.
- the output command FC commands the base discharge again.
- the first output control mode and the second output control mode that can be arbitrarily switched are provided, and in the first output control mode, the shutter is closed before starting the machining.
- Preliminary oscillation of the laser raises the laser gas temperature to maintain the inner wall temperature of the discharge tube in a steady state.
- the system once returns to the base discharge state, then opens the shutter and increases the output command value. Since the laser is output, stable single-mode laser light can be output from the beginning of processing, and energy saving can be achieved compared to the conventional shutter control method and higher processing accuracy can be realized than the beam control method. .
- the second output control mode has more energy saving, lower heat generation, and longer life than the first output control mode, and is advantageous when processing accuracy is not so important.
- the first and second output control modes can be switched interactively with reference to the display screen of the NC laser device. It has good operability and can easily handle various types of machining.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Laser Beam Processing (AREA)
- Lasers (AREA)
Abstract
A laser output control system for an NC laser in which a numerical control apparatus (CNC) and a gas laser oscillator are coupled together. There are provided a first output control mode and a second output control mode. In the first output control mode, a shutter is closed (S2) prior to starting the machining, and the laser is pre-oscillated to raise the temperature of a laser gas in order to maintain constant the temperature of the inner wall of the discharge tube (S3 to S6). When a machining instruction is input, the base discharge condition is once established (S8), the shutter is opened (S9), and the output instruction value is increased to produce laser beams. This makes it possible to realize the output control by taking advantages of a conventional shutter control system and a beam control system. In the second output control mode, the base discharge condition is established (S11) and the shutter is opened (S12) to effect the machining. The second output control mode is featured by energy saving, reduced heat generation and long life. This first and second output control modes can be selected by an operator depending upon the type of machining.
Description
明 細 書 レーザ出力制御方式 技 術 分 野 Description Laser output control method Technical field
本発明は数値制御装置 (C N C ) とガス レーザ発振器が結 合した N C レーザ装置のレーザ出力制御方式に関し、 特に省 エネルギ一で且つ高い加工精度を得られるレーザ出力制御方 式に関する。 背 景 技 術 The present invention relates to a laser output control method of an NC laser device in which a numerical control device (CNC) is combined with a gas laser oscillator, and more particularly to a laser output control method capable of saving energy and obtaining high processing accuracy. Background technology
レーザの出力制御方式には大別して所謂シャ ッタ制御方式 とビーム制御方式があり、 従来のレーザ装置では用途に応じ てどちらか一方の制御方式を備えている。 Laser output control methods are roughly classified into a so-called shutter control method and a beam control method. Conventional laser devices are provided with either control method depending on the application.
シャ ッタ制御方式はレーザ光の外部への出力経路の途中に 設けたシャ ツタを加工指令に基づいて開閉制御する方式であ る。 加工開始前及び加工中断時にも一定の出力でレーザを発 振しているので、 放電管の内壁温度は常に定常状態にある。 したがって、 加工当初からレーザ光の出力モードが安定して おり、 特に加工精度を重視する薄物加工に使用される。 The shutter control method is a method of controlling the opening and closing of a shutter provided in the middle of the output path of laser light to the outside based on a processing command. Since the laser is emitted at a constant output before the start of machining and during machining interruption, the inner wall temperature of the discharge tube is always in a steady state. Therefore, the output mode of laser light is stable from the beginning of processing, and it is used especially for thin material processing where processing accuracy is important.
これに対して、 ビーム制御方式は加工を行わない時にはレ 一ザ発振器をベース放電状態としており、 加工指令を入力す ることによって出力指令値を上昇してレーザを出力する。 し たがって、 シャ ッタ制御方式に比較して省エネルギー型であ り、 発熱も少なく、 光学部品等の寿命も長い。
しかし、 上述したそれぞれの制御方式における利点は、 逆 に互いに他方の制御方式では欠点となるものである。 On the other hand, in the beam control method, when machining is not performed, the laser oscillator is in a base discharge state, and when a machining command is input, the output command value is increased and a laser is output. Therefore, compared to the shutter control method, it is energy saving type, generates less heat, and has a longer life of optical components. However, the advantages of each control system described above are disadvantageous in the other control systems.
すなわち、 シャ ツタ制御方式は運転効率が低く、 光学部品 の寿命が短い。 また、 シャ ツタの開閉速度が遅いため制御性 能が悪い。 That is, the shutter control method has a low operating efficiency and a short life of optical components. Also, the control performance is poor due to the slow opening and closing speed of the shutter.
