WO1990010100A1 - Acrylic fiber of high thermal resistance, use of same and method of manufacturing same - Google Patents

Acrylic fiber of high thermal resistance, use of same and method of manufacturing same Download PDF

Info

Publication number
WO1990010100A1
WO1990010100A1 PCT/JP1990/000234 JP9000234W WO9010100A1 WO 1990010100 A1 WO1990010100 A1 WO 1990010100A1 JP 9000234 W JP9000234 W JP 9000234W WO 9010100 A1 WO9010100 A1 WO 9010100A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
acryl
acrylic fiber
polymerized unit
acrylic
Prior art date
Application number
PCT/JP1990/000234
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Yamamoto
Yasuaki Nakayama
Minoru Sasaki
Kenzi Arai
Yu Mihashi
Original Assignee
Kanebo Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1112137A external-priority patent/JP2579360B2/en
Priority claimed from JP1282872A external-priority patent/JP2740302B2/en
Priority claimed from JP1306437A external-priority patent/JP2788080B2/en
Priority claimed from JP1332598A external-priority patent/JP2749676B2/en
Priority claimed from JP2010686A external-priority patent/JPH03220342A/en
Application filed by Kanebo Ltd. filed Critical Kanebo Ltd.
Publication of WO1990010100A1 publication Critical patent/WO1990010100A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/547Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads with optical functions other than colour, e.g. comprising light-emitting fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/02Curtains
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to an acrylic fiber excellent in heat resistance, an application utilizing its properties, and a production method thereof.
  • acrylic fibers have been widely used in clothing, bedding, interiors, etc., taking advantage of their vivid color development and soft texture.
  • heat resistance properties of high temperature treatment and large discoloration and discoloration it could not be used for clothing such as anti-dyeing jerseys and hardly used for industrial materials.
  • Japanese Patent Application Laid-Open No. 51-73587 discloses itaconic acid, butyric acid, and the following formula:
  • R is H or C i -C 4 alkyl, and a compound represented by the following formula: ## STR1 ## in which 0.3 to 3 mol% of acrylonitrile is copolymerized.
  • Acrylonitrile fibers or films having a structure are disclosed.
  • Japanese Patent Application Laid-Open Publication No. Sho 53-12626 discloses a heterogeneous composition containing acrylonitrile as a main component and containing oxygen, sulfur or nitrogen atoms as heteroatoms.
  • An arrowhead fiber of an acrylonitrile-based copolymer having a linear structure is disclosed.
  • Japanese Patent Application Laid-Open No. Sho 53-126263 discloses acrylonitrile having a cyclic structure, which is obtained by using a divinyl compound such as divinyl ether in place of the above-mentioned 1,6-diene compound.
  • fibers of a system copolymer are disclosed.
  • JP-A-49-94921 discloses a copolymer containing 85% by weight or more of acrylonitrile and 0.5 to 15% by weight of 2-acrylamide-2-methylpropanesulfonic acid.
  • a method for producing a hygroscopic acrylyl moth fiber by spinning a polymer is disclosed.
  • Examples in the publication include 30 parts of a copolymer (master patch) obtained by copolymerizing 20 parts of 2-acrylamide-2-methylpropanesulfonic acid with 80 parts of acrylonitrile.
  • Japanese Patent Application Laid-Open No. 54-34416 discloses that 70% by weight or more of acrylonitrile and 1 to 30% by weight of a copolymerizable compound having a sulfonic acid group or a salt thereof, Hollow fibers formed from copolymers comprising 0 to 29% by weight of monomers are disclosed.
  • This publication discloses 2-acrylamide-2-methylpropanesulfonic acid as a copolymerizable compound having the sulfonic acid group or a salt thereof, and this compound has a sulfonic acid group. It is described that the resulting copolymer is provided with water absorption and anticoagulant properties.
  • the hollow fibers in the publication are suitable for hemodialysis as pointed out in the publication.
  • Japanese Unexamined Patent Publication (Kokai) No. 56-1283133 discloses a side-by-side type self-contained composition of a non-hydrophilic acrylonitrile copolymer component and a hydrophilic acrylonitrile copolymer component.
  • a crimpable bicomponent acrylic fiber is disclosed.
  • the hydrophilic acrylonitrile copolymer contains 0.7 to 1.2 mol% of 2-acrylamide-2-methylpropanesulfonic acid or a salt thereof.
  • the two-component acryl fiber disclosed in the publication is crimped by utilizing the fact that the hydrophilic acrylonitrile copolymer component has a relatively high hydrothermal swelling property. is there.
  • Japanese Patent Application Laid-Open No. 61-119711 discloses a sulfonic acid group-containing compound selected from a number of specific sulfonic acids such as 2-acrylid-2-methylpropanesulfonic acid.
  • a high-strength acrylic fiber containing 0.1 to 1.0 mol%, having an intrinsic viscosity of at least 2.0 and a tensile strength of 1 OgZd or more is disclosed. According to the description of the publication, this fiber not only has a high strength, but also has a strength retention after boiling water treatment of at least 70% or more, and a high elastic modulus. It is described in this publication that this fiber can be suitably used as a cement replacement material as an alternative to asbestos.
  • acrylic fiber has been taking advantage of its vivid coloration and flexible texture to make clothes such as knits and jerseys, interiors such as cars and curtains, and sleeping materials such as blankets and sheets.
  • it is widely used for garments, etc., but in the case of garments, when knitted or woven, dyeing after heating causes large settling due to heat, dimensional stability and texture. Will be defective Had to be done.
  • JP-A-47-43557 discloses that the content of the composite moth fibers contained in acryl-based synthetic fibers is 20 to 50% of the total amount, and that the polyester-based synthetic fibers Post-dyeing of acrylic synthetic fiber and polyester synthetic fiber with a content ratio of 25-60% and a shrinkage ratio of polyester synthetic fiber to acrylic synthetic fiber of 1: 1 to 4 It discloses a method of producing mixed spinning and knitting. Further, the publication discloses that a dyeing temperature of 98 ° C. to 105 ° C. is used by using a carrier that causes less cross-contamination.
  • JP-A-49-18665 discloses an acryl-based spun yarn (A) composed of 30 to 70% of a composite moist fiber component and 70 to 30% of a non-composite fiber component.
  • the mixing ratio of the polyester-based long fiber processed yarn (B) in the product is set to 20 to 55%
  • the shrinkage ratio between (B) and (A) is set to 1: 3 to 5
  • (A) (B) is knitted into a knitted double knit and then dyed at a dyeing temperature of 96 ° C to 105 using a carrier with low cross-contamination.
  • a method for producing a post-dyeed and knitted double knit composed of an acryl-based spun yarn and a polyester-based long-fiber processed yarn, which is sent and finished with an overfeed ratio of 18 to 25%, is disclosed.
  • the conventional blended, cross-knitted and cross-cut products of acryl fibers and polyester fibers that can be dyed are made by mixing a part of the acrylic fiber as a composite fiber and dyeing at low temperature using a carrier. Met.
  • Japanese Patent Application Laid-Open No. 58-13739 discloses a polyester arrowhead fiber and an acrylic fiber which are substantially composed of a homopolymer of polyethylene terephthalate and which can be dyed at normal pressure with a disperse dye. Interwoven fabrics and interwoven fabrics are disclosed,
  • the above polyester fiber has an initial modulus at 30 ° C of 55 gZd or more, and a peak temperature (Tmax) of a mechanical loss tangent (tanS) at a measurement frequency i of 10 Hz;
  • the peak value of tan ⁇ [(tanS) max] is greater than 0.135, and the non-bulky fabric and / or the initial modulus at 30 ° C is 55 gZd or more.
  • polyester fiber used in knitting and knitting with acrylic fiber which can be dyed at a low temperature without using a carrier, is spun at a high speed and then subjected to heat treatment after spinning. It was something.
  • acrylic fiber has been used for household carpets that often walk on blankets or carpets, especially bare feet, taking advantage of its vivid coloration, soft and warm texture, and good heat retention.
  • electric blankets or electric power kits with heaters are also widely used, but conventional acrylic fibers have insufficient heat-fast dyeing fastness and stretch at high temperatures. Because of the high degree of When used as a surface material, there were defects such as discoloration or settling. As an electric blanket, it was necessary to mix it with polyester, wool, etc. to improve this. It is not used as a surface material for electric power.
  • acrylic fiber has an excellent color-forming property, a feeling or a voluminous feeling. Therefore, if the above-mentioned disadvantages can be eliminated, acrylic textiles can take advantage of the above-mentioned excellent properties even when used alone as a blanket for electric blankets, and can be used as a surface material for electric power kits. It can be easily guessed that the material is no better or worse than polyester, polyamide, wool or the like currently used in practice. However, an acrylic fiber which has solved the above-mentioned disadvantages has not been developed nor known.
  • Polyester fiber, polyamide fiber, vinylon fiber, etc. have been used as the base fabric for waterproof fabrics such as tents, beach umbrellas, automobile power pars, port covers, etc. Although the fiber had excellent weather resistance and high strength retention, it was only slightly used in the above applications because of its poor cleave resistance and light fastness. Therefore, if the above-mentioned drawbacks can be eliminated, it is expected that ataryl fiber will be as good or better than the material of waterproofing cloth as compared with polyester fiber, polyamide moist fiber or vinylon fiber. Is done.
  • Another object of the present invention is to provide a novel acrylyl moth fiber having excellent heat resistance properties such as heat dimensional stability and heat dyeing fastness.
  • An additional goal is to provide clear acrylic fiber.
  • Still another object of the present invention is to provide a novel acrylic fiber having excellent transparency.
  • Still another object of the present invention is to provide a novel acrylic fiber which can be dyed in a deep color and can be dyed in a dark color to a light color without using dyes and without dyeing.
  • Still another object of the present invention is to provide a novel acrylic fiber having moderate strength and relatively high elongation and excellent spinnability.
  • Still another object of the present invention is to provide a method for producing the novel acrylic fiber of the present invention.
  • Still another object of the present invention is to provide a cross-knitted / cross-woven fabric of an acrylic fiber and an aromatic polyester moth.
  • Still another object of the present invention is to provide a novel knitted / cross-woven fabric of an acrylic fiber and an aromatic polyester fiber which is excellent in heat-resistant dimensional stability and has a soft feel.
  • Still another object of the present invention is to provide an acryl-based waterproofing cloth having excellent creep resistance and light fastness. Still other objects and advantages of the present invention will be apparent from the following description. According to the present invention, the above objects and advantages of the present invention are:
  • M is a hydrogen atom or an equivalent cation, consisting essentially of polymerized units represented by
  • the polymerized unit (2) accounts for 0.4 to 1.5 mol% based on the total of the polymerized unit (1) and the polymerized unit (2), and
  • FIG. 1 shows the relationship between the temperature and the elongation of the acryl acrylic arrowhead fiber of the present invention and the conventional acryl fiber equivalent.
  • FIG. 2 is a schematic diagram of the apparatus used to measure the relationship of FIG.
  • FIG. 3 is a schematic view of a sample support used in measuring the crystallinity of acryl fibers according to the present invention.
  • FIG. 4 shows the relationship between the temperature and the elongation of the acrylic fiber used in the cross-woven fabric of the present invention and the conventional equivalent of acrylic fiber.
  • FIG. 5 shows the relationship between the temperature and the elongation of the acryl fiber used in the electric carton surface material of the present invention and the conventional acryl fiber material.
  • FIG. 6 shows the relationship between temperature and elongation for Acryl moth fiber and conventional acryl fiber equivalents used in the electric blanket fabric of the present invention.
  • FIG. 7 shows the relationship between the temperature and the elongation of the acryl fiber used in the waterproof cloth of the present invention and the conventional acryl fiber equivalent.
  • the acrylic moth fiber of the present invention has a requirement (A) for specifying a polymer forming the same, a requirement (B) for specifying its strength, and a requirement (C) for specifying its elongation at a low temperature. ).
  • the polymer is a polymerized unit of the above formula (1) derived from acrylonitrile and the above formula (abbreviated as AMPS) or a salt thereof derived from 2-acrylyl-2-propanesulfonic acid (hereinafter abbreviated as AMPS). It consists essentially of the polymerized units of 2).
  • the ratio of the polymerized unit (1) to the polymerized unit (2) is 0.4 to 1.5 mol% based on the total of both polymerized units (polymerized unit (1) is 99.6 to 98. 5 mol%).
  • Polymerized unit (2) is preferably 0.6 to 1.2 mol% based on the same standard (polymerized unit (1) is 99.4 to 98.8 mol%) Occupy. If the ratio of the polymerized unit (2) is less than 0.4 mol%, gelling in the polymerization process is apt to occur, and it becomes difficult to perform deep color dyeing due to insufficient dyeing seats. On the other hand, when the content exceeds 1.5 mol%, the heat resistance described later deteriorates.
  • the above-mentioned polymer has a degree of polymerization in the range of 600 to 1,500.
  • the preferred degree of polymerization is from 800 to 100.
  • the acrylic fiber of the present invention has a tensile strength of 2 to 5 gZd, that is, a tensile strength not so high but suitable as a so-called clothing fiber.
  • the preferred tensile strength is 3 to 4 gd .
  • the tensile strength is less than 2 g / d, normal spinning is apt to occur, and when the tensile strength exceeds 5 gZd, the strength becomes high and the tensile elongation described below is insufficient, and the elongation as a spun yarn is further reduced. Run short.
  • the elongation at 260 ° C. is 10% or less in relation to the temperature measured at elevated temperature and the elongation.
  • the preferred elongation is 6% or less.
  • the acryl fiber of the present invention is superior in heat resistance and has a characteristic of less so-called set, as compared with the conventional acrylic molybdenum for clothing having the same tensile strength.
  • the acrylyl moth fiber of the present invention may or may not be crimped, and more preferably has the following properties.
  • the dry heat relaxation shrinkage at 210 ° C. is preferably 3% or less, and more preferably 1% or less.
  • the relaxation shrinkage after heating at 130 ° C. is preferably 3% or less, more preferably 1% or less.
  • the acrylic fiber of the present invention has an appropriate strength as a normal garment fiber, and exhibits an elongation that gives good spinnability at such strength. it can.
  • the preferred elongation is 35% or more, and the more preferred elongation is 35 to 60%.
  • the acrylic fiber of the present invention is preferable in that general acrylic fiber, particularly, acrylic fiber obtained by wet spinning using an organic solvent shows only poor transparency, but can show excellent transparency.
  • the acrylic fibers of the present invention preferably exhibit a transparency of at least 80%, more preferably at least 90%, according to the measurement method described below.
  • ⁇ click Lil fibers of the present invention are preferably Young's modulus of 400 ⁇ 70 OkgiZ negation 2, further preferably from the this with the Young's modulus of 500 ⁇ 60 OkgfZmm 2.
  • the excellent heat resistance of the acrylic fiber of the present invention is that the heat resistance dyeing fastness (dry heat: 120 ° C. for 48 hours) is preferably at least 3 grade, more preferably at least 3.5 grade. They are also supported.
  • the acrylic fibers of the present invention preferably have a crystallinity of 20-40%, more preferably 25-35%.
  • the above-mentioned acrylic fiber of the present invention is obtained by adding the polymerized unit (2) to the polymerized unit (2) by 0.4 based on the sum of the polymerized unit (1) and the polymerized unit (2). It is contained at a ratio of ⁇ 1.5 mol%. According to the study of the present inventor, under the condition that the above-mentioned ratio of the polymerized unit (1) and the polymerized unit (2) is maintained, even if the polymerized unit (3) is further contained in a small amount, the above-mentioned object of the present invention and Profit It was found that the points could be retained.
  • AO (a ') a polymerized unit of the above formula (1), a polymerized unit of the above formula (2) and a polymerized unit different from the polymerized unit of the above formula (2) derived from a monomer copolymerizable with acrylonitrile (B)
  • the polymerized unit (2) occupies 0.4 to 1.5 mol% based on the total of the polymerized unit (1) and the polymerized unit (2).
  • (3) accounts for 5% by weight or less based on the polymerization unit (1),
  • (C) 260 in relation to temperature and elongation measured at elevated temperature.
  • the elongation in C is 10% or less
  • An acryl fiber is provided.
  • the acrylic fiber of the present invention is specified by the requirements (A, (B) and (C).
  • the requirements (B) and (C) are understood from the above description. Like.
  • the ratio of the polymerized unit (1) and the polymerized unit (2) is 0.4 to 1.5 mol% based on the total of these both polymerized units (polymerized unit based on the same standard).
  • (1) is 99.6 to 98.5 mol%), which is the same as the acryl fiber of the present invention described above.
  • polymerization Unit (3) is preferably present at 3% by weight or less, based on the same criteria.
  • polymerized unit (3) preferably, for example, the following formula (3)
  • R is a hydrogen atom or a methyl group
  • Y is a group represented by the formula CO 0 X, where X is a hydrogen atom, a sodium or methyl group, — OCO CH 3 , - C ONH 2, - C 6 H 5, is a group selected from a CH 2 S 0 3 N a and the group consisting of one C 6 H 4 S 0 3 N a,
  • the acrylic fiber of the present invention can be produced from the acrylonitrile-based polymer specified in the above (A) or () ') by the following method. it can :
  • the acrylonitrile polymer used in the present invention is an acrylonitrile polymer.
  • AMPS 2-acrylamide-2-methylpropanesulfonic acid
  • AMP S can be, for example, (there you to hereinafter abbreviated as SAMP S) na Application Benefits Umushio, potassium salt, V 2 calcium salt or Anmoniumu salts.
  • R and Y are the same as in the formula (3), and a compound represented by the following formula can be mentioned as a preferable example.
  • Examples of the compound of the formula (3) ′ include acrylic acid, methacrylic acid, their sodium salts, their methyl esters, vinyl nitrate, acrylamide, methacrylamide, styrene, sodium arylsulfonate, and methallylsulfonate.
  • Sodium acid, sodium styrenesulfonate and the like can be mentioned.
  • One or more of these other monomers copolymerizable with acrylonitrile can be used.
  • the polymerization method of the acrylonitrile polymer may be any known method such as aqueous polymerization, emulsion polymerization, and solution polymerization.
  • the spinning dope used in step (1) of the method of the present invention is thus obtained.
  • the acrylonitrile yarn polymer can be prepared by dissolving it in a solvent, but it can also be a polymerization solution containing a polymer obtained as a result of polymerization. In the latter case, it is desirable to employ a polymerization reaction system which can be used as a spinning solution for wet spinning only by recovering unreacted monomers from the polymerization solution.
  • the spinning method in the step (1) may be any known method such as wet spinning, dry-wet spinning, dry spinning, and semi-solid spinning. Particularly, wet spinning or dry spinning is preferred. These spinning methods are known per se. For example, for wet spinning, Japanese Patent Publication No.
  • the spinning stock solution is pressed from the spinneret in step (1) to form a fine stream of the spinning stock solution.
  • the trickle is extruded into the coagulating liquid
  • in dry spinning the trickle is discharged into a hot gas atmosphere
  • in the dry-wetting method the trickle is extruded into a gaseous atmosphere and then guided into the coagulating liquid.
  • step (2) the trickle is stretched 5 to 10 times while undergoing solidification as described above. Stretching can be performed in one step or in multiple steps.
  • the stretching ratio of each stage in multi-stage stretching is in the range where the total ratio is 5 to 10 times Is selected as appropriate.
  • the preferred stretching ratio is 6 to 8 times. If the draw ratio is less than 5 times, the tensile strength of the fiber is insufficient, and if it exceeds 10 times, the single yarn breakage is liable to occur and the fiber is easily fibril.
  • the drawn yarn obtained in the step (2) is then subjected to a washing step (in the case of wet or dry-wet spinning) or oiled, if necessary, and then led to the heating step of the step (3).
  • step (3) the drawn yarn is heated and contracted by 3 to 25%. If the shrinkage is less than 3%, the tensile elongation of the fiber is insufficient, and if it exceeds 25%, high temperature drying is required, which is not economical.
  • This shrinkage can be carried out using hot water or wet heat before the so-called pre-drying step before the drawn yarn is applied to the flimper, if the spinning in step (1) is performed by wet spinning, or It can also be performed in the process.
  • step (4) When the shrinkage is performed in or before the so-called pre-drying step as described above, this step (4) corresponds to the so-called post-drying performed after crimping is performed as necessary.
  • the acryl fiber of the present invention thus obtained is cut to a predetermined length by a cutter as necessary.
  • the most significant feature of the method of the present invention is that, as understood from the above description, a specific acrylonitrile-based polymer is used and the drawn yarn is subjected to a heat shrinkage of 5 to 25% before being subjected to drying. Conventionally, the features of the method of the present invention have not been known.
  • the acrylic fiber of the present invention has excellent heat resistance and low so-called settling under a high temperature environment.
  • a cross-knitted / cross-woven fabric of the above-mentioned acrylic fiber and aromatic polyester fiber of the present invention is provided.
  • cross-knitted / cross-woven fabric of the present invention can be dyed at the dyeing temperature of ordinary aromatic polyester fiber.
  • the aromatic polyester fiber used in the knitting / cross-woven fabric of the acryl fiber of the present invention and the aromatic polyester fiber is not particularly limited, but is preferably, for example, a polyethylene terephthalate whose main repeating unit is ethylene terephthalate.
  • the copolyester examples include a copolymer in which the main repeating unit is ethylene terephthalate and the subordinate repeating unit (for example, 10% mol or less of all repeating units) is ethylenisophthalate. Can be.
  • the subordinate repeating unit for example, 10% mol or less of all repeating units
  • other copolyesters include polyethylene terephthalate containing 5% by mole or less of ethylene 5-sodium sulfisophthalate in all repeating units.
  • the aromatic polyester fiber is, for example, a homo- or copolyester of ethylene terephthalate having ethylene terephthalate as a main repeating unit. Conjugated fibers with the same or different aromatic polyester fibers or, for example, polyethylene It may be a conjugate moth with other materials such as mid moth.
  • the polyester fiber may be either filament or stable.
  • the weaving of the knitted fabric of the present invention may be either double knit or single knit, and is not particularly limited.
  • double knits such as thread knitting, fleece knitting, smooth knitting, and knitting are preferred.
  • the structure of the cross-woven fabric is also not particularly limited, but preferably includes plain weave, twill weave, and double weave.
  • the dyeing of the cross-knitted / cross-woven fabric of the acryl moth fiber and the aromatic polyester fiber of the present invention is performed, for example, when the aromatic polyester fiber is a homopolymer of ethylene terephthalate having ethylene terephthalate as a main repeating unit.
  • the dyeing can be carried out in a single bath using, for example, a disperse dye and a cation dye (for Acryl moth fiber) under the temperature condition of C.
  • the electric power of the c the MizunotoAkira electric carpets for surfacing Oyobi electric blankets dough is provided to Toku ⁇ by containing acrylic fibers of the present invention one ⁇ ⁇
  • the surface material for cutting is special in that it contains the acryl fibers having the novel excellent performance described above.
  • Such acrylyl moths are preferably used in the facing, at least 10% by weight, more preferably at least 30% by weight.
  • surface materials containing at least 10% by weight of ataryl fibers are advantageous because they can make use of the sharp color development and warm taste of acrylic arrowheads.
  • moth fibers mixed with acrylic fibers include, for example, fibers having good heat resistance such as wool, polyester and nylon.
  • the surface material of the present invention is used for the outermost surface or outer surface. Electrification power was provided as well.
  • the structure of the surface material may be any known material such as a nonwoven fabric by needle punching or the like, a pile fabric by tufting or the like, or a knitted fabric in some cases.
  • the electric power unit of the present invention may be of a heater-integrated type, or may be of a separate type of a heater body and a cover cartridge.
  • the raw fabric for electric blanket of the present invention is special in that it contains the above-mentioned acrylic fiber having the novel excellent performance.
  • acrylic fibers are preferably used in raw fabrics at least 50% by weight, more preferably at least 70% by weight.
  • a cloth containing at least 50% by weight of Acryl moth fiber is advantageous because it can make use of the vivid coloration and soft texture of acryl fibers.
  • the fiber to be mixed with the acrylic fiber include polyester, wool, nylon, and other acrylic fibers.
  • an electric blanket using the above-described raw cloth of the present invention.
  • the structure of the raw cloth may be any known one such as a brushed cloth or a non-woven cloth.
  • the base fabric of the waterproof fabric of the present invention is made of the above-mentioned acryl fabric.
  • the fabric includes ordinary sheet-like structures such as woven fabric, knitted fabric, and non-woven fabric. These sheet-like structures can be produced by a method known per se.
  • the waterproofing of the sheet-like structure is carried out according to a method known per se, using a waterproofing agent known per se.
  • a fluorine resin or a silicone resin is preferable.
  • an acrylic resin or a vinyl chloride resin Etc. are preferably used.
  • a polymerization unit formula (3) may not have an S 0 3 N a was by the following method.
  • M [% by weight], which is a ratio of a hydrogen atom or one equivalent of a cation to the polymer, was determined by the following measurement and calculation.
  • polymer A [g] (about 1 g) was precisely weighed and dissolved in dimethylformamide (JIS special grade).
  • the mixture was mixed with a strong acid-type cation exchange resin ⁇ 50-100 mesh, 3 (g) ⁇ for 1 hour and then stirred using a glass filter. The resin was identified. Further the port fluid potentiometric titrator - was titrated with N a OH of 1/50 N in (Hiranuma Sangyo COM 1 0 1 type). A blank test was performed under the same conditions to make corrections.
  • R hydrogen atom or methyl group Y; C OOX, OCOCH 3 ,
  • the ratio of the hydrogen atom, sodium, or methyl group in the polymer i [% by weight] was determined by the following measurement and calculation. First, 0.5 g of the polymer was dissolved in dimethyl sulfoxide (JIS special grade) to prepare a 50 g Z1 solution. Infrared spectrophotometer (Shimadzu IR-4) using a liquid cell made of C a F 2 and dimethyl sulfoxide as a control.
  • the ratio [% by weight] of the polymerization unit formula (1) to the polymerization unit [% by weight] is at-100-(wherein, using these, the polymer composition [molar ratio] was calculated by the following formula.
  • Y in the polymerization unit formula (3) is one CH 2 S 0 3 N a or
  • the absorbance of the polymerization unit formula (2) is 1,666 cm- 1.
  • a single polymer of the polymerization unit formula (2) is used instead of the polymerization unit formula (3) to create a calibration curve.
  • the polymerization degree P was determined by the following calculation.
  • Viscosity average molecular weight ( ⁇ sp / C) /1.5 X 10 " 4
  • FIG. 1 A loop of 80 mZm in length (40 mm, 2 in two folds) is made of a total of about 30 d of fiber, and this is held using a clip 3 in a ripening cylinder 1 that is open to the upper and lower atmosphere.
  • the temperature was raised from around 30 ° C by an average of 40 ° C, and the load position was tracked by the camera 5 and recorded together with the temperature.
  • Figure 1 shows the relationship measured by this method for several acrylic fibers.
  • the elongation percentage [%] was calculated by (load displacement [m no m] / 40 [m / m]) X 100.
  • a fiber bundle of about 600 mZm was made from a total of about 900 d fibers, and a load of 0.1 g / d (about 900 g) was applied at room temperature to mark at 500 m / m intervals. .
  • the unloaded fiber bundle was treated without applying tension at 210 ° C. for 30 minutes when dry, and at 130 ° C. for 10 minutes when wet heat.
  • the fiber bundle cooled at room temperature was again subjected to a load of 900 g, and the mark interval A [m / m] was measured.
  • the relaxation contraction rate [o] was calculated from ⁇ (50 0 -A) / 500 ⁇ ⁇ 100.
  • the fiber reinforced to 30 to 150 m / m was degreased three times with hot water at a temperature of about 60 ° C and a bath ratio of 1: 200.
  • Acetonitrile-sodium acetate adjusted the pH of the dye solution to about 4.5 (the dye brand, owf is shown in Table 1), and put the above fiber at a bath ratio of 1: 100 at about 60 ° C. ° C temperature rise (approximately 25 minutes) 1 85 ° C maintenance (approximately 10 minutes) 1 98.
  • c Temperature rise (approx. 15 minutes)-Treatment was performed at 98 ° C (approximately 10 minutes).
  • the above fibers are cooled to about 40 ° C, washed three times with normal temperature water and a bath ratio of 1: 200, and then centrifugally dehydrated to oiling (about 40 ° C, bath ratio of 1: 1).
  • the moth fibers opened with the hand card were dried and heated 120. cX48 treatment for 8 hours.
  • the discoloration was evaluated by the gray scale for discoloration (JISL0804) with the aid of the color scale for discoloration and fading, and indicated in the range of the best and worst.
  • the fresh cloth cut into a 20 cm square was dried and treated at i 20 ° C for 48 hours. Then, after cooling at room temperature, the discoloration was evaluated by the discoloration gray scale (JISL0804) with the aid of the discoloration color scale.
  • a force cut into a square of 20 cm was treated with dry heat at 120 ° C. for 48 hours. Then, after cooling at room temperature, the discoloration was evaluated by the discoloration gray scale (JISL0804) with the aid of the discoloration color scale.
  • the measurement was performed using a constant-speed extension-type testing machine (Toyo Poldwin UTM-II) based on JIS L1015.
  • tow-like fiber is dyed under the following conditions using a high-temperature and high-pressure dyeing machine (Hisaka HU HF212 / 550 type) and dried at 95 ° C for 1 hour or more. After that, the stained state was visually evaluated.
  • Hisaka HU HF212 / 550 type high-temperature and high-pressure dyeing machine
  • the degree of wrapping around a single moth fiber in the stretching bath to the take-up roller was visually evaluated.
  • the acryl fiber was cut to a fixed length of 51 m / m and subjected to the steps of carding, drawing and spinning. The occurrence of frying in each step was visually evaluated.
  • the above fibers are washed with warm water of about 60 ° C for 2 hours, and then dried at 95 ° C for 1 hour. After drying for more than an hour and cooling to room temperature, the weight x 0 [ ⁇ was measured.
  • Both ends of the crimped moth fiber 75mgX75m / m length were fixed to the grooved support shown in Fig.3.
  • First, using an X-ray measuring device (Rigaku Denki Geigerflex 2027 type), 2 ⁇ ? 5 to 40 by the sample rotation method. The average interference intensity curve was obtained, and this was corrected by air scattering. (This area is defined as T.)
  • the crystallinity [%] was calculated by the following equation. ⁇ (T ⁇ A) / ⁇ X 100
  • the X-ray source was filtered at 4 O Kv, 20 mA using a Cu counter cathode and a Ni filter.
  • a 2 m (2 inch) spinning of acryl fibers cut at a fixed length of 1 mZm was performed to obtain a spun yarn of 1 / 28th.
  • a circular knitting was obtained using a 316 G circular knitting machine.
  • Example 1 Monomers AN / S AM PSxZy of various compositions shown in Table 2 Is dissolved in DMF and the catalyst azobisisobutyronitrile (hereinafter abbreviated as AIBN) is used. After polymerization for 17 hours at CX, unreacted monomers were removed by an evaporator to obtain a polymer solution. Table 2 shows the composition and degree of polymerization of the resulting polymer.
  • AIBN azobisisobutyronitrile
  • the above-mentioned polymer solution was adjusted to a polymer concentration of 26.5% by weight, and a spinning stock solution was fed from the orifice of a 50,000-hole spinneret having a circular cross section of 0.06 m / m in diameter into a coagulation bath DM FZ water-600. / 40 (weight ratio), extruded at 20 ° C, taken up with spinning draft 0.4, - 3 0 / / 70 (weight ratio), was stretched 8 times 8 5 ° C.
  • the oil was applied just before washing with water, followed by roller drying at 150 ° C. while giving 15% shrinkage. Furthermore, after the oil is added, the crimp is applied.
  • the crimp set (warm 120 ° C) is subjected to the post-ripening and drying to obtain the 3d acrylic fiber. It had the characteristic values shown in Table 2.
  • SMAS sodium methallyl sulfonate
  • the obtained Acryl moth fiber had the characteristic values shown in Table 3.
  • Polymers having the compositions and degrees of polymerization shown in Table 4 were prepared by the DMF solution polymerization method in the same manner as in Example 1. However, only Exp. No. 14 was prepared by dimethyl sulfoxide (hereinafter abbreviated as DMS 0) solution polymerization method.
  • DMS 0 dimethyl sulfoxide
  • the above polymer was dissolved in DMF to produce a spinning urine having the polymer concentration shown in Table 4, which was coagulated from the orifice of a 50,000-hole spinneret with a circular cross section of 0.06 m / m in diameter.
  • the fibers obtained had the characteristic values shown in Table 4.
  • a polymer solution having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in DMF to adjust the polymer concentration to 26.5% by weight.
  • Coagulation bath DMF / water 60 ° 40 (weight ratio) from the hole spinneret orifice, extruded at 20 ° C, and taken up with spinning draft 0.4, then DMFZ water-30 / 7 0 (weight ratio), 85.
  • the film was stretched in C at the magnification shown in Table 5.
  • Example 5 Thereafter, the same treatment as in Example 3 was performed to obtain a 3d acrylic fiber. 'The resulting fibers had the characteristic values shown in Table 5.
  • the spinning stock solution having the composition of EXP. No. 3 of Example 1 and the degree of polymerization of DMF dissolved in DMF to adjust the polymer concentration to 26.5% by weight has a circular cross section of 0.06 m // m in diameter.
  • the fibers obtained had the characteristic values shown in Table 6.
  • a polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in DMSO to adjust the polymer concentration to 26% by weight, and the spinning stock solution having a circular cross section of 0.06 mZm in 20,000 holes was prepared.
  • the obtained fiber has a tensile strength of 3.4 / d, an elongation of 5%, a dry heat relaxation / shrinkage rate of 2%, a wet heat relaxation / shrinkage rate of 3%, a tensile elongation of 40%, and a transparency of 88%.
  • Young's modulus 500k fZ marauding 2 , heat-resistant color fastness;
  • a polymer solution having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in dimethylacetamide (hereinafter abbreviated as DMAc) to adjust the polymer concentration to 22% by weight.
  • DMAc dimethylacetamide
  • the orifice of a 20,000-hole spinneret having a circular cross section of 0.08 m / m in diameter from the coagulation bath DM Ac water 55/45 (weight ratio), 25. Extruded into C and taken up with spinning draft 0.5, 98. The film was stretched 9 times in hot water of C.
  • Example 6 Thereafter, the same treatment as in Example 6 was performed to obtain 3d acryl fibers.
  • the obtained acryl fiber has a tensile strength of 3.7 Zd, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 40%, and a transparency of 89%.
  • Young's modulus; 49 Ok ⁇ f / rara 2 fastness to heat-resistant dyeing; Indicated.
  • a polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in 70% nitric acid, and the spinning stock solution adjusted to a polymer concentration i of 6% by weight was cut into a circular cross section having a diameter of 0.1 mZm. It was extruded from a 20,000 hole spinneret orifice into a coagulation bath of 35% nitric acid, 3.0, taken out with a spinning draft of 0.5, and then stretched 9 times in ripened water at 98 ° C.
  • the resulting acryl fiber has a tensile strength of 3.6 Zd, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 41% and a transparency of 93%. , Young's modulus; 4 8 Fastness to heat resistance;
  • a spinning solution prepared by dissolving a polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 in sodium thiocyanate water 50/50 (weight ratio) to adjust the polymer vagueness to 12% by weight
  • the obtained acryl fiber has a tensile strength of 3.4 Zd, an elongation of 4%, and a dryness.
  • Mature relaxation shrinkage; 2%, wet heat relaxation shrinkage; 3%, tensile elongation; 43%, transparency; 97%, Young's modulus; 46 Ok ⁇ f / mm 2 , fastness to heat resistance; Class 4 was shown.
  • Example 8 Thereafter, the same treatment as in Example 8 was performed to obtain 3d acryl fibers.
  • the obtained acrylic fiber has a tensile strength of 3.4 d, an elongation of 6%, a dry relaxation shrinkage of 3%, a wet heat relaxation shrinkage of 3%, a tensile elongation of 44% and a transparency of 87. %, Young's modulus; 44 Ok f / mm 2 , fastness to heat-resistant dyeing;
  • the polymer having the composition and degree of polymerization of EXP. No. 3 of Example i was dissolved in DMF, the polymer concentration was adjusted to 30% by weight, and the spinning stock solution heated to 125 ° C was 0.2 mZm in diameter. It was extruded from the orifice of a spinneret having a circular cross section of 1,000 holes into hot air heated to 210 ° C, and was taken off at 300 m / min. The single moth fiber size was 14 denier.
  • the obtained acrylic fiber has a tensile strength of 2.9 ⁇ / d, an elongation of 6%, a dry heat relaxation shrinkage of 3%, a wet heat relaxation shrinkage of 3%, a tensile elongation of 50% and a transparency.
  • the resulting acryl fibers have a tensile strength of 3.7 d, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 37%, and a transparency of 93%.
  • Fig. 4 shows the relationship between the elongation rate of Riml (curve 1), 2 (curve 2) and 5 (curve 3) measured at elevated temperatures.
  • a woven fabric is produced with the structure, threading, and density shown in Table 8, and then the following fabrics are sequentially dyed by the following steps: refining, dyeing, reduction washing, sorbing, drying, finishing, and finishing. Obtained.
  • disperse dyes (Dyanix, manufactured by Mitsubishi Kasei Corporation) and cationic dyes (Estol, manufactured by Sumitomo Chemical Co., Ltd.) were used as dyes, and Sun Salt CI-12 (as an auxiliary agent) was used.
  • Sun Salt CI-12 (as an auxiliary agent) was used.
  • Nichika Chemical Co., Ltd. Unisalt 5 M (Meisei Chemical Co., Ltd.) and sodium acetate Z ⁇ O.
  • Reduction washing was carried out in a bath containing hydrosulfite and caustic soda at 80.
  • sorbing was carried out at 70 ° C. for 10 minutes in a bath containing Meisanol L-80 (manufactured by Meisei Chemical Co., Ltd.).
  • the obtained acrylic fiber had characteristic values as shown in Table 10.
  • a knitted fabric was made with the structure and threading shown in Table 11, and then the following process steps were performed, followed by dyeing, reduction cleaning, soaking, drying, finishing, brushing, and shading.
  • a cross-woven fabric was dyed after one ring and finish set. Table 11
  • Post-oiling crimping crimp set (moist heat 120 ° C) — post-drying, single-filament 10d acrylyl moth I got a fiber.
  • the obtained acryl fiber and electric power surface material had the characteristic values shown in Table 13.
  • the roller After pulling, washing and applying the pre-oil, the roller was dried at 150 ° C while applying 15% shrinkage. Further, the post-oil-applied crimp-applied crimp set (moist heat: 120 ° C.) and post-drying were carried out to obtain acryl fibers having a single yarn of 3 d.
  • the above fibers cut at a fixed length of 76 mm were dyed into the tea (dark color) shown in Table 1, and then woolen and spun to obtain a spun yarn of 5th .
  • a yellow pigment (Hoechst Green GG01) ground to an average particle size of about 1 was dispersed in dimethylformamide (hereinafter abbreviated as DMF).
  • the obtained acryl fiber had the characteristic values shown in Table 15 and Table 15
  • Run No. 1 acryl fiber was cut to a fixed length of 51 niZm and spun for 2 mm to obtain a spun yarn of 2Z34 count. Next, using the above-mentioned spun yarn, a plain woven fabric having a density of 73 pieces of warp and 73 pieces of weft Z-inch was obtained.
  • the above woven fabric was immersed in a treatment bath composed of 20 parts by weight of boron coat (a silicone resin-based waterproofing agent, manufactured by Shin-Etsu Chemical Co., Ltd.) and 80 parts by weight of trichloroethylene, and the squeezing ratio was reduced to 40%. Then 100. After drying in C 160. Heat treated with C.
  • boron coat a silicone resin-based waterproofing agent, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the obtained waterproof cloth has a water content of 100 ⁇ JISL 1 092 spray Method, water resistance 25.8 cm ⁇ JISL1092A method (low water pressure method) ⁇ , light fastness class 4 or higher (JISL0842 third exposure method), elongation at dry heat of 140 ° C Vertical 1%, horizontal 0%. In addition, dry ripening 140.
  • the elongation at C was measured by the following method. The upper end is fixed to the base. A grip of 50 mm width is sandwiched between the upper ends of a waterproof cloth cut to 25 mm width and 150 mm length. Next, the lower edge of the waterproof cloth was sandwiched between a 50 mm grip with a weight adjusted to 50 g in accordance with the weight of the clamp.
  • the waterproof cloth was marked so as to have an interval of 100 mm.
  • the waterproof cloth suspended on the gantry was treated at a dry heat of 140 ° C. for 24 hours. After cooling to room temperature, the mark interval A [mm] was measured. The elongation was calculated by ((A-i 0 0) no 1 0 0) XI 0.0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Knitting Of Fabric (AREA)

