WO1990008352A1 - Numeric controller for transfer line - Google Patents

Numeric controller for transfer line Download PDF

Info

Publication number
WO1990008352A1
WO1990008352A1 PCT/JP1989/001268 JP8901268W WO9008352A1 WO 1990008352 A1 WO1990008352 A1 WO 1990008352A1 JP 8901268 W JP8901268 W JP 8901268W WO 9008352 A1 WO9008352 A1 WO 9008352A1
Authority
WO
WIPO (PCT)
Prior art keywords
control means
axis
transfer line
axis control
numerical
Prior art date
Application number
PCT/JP1989/001268
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Otsuka
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1990008352A1 publication Critical patent/WO1990008352A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33161Data exchange between controller and processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34402Synchronize programs for machines, processes, tasks, if one stops other also
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a numerical controller for a transfer line.
  • NC devices for transfer lines that incorporate NC devices on the line are used. It has come to be.
  • Such an NC device requires a sequence control function and an axis control function.
  • the axis control function is controlled by multi-axis and multi-system, and the same expectation matching function between axes is essential.
  • the same expectation matching between axes was performed while transmitting and receiving auxiliary signals between NC units.
  • M code is transmitted and received between NC devices, and transmission and reception is performed using a discrete DIS D ⁇ provided in a programmable controller (PC) in each NC device.
  • PC programmable controller
  • the NC device since the NC device has an NC program for each axis, a program for transmitting and receiving signals must be provided for each axis, which has led to complications in programming. .
  • An object of the present invention is to provide a numerical control device for a transfer line that can minimize the tact time without increasing the program for the same expectation matching control between axes in multi-axis multi-path control. Disclosure of the invention
  • a numerical control device for a transfer line in which a plurality of numerical control devices are incorporated on a transfer line, the numerical control device is each axis on the transfer line.
  • a numerical control device for a transfer line characterized in that the control state of the axis control means is determined by the communication line, and the same expectation matching control between the axes of the axis control means is performed. Is done.
  • the main control means determines the control state of each axis control means via the communication line, and transfers the control state to each axis control means via the communication line.
  • FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention
  • FIG. 2 is a diagram showing a connection relationship between the PC control means and the axis control means of FIG. 1,
  • Figure 3 shows the contents of one block of serial data.
  • FIG. 1 is a diagram showing the overall configuration of one embodiment of the present invention.
  • the main control means 1 comprises communication protocol control means 11, inter-gun control means 12, tape storage means 13, and PC control means 14.
  • the communication protocol control means 11 controls a protocol with the LAN 3 provided outside.
  • the inter-system control means 12 controls the CRT / MDI 4, the manual pulse generator 5, and the external interface (RS-232C) 6, and also manages the serial port. Also do.
  • the tape storage means 13 temporarily stores data from the inter-system control means 12.
  • PC control Means 14 exchanges external signals via DI ZD ⁇ .
  • the PC control means 14 is connected to the axis control means 2a and 2b via the serial link 'control circuit (SLC) 21a and 21b via the communication lines L1, L2 and L3. Is done. Although only two axis control means are shown in the figure, it goes without saying that more connections may be used depending on the state of the transfer line.
  • SLC serial link 'control circuit
  • the axis control means 2a includes an SLC 21a and an axis control circuit 22a.
  • a servomotor 9a is connected to the axis control circuit 22a via a servo amplifier 8a.
  • the servomotor 9a is driven by the servo amplifier 8a.
  • FIG. 2 is a diagram showing a connection relationship between the PC control means 14 and the axis control means 2a and 2b in FIG.
  • the PC control means 14 has a host CPU 15, a host SLC 16 and a RAM 17 (only the parts relating to the present embodiment are shown).
  • the host CPU 15 has a 16-bit configuration, and the hosts SLC 16 and RAM 17 have an 8-bit configuration. Therefore, a bit converter 18 is provided between the two.
  • Host CPU 15 controls hosts SLC 16 and RAM17.
  • RAM I7 stores input / output signals and various data.
  • the host SLC 16 is connected to a single SLC 21 a in the axis control means 2 a via a communication line (RS-422) L 1.
  • the local SLC 21 a and the local SLC 21 b are connected via the communication line (RS_422) L2.
  • Optical communication may be performed using an optical cable for this communication line.
  • the local SLC 21a has an input memory 28a for data communication and an output memory 29a.
  • the axis control circuit 22a is composed of a oral CPU 23a, program memory 24a, setting data 25a, deviation register 26a and DZA converter 27a. You.
  • the configuration of the axis control circuit 22b is the same as that of the axis control circuit 22a, and a description thereof will be omitted.
  • Communication between the axes is performed by reading and writing information to the input memory 28a and output memory 29a. That is, the local CPU 23a in the axis control means 2a outputs a signal " ⁇ K signal" indicating that the axis in charge of itself may wait for another axis. Then, the other axis control means 2b receives a signal from the host SLC 16 that the axis control means 2a may wait for the axis. Conversely, when receiving the ⁇ 0 K signal from the other axis control means 2 b, the local CPU 23 a reads the input memory 28 a and the signal is sent by the host SLC 16. This is performed by determining whether or not the output is the " ⁇ K signal".
  • the output of the DZA converter 27a is taken into the servo amplifier 8a.
  • the output of the encoder of the servo motor 9a is taken into the deviation register 26a as a feedback pulse.
  • Fig. 3 shows the contents of one block of serial data.
  • One block of serial data consists of N data frames (data A, B ⁇ ! 1), two header frames (header A, B), and BCC (block check 'character) frame. + 3) frames.
  • One frame is composed of 10 bits, with a start bit and a stop bit before and after each frame, and a dummy bit is provided between each frame.
  • Header A stores the serial code corresponding to the address and the command code for commanding the headlight
  • header B stores the number of data bytes.
  • Data A and B to n store control data for each axis.
  • BCC stores redundant character strings for detecting errors occurring in the blocks.
  • each axis is controlled independently.
  • the axis control means 2a and 2b control a two-axis orthogonal drilling machine which is orthogonal to each other.
  • exclusive control of the axis is required in that region.
  • the local CPU 23a of the axis control means 2a outputs to the output memory 29a of the local SLC 21a that the blade is presently in the interference area.
  • the host SLC 16 reads this output memory 29 a and writes the state of the blade of the axis control means 2 a to the input memory 28 b in the mouth SLC 21 b of the axis control means 2 b .
  • the axis control means 2b knows that the blade of the axis control means 2a is in the interference area. In addition, the axis control means 2a is just before entering this interference area. Alternatively, the status of the axis control means 2b can be read from the input memory 28a.
  • this SLC has a transfer capability of 1 MBPS or more, its information exchange speed is extremely high. Further, since the priority control is performed by the main control means 1, it is possible to prevent a deadlock state in which another axis is in a waiting state.
  • a single-axis control NC device has been described as an example of a numerical control device. However, it is clear that the effects of the present invention can be obtained.
  • the same expectation matching control between axes can be performed with a high-speed and simple program, thereby improving the productivity of the transfer line and improving the transfer efficiency.
  • This has the effect that programming with the introduction of the license can be done in a short period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This invention relates to a numeric controller for a transfer line which incorporates a plurality of numeric controllers on the transfer line. The numeric controller comprises a plurality of shaft control means (2a, 2b) for controlling each shaft on the transfer line and main control means (1) for controlling commonly these shaft control means (2a, 2b). The main controller (1) judges the control state of the shaft control means (2a, 2b) by communication lines (L1, L2, L3) connected in such a manner as to be capable of up and down communication of the shaft control means (2a, 2b) and makes synchronization queuing control between the shafts of the shaft control means (2a, 2b). The main controller (1) judges the control state of each shaft control means (2a, 2b) through the communication lines (L1, L2, L3) and transfers this control state to each shaft control means (2a, 2b) through the control lines (L1, L2, L3). Accordingly, each shaft control means (2a) can know the control state of the other (2b) and can make flexibly the synchronization queuing control between the shafts.