一方、 ビーム制御方式は加工当初においては放電管の内壁 温度が低いために、 より低次モードの傾向をもち、 この間の 加工精度が低下する。 発 明 の 開 示 On the other hand, the beam control method tends to be in a lower-order mode because the temperature of the inner wall of the discharge tube is low at the beginning of machining, and machining accuracy during this period decreases. Disclosure of the invention
本発明はこのような点に鑑みてなされたものであり、 省ェ ネルギ一で且つ高い加工精度を得られるレーザ出力制御方式 を提供することを目的とする。 The present invention has been made in view of such a point, and an object of the present invention is to provide a laser output control method which is energy saving and can obtain high processing accuracy.
本発明では上記課題を解決するために、 In the present invention, in order to solve the above problems,
数値制御装置 (C N C ) とガスレーザ発振器が結合した N C レーザ装置のレーザ出力制御方式において、 第 1の出力制 御モードと第 2の出力制御モードを設け、 前記第 1の出力制 御モードでは、 加工開始前に外部へのレーザ出力経路を遮断 し、 レーザを予備発振し、 温度検出器でレーザガス温度を検 出して設定温度と比較し、 前記レーザガス温度が前記設定温 度まで上昇するようにレーザ出力を制御して前記レーザガス 温度の温度制御を行うことにより放電管の内壁温度を定常状 態に保ち、 加工指令を入力した後、 ベース放電状態にし、 前 記レーザ出力経路を開放し、 前記加工指令で指令された所定 の出力でレーザを発振し、 前記第 2の出力制御モードでは、
前記レーザ出力径路の遮断と前記予備発振と前記温度制御を 行わず、 加工指令を入力した後、 ベース放電状態にし、 前記 レーザ出力経路を開放し、 前記加工指令で指令された所定の 出力でレーザを発振し、 指令に応じて前記第 1の出力制御モ 一ドと前記第 2の出力制御モードを切り換えることを特徴と するレーザ出力制御方式が提供される。 A first output control mode and a second output control mode are provided in a laser output control method of an NC laser device in which a numerical controller (CNC) and a gas laser oscillator are combined. In the first output control mode, machining is performed. Before starting, shut off the laser output path to the outside, pre-oscillate the laser, detect the laser gas temperature with the temperature detector and compare it with the set temperature.Laser output so that the laser gas temperature rises to the set temperature Controlling the laser gas temperature to maintain the inner wall temperature of the discharge tube in a steady state, and after inputting a machining command, turning on the base discharge state, opening the laser output path, and The laser oscillates at a predetermined output commanded by the above, and in the second output control mode, The laser output path is not interrupted, the preliminary oscillation, and the temperature control are not performed, and after a processing command is input, a base discharge state is established, the laser output path is opened, and a laser is output at a predetermined output commanded by the processing command. And a laser output control method characterized by switching between the first output control mode and the second output control mode according to a command.
第 1の出力制御モードでは、 加工開始前にシャ ッタを閉じ た状態でレーザを予備発振することにより レーザガス温度を 上昇させて放電管の内壁温度を定常状態に保つ。 加工指令を 入力すると一旦ベース放電状態にした後、 シャッタを開いて から出力指令値を上昇してレーザを出力する。 これにより、 従来のシャ ッタ制御方式とビーム制御方式の両方の利点を活 かした出力制御ができる。 In the first output control mode, the laser gas temperature is raised by pre-oscillating the laser with the shutter closed before machining starts to maintain the inner wall temperature of the discharge tube in a steady state. When a machining command is input, the system is once set to the base discharge state, then the shutter is opened and the output command value is increased to output the laser. This enables output control that takes advantage of both the conventional shutter control method and beam control method.
第 2の出力制御モードは従来のビーム制御方式に相当し、 省エネルギー、 低発熱、 長寿命の出力制御となる。 The second output control mode is equivalent to the conventional beam control method, and provides energy saving, low heat generation, and long life output control.
第 1及び第 2の出カ制御モー ドはォぺレータが任意に選択 することができる。 図 面 の 簡 単 な 説 明 第 1図 ( a ) 、 ( b ) は本発明の一実施例のレーザ出力制 御方式のフローチ ャ ー ト、 The first and second output control modes can be arbitrarily selected by the operator. BRIEF DESCRIPTION OF THE FIGURES FIGS. 1 (a) and 1 (b) are flow charts of a laser output control system according to an embodiment of the present invention.