Abstract

This invention provides an acrylic fiber excellent in thermal resistance, creep resistance and transparency. The knit and union fabric produced from this fiber and, for example, an aromatic polyester fiber have clear color characteristics and soft hand inherent in the acrylic fiber. The acrylic fiber according to the present invention can be applied to electric blankets, electric carpets or waterproof cloths.

Description

' 耐熱性の優れたアク リル繊維、 その用途およびその製造法 産業上の利用分野 本発明は、 耐熱性の優れたアク リル繊維、 その性質等を利用した用途 およびその製造法に関する。 背 術 、 従来、 アク リル繊維は、 その鮮明な発色性と、 柔軟な風合を生かして 衣料、 寝装、 イ ンテリアなどに広く用いられてきた。 しかし高温処理に よるへたり、 変退色が大きいという好ましくない耐熱特性を有するため に、 衣料では反染ジャージなどには用いることが出来ず、 また産業資材 にはほとんど用いることが出来なかった。 ァク リル繊維の耐熱性を改良する目的で従来下記の提案がなされてい る。 特開昭 5 1 - 7 3 5 8 7号公報には、 ィ タ コン酸、 ブテン ト リ力ルポ ン酸および下記式  '' Acryl fiber excellent in heat resistance, its use and production method thereof Industrial application field The present invention relates to an acrylic fiber excellent in heat resistance, an application utilizing its properties, and a production method thereof. Traditionally, acrylic fibers have been widely used in clothing, bedding, interiors, etc., taking advantage of their vivid color development and soft texture. However, because of the undesired heat resistance properties of high temperature treatment and large discoloration and discoloration, it could not be used for clothing such as anti-dyeing jerseys and hardly used for industrial materials. Conventionally, the following proposals have been made for the purpose of improving the heat resistance of acrylic fibers. Japanese Patent Application Laid-Open No. 51-73587 discloses itaconic acid, butyric acid, and the following formula:
-。 -.
C H 2 = C - C  C H 2 = C-C
R O C H 2 C H 2 O H ROCH 2 CH 2 OH
ここで、 Rは H又は C i〜C 4アルキルである、 で表わされる化合物とを、 いずれも 0 . 3〜 3モル%の割合で、 ァクリ ロニ ト リルと共重合せしめて得られた、 架橋構造を有するァクリロニ ト リル系繊維又はフィルムが開示されている。 特開昭 5 3 - 1 2 6 3 2 2号公報には、 ァク リ ロ二 トリルを主成分と し、 これに異節原子と して酸素、 硫黄又は窒素原子を含有する異節 1 ,Here, R is H or C i -C 4 alkyl, and a compound represented by the following formula: ## STR1 ## in which 0.3 to 3 mol% of acrylonitrile is copolymerized. Acrylonitrile fibers or films having a structure are disclosed. Japanese Patent Application Laid-Open Publication No. Sho 53-12626 discloses a heterogeneous composition containing acrylonitrile as a main component and containing oxygen, sulfur or nitrogen atoms as heteroatoms.
6 -ジェン化合物例えばジァリルエーテルを共重合させて得られた、 環 状構造を有するァクリロニトリル系共重合体の鏃維が開示されている。 また、 特開昭 5 3— 1 2 6 3 2 3号公報には、 上記異節 1, 6 -ジェン 化合物に代えてジビニル化合物例えばジビニルエーテルを用いて得られ た、 環状構造を有するァクリロ二トリル系共重合体の繊維が開示されて いる。 A ring obtained by copolymerizing a 6-gen compound such as diaryl ether An arrowhead fiber of an acrylonitrile-based copolymer having a linear structure is disclosed. Also, Japanese Patent Application Laid-Open No. Sho 53-126263 discloses acrylonitrile having a cyclic structure, which is obtained by using a divinyl compound such as divinyl ether in place of the above-mentioned 1,6-diene compound. Disclosed are fibers of a system copolymer.
上記の如く、 従来の耐熱性ァクリロニトリル系繊維では、 架橋構造あ るいは環構造を導入することによ り耐熱性を改良しょうとするものであ つた。  As described above, conventional heat-resistant acrylonitrile-based fibers have been designed to improve heat resistance by introducing a crosslinked structure or a ring structure.
一方、 特開昭 4 9— 9 4 9 2 1号公報には、 アクリロニトリル 8 5重 量%以上と 2 -アク リルアミ ド - 2 -メチルプロパンスルホン酸 0 . 5〜 1 5重量%を含有する共重合体を紡糸して吸湿性ァクリル蛾維を製造する 方法が開示されている。 同公報の実施例には、 2 -アク リルアミ ド - 2 - メチルプロパンスルホン酸 2 0部をァクリ ロ二 ト リル 8 0部と共重合し て得られた共重合体(マスターパッチ) 3 0部及びァクリロ二ト リル 9 1 重量%とァクリル酸メチル 9重量%との共重合体 7 0部とをジメチルァ セトアミ ドに溶解して湿式紡糸し、 延伸し、 乾燥しそして熟収縮させて、 2 0 °C、 6 5 % R Hでの平衡水分率が 4 . 1 %と高い湿性の繊維を製造 する具体例が開示されている。  On the other hand, JP-A-49-94921 discloses a copolymer containing 85% by weight or more of acrylonitrile and 0.5 to 15% by weight of 2-acrylamide-2-methylpropanesulfonic acid. A method for producing a hygroscopic acrylyl moth fiber by spinning a polymer is disclosed. Examples in the publication include 30 parts of a copolymer (master patch) obtained by copolymerizing 20 parts of 2-acrylamide-2-methylpropanesulfonic acid with 80 parts of acrylonitrile. 70 parts by weight of a copolymer of 91% by weight of acrylonitrile and 9% by weight of methyl acrylate were dissolved in dimethylacetamide, wet-spun, stretched, dried and ripened to give 20%. A specific example of producing a wet fiber having an equilibrium moisture content of 4.1% at 65 ° C. and 65% RH is disclosed.
特開昭 5 4 - 3 4 4 1 6号公報には、 アク リ ロニ ト リル 7 0重量%以 上及びスルホン酸基又はその塩を有する共重合性化合物 1〜 3 0重量% 及び共重合性モノマー 0〜 2 9重量%からなる共重合体から形成された 中空繊維が開示されている。 同公報には、 上記スルホン酸基又はその塩 を有する共重合性化合物として 2 -ァク リルアミ ド - 2 -メチルプロパン スルホン酸が開示されており、 この化合物はスルホン酸基を有するがた めに得られる共重合体に、 吸水性および抗血液凝固性 付与することが 記載されている。 同公報の中空繊維は同公報にも指摘されているとおり 血液透析に適している。 Japanese Patent Application Laid-Open No. 54-34416 discloses that 70% by weight or more of acrylonitrile and 1 to 30% by weight of a copolymerizable compound having a sulfonic acid group or a salt thereof, Hollow fibers formed from copolymers comprising 0 to 29% by weight of monomers are disclosed. This publication discloses 2-acrylamide-2-methylpropanesulfonic acid as a copolymerizable compound having the sulfonic acid group or a salt thereof, and this compound has a sulfonic acid group. It is described that the resulting copolymer is provided with water absorption and anticoagulant properties. The hollow fibers in the publication are suitable for hemodialysis as pointed out in the publication.
特開昭 5 6 - 1 2 8 3 1 3号公報には、 非親水性ァク リ ロ二 卜 リル重 合体成分と親水性ァク リ ロニ ト リル共重合体成分とのサイ ドバイサイ ド 型自己捲縮性 2成分ァク リル繊維が開示されている。 親水性ァク リ ロ二 ト リル共重合体は 0 . 7〜 1 . 2モル%の 2 -ァク リルァミ ド- 2 -メチル プロパンスルホン酸又はその塩を含有する。 同公報の上記 2成分ァク リ ル繊維は上記親水性ァク リ ロニ ト リル共重合体成分が比較的高い熱水膨 潤性を有することを利用して、 捲縮を付与されるものである。  Japanese Unexamined Patent Publication (Kokai) No. 56-1283133 discloses a side-by-side type self-contained composition of a non-hydrophilic acrylonitrile copolymer component and a hydrophilic acrylonitrile copolymer component. A crimpable bicomponent acrylic fiber is disclosed. The hydrophilic acrylonitrile copolymer contains 0.7 to 1.2 mol% of 2-acrylamide-2-methylpropanesulfonic acid or a salt thereof. The two-component acryl fiber disclosed in the publication is crimped by utilizing the fact that the hydrophilic acrylonitrile copolymer component has a relatively high hydrothermal swelling property. is there.
また、 特開昭 6 1 - 1 1 9 7 1 1号公報には、 2 -ァク リルァ ド - 2 -メチルプロパンスルホン酸の如き幾つかの特定のスルホン酸類から選 ばれるスルホン酸基含有化合物 0 . 1 ~ 1 . 0モル%含有し、 極限粘度が 少く とも 2 . 0でありそして引張り強度が 1 O gZd以上である髙強度ァ ク リル系繊維が開示されている。 同公報の記載によれば、 この繊維は高 強度であるのみならず、 沸水処理後の強度保持率が少く とも 7 0 %以上 であり、 しかも高弾性率であることが記載されている。 この繊維はァス べス 卜の代替品としてセメ ン トの補強材として好適に使用できることが 同公報に記載されている。  Also, Japanese Patent Application Laid-Open No. 61-119711 discloses a sulfonic acid group-containing compound selected from a number of specific sulfonic acids such as 2-acrylid-2-methylpropanesulfonic acid. A high-strength acrylic fiber containing 0.1 to 1.0 mol%, having an intrinsic viscosity of at least 2.0 and a tensile strength of 1 OgZd or more is disclosed. According to the description of the publication, this fiber not only has a high strength, but also has a strength retention after boiling water treatment of at least 70% or more, and a high elastic modulus. It is described in this publication that this fiber can be suitably used as a cement replacement material as an alternative to asbestos.
一方、 従来よりアク リル繊維は、 その鮮明な発色性、 柔軟な風合を生 かして、 ニッ ト、 ジャージなどの衣料、 カーぺッ ト、 カーテンなどのィ ンテリア、 毛布、 シーツなどの寝装などに広く用いられていることは前 述のとおりであるが、 この中で衣料の場合、 編物、 織物にした後染色す ると熱によるへタ リが大き く、 寸法安定性、 風合が不良となるため先染 めで行う必要があった。 On the other hand, in the past, acrylic fiber has been taking advantage of its vivid coloration and flexible texture to make clothes such as knits and jerseys, interiors such as cars and curtains, and sleeping materials such as blankets and sheets. As mentioned above, it is widely used for garments, etc., but in the case of garments, when knitted or woven, dyeing after heating causes large settling due to heat, dimensional stability and texture. Will be defective Had to be done.
この欠点を改良する目的で従来下記の提案がなされている。  The following proposals have heretofore been made for the purpose of improving this drawback.
特開昭 4 7 - 4 3 5 5 7号公報には、 ァクリル系合成繊維中に含有さ れる複合蛾維を全量に対して 2 0 ~ 5 0 %の含有率となし、 ポリエステ ル系合成繊維の含有率を 2 5— 6 0 %とし、 そしてボリエステル系合成 繊維とアク リル系合成繊維との収縮率比を 1 : 1〜4としたアク リル系 合成繊維とポリエステル系合成繊維からなる後染め混紡♦交編 ·交織物 の製法が開示されている。 また同公報には、 相互汚染のすくないキヤリ ヤーを使用し染色温度を 9 8 ° ~ 1 0 5 °Cとすることが開示されている。 特開昭 4 9 - 1 8 6 5号公報には、 複合蛾維成分 3 0〜7 0 %と非複 合繊維成分 7 0 ~ 3 0 %とからなるァクリル系紡績糸 (A ) を使用し、 製品中のボリエステル系長繊維加工糸 (B ) の混用率を 2 0〜 5 5 %と し、 (B ) と (A ) との収縮率比を 1 : 3 ~ 5として、 (A ) と (B ) とを交編ダブルニッ 卜に編成し、 次いで相互汚染の少ないキヤリヤーを 使用して染色温度 9 6 °C〜1 0 5 で後染めし染色後の幅出し工程にお いて、 経方向のオーバーフィ一ド率を 1 8 ~ 2 5 %として送り込み仕上 げ加工を行うァクリル系紡糸とポリエステル系長繊維加工糸から成る後 染交編ダブルニッ トの製造法が開示されている。  JP-A-47-43557 discloses that the content of the composite moth fibers contained in acryl-based synthetic fibers is 20 to 50% of the total amount, and that the polyester-based synthetic fibers Post-dyeing of acrylic synthetic fiber and polyester synthetic fiber with a content ratio of 25-60% and a shrinkage ratio of polyester synthetic fiber to acrylic synthetic fiber of 1: 1 to 4 It discloses a method of producing mixed spinning and knitting. Further, the publication discloses that a dyeing temperature of 98 ° C. to 105 ° C. is used by using a carrier that causes less cross-contamination. JP-A-49-18665 discloses an acryl-based spun yarn (A) composed of 30 to 70% of a composite moist fiber component and 70 to 30% of a non-composite fiber component. The mixing ratio of the polyester-based long fiber processed yarn (B) in the product is set to 20 to 55%, the shrinkage ratio between (B) and (A) is set to 1: 3 to 5, and (A) (B) is knitted into a knitted double knit and then dyed at a dyeing temperature of 96 ° C to 105 using a carrier with low cross-contamination. A method for producing a post-dyeed and knitted double knit composed of an acryl-based spun yarn and a polyester-based long-fiber processed yarn, which is sent and finished with an overfeed ratio of 18 to 25%, is disclosed.
上記の如く、 従来のァクリル繊維とポリエステル繊維との後染め可能 な混紡 ·交編 ·交截物は、 アク リル繊維の一部を複合繊維として混用し, キヤリヤーを使用して低温で染色するものであった。  As described above, the conventional blended, cross-knitted and cross-cut products of acryl fibers and polyester fibers that can be dyed are made by mixing a part of the acrylic fiber as a composite fiber and dyeing at low temperature using a carrier. Met.
—方、 特開昭 5 8— 1 3 7 3 9号公報には、 実質的にポリエチレンテ レフタ レ一トのホモポリマーよりなり且つ分散染料で常圧染色可能であ るポリエステル鏃維とアクリル繊維との交編 ·交織物が開示されている, 上記ポリエステル繊維は 3 0 °Cにおける初期モジュラスが 5 5gZd以 上であり、 測定周波数 i 1 0 Hzにおける力学的損失正接 (tanS ) のピ —ク温度 (Tmax) 力; 1 0 5 °C以下であって tan δのピーク値 [ (tanS ) max] が 0. 1 3 5をこえる値を有する嵩高加工をされていない織維およ び/または 3 0 °Cにおける初期モジュラスが 5 5gZd以上であり Tmax (°C) と (tanS ) maxとの間で (tanS ) max^ (Tmax— 1 0 5) X 1 0— 2なる式を満足し且つ (tanS ) maxが 0.0 8以上の値を有する嵩 高加工をされてなる繊維である。 かかる鏃維は例えば 4, 0 0 OmZ分以 上の高速で紡糸された後、 2 2 0 °C乃至 3 0 0 °Cの温度で乾熱による熟 処理をされてなる繊維及び/または 4 , 0 0 0 in/分以上の高速で紡糸さ れた後、 2 2 0 °C乃至 3 0 0 °Cの温度で乾熱による熱処理を受けた後、 常法により嵩高加工をされてなる繊維であることが開示されている。 特開昭 5 8 - 8 7 3 4 0号公報には、 上記特開昭 5 8— 1 3 7 3 9号 公報に開示されたポリエステル繊維とほぼ同じ性質のポリエステル繊維 とアタ リル蛾維と獣毛鏃維との交編 ·交織物が開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 58-13739 discloses a polyester arrowhead fiber and an acrylic fiber which are substantially composed of a homopolymer of polyethylene terephthalate and which can be dyed at normal pressure with a disperse dye. Interwoven fabrics and interwoven fabrics are disclosed, The above polyester fiber has an initial modulus at 30 ° C of 55 gZd or more, and a peak temperature (Tmax) of a mechanical loss tangent (tanS) at a measurement frequency i of 10 Hz; The peak value of tan δ [(tanS) max] is greater than 0.135, and the non-bulky fabric and / or the initial modulus at 30 ° C is 55 gZd or more. Tmax (° C) and bulk having a (tanS) max ^ (Tmax- 1 0 5) satisfies X 1 0- 2 becomes formula and (Tans) max is 0.08 or more values between (Tans) max A highly processed fiber. Such an arrowhead fiber is spun at a high speed of, for example, 4.00 OmZ or more, and then matured by dry heat at a temperature of 220 ° C to 300 ° C and / or After being spun at a high speed of at least 1000 in / min, it is subjected to a heat treatment by dry heat at a temperature of 220 ° C to 300 ° C, and is then subjected to bulk processing by a conventional method. It is disclosed that there is. Japanese Patent Application Laid-Open No. 58-87340 discloses a polyester fiber having substantially the same properties as the polyester fiber disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-13739, atharyl moth fiber and a beast. The knitting and knitting with hair arrowheads are disclosed.
上記の如く、 アク リル繊維との交編 *交織物に用いられ、 キヤリヤー を使用せずに低温で後染め可能なポリエステル繊維は高速度紡糸されそ して紡糸後熱処理を受けて製造される特殊なものであった。  As mentioned above, polyester fiber used in knitting and knitting with acrylic fiber, which can be dyed at a low temperature without using a carrier, is spun at a high speed and then subjected to heat treatment after spinning. It was something.
さらに、 従来、 アク リル繊維は、 その鮮明な発色性、 柔軟で暖か味の ある風合および良好な保温性を生かして毛布あるいはカーべッ十特に素 足で歩く ことの多い家庭用カーぺッ トに広く用いられて来た。 一方、 ヒ ータを内装した電気毛布あるいは電気力一^ ^ッ トもまた広く用いられて いるが、 従来のァク リル繊維は耐熱染色堅牢度が不充分でありまた高温 度下での伸度が大きいため、 電気毛布の生布あるいは電気カーべッ 卜の 表面材として使用すると、 変色したりあるいはへタリを生じたりする欠 点があった。 電気毛布の生布としてはこれを改善するためにはポリエス テル、 羊毛などと混用する必要があった。 また電気力一^ ^ッ ト用表面材 としては使用されていない。 In addition, conventionally, acrylic fiber has been used for household carpets that often walk on blankets or carpets, especially bare feet, taking advantage of its vivid coloration, soft and warm texture, and good heat retention. Has been widely used for On the other hand, electric blankets or electric power kits with heaters are also widely used, but conventional acrylic fibers have insufficient heat-fast dyeing fastness and stretch at high temperatures. Because of the high degree of When used as a surface material, there were defects such as discoloration or settling. As an electric blanket, it was necessary to mix it with polyester, wool, etc. to improve this. It is not used as a surface material for electric power.
アクリル繊維は、 よく知られているとおり、 優れた発色性、 風合ある いはボリユーム感等を有している。 それ故上記の如き欠点を解消できれ ば、 アクリル織維は電気毛布の生布として単独使用しても、 上記の優れ た特性を生かすことができ、 また電気力一ぺッ ト用表面材の素材として は、 現在実際に使用されているポリエステル、 ポリアミ ドあるいは羊毛 等と比較しても優るとも劣らないものとなることは容易に推察できる。 . しかしながら、 従来上記の如き欠点を解消したアクリル織維は開発さ れていずまた知られてもいない。  As is well known, acrylic fiber has an excellent color-forming property, a feeling or a voluminous feeling. Therefore, if the above-mentioned disadvantages can be eliminated, acrylic textiles can take advantage of the above-mentioned excellent properties even when used alone as a blanket for electric blankets, and can be used as a surface material for electric power kits. It can be easily guessed that the material is no better or worse than polyester, polyamide, wool or the like currently used in practice. However, an acrylic fiber which has solved the above-mentioned disadvantages has not been developed nor known.
また、 従来よりテン ト、 ビーチパラソル、 自動車力パー、 ポートカバ 一等の防水布用基布の素材としては、 ボリエステル繊維、 ポリアミ ド繊 維、 ビニロン繊維等が用いられて来ており、 アク リル織維は優れた耐候 性一強力保持率を有しているにもかかわらず、 耐クリーブ性および耐光 堅牢度が劣るため上記用途にはわずかに用いられるにすぎなかった。 そ れ故上記の如き欠点を解消出来れば、 アタリル繊維は防水布の素材とし ても、 ボリエステル線維、 ポリアミ ド蛾維あるいはビニロン繊維等と比 較しても優るとも劣らないものとなることが期待される。  Polyester fiber, polyamide fiber, vinylon fiber, etc. have been used as the base fabric for waterproof fabrics such as tents, beach umbrellas, automobile power pars, port covers, etc. Although the fiber had excellent weather resistance and high strength retention, it was only slightly used in the above applications because of its poor cleave resistance and light fastness. Therefore, if the above-mentioned drawbacks can be eliminated, it is expected that ataryl fiber will be as good or better than the material of waterproofing cloth as compared with polyester fiber, polyamide moist fiber or vinylon fiber. Is done.
発明の開示  Disclosure of the invention
本発明の目的は新規なァクリル繊維を提供することにある。  An object of the present invention is to provide a novel acryl fiber.
本発明の他の目的は、 耐熱特性例えば耐熱寸法安定性、 耐熱染色堅牢 度に優れた新規なァクリル蛾維を提供することにある。 のさ に の目 は ク リ一 に た なァク リル繊維 を提供することにある。 Another object of the present invention is to provide a novel acrylyl moth fiber having excellent heat resistance properties such as heat dimensional stability and heat dyeing fastness. An additional goal is to provide clear acrylic fiber.
本発明のさらに他の目的は、 優れた透明性を備えた新規なァク リル繊 維を提供することにある。  Still another object of the present invention is to provide a novel acrylic fiber having excellent transparency.
本発明のさらに他の目的は濃色染色が可能であり しかも緩染剤を使用 せずに染め斑なく して濃色〜淡色に染色可能な新規なァク リル繊維を提 供することにある。  Still another object of the present invention is to provide a novel acrylic fiber which can be dyed in a deep color and can be dyed in a dark color to a light color without using dyes and without dyeing.
本発明のさらに他の目的は適度の強度と比較的大きい伸度とを有し、 紡績性に優れた新規なァク リル繊維を提供することにある。  Still another object of the present invention is to provide a novel acrylic fiber having moderate strength and relatively high elongation and excellent spinnability.
本発明のさらに他の目的は本発明の新規ァク リル繊維を製造する方法 を提供することにある。  Still another object of the present invention is to provide a method for producing the novel acrylic fiber of the present invention.
本発明のさらに他の目的はァク リル繊維と芳香族ポリエステル蛾維と の交編 ·交織物を提供することにある。  Still another object of the present invention is to provide a cross-knitted / cross-woven fabric of an acrylic fiber and an aromatic polyester moth.
本発明のさらに他の目的は、 芳香族ポリエステル織維と交編 ·交截物 と して、 通常の芳香族ボリエステル繊維の染色条件で後染め可能な新規 なァク リル繊維素材を提供することにある。  Still another object of the present invention is to provide a novel acrylic fiber material which can be post-dyed as an aromatic polyester fiber under ordinary dyeing conditions of aromatic polyester fibers as a cross-knit / cross cut product. is there.
本発明のさらに他の目的は、 耐熱寸法安定性に優れ且つ柔軟な風合を 持つ新規なァク リル繊維と芳香族ポリエステル繊維の交編 ·交織物を提 供することにある。  Still another object of the present invention is to provide a novel knitted / cross-woven fabric of an acrylic fiber and an aromatic polyester fiber which is excellent in heat-resistant dimensional stability and has a soft feel.
本発明の他の目的は、 耐熱染色堅牢度および耐へタ リ性に優れたァク リル蛾維を含有する電気カーぺッ ト用表面材および電気毛布用生布を提 供することにある。  It is another object of the present invention to provide a surface material for an electric carton and a raw cloth for an electric blanket containing an acrylic moth fiber which is excellent in heatfastness to dyeing and heat resistance.
本発明のさらに他の目的は、 耐ク リーブ性および耐光堅牢度の優れた ァクリル系防水布を提供することにある。 本発明のさらに他の目的および利点は、 以下の説明から明らかとなろ ラ。 本癸明によれば、 本発明の上記目的及び利点は、 第 1に、 Still another object of the present invention is to provide an acryl-based waterproofing cloth having excellent creep resistance and light fastness. Still other objects and advantages of the present invention will be apparent from the following description. According to the present invention, the above objects and advantages of the present invention are:
(A) , (a) 下記式(1) (A), (a) The following equation (1)
- CH2-CH --CH 2 -CH-
C≡N · · · · (! ) で表わされる重合単位および 下記式(2) C≡N · · · · (!) Polymerized unit and the following formula (2)
Figure imgf000010_0001
Figure imgf000010_0001
ここで Mは水素原子又は一当量のカチオンである、 で表わされる重合単位から実質的になり、  Wherein M is a hydrogen atom or an equivalent cation, consisting essentially of polymerized units represented by
(b) 上記重合単位(1 )と重合単位(2)の合計に対し上記重合単位 (2)が 0.4〜1.5モル%を占め、 そして (b) the polymerized unit (2) accounts for 0.4 to 1.5 mol% based on the total of the polymerized unit (1) and the polymerized unit (2), and
(c) 重合度が 600〜 1, 500の範囲にある、  (c) the degree of polymerization is in the range of 600 to 1,500,
ァクリロ二トリル系共重合体からなり、 Consisting of an acrylonitrile copolymer,
(B) 引張強度が 2~5gZdの範囲にあり、 そして (B) the tensile strength is in the range of 2-5 gZd, and
(C) 昇温下で測定した温度と伸び率との関係において、 2' 60。Cに おける伸び率が 10 %以下である、 ことを特徵とするァクリル蛾維によって達成される。 図面の箇単な説明 第 1図は、 本癸明のァクリル鏃維および従来のァクリル繊維相当品に ついての、 温度と伸びとの関係を示している。 第 2図は、 第 1図の関係を測定するために使用した装置の概略図であ る。 (C) 2'60 in relation to temperature and elongation measured at elevated temperature. This is achieved by the Acryl moth fiber, which is characterized in that the elongation in C is less than 10%. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the relationship between the temperature and the elongation of the acryl acrylic arrowhead fiber of the present invention and the conventional acryl fiber equivalent. FIG. 2 is a schematic diagram of the apparatus used to measure the relationship of FIG.
第 3図は本発明のァクリル繊維の結晶化度を測定する際に使用した試 料支持台の概略図である。  FIG. 3 is a schematic view of a sample support used in measuring the crystallinity of acryl fibers according to the present invention.
第 4図は、 本発明の交織物で用いられたアクリル繊維および従来のァ クリル繊維相当品についての、 温度と伸びとの関係を示している。  FIG. 4 shows the relationship between the temperature and the elongation of the acrylic fiber used in the cross-woven fabric of the present invention and the conventional equivalent of acrylic fiber.
第 5図は、 本発明の電気カーぺッ ト表面材で用いられたァクリル繊維 および従来のァクリル戡維相当品についての、 温度と伸びとの関係を示 している。  FIG. 5 shows the relationship between the temperature and the elongation of the acryl fiber used in the electric carton surface material of the present invention and the conventional acryl fiber material.
第 6図は、 本発明の電気毛布用生地で使用したアク リル蛾維および従 来のァクリル繊維相当品についての、 温度と伸びとの関係を示している。 第 7図は、 本発明の防水布で用いられたァクリル繊維および従来のァ クリル繊維相当品についての、 温度と伸びとの関係を示している。  FIG. 6 shows the relationship between temperature and elongation for Acryl moth fiber and conventional acryl fiber equivalents used in the electric blanket fabric of the present invention. FIG. 7 shows the relationship between the temperature and the elongation of the acryl fiber used in the waterproof cloth of the present invention and the conventional acryl fiber equivalent.
本発明のアク リル蛾維は、 上記のとおり、 それを形成する重合体を特 定する要件(A)、 その強度を特定する要件(B)およびその髙温度の伸び 率を特定する要件(C)によって特定される。  As described above, the acrylic moth fiber of the present invention has a requirement (A) for specifying a polymer forming the same, a requirement (B) for specifying its strength, and a requirement (C) for specifying its elongation at a low temperature. ).
要件(A)に関し、 重合体はァクリロニトリルに由来する上記式(1 )の 重合単位および 2-ァクリルァミ ド -2-プロパンスルホン酸(以下、 AM P Sと略記する)又はその塩に由来する上記式(2)の重合単位から実質 的になる。  Regarding the requirement (A), the polymer is a polymerized unit of the above formula (1) derived from acrylonitrile and the above formula (abbreviated as AMPS) or a salt thereof derived from 2-acrylyl-2-propanesulfonic acid (hereinafter abbreviated as AMPS). It consists essentially of the polymerized units of 2).
重合単位(1 )と重合単位(2)の割合は、 両重合単位の合計を基準にし て重合単位(2)が 0.4〜 1 .5モル% (重合単位(1 )が 9 9.6 -9 8. 5モル%)を占める割合である。 重合単位(2)は、 同じ基準に対し、 好 ましくは 0.6〜 1 .2モル%(重合単位( 1 )が 9 9.4 ~ 9 8.8モル%) を占める。 重合単位(2)の割合が 0.4モル%未満では重合工程でのゲ ル化が起り易く、 また染着座席が不足するため濃色染めができ難くなる。 また 1.5モル%を越えると、 後述する耐熱特性が劣化する。 The ratio of the polymerized unit (1) to the polymerized unit (2) is 0.4 to 1.5 mol% based on the total of both polymerized units (polymerized unit (1) is 99.6 to 98. 5 mol%). Polymerized unit (2) is preferably 0.6 to 1.2 mol% based on the same standard (polymerized unit (1) is 99.4 to 98.8 mol%) Occupy. If the ratio of the polymerized unit (2) is less than 0.4 mol%, gelling in the polymerization process is apt to occur, and it becomes difficult to perform deep color dyeing due to insufficient dyeing seats. On the other hand, when the content exceeds 1.5 mol%, the heat resistance described later deteriorates.
さらに要件(A)に関し、 上記重合体は重合度が 6 0 0〜 1,5 0 0の 範囲にある。 好ましい重合度は 8 0 0〜 1 , 1 0 0である。  Further, regarding the requirement (A), the above-mentioned polymer has a degree of polymerization in the range of 600 to 1,500. The preferred degree of polymerization is from 800 to 100.
6 00未満では通常のァクリル蛾維としての強度が得られず、 1, 5 0 0を越えると重合工程でのゲル化が起り易く、 通常の湿式紡糸を行う には、 粘度が高過ぎる。  If it is less than 600, the strength as ordinary acrylyl moth fiber cannot be obtained, and if it exceeds 1,500, gelation in the polymerization step is apt to occur, and the viscosity is too high for ordinary wet spinning.
本発明のアク リル繊維は、 要件(B)に関し、 2~5gZdの引張強度、 すなわちさほど高強度ではなくいわゆる衣料用繊維として適当な引張強 度を有している。 好ましい引張強度は 3~4g dである。 引張強度が 2 g/d未満では、 通常の紡績.工程で繊維切断が癸生し易く、 5gZdを越え ると、 高強度となり後述する引張伸度が不足しひいては紡鑌糸としての 伸度が不足する。 Regarding requirement (B), the acrylic fiber of the present invention has a tensile strength of 2 to 5 gZd, that is, a tensile strength not so high but suitable as a so-called clothing fiber. The preferred tensile strength is 3 to 4 gd . When the tensile strength is less than 2 g / d, normal spinning is apt to occur, and when the tensile strength exceeds 5 gZd, the strength becomes high and the tensile elongation described below is insufficient, and the elongation as a spun yarn is further reduced. Run short.
また、 本発明のアク リル繊維は、 要件(C)に関し、 昇温下で測定した 温度と伸び率との関係において、 26 0 °Cにおける伸び率が 1 0 %以下 である。 好ましい同伸び率は 6 %以下である。  Further, regarding the acrylic fiber of the present invention, regarding the requirement (C), the elongation at 260 ° C. is 10% or less in relation to the temperature measured at elevated temperature and the elongation. The preferred elongation is 6% or less.
本発明のァクリル繊維は、 同程度の引張強度を示す従来の衣料用ァク リル蛾維と比較して、 このように耐熱性に優れ、 いわゆるへタリが小さ い特徵を備えている。  The acryl fiber of the present invention is superior in heat resistance and has a characteristic of less so-called set, as compared with the conventional acrylic molybdenum for clothing having the same tensile strength.
本発明のァクリル蛾維は、 クリンプが付されていても付されていなく てもよく、 さらに好ましくは下記特性を備えている。  The acrylyl moth fiber of the present invention may or may not be crimped, and more preferably has the following properties.
2 1 0 °Cでの乾熱弛緩収縮率は好ましくは 3 %以下であり、 さらに好 ましくは 1 %以下である。 温熱時の耐熱性に関しては、 1 30 °cでの湿熱弛緩収縮率が好ましく は 3%以下であり、 さらに好ましくは 1 %以下である。 The dry heat relaxation shrinkage at 210 ° C. is preferably 3% or less, and more preferably 1% or less. Regarding the heat resistance at the time of warming, the relaxation shrinkage after heating at 130 ° C. is preferably 3% or less, more preferably 1% or less.
本発明のアク リル繊維は、 上記要件(B)に特定したとおり、 通常の衣 料用繊維と して適当な強度を備え、 そのような強度において良好な紡績 性を与える伸度を示すことができる。 好ましい伸度は 35 %以上であり、 さらに好ましい伸度は 35〜 60 %である。  As specified in the requirement (B), the acrylic fiber of the present invention has an appropriate strength as a normal garment fiber, and exhibits an elongation that gives good spinnability at such strength. it can. The preferred elongation is 35% or more, and the more preferred elongation is 35 to 60%.
本発明のアク リル繊維は、 一般のアク リル繊維、 特に有機溶媒を用い た湿式紡糸によるァク リル繊維が劣った透明性しか示さないのに対し、 優れた透明性を示しうる点において好ましい。 本発明のァク リル繊維は 後述する測定法に従って好ましくは少く とも 80%、 より好ましくは少 く とも 90 %の透明性を示す。  The acrylic fiber of the present invention is preferable in that general acrylic fiber, particularly, acrylic fiber obtained by wet spinning using an organic solvent shows only poor transparency, but can show excellent transparency. The acrylic fibers of the present invention preferably exhibit a transparency of at least 80%, more preferably at least 90%, according to the measurement method described below.
本発明のァク リル繊維は、 好ましくは 400〜 70 OkgiZ匪2のヤン グ率、 さらに好ましくは 500~60 OkgfZmm2のヤング率を備えるこ とができる。 § click Lil fibers of the present invention are preferably Young's modulus of 400~ 70 OkgiZ negation 2, further preferably from the this with the Young's modulus of 500 ~ 60 OkgfZmm 2.
また、 本発明のアク リル繊維の優れた耐熱特性は、 耐熱染色堅牢度(乾 熱 1 20 °CX 48時間)が好ましくは少く とも 3級、 より好ましくは少 く とも 3.5級を示すことによつても、 支持される。  Further, the excellent heat resistance of the acrylic fiber of the present invention is that the heat resistance dyeing fastness (dry heat: 120 ° C. for 48 hours) is preferably at least 3 grade, more preferably at least 3.5 grade. They are also supported.
本発明のァク リル繊維は好ましくは 20〜40%の結晶化度、 より好 ましくは 25-35 %の結晶化度を備えている。  The acrylic fibers of the present invention preferably have a crystallinity of 20-40%, more preferably 25-35%.
本発明の上記アク リル繊維は、 要件(A)に特定されているように、 重 合単位(1)と重合単位(2)とを、 これらの合計に基づいて、 重合単位 (2)を 0.4~ 1.5モル%の割合で含有する。 本発明者の研究によれば、 重合単位( 1 )および重合単位(2)の上記割合を保持する条件において、 他の重合単位(3)をさらに若干量含有しても本発明の上記目的および利 点が保持しうることが明らかとされた。 As described in the requirement (A), the above-mentioned acrylic fiber of the present invention is obtained by adding the polymerized unit (2) to the polymerized unit (2) by 0.4 based on the sum of the polymerized unit (1) and the polymerized unit (2). It is contained at a ratio of ~ 1.5 mol%. According to the study of the present inventor, under the condition that the above-mentioned ratio of the polymerized unit (1) and the polymerized unit (2) is maintained, even if the polymerized unit (3) is further contained in a small amount, the above-mentioned object of the present invention and Profit It was found that the points could be retained.
それ故、 本発明によれば、 第 2に、  Therefore, according to the present invention, second,
(AO (a') 上記式(1 )の重合単位、 上記式(2)の重合単位および ァクリロニトリルと共重合可能な単量体に由来する上記式(2 )の重合単 位とは異なる重合単位(3)で表わされる重合単位から実質的になり、 (b 上記重合単位( 1 )と重合単位(2)の合計に対し上記重合単位 ( 2 )が 0.4 ~ 1.5モル%を占めそして上記重合単位( 3 )が上記重合単 位( 1 )に基づいて 5重量%以下を占め、  (AO (a ') a polymerized unit of the above formula (1), a polymerized unit of the above formula (2) and a polymerized unit different from the polymerized unit of the above formula (2) derived from a monomer copolymerizable with acrylonitrile (B) The polymerized unit (2) occupies 0.4 to 1.5 mol% based on the total of the polymerized unit (1) and the polymerized unit (2). (3) accounts for 5% by weight or less based on the polymerization unit (1),
(c) 重合度が 600〜1 ,500の範囲にある、  (c) the degree of polymerization is in the range of 600 to 1,500,
アクリロニトリル系共重合体からなり、 Consisting of acrylonitrile copolymer,
(B) 引張強度が 2~5gZdの範囲にあり、 そして  (B) the tensile strength is in the range of 2-5 gZd, and
(C) 昇温下で測定した温度と伸び率との関係において、 2 60。Cに おける伸び率が 1 0%以下である、  (C) 260 in relation to temperature and elongation measured at elevated temperature. The elongation in C is 10% or less,
ことを特徵とするァクリル繊維が提供される。 An acryl fiber is provided.
本癸明のこのアクリル繊維は、 上記のとおり、 要件(Aつ、 (B)およ び(C)によって特定される。 要件(B)および(C)については、 既に前述 した記載から理解されよう。  As described above, the acrylic fiber of the present invention is specified by the requirements (A, (B) and (C). The requirements (B) and (C) are understood from the above description. Like.
要件(Α')に関し、 重合単位(1 )と重合単位(2)の割合はこれら両重 合単位の合計に対して重合単位(2 )が 0.4〜 1.5モル% (同基準に対 し重合単位( 1 )が 99.6 ~ 98.5モル%)である点についても既述の 本発明のァクリル繊維と同様である。  Regarding requirement (要件 '), the ratio of the polymerized unit (1) and the polymerized unit (2) is 0.4 to 1.5 mol% based on the total of these both polymerized units (polymerized unit based on the same standard). (1) is 99.6 to 98.5 mol%), which is the same as the acryl fiber of the present invention described above.
要件(Α')に関し、 重合単位(1 )および(2)の他に、 アタリロニトリ ルと共重合可能な単量体に由来する重合単位(2)とは相違する他の重合 単位(3)が、 重合単位(1 )に基づいて、 5重量%以下で存在する。 重合 単位(3 )は好ましくは同基準に基づいて、 3重量%以下で存在する。 重合単位(3)と しては、 好ましくは、 例えば下記式(3) Regarding requirement (Α '), in addition to the polymerized units (1) and (2), other polymerized units (3) different from the polymerized units (2) derived from monomers copolymerizable with atarilonitrile It is present in less than 5% by weight, based on polymerized units (1). polymerization Unit (3) is preferably present at 3% by weight or less, based on the same criteria. As the polymerized unit (3), preferably, for example, the following formula (3)
R R
- CH2-C)- . . . . (3 ) -CH 2 -C)-.... (3)
Y ここで、 Rは水素原子又はメチル基であり、 そして Yは式一 C O 0 X(ここで Xは水素原子、 ナ ト リウム又はメチル基である)で表 わされる基、 — O C O CH3、 — C ONH2、 - C6H5、 一 C H2 S 03N aおよび一 C6H4S 03N aよりなる群から選ばれる基で ある、 Y where R is a hydrogen atom or a methyl group, and Y is a group represented by the formula CO 0 X, where X is a hydrogen atom, a sodium or methyl group, — OCO CH 3 , - C ONH 2, - C 6 H 5, is a group selected from a CH 2 S 0 3 N a and the group consisting of one C 6 H 4 S 0 3 N a,
で表わされる単位を挙げることができる。 上記発明の第 2のァクリル繊維に関し、 ここに記載のないその他の点 については前記本発明の第 1のアタ リル繊維の記載が適用されると理解 されるべきである。 しかして、 本発明の上記アク リル繊維は、 上記(A)又は(Α')で特定 されたアク リ ロニ ト リル系重合体から、 本発明によれば、 下記方法によ つて製造することができる : Can be mentioned. Regarding the second acryl fiber of the present invention, it should be understood that the description of the first acryl fiber of the present invention is applied to the other points not described herein. According to the present invention, the acrylic fiber of the present invention can be produced from the acrylonitrile-based polymer specified in the above (A) or () ') by the following method. it can :
(1 ) 上記(Α)又は(Α')に特定したァク リロニ ト リル系共重合体の 紡糸原液を紡糸口金のオリフィ スから押出して紡糸原液の細流を生成し、 (2) 該細流を凝固させつつ 5〜 1 0倍に延伸して延伸糸を生成し、 (1) extruding the spinning solution of the acrylonitrile-based copolymer specified in (Α) or (Α ') from the orifice of the spinneret to generate a trickle of the spinning solution; (2) It draws 5 to 10 times while solidifying to produce a drawn yarn,
(3) 該延伸糸を加熟して 3〜25 %収縮させ、 そして (3) ripening the drawn yarn to shrink it by 3 to 25%, and
(4) 得られた収縮糸を乾燥工程に付す、 ことを特徴とするァクリル繊維の製造法である。 本発明において用いられるァク リロニ ト リル系重合体は、 ァク リ ロ二 卜 リルと 2 -アク リルアミ ド - 2 -メチルプロパンスルホン酸 (AMP S) 又はその塩とを共重合させる力、 又はアクリ ロニ ト リル、 AMP S およびアタリ ロニ 卜 リルと共重合しうる他の単量体を共重合させること によって、 製造することができる。 (4) A method for producing acryl fibers, wherein the obtained shrink yarn is subjected to a drying step. The acrylonitrile polymer used in the present invention is an acrylonitrile polymer. The ability to copolymerize trityl with 2-acrylamide-2-methylpropanesulfonic acid (AMPS) or a salt thereof, or other monomers capable of copolymerizing with acrylonitrile, AMPS and atalylonitrile. It can be produced by copolymerizing the monomer.
AMP Sの塩と しては例えばナ ト リ ウム塩 (以下 SAMP Sと略記す ることがある) 、 カリウム塩、 V2カルシウム塩あるいはアンモニゥム 塩等を挙げることができる。 As the salt of AMP S can be, for example, (there you to hereinafter abbreviated as SAMP S) na Application Benefits Umushio, potassium salt, V 2 calcium salt or Anmoniumu salts.
また、 ァクリロニトリルと共重合しうる他の単量体と しては例えば下 記式 (3) '  Other monomers copolymerizable with acrylonitrile include, for example, the following formula (3) ′
RR
C H2 = C (3) ' CH 2 = C (3) '
Y ここで、 Rおよび Yの定義は式 (3) におけると同じである、 で表わされる化合物を好ましいものと して挙げることができる。  Y Here, the definition of R and Y is the same as in the formula (3), and a compound represented by the following formula can be mentioned as a preferable example.
式 (3) 'の化合物としては、 例えばアクリル酸、 メタクリル酸、 そ れらのナトリ ウム塩、 それらのメチルエステル、 齚酸ビニル、 アクリル アミ ド、 メタク リルアミ ド、 スチレン、 ァリルスルホン酸ソーダ、 メタ リルスルオン酸ソーダ、 スチレンスルホン酸ソーダ等を挙げることがで きる。 ァクリ ロ二トリルと共重合しうるこれらの他の単量体は一種又は 二種以上使用することができる。  Examples of the compound of the formula (3) ′ include acrylic acid, methacrylic acid, their sodium salts, their methyl esters, vinyl nitrate, acrylamide, methacrylamide, styrene, sodium arylsulfonate, and methallylsulfonate. Sodium acid, sodium styrenesulfonate and the like can be mentioned. One or more of these other monomers copolymerizable with acrylonitrile can be used.
アタ リ ロニ ト リル系重合体の重合方法は水系重合、 乳化重合、 溶液重 合など公知のいずれの方法でもよい。  The polymerization method of the acrylonitrile polymer may be any known method such as aqueous polymerization, emulsion polymerization, and solution polymerization.