第 2図は本発明を実施するための N Cレーザ装置のハー ド ゥヱァの構成を示したブ ック図、 FIG. 2 is a block diagram showing a configuration of a hard disk of an NC laser device for carrying out the present invention,
第 3図は本発明の一実施例における Αモード選択時の各指 令のタィ ムチャー トの一例、
第 4図は本発明の一実施例における Bモード選択時の各指 令のタイムチャー トの一例である。 発明を実施するための最良の形態 以下、 本発明の一実施例を図面に基づいて説明する。' 第 2図は本発明のレーザ出力制御方式を実施するための N C レーザ装置のハ ードゥヱァの構成を示したプロック図であ る。 図において、 プロセッサ 1 は図示されていない加工プロ グラムの加工指令に基づいて N C レーザ装置全体の動作を制 御する。 出力制御回路 2は内部に D Z Aコ ンバータを内蔵し ており、 プロセ ッ サ 1から出力された出力指令 P Cを電流指 令値に変換して出力する。 レーザ用電源 3は商用電源を整流 した後、 スイ ッチング動作を行って高周波の電圧を発生し、 電流指令値に応じた高周波電流を放電管 4に拱給する。 FIG. 3 is an example of a timing chart of each instruction when the Α mode is selected in one embodiment of the present invention. FIG. 4 is an example of a time chart of each command when the B mode is selected in one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing a configuration of a hardware of an NC laser device for implementing the laser output control method of the present invention. In the figure, a processor 1 controls the operation of the entire NC laser device based on a machining command of a machining program (not shown). The output control circuit 2 has a built-in DZA converter and converts the output command PC output from the processor 1 into a current command value and outputs it. After rectifying the commercial power supply, the laser power supply 3 performs a switching operation to generate a high-frequency voltage, and supplies a high-frequency current corresponding to the current command value to the discharge tube 4.
放電管 4の内部にはレーザガス 1 9が循環しており、 レー ザ用電源 3から高周波電流が供給されると放電を生じてレー ザガス 1 9が励起される。 リア鏡 5は反射率 9 9 . 5 %のゲ ルマニウム (G e ) 製の鏡、 出力鏡 6は反射率 4 0 〜 5 5 % のジンクセレン ( Z n S e ) 製の鏡であり、 これらはフアブ リペロー型共振器を構成し、 励起されたレーザガス分子から 放出される 1 0 . 6 u mの光を増幅させて一部を出力鏡 6か らレーザ光 7 として外部に出力する。 A laser gas 19 is circulated inside the discharge tube 4, and when a high-frequency current is supplied from the laser power supply 3, a discharge occurs to excite the laser gas 19. The rear mirror 5 is a mirror made of germanium (Ge) with a reflectivity of 99.5%, and the output mirror 6 is a mirror made of zinc selenium (ZnSe) with a reflectivity of 40 to 55%. A Fabry-Perot resonator is configured to amplify the 10.6 um light emitted from the excited laser gas molecules and output a part of the light as laser light 7 from the output mirror 6 to the outside.
出力されたレーザ光 Ίは、 後述するシャ ツタ 2 3 aが開い ている時には、 ベンダミ ラー 8で方向を変え、 集光レンズ 9 によって 0 . 2 m m以下のスポッ トに集光されてワーク 1 7
の表面に照射される。 The output laser beam 方向 changes its direction by a vendor mirror 8 when a shutter 23 a described later is open, and is condensed by a condensing lens 9 to a spot of 0.2 mm or less, and a work 17 The surface is irradiated.
メ モ リ 1 0 は加工プログラム及び各種のパラメ 一タ等を格 納するメモリであり、 バッテ リバックアップされた C M O S 等が使用される。 位置制御回路 1 1 はプロセッサ 1から出力 された送り指令 C Cを解読し、 サーボアンプ 1 2を介してサ ーボモータ 1 3 を回転制御し、 ボールス ク リ ュー 1 4及びナ ッ ト 1 5 によってテーブル 1 6の移動を制御し、 ワーク 1 7 の位置を制御する。 なお、 図では 1軸のみを表示してあり、 他の軸は省略してある。 表示装置 1 8には C R T或いは液晶 表示装置等が使用される。 なお、 この表示画面にはパラ メ 一 タ設定画面あるいはレーザ条件設定画面が表示され、 図示さ れていない操作キーをオペレータが操作することによって、 後述する二つの出力制御モードのいずれか一方を対話形式で 選択することができる。 Memory 10 is a memory for storing machining programs and various parameters, and uses a battery backed-up CMOS or the like. The position control circuit 11 decodes the feed command CC output from the processor 1, controls the rotation of the servo motor 13 via the servo amplifier 12, and controls the table 1 by the ball screw 14 and the nut 15. The movement of 6 is controlled and the position of work 17 is controlled. In the figure, only one axis is shown, and the other axes are omitted. For the display device 18, a CRT or a liquid crystal display device is used. A parameter setting screen or a laser condition setting screen is displayed on this display screen. When an operator operates an operation key (not shown), one of two output control modes described later is interactively operated. You can select by format.