本発明方法の工程 (1) で用いられる紡糸原液は、 かく して得られる ァクリロニトリル糸重合体を溶媒に溶解して準備し得ることは当然であ るが、 重合の結果として得られる重合体を含む重合溶液であることもで きる。 後者の場合には、 重合溶液から未反応のモノ マーを回収するのみ で、 湿式紡糸の紡糸原液としうる重合反応系を採用するのが望ましい。 工程 ( 1 ) における紡糸方法は湿式紡糸、 乾湿式紡糸、 乾式紡糸、 半 溶融紡糸など公知のいずれの方法でも良い。 とりわけ湿式紡糸あるいは 乾式紡糸が好ましい。 これらの紡糸方法はそれ自体公知であり、 例えば 湿式紡糸については特公昭 5 7 - 1 6 7 , 4 1 0号公報、 特開眧 5 7 - 1 6 7 , 4 1 1号公報、 特開昭 5 7 - 2 1 0 , 0 1 1号公報、 特開昭 57 - 1 1 24 1 0号公報あるいは特開昭 5 8 - 1 32 1 07号公報に開示さ れた方法が採用される。 それらの詳細は後述する実施例 1 ~ 1 0に記載 されている。 また乾式法については例えば特公眧 4 9 - 1 , 6 6 5号公 報あるいは特開昭 5 9 - 2 1 , 7 1 1号公報に記載された方法並びに乾 湿式法については特開昭 5 1 - 92 3 1 6号公報に記載された方法等が 採用される。 これらの方法についても、 後述する実施例 1 1〜 1 2に詳 細な記述がなされている。 The spinning dope used in step (1) of the method of the present invention is thus obtained It goes without saying that the acrylonitrile yarn polymer can be prepared by dissolving it in a solvent, but it can also be a polymerization solution containing a polymer obtained as a result of polymerization. In the latter case, it is desirable to employ a polymerization reaction system which can be used as a spinning solution for wet spinning only by recovering unreacted monomers from the polymerization solution. The spinning method in the step (1) may be any known method such as wet spinning, dry-wet spinning, dry spinning, and semi-solid spinning. Particularly, wet spinning or dry spinning is preferred. These spinning methods are known per se. For example, for wet spinning, Japanese Patent Publication No. 57-167,410, JP-A-57-167,411, The method disclosed in Japanese Patent Application Laid-Open No. 57-210, 011, Japanese Patent Application Laid-Open No. 57-12410 or Japanese Patent Application Laid-Open No. 58-132107 is adopted. Details thereof are described in Examples 1 to 10 described later. For the dry method, for example, the method described in Japanese Patent Publication No. 499-1,665 or JP-A-59-21,711, and for the dry-wet method, refer to The method described in Japanese Patent Publication No. 1-92 3 16 is adopted. These methods are also described in detail in Examples 11 to 12 described later.
いずれの紡糸方法を採用しても、 紡糸原液は工程 ( 1 ) において、 紡 糸口金から押 ffiされ紡糸原液の細流を形成する。 湿式紡糸においては細 流は凝固液中に押出され、 乾式紡糸では細流は高温気体雰囲気中に狰出 され、 そして乾湿式法では細流は気体雰囲気に押出されたのち凝固液中 に導かれる。  Regardless of which spinning method is adopted, the spinning stock solution is pressed from the spinneret in step (1) to form a fine stream of the spinning stock solution. In wet spinning, the trickle is extruded into the coagulating liquid, in dry spinning the trickle is discharged into a hot gas atmosphere, and in the dry-wetting method the trickle is extruded into a gaseous atmosphere and then guided into the coagulating liquid.
本発明によれば、 工程 (2) において、 細流は上記の如く凝固を受け つつ 5 ~ 1 0倍に延伸される。 延伸は一段で又は多段で行うことができ る。 多段延伸における各段の延伸倍率は全倍率が 5〜 1 0倍となる範囲 で適宜選定される。 好ましい延伸倍率は 6〜8倍である。 延伸倍率が 5 倍未満では、 繊維の引張強度が不足して、 1 0倍を越えると単糸切れを 発生し易くなりまたフ ィ ブリル化し易くなる。 According to the present invention, in step (2), the trickle is stretched 5 to 10 times while undergoing solidification as described above. Stretching can be performed in one step or in multiple steps. The stretching ratio of each stage in multi-stage stretching is in the range where the total ratio is 5 to 10 times Is selected as appropriate. The preferred stretching ratio is 6 to 8 times. If the draw ratio is less than 5 times, the tensile strength of the fiber is insufficient, and if it exceeds 10 times, the single yarn breakage is liable to occur and the fiber is easily fibril.
工程 (2 ) で得られた延伸糸は、 次いで必要により、 洗浄工程 (湿式 および乾湿式紡糸の場合) に付され、 或いはオイ リングをされたのち、 工程 (3 ) の加熱工程に導かれる。  The drawn yarn obtained in the step (2) is then subjected to a washing step (in the case of wet or dry-wet spinning) or oiled, if necessary, and then led to the heating step of the step (3).
工程 (3 ) では延伸糸を加熱して 3 ~ 2 5 %収縮される。 この収縮が 3 %未満では繊維の引張伸度が不足し、 2 5 %を越えると高温乾燥が必 要となり経済的でない。  In step (3), the drawn yarn is heated and contracted by 3 to 25%. If the shrinkage is less than 3%, the tensile elongation of the fiber is insufficient, and if it exceeds 25%, high temperature drying is required, which is not economical.
この収縮は、 工程 ( 1 ) の紡糸が湿式紡糸で行われた場合、 延伸糸を フリンパーに付す前のいわゆる前乾燥工程の前に熱水あるいは湿熱を用 いて実施することができ、 あるいは前乾燥工程において実施することも できる。  This shrinkage can be carried out using hot water or wet heat before the so-called pre-drying step before the drawn yarn is applied to the flimper, if the spinning in step (1) is performed by wet spinning, or It can also be performed in the process.
得られた収縮糸は、 次いで工程 (4 ) において乾燥せしめられる。 収 縮が上記の如く、 いわゆる前乾燥工程においてあるいはその前において 実施された場合には、 この工程 (4 ) は、 必要に応じク リンプを付され た後に実施されるいわゆる後乾燥に相当する。 かく して得られた本発明 のァクリル繊維は必要によりカッターにより所定の長さに切断される。 本発明方法の最大の特徵は、 上記説明から理解されるように、 特定の ァクリロニトリル系重合体を用いそして延伸糸について乾燥に付す前に 5〜2 5 %の加熱収縮を実施することにある。 従来かかる本発明方法の 特徵については知られていない。  The obtained shrink yarn is then dried in step (4). When the shrinkage is performed in or before the so-called pre-drying step as described above, this step (4) corresponds to the so-called post-drying performed after crimping is performed as necessary. The acryl fiber of the present invention thus obtained is cut to a predetermined length by a cutter as necessary. The most significant feature of the method of the present invention is that, as understood from the above description, a specific acrylonitrile-based polymer is used and the drawn yarn is subjected to a heat shrinkage of 5 to 25% before being subjected to drying. Conventionally, the features of the method of the present invention have not been known.
本癸明によれば、 さらに、 本発明のアクリル繊維が優れた耐熱性と髙 温環境下におけるいわゆるへタリが小さい特徵を備えていることに鑑み、 上記本発明のァク リル繊維と芳香族ポリエステル繊維との交編 ·交織物 が提供される。 According to the present invention, furthermore, in view of the fact that the acrylic fiber of the present invention has excellent heat resistance and low so-called settling under a high temperature environment, A cross-knitted / cross-woven fabric of the above-mentioned acrylic fiber and aromatic polyester fiber of the present invention is provided.
本発明のかかる交編 ·交織物は、 通常の芳香族ポリエステル繊維の染 色温度で染色することが出来る。  The cross-knitted / cross-woven fabric of the present invention can be dyed at the dyeing temperature of ordinary aromatic polyester fiber.
本癸明のァクリル繊維と芳香族ポリエステル繊維の交編 ·交織物に用 いられる芳香族ボリエステル繊維は、 特に限定されないが、 好ましくは 例えばェチレンテレフタ レ一卜を主たる繰返し単位とするポリ エチレン テレフタ レー ト、 へキサメチレンテレフタ レー トを主たる繰返し単位と するポリへキサメチレンテレフタ レー ト、 テ トラ メチレンテレフタ レー トを主たる繰返し単位とするポリテ トラメチレンテレフタ レー ト、 1 , 4 -ジメチルシクロへキサンテレフタレー トを主たる繰返し単位とする ポリ 1 , 4—ジメチルシクロへキサンテレフタ レー トおよびピバロラタ トンの開環物を主たる繰返し単位とするポリ ビバロラク トンを挙げるこ とができる。 これらのポリエステルはホモ -又はコーポリエステルであ ることができる。 コーポリエステルと しては例えば主たる繰返し単位が エチレンテレフタ レー トであり、 従たる繰返し単位 (例えば全繰返し単 位の 1 0 %モル以下) がェチレンイ ソフタ レー トであるコ一ポリエステ ルを挙げることができる。 また、 他のコポリエステルの例としては、 ェ チレン 5 -ナ ト リ ウムスルホイ ソフタ レー トを全繰返し単位の 5モル% 以下で含有するポリエチレンテレフタ レー トを挙げることができる。 芳 香族ポリエステル繊維としてはより好ましくは、 例えばエチレンテレフ タレー トを主たる繰返し単位とするェチレンテレフタ レー トのホモ -又 はコーポリエステルを挙げることができる。 また同種あるいは異種の芳 香族ポリエステル繊維とのコンジユゲー ト繊維、 あるいは例えばボリァ ミ ド蛾維などの他素材とのコンジュゲート蛾維であっても良い。 ポリエ ステル繊維はフィ ラ メ ン トおよびステーブルのいずれでもよい。 The aromatic polyester fiber used in the knitting / cross-woven fabric of the acryl fiber of the present invention and the aromatic polyester fiber is not particularly limited, but is preferably, for example, a polyethylene terephthalate whose main repeating unit is ethylene terephthalate. Polyhexamethylene terephthalate having hexamethylene terephthalate as the main repeating unit, polytetramethylene terephthalate having tetramethylene terephthalate as the main repeating unit, 1,4-dimethylcyclohexane Poly 1,4-dimethylcyclohexane terephthalate having hexane terephthalate as a main repeating unit and polybivalolactone having a ring-opened product of pivalolatatone as a main repeating unit can be given. These polyesters can be homo- or copolyesters. Examples of the copolyester include a copolymer in which the main repeating unit is ethylene terephthalate and the subordinate repeating unit (for example, 10% mol or less of all repeating units) is ethylenisophthalate. Can be. Examples of other copolyesters include polyethylene terephthalate containing 5% by mole or less of ethylene 5-sodium sulfisophthalate in all repeating units. More preferably, the aromatic polyester fiber is, for example, a homo- or copolyester of ethylene terephthalate having ethylene terephthalate as a main repeating unit. Conjugated fibers with the same or different aromatic polyester fibers or, for example, polyethylene It may be a conjugate moth with other materials such as mid moth. The polyester fiber may be either filament or stable.
本発明の交編物の钽織はダブルニッ トおよびシングルニッ トのいずれ でもよく特に制限されないが、 例えば添糸編、 裏毛編、 スムース編、 天 竺編の如きダブルニッ トを好ましいものとして挙げられる。 また交織物 の組織もまた特に制限されないが好ましくは例えば平織、 綾織、 二重織 が挙げられる。  The weaving of the knitted fabric of the present invention may be either double knit or single knit, and is not particularly limited. For example, double knits such as thread knitting, fleece knitting, smooth knitting, and knitting are preferred. The structure of the cross-woven fabric is also not particularly limited, but preferably includes plain weave, twill weave, and double weave.
本発明のァクリル蛾維と芳香族ポリエステル繊維の交編 ·交織物の染 色は、 例えば芳香族ポリエステル繊維がエチレンテレフタ レー トを主た る繰返し単位とするェチレンテレフタ レートのホモポリマ一である場合 には、 通常の 1 2 0〜 1 3 0。Cの髙温条件下で例えば分散染料とカチォ ン染料 (ァクリル蛾維用) を用いて 1浴染色で行うことが出来る。  The dyeing of the cross-knitted / cross-woven fabric of the acryl moth fiber and the aromatic polyester fiber of the present invention is performed, for example, when the aromatic polyester fiber is a homopolymer of ethylene terephthalate having ethylene terephthalate as a main repeating unit. The usual 120-130. The dyeing can be carried out in a single bath using, for example, a disperse dye and a cation dye (for Acryl moth fiber) under the temperature condition of C.
また、 本発明によれば、 上記本発明のアクリル繊維を含有することを 特徵とする電気カーぺッ ト用表面材ぉよび電気毛布用生地が提供される c 本癸明の電気力一^ ^ッ ト用表面材は、 上記新規な優れた性能を備えた ァクリル繊維が含有される点で特徵的である。 かかるァクリル蛾維は、 表面材に、 好ましくは少くとも 1 0重量%、 より好ましくは少くとも 3 0重量%使用される。 Further, according to the present invention, the electric power of the c the MizunotoAkira electric carpets for surfacing Oyobi electric blankets dough is provided to Toku徵by containing acrylic fibers of the present invention one ^ ^ The surface material for cutting is special in that it contains the acryl fibers having the novel excellent performance described above. Such acrylyl moths are preferably used in the facing, at least 10% by weight, more preferably at least 30% by weight.
アタリル繊維を少くとも 1 0重量%含有する表面材にあっては、 ァク リル鏃維の持つ鮮明な発色性と暖か味のある風合を生かすことができる ので有利である。 アクリル繊維と混用する蛾維としては、 例えば羊毛、 ポリ エステル、 ナイロンなど耐熱性の良好な繊維を挙げることができる , 本発明によれば、 本発明の上記表面材を最表面又は外表面に用いた電 化力一^ ^ッ トが同様に提供される。 表面材の構造は、 例えばニー ドルパンチなどによる不織布、 タフティ ングなどによるパイル織物の如き織物あるいは場合により編物など公知 の如何なるものでも良い。 Surface materials containing at least 10% by weight of ataryl fibers are advantageous because they can make use of the sharp color development and warm taste of acrylic arrowheads. Examples of moth fibers mixed with acrylic fibers include, for example, fibers having good heat resistance such as wool, polyester and nylon. According to the present invention, the surface material of the present invention is used for the outermost surface or outer surface. Electrification power was provided as well. The structure of the surface material may be any known material such as a nonwoven fabric by needle punching or the like, a pile fabric by tufting or the like, or a knitted fabric in some cases.
本発明の電気力一ぺッ トはヒータ一一体形であっても良いし、 またヒ ータ一本体とカバ一カーぺッ トのセパレ一ト形であっても良い。  The electric power unit of the present invention may be of a heater-integrated type, or may be of a separate type of a heater body and a cover cartridge.
本発明の電気毛布用生布は、 上記新規な優れた性能を備えたァク リル 繊維が含有される点で特徵的である。 かかるアクリル繊維は、 生布に、 好ましくは少く とも 5 0重量%、 より好ましくは少く とも 7 0重量%使 用される。  The raw fabric for electric blanket of the present invention is special in that it contains the above-mentioned acrylic fiber having the novel excellent performance. Such acrylic fibers are preferably used in raw fabrics at least 50% by weight, more preferably at least 70% by weight.
アク リル蛾維を少く とも 5 0重量%含有する生布にあっては、 ァクリ ル繊維の持つ鮮明な発色性と柔軟な風合を生かすことができるので有利 である。 アクリル繊維と混用する繊維と しては、 例えばポリ エステル、 羊毛、 ナイ ロン、 他のアク リル繊維などを挙げることができる。  A cloth containing at least 50% by weight of Acryl moth fiber is advantageous because it can make use of the vivid coloration and soft texture of acryl fibers. Examples of the fiber to be mixed with the acrylic fiber include polyester, wool, nylon, and other acrylic fibers.
本発明によれば、 本発明の上記生布を用いた電気毛布が同様に提供さ れる。  According to the present invention, there is also provided an electric blanket using the above-described raw cloth of the present invention.
生布の構造は、 例えば起毛布、 不織布など公知の如何なるものでも良 い  The structure of the raw cloth may be any known one such as a brushed cloth or a non-woven cloth.
さらに、 本発明によれば、 上記本発明の新規なアク リル蛾維本来の耐 候性を生かし、 耐ク リープ性、 耐光堅牢度に優れた従来にない防水布の 基布を提供することができる。  Further, according to the present invention, it is possible to provide an unprecedented waterproof fabric base fabric which is excellent in creep resistance and light fastness by utilizing the original weather resistance of the novel Acryl moth fiber of the present invention. it can.
本発明の防水布の基布は、 上記の如きァクリル織維の布帛からなる。 布帛には通常の織物、 編物、 不織布等のシー ト状構造物が包含される。 これらのシー ト状構造物はそれ自体公知の方法によって製造することが できる。 シート状構造物の防水加工は、 それ自体公知の方法に従って、 それ自 体公知の防水加工剤を使用して実施される。 The base fabric of the waterproof fabric of the present invention is made of the above-mentioned acryl fabric. The fabric includes ordinary sheet-like structures such as woven fabric, knitted fabric, and non-woven fabric. These sheet-like structures can be produced by a method known per se. The waterproofing of the sheet-like structure is carried out according to a method known per se, using a waterproofing agent known per se.
防水加工剤としては、 通気性のある防水布の場合には、 例えばフッ素 樹脂、 シリ コーン系樹脂等が好ましく、 また通気性のない防水布の場合 には、 例えばアクリル系樹脂、 塩化ビニル系樹脂等が好ましく用いられ 実 施 例  As the waterproofing agent, in the case of a breathable waterproof cloth, for example, a fluorine resin or a silicone resin is preferable. In the case of a non-permeable waterproof cloth, for example, an acrylic resin or a vinyl chloride resin Etc. are preferably used.
以下、 実施例にて本発明を詳述する。 なお特にことわらない限り、 部 および%は重量部および重量%である。 本発明および下記実施例におけ る種々の物性値の分析法一測定法あるいは定義は、 下記のとおりである。  Hereinafter, the present invention will be described in detail with reference to examples. Parts and% are parts by weight and% by weight unless otherwise specified. The analytical methods for various physical properties in the present invention and the following examples are described below.
[重合体組成]  [Polymer composition]
1 ) 重合単位式 (3) が一 S 03N aを有しない場合は以下の方法に よった。 1) a polymerization unit formula (3) may not have an S 0 3 N a was by the following method.
i ) 下記式 (2) i C H2C H i) The following formula (2) i CH 2 CH
CO C H3 CO CH 3
N H— C一 C H2- S O 3M NH— C-CH 2 -SO 3 M
C H3 CH 3
M;水素原子又は一当量のカチオン の重合体に占める割合な [重量%] は以下の測定、 計算により求めた。 まず重合体 A [ g ] (約 1 g) を精秤し、 ジメチルホルムアミ ド (J I S特級) に溶解した。 次に強酸型カチオン交換樹脂 {5 0〜 1 0 0メッ シュ、 3 (g) } と、 1時間混合撹拌した後ガラスフィルターを用い上 記樹脂を口別した。 さらに上記口液を電位差滴定装置 (平沼産業 C O M - 1 0 1型) で1/ 50Nの N a OHを用いて滴定した。 また同一条件で 空試験を行なって補正をした。 M: [% by weight], which is a ratio of a hydrogen atom or one equivalent of a cation to the polymer, was determined by the following measurement and calculation. First, polymer A [g] (about 1 g) was precisely weighed and dissolved in dimethylformamide (JIS special grade). Next, the mixture was mixed with a strong acid-type cation exchange resin {50-100 mesh, 3 (g)} for 1 hour and then stirred using a glass filter. The resin was identified. Further the port fluid potentiometric titrator - was titrated with N a OH of 1/50 N in (Hiranuma Sangyo COM 1 0 1 type). A blank test was performed under the same conditions to make corrections.
C C
H (V5。)xf iX(B 1-C 1) [ml] xD1x l 0-3 H (V 5.) Xf iX (B 1 -C 1) [ml] xD 1 xl 0-3
[重量%]= 2 X 100  [% By weight] = 2 x 100
A ,  A,
Y R c I I 但し ;重合体量 [g] 、  Y R c I I where; polymer amount [g],
B X V5oN N a OH試料滴定量 [ml] C i; soN N a O H空試験滴定量 [ml] D!:重合単位式 (2) の分子量 f !; VsoNの N a 0 H.の力価 ii ) 下記式 (3) BXV 5 oN NaOH sample titer [ml] Ci; soN NaOH blank test titer [ml] D !: Molecular weight of polymerization unit formula (2) f! The titer of NasoH. Of VsoN ii) The following formula (3)
R ;水素原子又はメチル基 Y;ー C OOX、 一 O COCH3R: hydrogen atom or methyl group Y; C OOX, OCOCH 3 ,
― C 0 N H2、 — C 6H5 X ;水素原子、 ナ ト リ ウム、 又はメチル基 の重合体に占める割合 i [重量%] は以下の測定、 計算により求めた。 まず重合体 0.5 gをジメチルスルホキシ ド ( J I S特級) に溶解し、 50 gZ 1の溶液を作った。 C a F2製の液体セルを使用し、 対照とし てジメチルスルホキシ ドを用いて赤外分光光度計 (島津製作所 I R - 4 3 0型) で 2, 5 0 0~ l , 8 5 0 c m-1および 1 , 8 5 0〜 1 , 5 0 0 c m-1の領域の赤外スぺク トルを記録した。 ベースライン補正をして求 めた重合体単位式 (3) の吸光度 (Yが一 C 0—を有する場合は 1 , 5 0 0〜 1, 8 0 0 c m— 1の C = 0伸縮振動吸収帯、 一 C 6H5を有する場 合は 1 , 5 0 0〜 1 , 7 0 0 c m—1の- C一 H面外変角振動吸収帯を用い る) と重合単位式 ( 1 ) の 2 , 2 4 0 c π^1吸収帯の吸光度との比率を、 予め重合単位式 ( 1 ) 、 (3) の単一重合体を各種の割合に混合して、 上記方法により求めておいた吸光度比率の検量線より求めた。 —C 0 NH 2 , —C 6 H 5 X; The ratio of the hydrogen atom, sodium, or methyl group in the polymer i [% by weight] was determined by the following measurement and calculation. First, 0.5 g of the polymer was dissolved in dimethyl sulfoxide (JIS special grade) to prepare a 50 g Z1 solution. Infrared spectrophotometer (Shimadzu IR-4) using a liquid cell made of C a F 2 and dimethyl sulfoxide as a control. The 2, 5 0 0 ~ l, 8 5 0 c m-1 and 1, 8 5 0-1, 5 0 0 infrared scan Bae-vector of c m-1 region were recorded at 3 0 type). Absorbance of polymer unit formula (3) obtained by baseline correction (If Y has one C0-, 1,500--1,800cm- 1 C = 0 stretching vibration absorption band, the case having an C 6 H 5 1, 5 0 0~ 1, 7 0 0 cm- 1 of - C Ru using an H-plane outside deformation vibration absorption band) and the polymerization unit formula (1) The ratio of the absorbance of the 2,240 c π ^ 1 absorption band to the absorbance determined by the above method was determined by mixing the polymer units (1) and (3) in various proportions in advance. The ratio was determined from a calibration curve.
Hi) 重合単位式 ( 1 ) の重合単位に占める割合 [重量%] は ァ t - 1 0 0— (な となり、 これらを用いて重合体組成 [モル 比率] を次式により計算した。  Hi) The ratio [% by weight] of the polymerization unit formula (1) to the polymerization unit [% by weight] is at-100-(wherein, using these, the polymer composition [molar ratio] was calculated by the following formula.
r β α χ'= (Κχ7 χ/5 3.0 6 ) / Κ ,β ,/ / r β α χ '= (Κ χ 7 χ / 5 3.0 6) / Κ, β, / /
Κ ι α x/D Κ ι α x / D
但しァ /およびァ,;重合体に占める重合単位式 ( 1 ) の割合 [モル%] および [重量%] However, a / and a, the ratio of the polymerized unit formula (1) in the polymer [mol%] and [wt%]
β ^および !;重合体に占める割合単位式 (3) の割合 [モル%] および [重量%]  β ^ and! The ratio of the unit formula (3) in the polymer [mol%] and [wt%]
" および" ;重合体に占める重合単位式 (2) の割合 [モル%] および [重量%]  "And"; ratio of polymerized unit formula (2) in polymer [mol%] and [wt%]
Ex;重合単位式 (3) の分子量  Ex: Molecular weight of polymerization unit formula (3)
Ώ 1 ;重合単位式 (2) の分子量 Ώ 1 : molecular weight of polymerization unit formula (2)
Κι ; \/ { (7 l/5 3.0 6) + C^ 1/E 1) + (a 1/D1) } - 2) 重合単位式 (3) の Yが一 C H2S 03N aあるいは Κ ι; \ / {(7 l / 53.0 6) + C ^ 1 / E 1 ) + (a 1 / D 1 )}-2) Y in the polymerization unit formula (3) is one CH 2 S 0 3 N a or
— C 6H5S 03N aである場合は、 以下の方法によった。 i ) 重合単位式 (2) の重合体に占める割合 a 2 [重量%] は以下 の測定、 計算によって求めた。 — For C 6 H 5 S 0 3 Na, the following method was used. i) The ratio a 2 [% by weight] of the polymer represented by the polymerization unit formula (2) to the polymer was determined by the following measurement and calculation.
1 ) の ii) の方法によって測定、 計算を行なった。 但し重合単位式 (2) の吸光度は 1 , 6 6 6 c m—1吸収帯を用い検量線作成には重合単 位式 (3) の代りに重合単位式 (2). の単一重合体を用いた。 The measurement and calculation were performed by the method of 1) and ii). However, the absorbance of the polymerization unit formula (2) is 1,666 cm- 1. Using an absorption band, a single polymer of the polymerization unit formula (2) is used instead of the polymerization unit formula (3) to create a calibration curve. Was.
ii) 重合単位式 (3) の重合体に占める割合 S2 [重量%] は以下 の測定、 計算によって求めた。 ii) The ratio S 2 [% by weight] of the polymer represented by the polymerization unit formula (3) to the polymer was determined by the following measurement and calculation.
1 ) の i ) の方法によって測定、 計算を行なった。  The measurement and calculation were performed by the method of i) in 1).
β 2 [重量%] = [{(V5o)x f 2X(B 2 - C 2)[ml]xE 2 1 0一 3}ZA2]X beta 2 [wt%] = [{(V 5 o) xf 2 X (B 2 - C 2) [ml] xE 2 1 0 one 3} ZA 2] X
1 0 0  1 0 0
但し A2;重合体量 [g] 、 However, A 2 ; polymer amount [g],
B2 ; V50N N a O H試料滴定量 [m 1 ] B 2 ; V 50 NN a OH Sample titer [m 1]
C2 ; VsoN N a OH空試験適定量 [ml] C 2 ; VsoN NaOH blank test appropriate amount [ml]
E2;重合単位式 (3 ) の分子量 E 2 : molecular weight of polymerization unit formula (3)
f 2; VSQNの N a 0 Hの力価  f 2; titre of NaOH of VSQN
iii) 1 ) の iii) の方法により重合体組成 [モル比率] を計算しだ。 Ύ ζ'/ β 2'/ a 2'= (Κ 272/ 5 3.0 6) / (K2/52/E2) / iii) The polymer composition [molar ratio] was calculated by the method of 1) iii). Ύ ζ '/ β 2' / a 2 '= (Κ 2 7 2/5 3.0 6) / (K 2/5 2 / E 2) /
(K22/D2) (K 2 2 / D 2 )
但しァ およびァ 2 ;重合体に占める重合単位式 ( 1 ) の割合 [モル%] および [重量%] However § and § 2; the ratio of the polymerized unit formula occupying the polymer (1) [mol%] and [wt%]
β お^び β 2 ;重合体に占める重合単位式 (3) の割合 [モル%] および [重量%] β and β 2 ; ratio of polymerized unit formula (3) in polymer [mol%] and [wt%]
2'および " 2;重合体に占める重合単位式 (2) の割合 [モル%] および [重量%] E 2;重合単位式 (3 ) の分子量 2 'and "2; ratio of polymerized unit formula (2) in polymer [mol%] and [wt%] E 2 : molecular weight of polymerization unit formula (3)
D2;重合単位式 (2 ) の分子量 D 2 : molecular weight of polymerization unit formula (2)
K2 ; 1 {(ァ 2 5 3 .0 6 )+C 32 E 2)+(ff 2/D2)} K 2 ; 1 {(α 2 5 3 .0 6) + C 3 2 E 2 ) + ( ff 2 / D 2 )}
[重合度]  [Degree of polymerization]
まず重合体約 0 , 2 gをジメチルホルムァミ ド ( J I S特級) 約 5 0 mlに溶解して C ' [ g/1] の溶液を作った。 3 0。Cに保った恒温槽中 でォス トヮルド型粘度計を用いて、 上記溶液の落下秒数 Aとジメチルホ ルムアルデヒ ドの落下秒数 Bを測定した。  First, about 0.2 g of the polymer was dissolved in about 50 ml of dimethylformamide (special grade of JIS) to prepare a solution of C ′ [g / 1]. 30. The falling seconds A of the above solution and the falling seconds B of dimethylformaldehyde were measured using a Ostold viscometer in a thermostat kept at C.
重合度 Pは以下の計算によって求めた。  The polymerization degree P was determined by the following calculation.
相対粘度 7 rel= AZB Relative viscosity 7 rel = AZB
比 粘 度 V sp= V rel- 1 Specific viscosity V sp = V rel- 1
粘度平均分子量 = ( ^sp/C) / 1 .5 X 1 0 "4 Viscosity average molecular weight = (^ sp / C) /1.5 X 10 " 4
P =M v / P = M v /
但し、 平均重合単位分子量 S= ( 5 3 .0 6 Χ7+ΕΧ^+ϋΧα) / I 0 0 C [モル Zl] = C Vm However, average polymerization unit molecular weight S = (53.0.06Χ7 + ΕΧ ^ + ϋΧα) / I 0 0 C [mol Zl] = C Vm
ここに y ;重合体に占める重合単位式 ( 1 ) の割合 [モル%] Where y is the ratio of the polymerization unit formula (1) in the polymer [mol%]
β ;重合体に占める重合単位式 (3 ) の割合 [モル%]  β: Ratio of polymerization unit formula (3) in polymer [mol%]
;重合体に占める重合体単位式 (2 ) の割合 [モル%] E ;重合単位式 (3) の分子量  ; Ratio of polymer unit formula (2) in polymer [mol%] E; Molecular weight of polymer unit formula (3)
D ;重合単位式 (2 ) の分子量  D: molecular weight of polymerization unit formula (2)
[昇温下で測定した温度と伸び率の関係]  [Relationship between temperature measured at elevated temperature and elongation]
使用した装置を第 2図に示した。 トータル約 3 0 dの繊維で長さ 8 0 mZmのループ (2つ折りで 4 0 mm、 2 ) を作り、 これを上下大気開 放された加熟筒 1内にクリップ 3を使用して保持し、 針金 ^使用して加 熱筒の下に荷重 2 5 m g/d (約 l , 5 0 0 m g、 4) を掛けた。 次に 3 0 °C付近より平均 4 0 °Cノ分で昇温し、 荷重位置をカメラ 5で追跡し 温度と共に記録した。 第 1図には、 この方法で測定した関係を、 いくつ かのアクリル繊維について示した。 伸び率 [%] は (荷重の変位 [mノ m] /4 0 [m/m] ) X 1 0 0により計算した。 The equipment used is shown in FIG. A loop of 80 mZm in length (40 mm, 2 in two folds) is made of a total of about 30 d of fiber, and this is held using a clip 3 in a ripening cylinder 1 that is open to the upper and lower atmosphere. , Wire ^ A load of 25 mg / d (approx. L, 500 mg, 4) was applied under the hot cylinder. Next, the temperature was raised from around 30 ° C by an average of 40 ° C, and the load position was tracked by the camera 5 and recorded together with the temperature. Figure 1 shows the relationship measured by this method for several acrylic fibers. The elongation percentage [%] was calculated by (load displacement [m no m] / 40 [m / m]) X 100.
[弛緩収縮率]  [Relaxation shrinkage]
トータル約 9 0 0 0 dの繊維で約 6 0 0 mZmの繊維束を作り室温で 0.1 g/d (約 9 0 0 g) の荷重を掛けて 5 0 0 m/m間隔にマーク を付けた。 荷重をはずした上記繊維束を乾燥の場合 2 1 0°Cで 3 0分、 湿熱の場合 1 3 0°Cで 1 0分間張力を掛けることなく処理した。 室温冷 却した上記繊維束に再び 9 0 0 gの荷重を掛けてマーク間隔 A [m/m] を測定した。  A fiber bundle of about 600 mZm was made from a total of about 900 d fibers, and a load of 0.1 g / d (about 900 g) was applied at room temperature to mark at 500 m / m intervals. . The unloaded fiber bundle was treated without applying tension at 210 ° C. for 30 minutes when dry, and at 130 ° C. for 10 minutes when wet heat. The fiber bundle cooled at room temperature was again subjected to a load of 900 g, and the mark interval A [m / m] was measured.
弛緩収縮率 [o ] は { (50 0 -A) /50 0} X 1 0 0によ り計算し た。 The relaxation contraction rate [o] was calculated from {(50 0 -A) / 500} × 100.
[耐熱染色堅牢度]  [Fastness to heat dyeing]
1 ) アタリル繊維  1) Ataryl fiber
3 0〜 1 5 0 m/mに力ッ トした繊維を約 6 0 °Cの温水、 浴比 1 : 2 0 0で 3回脱脂した。 酢酸—酢酸ソーダで約 4.5に PH調整した染料溶液 (染料銘柄、 owfを第 1表に示した) 、 浴比 1 : 1 0 0に約 6 0°Cで上 記繊維を投入し、 8 5 °C昇温 (約 2 5分) 一 8 5 °C維持 (約 1 0分) 一 9 8。c昇温 (約 1 5分) — 9 8°C維持 (約 1 0分) で処理した。  The fiber reinforced to 30 to 150 m / m was degreased three times with hot water at a temperature of about 60 ° C and a bath ratio of 1: 200. Acetonitrile-sodium acetate adjusted the pH of the dye solution to about 4.5 (the dye brand, owf is shown in Table 1), and put the above fiber at a bath ratio of 1: 100 at about 60 ° C. ° C temperature rise (approximately 25 minutes) 1 85 ° C maintenance (approximately 10 minutes) 1 98. c Temperature rise (approx. 15 minutes)-Treatment was performed at 98 ° C (approximately 10 minutes).
次に上記繊維を、 約 4 0 °Cに冷却した後、 常温水、 浴比 1 : 2 0 0で 3回水洗した後、 遠心脱水〜オイ リ ング (約 4 0 °C、 浴比 1 : 2 0 0、 上記蛾維の製造工程油剤) 〜脱水 (前記油剤 owf 0.3 %) 〜乾燥約 8 0 °c 3時間した。 室温冷却後ハンドカード開織した蛾維を乾熱 1 2 0。c X 4 8時間処理した。 室温冷却後、 変退色用カラースケールを補助と し て変退色用グレースケール ( J I S L 0 8 0 4) により変退色を判定 し、 最も良いものと最も悪いものの範囲で示した。 Next, the above fibers are cooled to about 40 ° C, washed three times with normal temperature water and a bath ratio of 1: 200, and then centrifugally dehydrated to oiling (about 40 ° C, bath ratio of 1: 1). 200, the above moist fiber production process oil) ~ dehydration (the above oil owf 0.3%) ~ dry about 80 ° c for 3 hours. After cooling to room temperature, the moth fibers opened with the hand card were dried and heated 120. cX48 treatment for 8 hours. After cooling at room temperature, the discoloration was evaluated by the gray scale for discoloration (JISL0804) with the aid of the color scale for discoloration and fading, and indicated in the range of the best and worst.
第 1 表  Table 1
Figure imgf000028_0001
Figure imgf000028_0001
2)電気毛布用生布  2) Raw blanket for electric blanket
20 cm角に切取った生布を乾熟 i 20 °CX 48時間処理した。 次いで 室温冷却後、 変退色用カラースケールを補助として、 変退色グレースケ ール ( J I S L 0 80 4 ) により、 変退色を判定した。  The fresh cloth cut into a 20 cm square was dried and treated at i 20 ° C for 48 hours. Then, after cooling at room temperature, the discoloration was evaluated by the discoloration gray scale (JISL0804) with the aid of the discoloration color scale.
3) 電気カーぺッ 卜用表面材  3) Surface material for electric car
2 0 cm角に切取った力一^ ^ッ トを乾熱 1 2 0 °CX 4 8時間処理した。 次いで室温冷却後、 変退色カラースケールを補助として、 変退色グレー スケール (J I S L 0 8 0 4) により、 変退色を判定した。  A force cut into a square of 20 cm was treated with dry heat at 120 ° C. for 48 hours. Then, after cooling at room temperature, the discoloration was evaluated by the discoloration gray scale (JISL0804) with the aid of the discoloration color scale.
[引張, 強伸度, ヤング率]  [Tension, strong elongation, Young's modulus]
J I S L 1 0 1 5に基づき定速伸張形試験機 (東洋ポールドウイ ン UTM— II型) を用いて測定した。  The measurement was performed using a constant-speed extension-type testing machine (Toyo Poldwin UTM-II) based on JIS L1015.
[透明性]  [transparency]
繊維をハンドカードで引きそろえ、 長さ 3 0m/mに切断し、 これ 0.0 4 測り 2 Om/m角ガラスセルにァニソールと共に入れた。 波長 5 6 2 nmでの光の透過率を分光光度計 (日立製作所 U— 1 0 0 0 ) で測定 し、 ァニソールを透過率 1 0 0 %として比較した。 Draw the fibers together with a hand card and cut to a length of 30m / m. 0.04 weighing A 2 Om / m square glass cell was placed together with anisol. The transmittance of light at a wavelength of 562 nm was measured with a spectrophotometer (U-1000, Hitachi, Ltd.), and the transmittance was compared with that of anisol 100%.
[染色性]  [Dyeability]
トウ状の繊維約 1 .5 kgを高温高圧染色機 (日阪製作所 HU H F 2 1 2 / 5 5 0型) を使用して以下の条件で染色し乾熱 9 5°Cで 1時間以上 乾燥した後染色状態を目視評価した。  Approximately 1.5 kg of tow-like fiber is dyed under the following conditions using a high-temperature and high-pressure dyeing machine (Hisaka HU HF212 / 550 type) and dried at 95 ° C for 1 hour or more. After that, the stained state was visually evaluated.
ィ) 染料 Aizer Cathilon Red T-BLH 0.015%owf  A) Dye Aizer Cathilon Red T-BLH 0.015% owf
" Blue T-BLH 0.03%owf  "Blue T-BLH 0.03% owf
" Yellow T-BLH 0-15¾owf  "Yellow T-BLH 0-15¾owf
酢酸 1.0¾ owf  Acetic acid 1.0¾ owf
口) 温度  Mouth) temperature
6 0 °C昇温 (約 2 5分) 一 9 8 °C昇温 (約 4 0分) 一 9 8。C維持 (約 1 0分) — 7 5 °C冷却(約 2 5分) 一 3 0 °C冷却 (約 1 0分)  60 ° C temperature rise (about 25 minutes) 198 ° C temperature rise (about 40 minutes) 198. Maintain C (approximately 10 minutes) — Cool at 75 ° C (approximately 25 minutes)
[延伸性]  [Extensibility]
延伸浴中での単蛾維切断〜引き取りローラへの巻き付き程度を目視評 価した。  The degree of wrapping around a single moth fiber in the stretching bath to the take-up roller was visually evaluated.
[紡績性]  [Spinnability]
ァクリル繊維を 5 1 m/m定長カッ トして、 梳綿〜練条〜精紡の工程に 付した。 各々の工程でのフライ発生状況を目視評価した。  The acryl fiber was cut to a fixed length of 51 m / m and subjected to the steps of carding, drawing and spinning. The occurrence of frying in each step was visually evaluated.
[乾燥持込み水分率]  [Dry moisture content]
延伸浴上りの繊維を約 1 0 取り、 遠心機 (国産遠心機 H - 1 0 0 B C型) で 3 , 0 0 0 rPmX 2分脱液し、 直ちに重量 X [^を測った。 Fibers about 1 0-up of the stretching bath up centrifuge - and 3, 0 0 0 r P mX 2 minutes deliquoring in (domestic centrifuge H 1 0 0 BC-type) and immediately weighed X [^.
次に上記繊維を約 6 0 °Cの温水で 2時間洗浄した後乾熱 9 5 °0で 1時 間以上乾燥し、 室温冷却した後重量 x 0 [^を測った。 Next, the above fibers are washed with warm water of about 60 ° C for 2 hours, and then dried at 95 ° C for 1 hour. After drying for more than an hour and cooling to room temperature, the weight x 0 [^ was measured.
次式により乾燥持込み水分率 [%〗 を求めた。 X — X  The dry carry-in moisture ratio [%〗] was determined by the following equation. X — X
X 1 0 0  X 1 0 0
X 0  X 0
[結晶化度測定方法]  [Crystallinity measurement method]
第 3図に示した溝つき支持台にクリンプを伸ばした蛾維 7 5mgX7 5 m/m 長の両端を固定した。 X線測定装置 (理学電機ガイガーフレックス 2027型) を用いてまず試料回転法により 2 <? = 5〜4 0。の平均干 渉強度曲線を得てこれを空気散乱し補正した。 (この面積を Tとする) 次に結晶性干渉の影響が最も少ない 2 Θにおいて各方位角?5の干渉強度 のうち最低強度を非晶性干渉強度曲線として、 これを空気散乱補正した。  Both ends of the crimped moth fiber 75mgX75m / m length were fixed to the grooved support shown in Fig.3. First, using an X-ray measuring device (Rigaku Denki Geigerflex 2027 type), 2 <? = 5 to 40 by the sample rotation method. The average interference intensity curve was obtained, and this was corrected by air scattering. (This area is defined as T.) Next, each azimuth angle at 2 ° where the influence of crystalline interference is least? The lowest intensity among the five interference intensities was defined as an amorphous interference intensity curve, and this was corrected for air scattering.
(この面積を Αとする) 結晶化度 [%] は次式によって計算した。 { (T - A) /Ύ} X 1 0 0 なお X線源は 4 O Kv, 2 0 mAで Cu対陰極、 N iフィルタ一を用いてフ ィルターした。  The crystallinity [%] was calculated by the following equation. {(T−A) / Ύ} X 100 The X-ray source was filtered at 4 O Kv, 20 mA using a Cu counter cathode and a Ni filter.
[耐光堅牢度]  [Light fastness]
5 1 mZm定長カッ トしたァクリル繊維を 2" (2ィンチ) 紡紡績を 行ない、 1 /2 8番手の紡績糸を得た。 3 1 6 Gの丸編機を用い 丸編を得た。  5 A 2 m (2 inch) spinning of acryl fibers cut at a fixed length of 1 mZm was performed to obtain a spun yarn of 1 / 28th. A circular knitting was obtained using a 316 G circular knitting machine.
上記丸編をブルースケールと共にカーボンアークフェードメーター (ブ ラックパネル温度 6 3 °C) で処理した後、 変退色を判定した。 (J I s L 0842)  After the circular knitting was treated with a blue arc and a carbon arc fade meter (black panel temperature: 63 ° C), discoloration and discoloration were judged. (J I s L 0842)
[実施例 1 ] 第 2表に示した種々の組成のモノマー AN/S AM P S x Z y (重 量比) を、 DMFに溶解して、 触媒ァゾビスィ ソプチロニ ト リル (以下 A I B Nと略称する) を用いて、 68。CX 1 7時間重合した後、 エバポ レーターで未反応モノマーを除去して、 重合体溶液を得た。 生成した重 合体の組成、 重合度を第 2表に示した。 [Example 1] Monomers AN / S AM PSxZy of various compositions shown in Table 2 Is dissolved in DMF and the catalyst azobisisobutyronitrile (hereinafter abbreviated as AIBN) is used. After polymerization for 17 hours at CX, unreacted monomers were removed by an evaporator to obtain a polymer solution. Table 2 shows the composition and degree of polymerization of the resulting polymer.
上記重合体溶液を重合体澳度 26.5重量%に調整した紡糸原液を直 径 0.0 6 m/mの円形断面を有する 5万ホールの紡糸口金のォリフ ィ スか ら凝固浴 DM FZ水- 6 0 /40 (重量比) 、 2 0 °Cに押し出し、 紡糸 ドラフ ト 0.4で引き取った後、
Figure imgf000031_0001
- 3 0//70 (重量比) 、 8 5 °Cで 8倍延伸した。
The above-mentioned polymer solution was adjusted to a polymer concentration of 26.5% by weight, and a spinning stock solution was fed from the orifice of a 50,000-hole spinneret having a circular cross section of 0.06 m / m in diameter into a coagulation bath DM FZ water-600. / 40 (weight ratio), extruded at 20 ° C, taken up with spinning draft 0.4,
Figure imgf000031_0001
- 3 0 / / 70 (weight ratio), was stretched 8 times 8 5 ° C.
引き続き、 水洗一前オイル付与した後、 1 5 %収縮を与えながら 1 5 0°Cでローラー乾燥した。 さらに後オイル付与ーク リ ンプ付与—ク リ ン プセッ ト (温熟 1 2 0 °C) —後熟乾を行ない、 3 dのァク リル繊維を得 得られたァク リル蛾維は、 第 2表に示す特性値を有していた。 Subsequently, the oil was applied just before washing with water, followed by roller drying at 150 ° C. while giving 15% shrinkage. Furthermore, after the oil is added, the crimp is applied. The crimp set (warm 120 ° C) is subjected to the post-ripening and drying to obtain the 3d acrylic fiber. It had the characteristic values shown in Table 2.
2 Two
E xp. No. 1 2 3 4 5 組 成 原料 [重量%] 98.9/1.1 97.6/2.4 96.9/3.1 96.3/3.7 93.4/6.6E xp. No. 1 2 3 4 5 Composition Raw material [% by weight] 98.9 / 1.1 97.6 / 2.4 96.9 / 3.1 96.3 / 3.7 93.4 / 6.6
AN/SAHPS 重合体 [モル%] 99.7/0.3 99-3/0.7 99.1/0.9 98.9/1.1 98.0/2.0 重合度 800 770 820 870 790 引張強度 [9/d] (重合時ゲル 3.5 3.3 3.2 3.0 伸び率 [%] 化紡糸不能) 3 4 6 12 AN / SAHPS polymer [mol%] 99.7 / 0.3 99-3 / 0.7 99.1 / 0.9 98.9 / 1.1 98.0 / 2.0 Degree of polymerization 800 770 820 870 790 Tensile strength [9 / d] (Gel during polymerization 3.5 3.3 3.2 3.0 [%] Chemical spinning is not possible) 3 4 6 12
 One
乾熱弛緩収縮率 *2 [¾] 2 2 3 4 Dry heat relaxation shrinkage * 2 [¾] 2 2 3 4
_  _
湿熱弛緩収縮率 *3 [%] 2 2 3 5 引張伸度 ί%] 一 43 47 48 50 透明性 [%1 97 95 96 97 ャング率 [kg f /mm 2] 510 510 520 430 耐熱染色堅牢度 3〜4 3〜4 3~4 3〜4 染色斑 ◎ 〇 〇 X 結晶化度 28.2 28.7 27.5 26.0 備考 比較例 実施例 実施例 実施例 比較例 Wet heat relaxation shrinkage * 3 [%] 2 2 3 5 Tensile elongation ί%] 1 43 47 48 50 Transparency [% 1 97 95 96 97 Young's modulus [kg f / mm 2 ] 510 510 520 430 3-4 3-4 4-3-4 3-4 Staining spots ◎ 〇 〇 X Crystallinity 28.2 28.7 27.5 26.0 Remarks Comparative example Example Example Example Example Comparative example
*1 伸び率;昇温下で測定した温度と伸び率との関係において 26 0 °cにおける値 * 1 Elongation: The value at 260 ° C in relation to the temperature measured at elevated temperatures and the elongation.
木 2 乾熱弛緩収縮率; 2 1 0 °C X 3 0分処理  Tree 2 Dry heat relaxation shrinkage; 2 10 ° C X 30 minutes treatment
*3 湿熟弛緩収縮率; 1 3 0 °C X 1 0分処理  * 3 Moisture relaxation contraction rate; 130 ° C x 10 minutes treatment
*4 耐熱染色堅牢度;乾熱 1 20 °C X 48時間処理  * 4 Fastness to heat dyeing; dry heat 1 20 ° C x 48 hours
以下の実施例においても同様である。  The same applies to the following embodiments.
[実施例 2]  [Example 2]
AN/メチルァクリ レー ト (以下 M Aと略称する) ZS AMP S = x /yX ( l O O - x - y) (重量比) を DM Fに溶解して、 触媒 A I B Nを用いて、 6 8 °CZ 1 7時間重合した後、 エバポレータで未反応モノ マーを除去レて、 重合体溶液を得た。 生成した重合体の祖成、 重合度を 第 3表に示した。 但し E X P . N o . 9については S AM P Sに代えて メタ リルスルホン酸ソ一ダ (以下 S MA Sと略称する) を用いた。 以下実施例 1 と同様の処理をして 3 dのァクリル蛾維を得た。  AN / methyl acrylate (hereinafter abbreviated as MA) ZS AMP S = x / yX (100-x-y) (weight ratio) is dissolved in DMF, and the catalyst is heated to 68 ° CZ1 using AIBN. After polymerization for 7 hours, unreacted monomers were removed with an evaporator to obtain a polymer solution. Table 3 shows the origin and degree of polymerization of the produced polymer. However, for EXP. No. 9, sodium methallyl sulfonate (hereinafter abbreviated as SMAS) was used in place of SAMPS. Thereafter, the same treatment as in Example 1 was performed to obtain 3d acrylyl moth fiber.