送風機 2 0 にはルーツブロ ワ等が使用され、 レーザガス 1 Roots blower or the like is used for blower 20 and laser gas 1
9を冷却器 2 1 a及び 2 1 bを通して循環する。 冷却器 2 1 aはレーザ発振を行って高温となったレーザガス 1 9を冷却 するための冷却器であり、 冷却器 2 1 bは送風器 2 0による 圧縮熱を除去するための冷却器である。 9 is circulated through coolers 21a and 21b. The cooler 21a is a cooler for cooling the laser gas 19 which has become high temperature by performing laser oscillation, and the cooler 21b is a cooler for removing heat of compression by the blower 20. .
シャ ツタ制御回路 2 2はプロセッサ 1から出力されたシャ ッタ開閉指令 S Cに基づいてシャ ッタ 2 3 aを開閉する。 シ ャ ッ タ 2 3 aは表面に金メ ッキが施された銅板またはアルミ 板で構成されており、 閉時には出力鏡 6から出力されたレ一 ザ光 7を反射してビームアブソ一バ 2 3 bに吸収させる。 シ ャ ッ タ 2 3 aを開く とレーザ光 7がワーク 1 7に照射される
パワーセンサ 2 4は熱電あるいは光電変換素子等で構成さ れ、 リア鏡 5の一部を透過させて出力されたレーザ光を入力 してレーザ光 7の出力パヮ一を測定する。 温度センサ 2 5 に は放射温度計が使用され、 レーザガス 1 9の温度を測定する < なお、 レーザガス 1 9の温度を測定することによって放電管 4の内壁温度を推定する。 切り換え器 2 6はプロセッサ 1の 指令により、 パワーセンサ 2 4の出力と温度センサ 2 .5の出 力とを切り換える。 A Z D変換器 2 7は切り換え器 2 6の出 力をディ ジタル値に変換してプロセッサ 1 に入力する。 The shutter control circuit 22 opens and closes the shutter 23 a based on the shutter opening and closing command SC output from the processor 1. The shutter 23a is made of a copper plate or an aluminum plate having a gold-plated surface, and when closed, reflects the laser light 7 output from the output mirror 6 and closes the beam absorber 2a. Absorb to 3b. When the shutter 23a is opened, the work 17 is irradiated with the laser beam 7. The power sensor 24 is composed of a thermoelectric or photoelectric conversion element or the like, inputs a laser beam transmitted through a part of the rear mirror 5, and measures the output power of the laser beam 7. A radiation thermometer is used for the temperature sensor 25, and measures the temperature of the laser gas 19 <The temperature of the laser gas 19 is measured to estimate the inner wall temperature of the discharge tube 4. The switch 26 switches between the output of the power sensor 24 and the output of the temperature sensor 2.5 according to a command from the processor 1. The AZD converter 27 converts the output of the switch 26 into a digital value and inputs it to the processor 1.
次に本発明の一実施例のレーザ出力制御方式を第 1図 ( a ) 、 ( b ) のフローチャー トに基づき説明する。 図において, Sに続く数値はステップ審号を示す。 なお、 本実施例では A モード及び Bモードの二つの出力制御方式を設けている。 〔S 1〕 Aモ一ドが選択されているかどうかを判断し、 選択 されていれば S 2へ、 選択されていなければ S 1 0へいく。 C S 2〕 シャ ッタ開閉指令 S Cはオフのままで、 出力指令 P Cを出力して予備発振させる。 Next, a laser output control system according to an embodiment of the present invention will be described with reference to the flowcharts of FIGS. 1 (a) and 1 (b). In the figure, the number following S indicates the step number. In this embodiment, two output control systems, A mode and B mode, are provided. [S1] It is determined whether or not the A mode is selected. If the A mode is selected, the process proceeds to S2. If the A mode is not selected, the process proceeds to S10. C S 2] With the shutter open / close command S C kept off, output the output command PC and perform pre-oscillation.