得られたアク リル蛾維は、 第 3表に示す特性値を有していた。 The obtained Acryl moth fiber had the characteristic values shown in Table 3.
3 Three
Figure imgf000034_0001
Figure imgf000034_0001
* SMAS * SMAS
[実施例 3] [Example 3]
第 4表に示した組成、 重合度の重合体を実施例 1 と同様に DMF溶液 重合法によ り作った。 但し E x p . N o . 1 4のみジメチルスルホキシ ド (以下 DMS 0と略称する) 溶液重合法により作った。  Polymers having the compositions and degrees of polymerization shown in Table 4 were prepared by the DMF solution polymerization method in the same manner as in Example 1. However, only Exp. No. 14 was prepared by dimethyl sulfoxide (hereinafter abbreviated as DMS 0) solution polymerization method.
上記重合体を DMFに溶解して、 第 4表に示した重合体濃度の紡糸尿 液を作り、 これを直径 0.0 6 m/mの円形断面を有する 5万ホールの紡糸 口金のォリフィ スから凝固浴 DM F/水 = 6 0 / 4 0 (重量比) 、 2 0 °Cに押し出し、 紡糸ドラフ ト 0.4で引き取った後、 DMFZ水 = 3 0 ノ 7 0 (重量比) 、 8 5°Cで 8倍延伸した。  The above polymer was dissolved in DMF to produce a spinning urine having the polymer concentration shown in Table 4, which was coagulated from the orifice of a 50,000-hole spinneret with a circular cross section of 0.06 m / m in diameter. Bath DMF / water = 60/40 (weight ratio), extruded at 20 ° C, taken up by spinning draft 0.4, DMFZ water = 30-70 (weight ratio), 85 ° C Stretched 8 times.
次に水洗した後、 湿熱 1 2 0 °Cで 1 0 %収縮させた。 引き続き前オイ ル付与—ローラー乾燥 ( 1 5 0°C) —後オイル付与—ク リ ンプ付与ーク リンブセッ ト (湿熱 1 2 0。C) —後乾燥を行ない、 第 4表に示したデニ ールのアク リル繊維を得た。  Next, after washing with water, it was shrunk by 10% at a wet heat of 120 ° C. Continue to apply oil before-roller drying (150 ° C)-apply oil after-clean crimp set (moist heat 120.C)-apply post-drying and apply the denier shown in Table 4 Acryl fiber was obtained.
得られた繊維は、 第 4表に示す特性値を有していた。 The fibers obtained had the characteristic values shown in Table 4.
Cv5 Cv5
CJ1 U1 第 4 表  CJ1 U1 Table 4
E xp. No. 1 0 1 1 1 2 1 3 1 4 重合溶媒 D M F DMF DMF DMF D N S 0 重合体粗成 AN/SAMPS [モル%] 98.7/1.3 98.9/1.1 99.0/1.0 99.2/0.8 99.3/0.7 重合度 310 700 820 1,300 2,000 紡糸原液重合体澳度 [重量%] 32.0 28.0 26.5 22.0 15.0 デニール [d] 3.2 2.8 2.7 2.2 1.5 引張強度 /d] 2.5 3.2 3.5 4.2 4.8 伸び率 ] 12 6 4 2 2 乾熱弛緩収縮率 ] 5 3 2 1 1 湿熱弛緩収縮率 ] 7 3 2 1 1 延伸浴延伸性 X 〇 〇 〇 X 引張伸度 [%] 35 40 42 37 30 透明性 ] 70 92 93 90 90 ヤング率 [kgf/mm2] 250 410 550 630 730 耐熱染色堅牢度 3 4 3 4 3 4 E xp. No. 1 0 1 1 1 2 1 3 1 4 Polymerization solvent DMF DMF DMF DMF DNS 0 Polymer crude AN / SAMPS [mol%] 98.7 / 1.3 98.9 / 1.1 99.0 / 1.0 99.2 / 0.8 99.3 / 0.7 Polymerization Degree 310 700 820 1,300 2,000 Density of polymer of spinning stock solution [wt%] 32.0 28.0 26.5 22.0 15.0 Denier [d] 3.2 2.8 2.7 2.2 1.5 Tensile strength / d] 2.5 3.2 3.5 4.2 4.8 Elongation] 12 6 4 2 2 Dry heat Relaxation shrinkage] 5 3 2 1 1 Wet heat relaxation shrinkage] 7 3 2 1 1 Stretching bath stretchability X 〇 〇 〇 X Tensile elongation [%] 35 40 42 37 30 Transparency] 70 92 93 90 90 Young's modulus [ kgf / mm 2 ] 250 410 550 630 730 Fastness to heat dyeing 3 4 3 4 3 4
結晶化度 ] 27.0 28.0 29.5 Crystallinity] 27.0 28.0 29.5
備考 比較例 実施例 実施例 実施例 比絞例 Remark Comparative example Example Example Example Example Comparative example
[実施例 4] [Example 4]
実施例 1の Exp. No.3の組成、 重合度の重合体溶液を DMFに溶解し て重合体濃度 2 6.5重量%に調整した紡糸原液を第 5表に示す直径の 円形断面を有する 5万ホールの紡糸口金のォリ フィ スから凝固浴 DM F /水 = 6 0ノ 4 0 (重量比) 、 2 0 °Cに押し出し、 紡糸ドラフ 卜 0.4 で引き取った後 DM FZ水- 3 0/ 7 0 (重量比) 、 8 5。Cで第 5表に 示した倍率で延伸した。  A polymer solution having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in DMF to adjust the polymer concentration to 26.5% by weight. Coagulation bath DMF / water = 60 ° 40 (weight ratio) from the hole spinneret orifice, extruded at 20 ° C, and taken up with spinning draft 0.4, then DMFZ water-30 / 7 0 (weight ratio), 85. The film was stretched in C at the magnification shown in Table 5.
以下、 実施例 3と同様の処理をして 3 dのアクリル繊維を得た。 ' 得られた繊維は、 第 5表に示す特性値を有していた。 Thereafter, the same treatment as in Example 3 was performed to obtain a 3d acrylic fiber. 'The resulting fibers had the characteristic values shown in Table 5.
第 5表 Table 5
Ex - No - 15 16 17 18 延伸倍率 3 7 9 12 口金ォリ フィ ス 0.04 0.06 0.07 0.08 直径 [m/m] 延伸浴延伸性 ◎ ◎ 〇 X 乾燥持込水分率(%) 210 140 120 引張強度 [ d] 1 .9 3.2 3.5 単糸切れ多発 伸ひ率 [%] 6 4 4 - 乾熱弛緩収縮率 [¾] 2 2 2 - 湿熱弛緩収縮率 [%] 3 3 2 - 引張伸度 [%] 50 42 38 - 透明性 ] 85 93 92 - ヤンク率 Lkgf /ram2] 230 490 530 耐熱染色堅牢度 3-4 3-4 結晶化度 24.7 28.0 28.3 備考 比較例 実施例 実施例 比較例 Ex-No-15 16 17 18 Stretching ratio 3 7 9 12 Base orifice 0.04 0.06 0.07 0.08 Diameter [m / m] Stretching bath stretchability ◎ ◎ 〇 X Dry carry-in moisture content (%) 210 140 120 Tensile strength [d] 1.9 3.2 3.5 Single yarn break multiple elongation [%] 6 4 4-Dry heat relaxation shrinkage [¾] 2 2 2-Wet heat relaxation shrinkage [%] 3 3 2-Tensile elongation [% ] 50 42 38-Transparency] 85 93 92-Yank rate Lkgf / ram 2 ] 230 490 530 Heatfast dyeing fastness 3-4 3-4 Crystallinity 24.7 28.0 28.3 Remarks Comparative example Working example Working example Comparative example
[実施例 5] [Example 5]
実施例 1の EXP. No.3の組成、 重合度の重合体溶液を DM Fに溶解し て重合体濃度 2 6.5重量%に調整した紡糸原液を直径 0.0 6 m//mの 円形断面を有する 5万ホールの紡糸口金のォリ フィ スから凝固浴 DM F Z水 = 6 0ノ 4 0重量比) 、 2 0 °Cに押し出し、 第 6表に示した紡糸ド ラフ 卜で引き取った後、 0 /水= 3 0 / 7 0 (重量比) 、 8 5。Cで 8倍延伸した。  The spinning stock solution having the composition of EXP. No. 3 of Example 1 and the degree of polymerization of DMF dissolved in DMF to adjust the polymer concentration to 26.5% by weight has a circular cross section of 0.06 m // m in diameter. Coagulation bath DM FZ water = 60% 40% by weight) from the spinneret's orifice of 50,000 holes, extruded at 20 ° C, and taken out by the spinning draft shown in Table 6 / Water = 30/70 (weight ratio), 85. The film was stretched 8 times with C.
次に水洗した後、 湿熱 1 2 0 °cで第 6表に示した割合で収縮させた。 但し EXP. No.1 9のみ、 水洗後直ちに前オイル付与以下の工程に付した。 引き続き前オイル付与一ローラー乾燥 ( 1 5 0 °C) —後オイル付与ーク リ ンプ付与ーク リ ンプセッ ト (湿熟 1 2 0。C) 一後乾燥を行ない、 3 d のアタ リル繊維を得た。  Next, after washing with water, it was shrunk at a heat of 120 ° C. at a rate shown in Table 6. However, only EXP. No. 19 was subjected to the following steps immediately after oil washing. Continue oil drying with one roller drying (150 ° C)-post oil applying crimp applying crimp set (moistened 120.C) After drying, 3d acryl fibers are removed. Obtained.
得られた繊維は第 6表に示す特性値を有していた。 The fibers obtained had the characteristic values shown in Table 6.
第 6表 Table 6
Exp. No. 19 20 21 22 紡糸ドラフ ト 0-3 0.3 0.3 0.4 収縮率 [%] 一 5 10 20 引張強度^/ d] 4.4 3.8 3.4 3.0 伸び率 [%] 4 4 4 5 乾熱弛緩収縮率 [%] 2 2 2 2 湿熱弛緩収縮率 ] 3 2 2 2 引張伸度 ] 30 37 44 50 透明性 ] 94 92 92 90 ャング率 [kgf/mm2] 640 590 530 410 耐熱染色堅牢度 3-4 3~4 3-4 3-4 結晶化度 [%] 28.0 28.5 28.3 28.0 紡績性 X 〇 〇 ◎ 備考 比較例 実施例 実施例 実施例 Exp. No. 19 20 21 22 Spinning draft 0-3 0.3 0.3 0.4 Shrinkage [%] 1 5 10 20 Tensile strength ^ / d] 4.4 3.8 3.4 3.0 Elongation [%] 4 4 4 5 Dry heat relaxation shrinkage [%] 2 2 2 2 Moisture heat relaxation shrinkage] 3 2 2 2 Tensile elongation] 30 37 44 50 Transparency] 94 92 92 90 Young's modulus [kgf / mm 2 ] 640 590 530 410 Heat-resistant color fastness 3-4 3 ~ 4 3-4 3-4 Crystallinity [%] 28.0 28.5 28.3 28.0 Spinnability X 〇 〇 ◎ Remarks Comparative example Working example Working example Working example
[実施例 6] [Example 6]
実施例 1の Exp. No.3の組成、 重合度の重合体を DM S 0に溶解して 重合体濃度 2 6重量%に調整した紡糸原液を直径 0.0 6 mZmの円形 断面を有する 2万ホールの紡糸口金のォリ フィ スから凝固浴 DM S 0/ 水- 6 0/ 4 0 (重量比) 、 22 °Cに押し出し、 紡糸ドラフ ト 0.4で 引き取った後、 9 8°Cの熱水中で 7倍に延伸した。  A polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in DMSO to adjust the polymer concentration to 26% by weight, and the spinning stock solution having a circular cross section of 0.06 mZm in 20,000 holes was prepared. Coagulation bath DM S0 / water-60 / 40 (weight ratio) from the spinneret orifice at 22 ° C, after taking out with a spinning draft 0.4, hot water at 98 ° C And stretched 7 times.
次に水洗した後、 湿熱 1 2 0°Cで 1 0%収縮させた。 引き統き前オイ ル付与一ローラー乾燥 ( 1 5 0°C) —後オイル付与—クリンブ付与—ク リンプセッ ト (湿熱 1 2 0°C) —後乾燥を行ない 3 dのァク リル繊維を 得た。  Next, after washing with water, it was shrunk by 10% at a wet heat of 120 ° C. Apply oil before roll-drying (150 ° C) — Apply oil after — Apply crimp — Crimp set (moist heat 120 ° C) — Dry afterwards to obtain 3d acrylic fiber Was.
得られた繊維は、 引張強度; 3.4 /d、 伸び率; 5 %、 乾熱弛緩収 縮率; 2 %、 湿熱弛緩収縮率; 3 %、 引張伸度; 4 0 %、 透明性; 88 %、 ヤング率; 50 0k fZ匪2、 耐熱染色堅牢度; 3 ~ 4級を示した。 The obtained fiber has a tensile strength of 3.4 / d, an elongation of 5%, a dry heat relaxation / shrinkage rate of 2%, a wet heat relaxation / shrinkage rate of 3%, a tensile elongation of 40%, and a transparency of 88%. , Young's modulus; 500k fZ marauding 2 , heat-resistant color fastness;
[実施例 7]  [Example 7]
実施例 1の Exp. No.3の組成、 重合度の重合体をジメチルァセトアミ ド (以下 DM A cと略称する) に溶解して重合体澳度 2 2重量%に調整 した钫糸原液を直径 0.0 8 m/mの円形断面を有する 2万ホールの紡 糸口金のオリフィスから凝固浴 DM A cノ水 = 5 5 /4 5 (重量比) 、 2 5。Cに押し出し、 紡糸ドラフ ト 0 .5で引き取った後、 9 8。Cの熱水 中で 9倍に延伸した。  A polymer solution having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in dimethylacetamide (hereinafter abbreviated as DMAc) to adjust the polymer concentration to 22% by weight. The orifice of a 20,000-hole spinneret having a circular cross section of 0.08 m / m in diameter from the coagulation bath DM Ac water = 55/45 (weight ratio), 25. Extruded into C and taken up with spinning draft 0.5, 98. The film was stretched 9 times in hot water of C.
以下実施例 6と同様の処理をして 3 dのァクリル繊維を得た。  Thereafter, the same treatment as in Example 6 was performed to obtain 3d acryl fibers.
得られたァクリル繊維は、 引張強度; 3.7 Zd、 伸び率; 4 %、 乾 熱弛緩収縮率; 2 %、 湿熱弛緩収縮率; 2 %、 引張伸度; 4 0 %、 透明 性; 89%、 ヤング率; 49 Ok^f/rara2, 耐熱染色堅牢度; 3〜4級を 示した。 The obtained acryl fiber has a tensile strength of 3.7 Zd, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 40%, and a transparency of 89%. Young's modulus; 49 Ok ^ f / rara 2 , fastness to heat-resistant dyeing; Indicated.
[実施例 8 ]  [Example 8]
実施例 1の Exp.No. 3の組成、 重合度の重合体を 7 0 %硝酸に溶解し て、 重合体濃度 i 6重量%に調整した紡糸原液を直径 0 . 1 mZmの円 形断面を有する.2万ホールの紡糸口金のオリフィ スから凝固浴 3 5 %硝 酸、 3。0に押し出し紡糸ドラフ ト 0.5で引き取った後、 9 8°Cの熟水 中で 9倍に延伸した。  A polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in 70% nitric acid, and the spinning stock solution adjusted to a polymer concentration i of 6% by weight was cut into a circular cross section having a diameter of 0.1 mZm. It was extruded from a 20,000 hole spinneret orifice into a coagulation bath of 35% nitric acid, 3.0, taken out with a spinning draft of 0.5, and then stretched 9 times in ripened water at 98 ° C.
次に水洗した後、 湿熱 1 2 0°Cで 1 0 %収縮させた。 引き続き前オイ ル付与一ローラー乾燥 ( 1 i 5。C) 一後オイル付与ークリンプ付与—ク リ ンプセッ ト (湿熱 1 2 0。C) —後乾燥を行ない 3 dのァクリル繊維を 得た。  Next, after washing with water, it was shrunk by 10% at a wet heat of 120 ° C. Subsequently, pre-oil application and roller drying (1i5.C) and post-oil application and crimp application—crimp set (wet heat 120.C) —post-drying were performed to obtain 3d acryl fibers.
得られたァクリル繊維は、 引張強度; 3.6 Zd、 伸び率; 4 %、 乾 熱弛緩収縮率; 2 %、 湿熱弛緩収縮率; 2 %、 引張伸度; 4 1 %、 透明 性; 9 3 %、 ヤング率; 4 8
Figure imgf000042_0001
耐熱染色堅牢度; 3〜 4級を 示した。
The resulting acryl fiber has a tensile strength of 3.6 Zd, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 41% and a transparency of 93%. , Young's modulus; 4 8
Figure imgf000042_0001
Fastness to heat resistance;
[実施例 9]  [Example 9]
実施例 1の Exp. No. 3の組成、 重合度の重合体をチオシアン酸ソーダ 水 = 5 0/ 5 0 (重量比) に溶解して、 重合体漠度 1 2重量%に調整 した紡糸原液を直径 0 .0 8 mZmの円形断面を有する 2万ホールの紡' 糸口金のオリフィ スから凝固浴チオシアン酸ソーダ /水- 5 0ノ5 0 (重 量比) 、 — 3。Cに押し出し、 紡糸ドラフ ト 0 , 3で引き取った後、 9 8 °Cの熱水中で 9倍に延伸した。  A spinning solution prepared by dissolving a polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 in sodium thiocyanate water = 50/50 (weight ratio) to adjust the polymer vagueness to 12% by weight The orifice of a 20,000-hole spinneret having a circular cross section of 0.08 mZm in diameter from the coagulation bath sodium thiocyanate / water-50-50 (weight ratio), —3. After being extruded into C and taken out by spinning drafts 0 and 3, it was stretched 9 times in hot water at 98 ° C.
以下実施例 8と同様の処理をして、 3 dのァクリル繊維を得た。  Thereafter, the same treatment as in Example 8 was performed to obtain 3d acryl fibers.
得られたァクリル繊維は、 引張強度; 3 .4 Z d、 伸び率; 4 %、 乾 熟弛緩収縮率; 2 %、 湿熱弛緩収縮率; 3 %、 引張伸度; 4 3 %、 透明 性; 9 7 %、 ヤング率; 4 6 Ok^f/mm2, 耐熱染色堅牢度; 3〜 4級を 示した。 The obtained acryl fiber has a tensile strength of 3.4 Zd, an elongation of 4%, and a dryness. Mature relaxation shrinkage; 2%, wet heat relaxation shrinkage; 3%, tensile elongation; 43%, transparency; 97%, Young's modulus; 46 Ok ^ f / mm 2 , fastness to heat resistance; Class 4 was shown.
[実施例 1 0]  [Example 10]
実施例 1の Exp. No. 3の組成、 重合度の重合体を塩化亜鉛 Z塩化カル シユウム Z水 = 4 5/ 1 5/4 0 (重量比) に溶解して、 重合体濃度 1 0重量%に調整した紡糸原液を直径 0. 1 mZmの円形断面を有する 2 万ホールの紡糸口金のオリフィスから凝固浴塩化亜鉛 水= 4 5/5 5 (重量比) 、 2 5 °Cに押し出し、 紡糸ドラ フ ト 0.3で引き取った後、 9 8 °Cの熱水中で 9倍に延伸した。  A polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in zinc chloride Z calcium chloride Z water = 45/15/40 (weight ratio), and the polymer concentration was 10% by weight. % Of the spinning stock solution adjusted to 25% by weight from a 20,000 hole spinneret orifice having a circular cross section of 0.1 mZm in diameter and a coagulation bath zinc chloride water = 45/5 (weight ratio) at 25 ° C. After drawing at a draft of 0.3, it was stretched 9 times in hot water at 98 ° C.
以下実施例 8と同様の処理をして、 3 dのァクリル繊維を得た。  Thereafter, the same treatment as in Example 8 was performed to obtain 3d acryl fibers.
得られたアク リル繊維は、 引張強度; 3.4 d、 伸び率; 6 %、 乾 熟弛緩収縮率; 3 %、 湿熱弛緩収縮率; 3 %、 引張伸度; 4 4 %、 透明 性; 8 7 %、 ヤング率; 4 4 Ok f/mm2, 耐熱染色堅牢度; 3〜 4級を 示した。 The obtained acrylic fiber has a tensile strength of 3.4 d, an elongation of 6%, a dry relaxation shrinkage of 3%, a wet heat relaxation shrinkage of 3%, a tensile elongation of 44% and a transparency of 87. %, Young's modulus; 44 Ok f / mm 2 , fastness to heat-resistant dyeing;
[実施例 1 1 ]  [Example 11]
実施例 iの EXP. No. 3の組成、 重合度の重合体を DMFに溶解して、 重合体濃度 3 0重量%に調整し、 1 2 5 °Cに加熱された紡糸原液を直径 0.2 mZmの円形断面を有する 1 , 0 0 0ホールの紡糸口金のォリフィ ス から 2 1 5 °Cに加熱された熱風中に押し出し、 3 0 0 m/分で引き取つ た。 単蛾維繊度は 1 4デニールであった。  The polymer having the composition and degree of polymerization of EXP. No. 3 of Example i was dissolved in DMF, the polymer concentration was adjusted to 30% by weight, and the spinning stock solution heated to 125 ° C was 0.2 mZm in diameter. It was extruded from the orifice of a spinneret having a circular cross section of 1,000 holes into hot air heated to 210 ° C, and was taken off at 300 m / min. The single moth fiber size was 14 denier.
次に 9 8 °Cの熱水中で 6倍に延伸した後、 水洗を行ない、 湿熱 1 2 0 °Cで 1 0 %収縮させた。 引き銃き前オイル付与—ローラー乾燥 ( 1 1 5 °C) —後オイル付与—クリンプ付与ークリンプセッ ト (湿熱 1 2 0。C) —後乾燥を行ない 3 dのァク リル繊維を得た。 Next, the film was stretched 6 times in hot water at 9.8 ° C, washed with water, and shrunk by 10% at 120 ° C with wet heat. Apply oil before pulling gun-Roller drying (115 ° C)-Apply oil after crimping-Crimp set (Moist heat 120.C) —After drying, 3d acrylic fiber was obtained.
得られたアク リル繊維は、 引張強度; 2.9^/d、 伸び率; 6 %、 乾 熱弛緩収縮率; 3 %、 湿熱弛緩収縮率; 3 %、 引張伸度; 5 0 %、 透明 性; 8 5%、 ヤング率; 4 1 0 k^f/mm\ 耐熱染色堅牢度; 3 ~4級を 示した。  The obtained acrylic fiber has a tensile strength of 2.9 ^ / d, an elongation of 6%, a dry heat relaxation shrinkage of 3%, a wet heat relaxation shrinkage of 3%, a tensile elongation of 50% and a transparency. 85%, Young's modulus; 410 k ^ f / mm \ Heat fastness;
[実施例 1 2]  [Example 12]
実施例 1の Exp. No.3の組成、 重合度の重合体を DMFに溶解して、 重合体濃度 30重量%に調整した紡糸原液を直径 0.1 5 m/mの円形 断面を有する 1 , 0 00ホールの紡糸口金のオリフィスから一旦空気中 に押し出した後、 凝固浴 DMFZ水 = 6 0ノ 40 (重量比) 、 20°Cに 導き紡糸ドラフ ト 2.2で引き取った。 このとき紡糸口金面と凝固浴面 の間隔を 5 mZmとした。 引き銃き 9 8 °Cの熱水中で 9倍に延伸した。 以下実施例 6と同様の処理をして、 3 dのァクリル繊維を得た。  A polymer having the composition and degree of polymerization of Exp. No. 3 of Example 1 was dissolved in DMF, and the spinning dope adjusted to a polymer concentration of 30% by weight had a circular cross section with a diameter of 0.15 m / m. After being once extruded into the air from the orifice of the spinneret of the 00 hole, it was guided to a coagulation bath DMFZ water = 60 to 40 (weight ratio), 20 ° C, and taken out by the spinning draft 2.2. At this time, the distance between the spinneret surface and the coagulation bath surface was 5 mZm. Draw gun Stretched 9 times in hot water at 98 ° C. Thereafter, the same treatment as in Example 6 was performed to obtain 3d acryl fibers.
得られたァクリル繊維は、 引張強度; 3.7 d、 伸び率; 4 %、 乾 熱弛緩収縮率; 2 %、 湿熱弛緩収縮率; 2 %、 引張伸度; 3 7 %、 透明 性; 93 %、 ヤング率; 55 0 k Z醫 2、 耐熱染色堅牢度; 3 ~ 4級を 示した。 The resulting acryl fibers have a tensile strength of 3.7 d, an elongation of 4%, a dry heat relaxation shrinkage of 2%, a wet heat relaxation shrinkage of 2%, a tensile elongation of 37%, and a transparency of 93%. Young's modulus; 55 0 k Z醫2, heat fastness, showed 3 to quaternary.
実施例 1 3 ~ 2 1および比較例 1 ~ 6 Examples 13 to 21 and Comparative Examples 1 to 6
(1 ) 第 7表に示した組成および重合度のァクリル系重合体をジメチ ルホルムアミ ド (以下 DMFと略称する。 ) に溶解して重合体濃度 2 6. 5重量%に調整した紡糸原液を、 直径 0.0 55 mZmの円形断面を有す る 8万ホールの钫糸口金のォリ フィスから凝固浴DMF 水= 60/4 0 (重量比) 、 2 0°Cに押し出し、 紡糸ドラフ ト 0.4で引き取った後、 DMFZ水 = 3 0ノ 70 (重量比) 、 8 5°Cで 8倍延伸した。 引き統き、 水洗-前オイル付与した後、 1 5 %収縮を与えながら 1 5 0 でローラ一乾燥した。 さらに後オイル付与 -ク リ ンプ付与 -ク リ ン プセッ ト (湿熟 1 2 0。C) -後乾燥を行ない、 2dのアクリル繊維を得 た。 (1) An acryl-based polymer having the composition and degree of polymerization shown in Table 7 was dissolved in dimethylformamide (hereinafter abbreviated as DMF) to obtain a spinning stock solution having a polymer concentration of 26.5% by weight. Coagulation bath DMF water = 60/40 (weight ratio), extruded from a 80,000-hole orifice with a circular cross section with a diameter of 0.055 mZm at 20 ° C, and taken out with a spinning draft of 0.4 Then, DMFZ water = 30 to 70 (weight ratio) and stretched 8 times at 85 ° C. After the washing and application of the pre-oil, the roller was dried at 150 with a shrinkage of 15%. Further, post-oil application-crimp application-crimp set (moistened 120.C)-post-drying was performed to obtain 2d acrylic fiber.