〔 S 3〕 切り換え器 2 6を温度セ ンサ 2 5の側に切り換えて レーザガス 1 9の温度を測定し、 予め設定した設定温度との 差分をとつて偏差温度を求める。 [S3] The switch 26 is switched to the temperature sensor 25 side to measure the temperature of the laser gas 19, and the difference from the preset temperature is obtained to obtain the deviation temperature.
C S 4 J 偏差温度の絶対値が所定の零幅より小さいかどうか を判断し、 小さい場合は S 7へ、 小さくない場合は S 5へい C S 4 J Judge whether the absolute value of the deviation temperature is smaller than the specified zero width.If smaller, go to S7.If not smaller, go to S5.
< o <o
〔S 5〕 偏差温度に特定の定数を掛け、 レーザ出力値に換算 した偏差量を求める。
〔 S 6〕 現在の出力指令値に偏差量を加えた値を出力指令 P Cとして指令し、 S 3へいく。 [S5] Multiply the deviation temperature by a specific constant and calculate the deviation amount converted to the laser output value. [S6] Command the value obtained by adding the deviation to the current output command value as the output command PC, and go to S3.
〔 S 7〕 加工指令 MCが出力されたかどうかを判断し、 出力 された場合は S 8へ、 出力されていなければ S 3へ戻って温 度制御を継続する。 [S7] Determine whether the machining command MC has been output. If it has been output, return to S8. If not, return to S3 and continue temperature control.
〔 S 8〕 出力指令値を 0にしてベース放電状態にする。 同時 に、 切り換え器 2 6をパワーセンサ 2 4の側に切り換える。 [S8] Set the output command value to 0 to set the base discharge state. At the same time, switch 26 is switched to the side of power sensor 24.
〔 S 9〕 シャ ツタ開閉指令 S Cを出力してシャ ツタ 2 3 aを 開く。 [S9] Output the shutter open / close command SC and open the shutter 23a.
〔 S 1 0〕 Bモードが選択されているかどうかを判断し、 選 択されていれば S 1 1へ、 選択されていなければ S 1へ戻る。 [S10] It is determined whether or not the B mode is selected, and if it is selected, the process returns to S11. If not, the process returns to S1.
〔 S 1 1〕 出力指令値を 0にしてベース放電状態にする。 同 時に、 切り換え器 2 6をパワーセンサ 2 4の側に切り換える。 〔 S 1 2〕 シャ ツタ開閉指令 S Cを出力してシャ ッタ 2 3 a を開く。 [S11] Set the output command value to 0 to set the base discharge state. At the same time, switch 26 is switched to the side of power sensor 24. [S1 2] Outputs shutter open / close command SC and opens shutter 2 3a.
〔 S 1 3〕 加工指令 MCが出力されたかどうかを判断し、 出 力された場合は S 1 4へ、 出力されていなければ待機する。 [S13] Determine whether the machining command MC has been output. If it has been output, go to S14. If not, wait.
〔 S 1 4〕 加工指令 MCに基づいて出力指令 P C及び送り指 令 C Cを出力し、 加工を実行する。 [S14] Output command PC and feed command CC are output based on machining command MC, and execute machining.
〔 S 1 5〕 加工を終了し、 出力指令値を 0にしてベース放電 状態にする。 [S15] Finish machining, set the output command value to 0, and change to the base discharge state.
〔 S 1 6〕 シャ ツタ開閉指令 S Cをオフしてシャ ツタ 2 3 a を閉じる o [S16] Shutdown shutter release command SC is turned off and shutter 23a is closed o
CS 1 7〕 運転を終了するかどうかを判断し、 終了する場合 は S 1 8へ、 終了しない場合は S 1へ戻る。
〔 S 1 8〕 出力指令 P Cをオフして放電を停止した後、 を切断する。 CS 17] Judge whether to end the operation, return to S18 if it is to end, return to S1 if not. [S18] Output command PC is turned off to stop discharging, and then cut off.
第 3図は上記の実施例における Aモード選択時の各指令の タイムチャー トの一例である。 FIG. 3 is an example of a time chart of each command when the A mode is selected in the above embodiment.
運転を開始した後に出力指令 P Cは所定の出力値を指令す るが、 レーザガス 1 9の温度が上昇するに伴って出力指令値 は低下し、 一定値 p 0 となる。 After the operation is started, the output command PC commands a predetermined output value. However, as the temperature of the laser gas 19 increases, the output command value decreases and becomes a constant value p 0.
加工指令 M Cが 「G 2 4 J (ピアシング加工) を指令する と、 出力指令 P Cはベース放電を指令し、 シャ ツタ開閉指令 S Cが出力される。 シャ ツタ 2 3 aが開く と出力指令 P Cが 加工指令 M Cで指令された所定の出力指令値を出力し、 ヮー ク 1 Ίにレーザ光 7が照射される。 ピアシングが完了すると シャ ッタ開閉指令 S Cをオフして、 出力指令 P Cは再びべ一 ス放電を指令する。 When the machining command MC commands "G24J (piercing)", the output command PC commands the base discharge, and the shutter opening / closing command SC is output. When the shutter 23a is opened, the output command PC is set. A predetermined output command value issued by the machining command MC is output, and the laser beam 7 is irradiated on the peak 1. When the piercing is completed, the shutter opening / closing command SC is turned off, and the output command PC is reset again. Command discharge.
加工指令 M Cが 「G 0 1」 (切断加工) を指令すると、 こ の場合も出力指令 P Cは一旦ベース放電を指令し、 シャ ツタ 開閉指令 S Cが出力される。 シャ ツタ 2 3 aが開ぐと加工指 令 M Cに基づいて出力指令 P C及び送り指令 C Cがそれぞれ 所定の指令値を出力することにより、 ワーク 1 7が切断され る。 なお、 この時にはレーザ出力をパワーセンサ 2 4で検出 してフィードバッ ク し、 出力指令値と一致するように制御し ている。 切断が完了するとシャ ッタ開閉指令 S Cをオフして、 出力指令 P Cは再びベース放電を指令する。 When the machining command MC commands “G 0 1” (cutting), the output command PC once again commands the base discharge, and the shutter opening / closing command SC is output. When the shutter 23a is opened, the output command PC and the feed command CC output predetermined command values based on the machining command MC, respectively, so that the workpiece 17 is cut. At this time, the laser output is detected by the power sensor 24 and feedback is performed so that the laser output is controlled to match the output command value. When the cutting is completed, the shutter opening / closing command SC is turned off, and the output command PC commands the base discharge again.
第 4図は Bモード選択時の各指令のタイムチャー トの一例 でめる。
運転を開始した後に出力指令 P Cはベース放電を指令し、 シャ ツタ開閉指令 S Cが出力されてシャ ツタ 2 3 aが開く。 加工指令 M Cが 「G 2 4 」 (ピアシング加工) を指令する と、 出力指令 P Cは所定の出力指令値を出力し、 ワーク 1 7 にレーザ光 7が照射される。 ピアシングが完了すると出力指 令 F Cは再びベース放電を指令する。 Fig. 4 shows an example of the time chart of each command when B mode is selected. After the start of operation, the output command PC issues a base discharge command, the shutter opening / closing command SC is output, and the shutter 23a opens. When the machining command MC commands “G24” (piercing), the output command PC outputs a predetermined output command value, and the work 17 is irradiated with the laser beam 7. When the piercing is completed, the output command FC commands the base discharge again.
加工指令 M Cが 「G 0 1 J (切断加工) を指令すると、 出 力指合 P C及び送り指令 C Cがそれぞれ所定の指令値を出力 することにより、 ワーク 1 7が切断される。 切断が完了する と出力指令 P Cは再びベース放電を指令する。 When the machining command MC instructs “G01J (cutting process)”, the work 17 is cut by the output command PC and the feed command CC outputting predetermined command values, respectively. The cutting is completed. And output command PC commands base discharge again.
以上説明したように本発明では、 任意に切り換え可能な第 1の出力制御モー ドと第 2の出力制御モードを設け、 第 1の 出力制御モードでは、 加工開始前にシャ ツタを閉じた状態で レーザを予備発振することによりレーザガス温度を上昇させ て放電管の内壁温度を定常状態に保ち、 加工指令を入力する と一旦ベース放電状態にした後、 シャ ツタを開いてから出力 指令値を上昇してレーザを出力するので、 加工当初から安定 したシングルモードのレーザ光を出力することができ、 従来 のシャ ツタ制御方式よりも省エネルギーで且つビーム制御方 式よりも高い加工精度を実現することができる。 As described above, in the present invention, the first output control mode and the second output control mode that can be arbitrarily switched are provided, and in the first output control mode, the shutter is closed before starting the machining. Preliminary oscillation of the laser raises the laser gas temperature to maintain the inner wall temperature of the discharge tube in a steady state.When a machining command is input, the system once returns to the base discharge state, then opens the shutter and increases the output command value. Since the laser is output, stable single-mode laser light can be output from the beginning of processing, and energy saving can be achieved compared to the conventional shutter control method and higher processing accuracy can be realized than the beam control method. .