得られたアク リル繊維は第 7表に示す特性値を有していた。 また、 第. 4図には、 Riml (曲線①) 、 2 (曲線②) および 5 (曲線③) の昇温 下で測定した温度の伸び率の関係を示した。 The obtained acrylic fiber had the characteristic values shown in Table 7. Fig. 4 shows the relationship between the elongation rate of Riml (curve ①), 2 (curve ②) and 5 (curve ③) measured at elevated temperatures.
第 7 表 Table 7
Figure imgf000046_0001
なお、 上記第 7表中の各註の意味は下記のとおりである。
Figure imgf000046_0001
The meaning of each note in Table 7 above is as follows.
2 -アク リルアミ ド - 2 —メチルプロノくンスルホン酸ソーダ ( s 2-Acrylylamide-2-sodium methylpronosulfonate (s
AMP S) の略号、 AMP S)
*2 メチルアタ リ レー トの略号、 * 2 Abbreviation for methyl acrylate
*3 昇温下で測定した温度と伸び率との関係において 2 6 0 °Cにおけ る値、 * 3 The relationship between temperature and elongation measured at elevated temperature at 260 ° C Value,
*4 乾熱 2 1 0°cx 3 0分処理、 * 4 Dry heat 2 1 0 ° c x 30 minutes treatment,
*5 S AMP Sに代えてメタ リルスルホン酸ソーダを使用した。 * 5 Sodium methallylsulfonate was used instead of SAMPS.
(2) Run No.1〜 5のアク リル繊維を 5 1 mm定長カッ ト した後、 2ィ ンチ紡紡績を行ない1/ ^ 2番手 (実施例 1 9〜2 1および比較例 5、(2) Cut the acrylic fibers of Run Nos. 1 to 5 into a fixed length of 51 mm, and then spin 2-inch spinning to 1 / ^ 2 count (Examples 19 to 21 and Comparative Example 5,
6については2 /52番手) の紡績糸を得た。 For 6 was obtained spun yarn of 2/52 cotton count).
次に第 8表に示した組織、 糸づかい、 密度で織物を作り、 次いで順次 下記工程;精鍊、 染色〜還元洗浄〜ソービング、 乾燥、 仕上加工、 仕上 セッ トにより後染めされた交織物を得た。 O  Next, a woven fabric is produced with the structure, threading, and density shown in Table 8, and then the following fabrics are sequentially dyed by the following steps: refining, dyeing, reduction washing, sorbing, drying, finishing, and finishing. Obtained. O
Figure imgf000047_0001
なお、 染色は、 染料と して分散染料 (ダイャニックス、 三菱化成 (株) 製) およびカチオン染料 (エス トール、 住友化学 (株) 製) を用い、 助 剤と してサンソル ト C I - 1 2 (日華化学 (株) 製) 、 ュニソル ト 5 M (明成化学 (株) 製) および酢酸 Z齚酸ソーダを用いて PH約 5に調節 した染浴中、 6 0でから 1 3 0 °Cまで約 I °C 分の昇温速度で昇温し、 1 3 0 °Cで 1 5分間実施した。 また、 還元洗浄はハイ ドロサルフアイ ト と苛性ソーダを含む浴中、 8 0。cで 1 5分間実施し、 そしてソービング はメイサノール L - 8 0 (明成化学 (株) 製) を含む浴中、 7 0 °Cで 1 0分間実施した。
Figure imgf000047_0001
For dyeing, disperse dyes (Dyanix, manufactured by Mitsubishi Kasei Corporation) and cationic dyes (Estol, manufactured by Sumitomo Chemical Co., Ltd.) were used as dyes, and Sun Salt CI-12 (as an auxiliary agent) was used. Nichika Chemical Co., Ltd.), Unisalt 5 M (Meisei Chemical Co., Ltd.) and sodium acetate Z 齚 O. In the dyeing bath, the temperature was raised from 60 to 130 ° C. at a rate of about I ° C., and the test was carried out at 130 ° C. for 15 minutes. Reduction washing was carried out in a bath containing hydrosulfite and caustic soda at 80. c for 15 minutes, and sorbing was carried out at 70 ° C. for 10 minutes in a bath containing Meisanol L-80 (manufactured by Meisei Chemical Co., Ltd.).
得られた上記交織物の評価を第 9表に示した。 Table 9 shows the evaluations of the obtained mixed fabrics.
第 9 表 Table 9
Figure imgf000049_0001
実施例 22〜 2 7および比較例 7 ~ 1 0
Figure imgf000049_0001
Examples 22 to 27 and Comparative Examples 7 to 10
(1 ) 第 1 0表に示した組成および重合度のァクリル系重合体をジメ チルホルムアミ ド (以下 DMFと略称する。 ) に溶解して重合体渙度 2 6.5重量%に調整した紡糸原液を、 直径 0.0 5 mZmの円形断面を有す る 9万ホールの紡糸口金のォリ フィ スから凝固浴 DM F Z水 = 6 0/ 4 0 (重量比) 、 2 0。cに押し出し、 紡糸ドラフ ト 0.4で引き取った 後、 DMF/水- 3 0Z70 (重量比) 、 8 5 0 °Cで 8倍延伸した。 引き銃き、 水洗-前オイル付与した後、 1 5 %収縮を与えながら 1 5 0 °Cでローラー乾燥した。 さらに後オイル付与-ク リ ンプ付与-ク リ ン プセッ ト (湿熱 1 20 °C) -後乾燥を行ない、 1 .5dのァグリル繊維を 得た。 (1) An acryl-based polymer having the composition and the degree of polymerization shown in Table 10 was dissolved in dimethylformamide (hereinafter abbreviated as DMF), and the spinning dope was adjusted to a polymer solubility of 26.5% by weight. Coagulation bath DM FZ water = 60 / from the 90,000 hole spinneret orifice with a circular cross section of 0.05 mZm in diameter 40 (weight ratio), 20. After being extruded into c and taken out by a spinning draft of 0.4, it was stretched 8-fold at DMF / water-30Z70 (weight ratio) at 850 ° C. After pulling, washing and applying the oil before, the roller was dried at 150 ° C. while giving 15% shrinkage. Further, post-oil application-crimp application-crimp set (moist heat: 120 ° C) -post-drying was performed to obtain 1.5 d agrill fiber.
得られたァク リル繊維は第 1 0表に示すような特性値を有していた。 The obtained acrylic fiber had characteristic values as shown in Table 10.
第 1 0 表 Table 10
Figure imgf000051_0001
Figure imgf000051_0001
(2 ) Run No.6 - 1 0のァク リル繊維を 3 8蘭定長カッ ト した後、 オープンェン ド紡續法にて1/ 18番手 (実施例 2 2〜24および比較例 7、 8) および1 /26番手 (実施例 25-27および比較例 9、 1 0) の紡績 糸を得た。 (2) After cutting the acrylic fiber of Run No. 6-10 into fixed length of 38 orchids, it was 1 / 18th by open-end spinning method (Examples 22 to 24 and Comparative Examples 7 and 8). ) And 1 / 26th count (Examples 25-27 and Comparative Examples 9, 10) were obtained.
次に第 1 1表に示した組織、 糸づかいで編物を作り、 次いで順次下記 工程精鍊、 染色〜還元洗浄〜ソービング、 乾燥、 仕上加工、 起毛、 シャ 一リ ング、 仕上セッ トにより後染めされた交織物を得た。 第 1 1 表 Next, a knitted fabric was made with the structure and threading shown in Table 11, and then the following process steps were performed, followed by dyeing, reduction cleaning, soaking, drying, finishing, brushing, and shading. A cross-woven fabric was dyed after one ring and finish set. Table 11
Figure imgf000052_0001
染色、 還元洗浄およびソービングは実施例 1 3と同様に行った, 得られた上記交編物の評価を第 1 2表に示した。
Figure imgf000052_0001
Dyeing, reduction washing, and sorbing were performed in the same manner as in Example 13. Table 12 shows the evaluation of the obtained knitted fabric.
第 1 2 表 Table 12
Figure imgf000053_0001
実施例 28〜3 0および比較例 1 1、 1 2
Figure imgf000053_0001
Examples 28 to 30 and Comparative Examples 11 and 12
(1 ) 第 1 3表に示した組成および重合度のァクリル系重合体をジメ チルホルムアミ ド (以下 DMFと略称する。 ) に溶解し、 重合体狻度を 26.5重量%に調整した紡糸原液を直径 0.1 1 mmの円形断面を有する 1万ホールの紡糸口金のォリフィ スから 2 0 °Cの凝固浴 (DMFZ水- 60 /40 (重量比) ) 中に押し出し、 紡糸ドラフ ト 0.4で引き取つ た後、 DMFZ水 = 3 0ノ70 (重量比) 85。Cで 8倍延伸した。  (1) An acryl-based polymer having the composition and degree of polymerization shown in Table 13 was dissolved in dimethylformamide (hereinafter abbreviated as DMF), and the spinning dope obtained by adjusting the polymer concentration to 26.5% by weight was used. 0.1 Extruded from a 10,000-hole spinneret orifice with a circular cross section of 1 mm into a coagulation bath (DMFZ water-60 / 40 (weight ratio)) at 20 ° C and taken up with a spinning draft of 0.4 , DMFZ water = 30-70 (weight ratio) 85. The film was stretched 8 times with C.
引き統き、 水洗—前オイル付与した後、 1 5%収縮を与えながら 1 5 0 °Cでローラー乾燥した。 さらに後オイル付与ーク リ ンプ付与—ク リ ン プセッ ト (湿熱 1 2 0°C) —後乾燥を行ない、 単糸 1 0 dのァクリル蛾 維を得た。 After the washing and the application of the pre-oil, the roller was dried at 150 ° C. while giving 15% shrinkage. Post-oiling crimping — crimp set (moist heat 120 ° C) — post-drying, single-filament 10d acrylyl moth I got a fiber.
1 5 2 定長カッ トした上記繊維を第 1表に示した茶 (濃色) に染色 した後、 セミ梳毛紡績を行ない、 1八番手の紡績糸を得た。 次いで、 ポ リプロピレン蛾維からなる基布 (糸密度、 緯 2 2本ノイ ンチ、 経 1 5本 /イ ンチ) にタフティ ング (パイル目付 3 5 0 ^/m2) 得られた生地の 裏面に固形分 4 8重量%のラテックス (ボリマー成分 1 2重量%、 炭酸 カルシウム 3 5重量%、 老化防止剤 1重量%) を 6 0 0 ノ m2塗布した 後、 1 4 0 C 1 5分間乾燥した。 After staining the brown (dark) showing 1 5 2 constant length cut was the fiber in Table 1, subjected to semi-worsted spinning, to obtain a spun yarn of 1 eight fastest. Next, the backing of the fabric obtained was tufted (pile weight: 350 ^ / m 2 ) on a base fabric made of polypropylene moth fiber (yarn density, 22 wefts per inch, warp: 15 per inch). solids 4 8% by weight of the latex (Borima component 1 2 wt%, calcium 35 wt carbonate%, anti-aging agent 1% by weight) after a 6 0 0 Roh m 2 was applied, 1 4 0 C 1 5 minute dry did.
得られたァクリル繊維および電気力一^ ^ッ ト表面材は第 1 3表に示す 特性値を有していた。 The obtained acryl fiber and electric power surface material had the characteristic values shown in Table 13.
第 1 3 表 Table 13
Figure imgf000055_0001
なお、 上記第 1 3表中の各註の意味は下記のとおりである。
Figure imgf000055_0001
The meaning of each note in Table 13 above is as follows.
*1 2 —アク リルアミ ド— 2 —メチルプロパンスルホン酸ソーダの略 号、  * 1 2—Acrylamide—2—Abbreviation for sodium methylpropanesulfonate
メチルアタ リ レー トの略号、  Abbreviation for methyl acrylate
*3 昇温下で測定した温度と伸び率との関係において 2 6 0 °Cにおけ る値、  * 3 The value at 260 ° C in the relationship between the temperature measured at elevated temperature and the elongation,
*4 乾熱 1 2 0 °c x 4 8時間処理、 *5 乾熟 2 1 0°cx 3 0分処理、 * 4 Dry heat 1 20 ° cx 4 8 hours treatment, * 5 Drying 2 1 0 ° cx 30 minutes treatment,
*6 SAMPSに代えてメタ リルスルホン酸ソ一ダを使用した。  * 6 Sodium methallylsulfonate was used instead of SAMPS.
実施例 3 1 ~ 3 3および比較例 1 3、 1 4 Examples 31 to 33 and Comparative Examples 13 and 1 4
(1 ) 第 ]: 4表に示した組成および重合度のァクリル系重合体をジメ チルホルムアミ ド (以下 DMFと略称する。 ) に溶解し、 重合体渙度を 2 6.5重量%に調整した紡糸原液を直径 0.0 6 mmの円形断面を有する 5万ホールの紡糸口金のォリフィ スから 2 0 °Cの凝固浴 (DMFノ水- 6 0/ 4 0 (重量比) ) 中に押し出し、 钫糸ドラフ ト 0.4で引き取つ た後、 DMFZ水 - 3 0Z7 0 (重量比) 8 5°Cで 8倍延伸した。  (1) Chap .: An acryl polymer having the composition and the degree of polymerization shown in Table 4 was dissolved in dimethylformamide (hereinafter abbreviated as DMF), and the lysis degree of the polymer was adjusted to 26.5% by weight. From a 50,000 hole spinneret orifice with a circular cross section of 0.06 mm in diameter into a coagulation bath (DMF water-60 / 40 (weight ratio)) at 20 ° C. After picking up at 0.4, it was stretched 8 times at 85 ° C. in DMFZ water−30Z70 (weight ratio).
引き銃き、 水洗—前オイル付与した後、 1 5 %収縮を与えながら 1 5 0 °Cでローラー乾燥した。 さらに後オイル付与ークリンプ付与ークリン プセッ ト (湿熱 1 2 0 °C) 一後乾燥を行ない、 単糸 3 dのァクリル繊維 を得た。  After pulling, washing and applying the pre-oil, the roller was dried at 150 ° C while applying 15% shrinkage. Further, the post-oil-applied crimp-applied crimp set (moist heat: 120 ° C.) and post-drying were carried out to obtain acryl fibers having a single yarn of 3 d.
7 6 mm定長カツ トした上記繊維を第 1表に示した茶 (濃色) に染色し た後、 紡毛紡績を行ない、 5番手の紡績糸を得た。 The above fibers cut at a fixed length of 76 mm were dyed into the tea (dark color) shown in Table 1, and then woolen and spun to obtain a spun yarn of 5th .
上記ァク リル紡績糸を緯糸として用い、 ポリエステル紡績糸 ん。番 手)を経糸として用いて二重織組織(密度:緯 1 8本 Zイ ンチ、 経 3 2本 /イ ンチ)の繳物を作り、 起毛 5回、 シャー リ ング 2回して、 電気毛布 の生布を得た。 次いで、 上記生布を用い常温により電気毛布を得た。 得られたアクリル繊維および電気毛布用生布は第 1 4表に示す特性値 を有していた。 第 1 4 表 実施例 31 実施例 32 実施例 33 比較例 13比較例 14 A polyester spun yarn using the above acrylic spun yarn as the weft. ) Is used as a warp to make a double-woven fabric (density: 18 weft Z-inch, warp 32 / inch), brushed 5 times, sheared 2 times, electric blanket Was obtained. Next, an electric blanket was obtained at room temperature using the above-mentioned raw cloth. The obtained acrylic fiber and raw cloth for electric blanket had the characteristic values shown in Table 14. Table 14 Example 31 Example 32 Example 33 Comparative example 13 Comparative example 14
AN/SAMPS*1 QQ Q *JQ · 1 qq i QQ 1 QQ Q 重合体 [モル%] /0.9 /0.9 /0.9 /0.9 /0 5 組成 AN/MA*2 100 100 100 100 100 AN / SAMPS * 1 QQ Q * JQ 1 qq i QQ 1 QQ Q polymer [mol%] / 0.9 / 0.9 / 0.9 / 0.9 / 0 5 composition AN / MA * 2 100 100 100 100 100
/0 /1.0 /2.9 /7-2 /9.4  / 0 /1.0 /2.9 / 7-2 /9.4
820 820 815 800 815 伸 ,»、 820 820 815 800 815
ひ 率木3 3 3 5 15 C240°cC 3 3 3 5 15 C240 ° c
[%} で切断) 耐熱染色堅牢 3〜4 3〜4 3〜4 2〜3-5 し 5〜3 度 *4 [級] [Cut in%]) Heat-resistant dyeing fastness 3-4 3-4 3-4 4 2-3-5 and 5-3 degrees * 4 [grade]
弛緩収縮率 9 0 0  Relaxation contraction rate 9 0 0
o D 丄 ¾ [%] ヤ ン グ率 51 Π on CA  o D 丄 ¾ [%] Young's ratio 51 Π on CA
4 U oDU [kgf /mm2] 引張強度 3.5 Q A Q o (\ 4 U oDU [kgf / mm 2 ] Tensile strength 3.5 QAQ o (\
· 0 ύ o - u * U [g/d] 引張伸度 43 45 48 50 49  · 0 ύ o-u * U [g / d] Tensile elongation 43 45 48 50 49
[%] 電気毛布用生布  [%] Raw blanket for electric blanket
耐熱染色堅牢度 3 3 0  Fastness to heat dyeing 3 3 0
丄 * ϋ *4 [級] 電気毛布用生布 〇 〇 △〜x X へタリ *7丄 * ϋ * 4 [Grade] Raw cloth for electric blanket 〇 〇 △ ~ x X Het * 7
なお、 上記第 1 4表中の各註の意味は下記のとおりである。 The meaning of each note in Table 14 above is as follows.
*1 2—アタ リルァミ ド— 2—メチルプロノくンスルホン酸ソ一ダの略 号、  * 1 Abbreviation of 2- atarylamide-2-methylprononesulfonic acid,
*2 メチルアタ リ レー トの略号、  * 2 Abbreviation for methyl acrylate
*3昇温下で測定した温度と伸び率との関係において 260 °Cにおけ る値、  * 3 The value at 260 ° C in relation to the temperature and elongation measured at elevated temperature.
*4乾熱 1 20 °C X 48時間処理、  * 4 Dry heat 1 20 ° C X 48 hours treatment,
乾熱 2 1 0 °cx 30分処理、  Dry heat 2 10 ° C x 30 minutes treatment,
*6 SAMPSに代えてメタリルスルホン酸ソ一ダを使用した。  * 6 Sodium methallylsulfonate was used instead of SAMPS.
*7乾熱 2 1 0 °C X 30分間処理後の生布表面状態を目視して評価し た。  * 7 The raw fabric surface condition after dry heat treatment at 210 ° C for 30 minutes was visually evaluated.
実施例 34 Example 34
平均粒子径約 1 に粉砕した黄色顔料 (Hoechst Green GG 0 1 ) をジメチルホルムアミ ド (以下 DMFと略称する。 ) に分散した。  A yellow pigment (Hoechst Green GG01) ground to an average particle size of about 1 was dispersed in dimethylformamide (hereinafter abbreviated as DMF).
第 1 5表に示した組成および重合度のァクリル糸重合体を DMFに溶 解した後これを上記顔料分散液に添加混合せしめて、 重合体後度 25重 量%、 顔料濃度 2重量 重合体の紡糸原液を調整した。  An acryl polymer having the composition and the degree of polymerization shown in Table 15 was dissolved in DMF and added to and mixed with the above-mentioned pigment dispersion to obtain a polymer having a polymer content of 25% by weight and a pigment concentration of 2%. Was prepared.
上記紡糸原液を直径 0.055 mZniの円形断面を有する 8万ホール の紡糸口金のオリフィ スから凝固浴 DM FZ水 = 60/ 40 (重量比) 、 20 °Cに押し出し、 紡糸ドラフ ト 0.4で引き取った後、 DMFZ水 = 30/70 (重量比) 、 85 °Cで 8倍延伸した。  The above spinning stock solution was extruded from a 80,000-hole spinneret orifice having a circular cross section of 0.055 mZni in diameter, at a coagulation bath DM FZ water = 60/40 (weight ratio), at 20 ° C, and taken up with a spinning draft of 0.4. DMFZ water = 30/70 (weight ratio), stretched 8 times at 85 ° C.
引き続き、 水洗一前オイル付与した後、 1 5%収縮を与えながら 1 5 0 °Cでローラー乾燥した。 さらに後オイル付与ークリンプ付与ーク リン ブセッ ト (湿熱 1 20 °C) —後乾燥を行ない、 2 dのアタリル繊維を得 た。 Subsequently, the oil was applied immediately before washing with water, followed by roller drying at 150 ° C. while giving 15% shrinkage. Crimping with oil after crimping (moist heat: 120 ° C)-After drying, 2d ataryl fiber is obtained. Was.
得られたァクリル繊維は第 1 5表に示す特性値を有していた, 第 1 5 表  The obtained acryl fiber had the characteristic values shown in Table 15 and Table 15
Figure imgf000059_0001
なお、 上記第 1 5表中の各註の意味は下記のとおりである。
Figure imgf000059_0001
The meaning of each note in Table 15 above is as follows.
*1 2 -アク リルア ミ ドー 2一メチルプロノ ンスルホン酸ソーダの略 号、  * 1 2-Acrylamide 2 Abbreviation for sodium monomethylprononsulfonic acid
*2 メチルァクリ レートの略号、  * 2 Abbreviation for methyl acrylate,
*3昇温下で測定した温度と伸び率との関係において 260 °Cにおけ る値、  * 3 The value at 260 ° C in relation to the temperature and elongation measured at elevated temperature.
*4 乾熱 2 1 0°cx 30分処理、  * 4 Dry heat 2 1 0 ° cx treatment for 30 minutes,
*5 S AMP Sに代えてメタ リルスルホン酸ソーダを使用した。  * 5 Sodium methallylsulfonate was used in place of S AMP S.
実施例 3 5 Example 3 5
Run No.1のァクリル繊維を 5 1 niZm定長カッ トして 2〃 紡紡績 を行ない、 2Z34番手の紡績糸を得た。 次に上記紡績糸を用いて、 密 度;経 73本ノイ ンチ、 緯 73本 Zィンチの平織物を得た。  Run No. 1 acryl fiber was cut to a fixed length of 51 niZm and spun for 2 mm to obtain a spun yarn of 2Z34 count. Next, using the above-mentioned spun yarn, a plain woven fabric having a density of 73 pieces of warp and 73 pieces of weft Z-inch was obtained.
上記織物をアサヒガード AG— 7 1 0 (フッ素樹脂系防水加工剤、 旭 硝子製) 5重量部、 ハイソフター K一 1 0 (明成化学製) 1重量部、 ィ ソプロパノール 2重量部、 水 92重量部よりなる処理浴に浸潰した後、 絞り率 5 0%に絞った。 次いで 1 0 0。Cで乾燥した後、 1 5 0。Cで熱処 理した。  5 parts by weight of Asahigard AG-710 (fluororesin waterproofing agent, made by Asahi Glass), 1 part by weight of High Softer K-10 (manufactured by Meisei Chemical), 2 parts by weight of isopropanol, 92 parts by weight of water After being immersed in a treatment bath consisting of a portion, the squeezing rate was reduced to 50%. Then 100. After drying in C 150. Heat treated in C.
さらに上記織物をボロンコート (シリ コン樹脂系防水加工剤、 信越化 学製) 20重量部、 ト リ クロロエチレン 80重量部よりなる処理浴に浸 漬した後、 絞り率 40%に絞った。 次いで 1 00。Cで乾燥した後 1 60 。Cで熱処理した。  Further, the above woven fabric was immersed in a treatment bath composed of 20 parts by weight of boron coat (a silicone resin-based waterproofing agent, manufactured by Shin-Etsu Chemical Co., Ltd.) and 80 parts by weight of trichloroethylene, and the squeezing ratio was reduced to 40%. Then 100. After drying in C 160. Heat treated with C.
得られた防水布は、 はつ水度 1 00 { J I S L 1 092 スプレー 法 } 、 耐水度 2 5.8 c m { J I S L 1 0 9 2 A法 (低水圧法) } 、 耐光堅牢度 4級以上 ( J I S L 0 8 4 2 第 3露光法) 、 乾熱 1 4 0 °Cにおける伸びタテ— 1 %、 ョコ 0 %を示した。 なお乾熟 1 4 0。Cにお ける伸びは以下の方法により測定した。 上端を架台に固定されたつかみ 巾 5 0 mmのク リ ッブに巾 2 5mm、 長さ 1 5 0 mmに切取った防水布の上端 をはさんだ。 次にク リ ンプの重量と合わせて 5 0gになるように調整し た重りを装着したつかみ巾 5 0 mmのクリ ッブに、 上記防水布の下端をは さんだ。 さに上記防水布に間隔が 1 0 0mmになるようにマークを付けた。 次に架台つるされた上記防水布を乾熱 1 4 0 °Cで 2 4時間処理した。 室 温冷却した後、 マーク間隔 A [mm] を測定した。 伸びは ( (A— i 0 0) ノ 1 0 0) X I 0.0により計算した。 The obtained waterproof cloth has a water content of 100 {JISL 1 092 spray Method, water resistance 25.8 cm {JISL1092A method (low water pressure method)}, light fastness class 4 or higher (JISL0842 third exposure method), elongation at dry heat of 140 ° C Vertical 1%, horizontal 0%. In addition, dry ripening 140. The elongation at C was measured by the following method. The upper end is fixed to the base. A grip of 50 mm width is sandwiched between the upper ends of a waterproof cloth cut to 25 mm width and 150 mm length. Next, the lower edge of the waterproof cloth was sandwiched between a 50 mm grip with a weight adjusted to 50 g in accordance with the weight of the clamp. The waterproof cloth was marked so as to have an interval of 100 mm. Next, the waterproof cloth suspended on the gantry was treated at a dry heat of 140 ° C. for 24 hours. After cooling to room temperature, the mark interval A [mm] was measured. The elongation was calculated by ((A-i 0 0) no 1 0 0) XI 0.0.

Claims

請求の範囲 The scope of the claims
1. (A), (a) 下記式(i )  1. (A), (a) The following equation (i)
C H 2 - C H -C H 2-C H-
C≡N · CI ) C≡NCI)
5 で表わされる重合単位および  A polymerized unit represented by 5 and
下記式(2)  The following equation (2)
- C H 2 - C H^--C H 2-C H ^-
C 0 C H3 . C 0 CH 3 .
I I C2)  I I C2)
NH - C一 CH2 - S03M NH - C one CH 2 - S0 3 M
CH3 CH 3
10 ここで Mは水素原子又は一当量のカチオンである、  10 where M is a hydrogen atom or an equivalent cation,
で表わされる重合単位から実質的になり、  Consisting essentially of polymerized units represented by
(b) 上記重合単位(1 )と重合単位(2)の合計に対し上記重合単位 (2)が 0-4〜1.5モル%を占め、 そして  (b) the polymerized unit (2) accounts for 0-4 to 1.5 mol% based on the total of the polymerized unit (1) and the polymerized unit (2), and
(c) 重合度が 600〜1 ,500の範囲にある、  (c) the degree of polymerization is in the range of 600 to 1,500,
J5 アクリロニトリル系共重合体からなり、 J5 Acrylonitrile copolymer,
(B) 引張強度が 2~5gZdの範囲にあり、 そして  (B) the tensile strength is in the range of 2-5 gZd, and
(C) 昇温下で測定した温度と伸び率との関係において、 260 °Cに おける伸び率が 1 0%以下である、 (C) The elongation at 260 ° C is not more than 10% in the relationship between the temperature and the elongation measured at elevated temperature.
ことを特徵とするァクリル繊維。  Acryl fiber characterized by the fact that:
20 2. (AO (a 上記式(1 )の重合単位、 上記式(2)の重合単位お よびァクリロ二トリルと共重合可能な単量体に由来する上記式(2)の重 合単位とは異なる重合単位( 3 )で表わされる重合単位から実質的になり ,20 2. (AO (a) a polymerized unit of the above formula (1), a polymerized unit of the above formula (2) and a polymerized unit of the above formula (2) derived from a monomer copolymerizable with acrylonitrile; Consists essentially of polymerized units represented by different polymerized units (3),
( b 上記重合単位( 1 )と重合単位( 2 )の合計に対し上記重合単位 (b) The polymerized unit (1) and the polymerized unit (2)
(2 )が 0.4〜 1.5モル%を占めそして上記重合単位(3 )が上記重合単 位(1 )に基づいて 5重量%以下を占め、 (2) accounts for 0.4 to 1.5 mol% and the polymerized unit (3) is the polymerized unit. Less than 5% by weight based on the position (1),
(c) 重合度が 6 00〜し 50 0の範囲にある、  (c) the degree of polymerization is in the range of 600 to 500,
アタリロニト リル系共重合体からなり、 It is made of an attarilonitrile copolymer,
(B) 引張強度が 2~5g/dの範囲にあり、 そして  (B) the tensile strength is in the range of 2-5 g / d, and
(C) 昇温下で測定した温度と伸び率との関係において、 26 0 °Cに おける伸び率が 1 0 %以下である、  (C) In the relationship between the temperature and the elongation measured at elevated temperature, the elongation at 260 ° C is 10% or less;
ことを特徴とするァクリル繊維。 Acryl fiber, characterized in that:
3. ク リ ンプを付されている請求の範囲 1又は 2に記載のァクリル繊 3. Acryl fiber according to claims 1 or 2 attached with a crimp
4. 2 1 0 °Cでの乾熱弛緩収縮率が 3 %より小さい請求の範囲 1又は 2に記載のァクリル繊維。 4. The acryl fiber according to claim 1 or 2, having a dry heat relaxation shrinkage at 210 ° C of less than 3%.
5. 1 3 0 °Cでの湿熟弛緩収縮率が 3%より小さい請求の範囲 1又は 2に記載のァクリル繊維。  5. The acryl fiber according to claim 1 or 2, wherein the ripening relaxation shrinkage at 130 ° C is less than 3%.
6 - 伸度 3 5〜 6 0 %の範囲にある請求の範囲 1又は 2に記載のァク リル繊維。  The acrylic fiber according to claim 1 or 2, wherein the elongation is in the range of 35 to 60%.
7. 透明性が少く とも 80 %である請求の範囲 1又は 2に記載のァク リル繊維。  7. The acrylic fiber according to claim 1 or 2, which has a transparency of at least 80%.
8. ヤング率が 4 00〜 70 OkgZ議 2の範囲にある請求の範囲 1又 は 2に記載のァクリル娥維。 8. Akuriru娥維to in 1 or 2 according to Young's modulus is in the range of 4 00~ 70 OkgZ discussions 2.
9. 耐熱染色堅牢度 ( 1 20°cx 4 8時間) が少く とも 3級である請 求の範囲 1又は 2に記載のァクリル繊維。  9. The acryl fiber according to claim 1 or 2, wherein the fastness to heat dyeing (120 ° C x 48 hours) is at least grade 3.
1 0. 結晶化度が 2 0〜40 %の範囲にある請求の範囲 1又は 2に記 載のァクリル繊維。  10. The acryl fiber according to claim 1 or 2, having a crystallinity of 20 to 40%.
1 1. 上記重合単位 ( 3 ) が下記式 R 1 1. The polymerized unit (3) has the following formula R
-^CH2-C - C3) -^ CH 2 -C-C3)
Y ここで、 Rは水素原子またはメチル基であり、 そして Yは一 C OO X (ここで Xは水素原子、 ナトリウム又はメチル基である) で表わ される基、 一 OCO CH3、 一C ONH2、 一 C6H5、 — C H2S 03 Naおよび一 C 6H4S O 3Naよりなる群から選ばれる基である、 で表わされる請求の範囲 2に記載のァクリル繊維。 Y where R is a hydrogen atom or a methyl group, and Y is a group represented by one COO X (where X is a hydrogen atom, a sodium or methyl group), one OCOCH 3 , one C 3. The acryl fiber according to claim 2, which is a group selected from the group consisting of ONH 2 , C 6 H 5 , —CH 2 S 0 3 Na and C 6 H 4 SO 3 Na.
1 2. (1 ) 請求の範囲 1又は請求の範囲 2に特定したァクリロニト リル系共重合体の紡糸原液を紡糸口金のオリフィスから押出して紡糸原 液の細流を生成し、  1 2. (1) Extruding the spinning solution of the acrylonitrile copolymer specified in Claim 1 or Claim 2 from the orifice of the spinneret to generate a fine stream of the spinning solution.
(2) 該細流を凝固させつつ 5~ 1 0倍に延伸して延伸糸を生成し、 - (2) stretching the rivulet 5 to 10 times while coagulating to produce a drawn yarn,
(3) 該延伸糸を加熱して 3〜25%収縮させ、 そして (3) heating the drawn yarn to shrink it by 3 to 25%, and
(4) 得られた収縮糸を乾燥工程に付す、  (4) subjecting the obtained shrink yarn to a drying step,
ことを特徵とするァクリル繊維の製造法。 A method for producing acryl fibers, characterized in that:
1 3. 請求の範囲 1のァクリル繊維を含有することを特徵とする、 ァ クリル繊維と芳香族ポリエステル繊維の交編 ·交織物。  1 3. A cross-knitted / cross-woven fabric of an acrylic fiber and an aromatic polyester fiber, characterized by containing the acryl fiber of claim 1.
1 4 - 芳香族ポリエステル蛾維の芳香族ポリエステルがエチレンテレ フタ レ一トを主たる繰返し単位とするエチレンテレフタ レー トのホモ - 又はコーポリエステルである請求の範囲第 1 3項に記載の交編♦交镞物 14. A mixed knitting according to claim 13, wherein the aromatic polyester of the aromatic polyester moth is a homo- or copolyester of ethylene terephthalate having ethylene terephthalate as a main repeating unit. ♦ Exchange
1 5. 請求の範囲 2のァクリル繊維を含有することを特徵とする、 ァ ク リル繊維と芳香族ポリエステル繊維の交編 ·交織物。 1 5. A cross-knitted / cross-woven fabric of acrylic fiber and aromatic polyester fiber, characterized by containing the acryl fiber of claim 2.
1 6. 芳香族ポリエステル繊維の芳香族ポリエステルがエチレンテレ フタ レートを主たる繰返し単位とするエチレンテレフタ レー トのホモ - 又はコーポリエステルである請求の範囲第 1 5項に記載の交編 ·交織物。1 6. The aromatic polyester of the aromatic polyester fiber is a homopolymer of ethylene terephthalate whose main repeating unit is ethylene terephthalate. Or the cross-knitted / cross-woven fabric according to claim 15, which is a copolyester.
1 7 . 請求の範囲 1 のァク リル繊維を含有することを特徵とする電気 カーぺッ ト用表面材。 17. A surface material for an electric carpet, comprising the acrylic fiber according to claim 1.
1 8 . 請求の範囲 2のァクリル繊維を含有することを特徵とする電気 カーぺッ ト用表面材。  18. A surface material for an electric carpet, characterized by containing the acryl fiber of claim 2.
1 9 . 請求の範囲 1 7の表面材を有する電気カーぺッ ト。  1 9. An electric carton having the surface material of claim 17.
2 0 . 請求の範囲 1 8の表面材を有する電気カーぺッ ト。  20. An electric carton having the surface material according to claim 18.
2 1 . 請求の範囲 iのァク リル繊維を含有することを特徴とする電気 毛布用生布。  21. A raw fabric for electric blanket, comprising the acrylic fiber of claim i.
2 2 . 請求の範囲 2のアク リル繊維を含有することを特徵とする電気 毛布用生布。  22. A raw fabric for electric blanket, characterized by containing the acrylic fiber of claim 2.
2 3 . 請求の範囲 2 1の生布を有する電気毛布。  23. An electric blanket having the raw cloth according to claim 21.
2 4 . 請求の範囲 2 2の生布を有する電気毛布。  24. An electric blanket having the raw cloth according to claim 22.
2 5 - 請求の範囲 1のァク リル繊維からなる布帛を基布とすることを 特徵とする防水布。  25-A waterproof cloth characterized in that the cloth comprising the acrylic fiber according to claim 1 is used as a base cloth.
2 6 . 請求の範囲 2のアタ リル繊維からなる布帛を基布とすることを 特徴とする防水布。  26. A waterproof cloth, characterized by using a cloth made of the acryl fibers of claim 2 as a base cloth.
2 7 . ァク リル繊維が原液着色されている請求項第 2 5項あるいは第 2 6項の防水布。  27. The waterproof cloth according to claim 25 or claim 26, wherein the acrylic fiber is undiluted.
2 8 . 請求項第 2 5項の防水布の基布と しての請求項第 2 5項に特定 されたァク リル繊維からなる布帛。  28. A fabric comprising the acrylic fiber specified in claim 25 as a base fabric of the waterproof cloth in claim 25.
2 9 . 請求項第 2 6項の防水布の基布と しての請求項第 2 6項に特定 されたァク リル繊維からなる布帛。  29. A fabric comprising the acrylic fiber specified in claim 26 as a base fabric of the waterproof cloth according to claim 26.
PCT/JP1990/000234 1989-03-03 1990-02-27 Acrylic fiber of high thermal resistance, use of same and method of manufacturing same WO1990010100A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP5011989 1989-03-03
JP1/50119 1989-03-03
JP1112137A JP2579360B2 (en) 1989-03-03 1989-05-02 Acrylic fiber and its manufacturing method
JP1/112137 1989-05-02
JP1282872A JP2740302B2 (en) 1989-11-01 1989-11-01 Electric carpet and its surface material
JP1/282872 1989-11-01
JP1/306437 1989-11-28
JP1306437A JP2788080B2 (en) 1989-11-28 1989-11-28 Electric blanket and its raw cloth
JP1332598A JP2749676B2 (en) 1989-12-25 1989-12-25 Knitting and mixing of acrylic fiber and aromatic polyester fiber
JP1/332598 1989-12-25
JP2/10686 1990-01-22
JP2010686A JPH03220342A (en) 1990-01-22 1990-01-22 Water-proof web

Publications (1)

Publication Number Publication Date
WO1990010100A1 true WO1990010100A1 (en) 1990-09-07

Family

ID=27548286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000234 WO1990010100A1 (en) 1989-03-03 1990-02-27 Acrylic fiber of high thermal resistance, use of same and method of manufacturing same

Country Status (2)

Country Link
EP (1) EP0423350A4 (en)
WO (1) WO1990010100A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496510A (en) * 1994-08-23 1996-03-05 Capone; Gary J. Acrylonitrile filament process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137029A (en) * 1976-05-06 1977-11-16 Toray Ind Inc Production of acrylic fibers having excellent opening properties
JPS5626005A (en) * 1979-08-01 1981-03-13 Du Pont Acrylic fiber
JPS6127085A (en) * 1984-07-14 1986-02-06 旭化成株式会社 Conductive wiring material
JPS61119710A (en) * 1984-11-16 1986-06-06 Toray Ind Inc Production of acrylic fiber having high tenacity and modules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1088154B (en) * 1977-10-27 1985-06-10 Snia Viscosa HIGH GLOSSY ACRYLIC FIBER AND PROCESS FOR ITS MANUFACTURE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137029A (en) * 1976-05-06 1977-11-16 Toray Ind Inc Production of acrylic fibers having excellent opening properties
JPS5626005A (en) * 1979-08-01 1981-03-13 Du Pont Acrylic fiber
JPS6127085A (en) * 1984-07-14 1986-02-06 旭化成株式会社 Conductive wiring material
JPS61119710A (en) * 1984-11-16 1986-06-06 Toray Ind Inc Production of acrylic fiber having high tenacity and modules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0423350A4 *

Also Published As

Publication number Publication date
EP0423350A4 (en) 1993-07-07
EP0423350A1 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
KR101548762B1 (en) Antistatic acrylic fiber and method for manufacturing the same
WO2003008678A1 (en) Acrylic composite fiber and method for production thereof, and fiber composite using the same
WO1990010100A1 (en) Acrylic fiber of high thermal resistance, use of same and method of manufacturing same
JPH09296335A (en) Flame-retardant fabric improved in strength and washing shrinkage
JP3959738B2 (en) Reactive dye-dyeable cross-linked acrylate fiber and fiber structure and process for producing them
EP0557830A1 (en) Vinyl alcohol units-containing polymer fiber having resistance to hot water and wet heat and process for its production
JPH0860486A (en) Lightweight heat-insulating fiber web
JP2566890B2 (en) Flame-retardant acrylic high shrink fiber
JP2749676B2 (en) Knitting and mixing of acrylic fiber and aromatic polyester fiber
JP4391740B2 (en) Reduction cleaning method for dyed polylactic acid fiber
JP2566891B2 (en) Flame-retardant acrylic high shrink fiber
JP2515260B2 (en) Flame-retardant acrylic composite fiber
JP4562326B2 (en) Napped product and manufacturing method thereof
JP2510745B2 (en) Easy dyeing high strength polyester composite fiber
JP2601775B2 (en) Flame retardant acrylic composite fiber
CN109208135A (en) The method for weaving and product of terylene and fever acrylic fibers intertexture man textile fabric
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JP4531281B2 (en) Far-infrared radiation raised fiber structure
JP5473703B2 (en) Moist heat resistant knitted fabric
JP2004197244A (en) Hygroscopic polyester fiber structure and method for producing the same
JP2740302B2 (en) Electric carpet and its surface material
US9702061B2 (en) Method for manufacturing pile fabric
JPH08158202A (en) Flame retardant fabric
JP4296484B2 (en) Comfortable work clothes
JPH0362815B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1990903406

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990903406

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990903406

Country of ref document: EP