また、 第 2の出力制御モードでは第 1の出力制御モードょ りも、 より省エネルギー、 低発熱、 長寿命となるため、 加工 精度をそれほど重視しない場合に有利である。 In addition, the second output control mode has more energy saving, lower heat generation, and longer life than the first output control mode, and is advantageous when processing accuracy is not so important.
さらに、 これら第 1及び第 2の出力制御モードは N C レー ザ装置の表示画面を参照して対話形式で切り換えることがで
きるので、 操作性が良く、 容易に多種類の加工に対応できる。
Furthermore, the first and second output control modes can be switched interactively with reference to the display screen of the NC laser device. It has good operability and can easily handle various types of machining.
Claims
1 . 数値制御装置 (C N C ) とガスレーザ発振器が結合し た N C レーザ装置のレーザ出力制御方式において、 1. In the laser output control method of the NC laser device in which the numerical controller (CNC) and the gas laser oscillator are combined,
第 1の出力制御モー ドと第 2の出力制御モードを設け、 前記第 1の出力制御モードでは、 加工開始前に外部へのレ 一ザ出力経路を遮断し、 レーザを予備発振し、 温度検出器で レーザガス温度を検出して設定温度と比較し、 前記レーザガ ス温度が前記設定温度まで上昇するようにレーザ出力を制御 して前記レーザガス温度の温度制御を行うことにより放電管 の内壁温度を定常状態に保ち、 加工指令を入力した後、 ベー ス放電状態にし、 前記レーザ出力経路を開放し、 前記加工指 令で指令された所定の出力でレーザを発振し、 A first output control mode and a second output control mode are provided.In the first output control mode, a laser output path to the outside is cut off before processing is started, a laser is preliminarily oscillated, and a temperature is detected. The temperature of the inner wall of the discharge tube is stabilized by detecting the laser gas temperature with a heater, comparing the temperature with the set temperature, controlling the laser output so that the laser gas temperature rises to the set temperature, and controlling the temperature of the laser gas temperature. After the processing command is input, the laser output path is opened, the laser output path is opened, and the laser oscillates at a predetermined output commanded by the processing command.
前記第 2の出力制御モードでは、 前記レーザ出力経路の遮 断と前記予備発振と前記温度制御を行わず、 加工指令を入力 した後、 ベース放電状態にし、 前記レーザ出力経路を開放し、 前記加工指令で指令された所定の出力でレーザを発振し、 指令に応じて前記第 1の出力制御モードと前記第 2の出力 制御モ一 ドを切り換えることを特徴とするレーザ出力制御方 式。 In the second output control mode, the laser output path is not shut off, the preliminary oscillation and the temperature control are not performed, and after inputting a processing command, the laser output path is set to a base discharge state, the laser output path is opened, and the processing is performed. A laser output control method comprising: oscillating a laser at a predetermined output instructed by a command; and switching between the first output control mode and the second output control mode according to the command.
2 . 前記出力制御モードの切り換えは前記 N C レーザ装置 の表示画面を参照して対話形式で行うことを特徴とする特許 請求の範囲第 1項記載のレーザ出力制御方式。 2. The laser output control method according to claim 1, wherein the switching of the output control mode is performed interactively with reference to a display screen of the NC laser device.
3 . 前記第 1の出力制御モードでは、 前記加工指令を実行 後にベース放電状態にし、 前記レーザ出力経路を遮断し、 前 記予備発振をし、 前記温度制御を行うことを特徵とする特許
請求の範囲第 1項記載のレーザ出力制御方式。
3. In the first output control mode, a patent is provided in which after the machining command is executed, a base discharge state is set, the laser output path is cut off, the preliminary oscillation is performed, and the temperature control is performed. The laser output control method according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1/56893 | 1989-03-09 | ||
JP1056893A JPH02235588A (en) | 1989-03-09 | 1989-03-09 | Laser output control system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990010519A1 true WO1990010519A1 (en) | 1990-09-20 |
Family
ID=13040119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/000280 WO1990010519A1 (en) | 1989-03-09 | 1990-03-02 | Laser output control system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0419671A4 (en) |
JP (1) | JPH02235588A (en) |
WO (1) | WO1990010519A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140307751A1 (en) * | 2013-04-15 | 2014-10-16 | Fanuc Corporation | Laser processing apparatus carrying out control to reduce consumed power |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3797980B2 (en) * | 2003-05-09 | 2006-07-19 | ファナック株式会社 | Laser processing equipment |
JP2005251855A (en) * | 2004-03-02 | 2005-09-15 | Fanuc Ltd | Laser device |
JP2006088163A (en) | 2004-09-21 | 2006-04-06 | Fanuc Ltd | Laser apparatus |
JP4271247B2 (en) | 2007-04-10 | 2009-06-03 | ファナック株式会社 | Laser equipment |
DE102009046101B4 (en) | 2009-10-28 | 2016-05-04 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | A method for driving a consumable consuming machine tool component and computer program product and machine tool |
DE102010052368A1 (en) | 2010-09-06 | 2012-03-08 | Mtu Aero Engines Gmbh | Method for controlling and / or regulating a laser device and a laser device |
JP5396357B2 (en) | 2010-09-14 | 2014-01-22 | 株式会社アマダ | Laser processing apparatus and control method thereof |
JP5452784B1 (en) * | 2012-09-05 | 2014-03-26 | 三菱電機株式会社 | Laser processing equipment |
JP5813152B2 (en) | 2014-02-27 | 2015-11-17 | ファナック株式会社 | Gas laser oscillator for controlling the adjustment level of the laser power supply |
JP6227586B2 (en) * | 2015-03-31 | 2017-11-08 | ファナック株式会社 | Laser processing system that operates in multiple operation modes |
CN110468273A (en) * | 2018-05-11 | 2019-11-19 | 株式会社东芝 | Laser peening device and laser peening method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636888A (en) * | 1986-06-27 | 1988-01-12 | Komatsu Ltd | Gas laser apparatus |
-
1989
- 1989-03-09 JP JP1056893A patent/JPH02235588A/en active Pending
-
1990
- 1990-03-02 EP EP19900903932 patent/EP0419671A4/en not_active Withdrawn
- 1990-03-02 WO PCT/JP1990/000280 patent/WO1990010519A1/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636888A (en) * | 1986-06-27 | 1988-01-12 | Komatsu Ltd | Gas laser apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP0419671A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140307751A1 (en) * | 2013-04-15 | 2014-10-16 | Fanuc Corporation | Laser processing apparatus carrying out control to reduce consumed power |
US9407054B2 (en) * | 2013-04-15 | 2016-08-02 | Fanuc Corporation | Laser processing apparatus carrying out control to reduce consumed power |
Also Published As
Publication number | Publication date |
---|---|
EP0419671A1 (en) | 1991-04-03 |
JPH02235588A (en) | 1990-09-18 |
EP0419671A4 (en) | 1991-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5182434A (en) | Laser beam machining method | |
WO1990010519A1 (en) | Laser output control system | |
US5252805A (en) | Laser beam machining method | |
US5091914A (en) | High-frequency discharge pumping laser device | |
US5059760A (en) | Laser beam machining device | |
US5575935A (en) | Laser beam machine | |
JP2836784B2 (en) | How to set piercing time | |
JPH0275487A (en) | Controlling method for laser power | |
US7529285B2 (en) | Frequency stabilised gas laser | |
WO1990010961A1 (en) | Nc laser | |
JPS61209790A (en) | Power control device for laser beam machine | |
JPH04127987A (en) | Laser beam machine | |
JPH1094887A (en) | Temperature fixing method of laser beam machining system | |
JPS6342434B2 (en) | ||
JPH0255686A (en) | Operating method for nc laser device | |
JP2821764B2 (en) | Gas laser oscillator | |
JPH0435078A (en) | Laser system | |
JP2004130336A (en) | Semiconductor laser apparatus and laser beam machine | |
WO1990010962A1 (en) | Nc laser | |
JPH03246982A (en) | Gas laser apparatus | |
JPH02196484A (en) | Method of issuing laser pulse command | |
JPH03295285A (en) | Gas laser device | |
WO1993010488A1 (en) | Method of resuming machining of work | |
JPH02308586A (en) | Gas laser device | |
JPS598386A (en) | Laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990903932 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990903932 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1990903932 Country of ref document: EP |