Description

明 細 書  Specification
ト ラ ンスフ ァ ーラ イ ン用数値制御装置 Numerical control unit for transfer line
技 術 分 野 Technical field
本発明は数値制御装置 (N C装置) をト ラ ンスフ ァ ーラ イ ン上に組み込んだト ラ ンス フ ァ ーライ ン用数値制御装置に係 り、 特に多軸多系統制御での軸間の同期待合せ制御を行える 景  The present invention relates to a numerical control device for a transfer line in which a numerical control device (NC device) is incorporated on a transfer line. A scene where you can control the meeting
ト ラ ンスフ ァ ーラ イ ン用数値制御装置に関する。 術  The present invention relates to a numerical controller for a transfer line. Art
 Height
自動車産業分野に代表される多量生産ラィ ン向けの加工機 械及び組立 ·検査機械等の制御装置として、 N C装置をライ ン上に組み込んだト ラ ンスフ ァ ーラ イ ン用 N C装置が使用さ れるようになってきた。  As a control device for machining and assembling / inspection machines for mass production lines represented by the automobile industry, NC devices for transfer lines that incorporate NC devices on the line are used. It has come to be.
このような N C装置には、 シーケンス制御機能と軸制御機 能とが必要である。 このうち軸制御機能は多軸多系統の制御 が多く軸間での同期待合せ機能が必須の技術である。 従来は この軸間の同期待合せを N C装置間で補助信号を送受信しな がら行っていた。 例えば、 N C装置間で Mコー ドの送受信を 行うとか、 各 N C装置内のプログラマブルコ ン トローラ ( P C ) に設けられているディスク リー トな D I Z D〇を用いて 送受信を行っていた。  Such an NC device requires a sequence control function and an axis control function. Of these, the axis control function is controlled by multi-axis and multi-system, and the same expectation matching function between axes is essential. Conventionally, the same expectation matching between axes was performed while transmitting and receiving auxiliary signals between NC units. For example, M code is transmitted and received between NC devices, and transmission and reception is performed using a discrete DIS D〇 provided in a programmable controller (PC) in each NC device.
従来のように、 P Cの D I Z D〇を用いて信号の送受信を 行うと、 それらの補助機能を実行するためのオーバ一へッ ド に伴う無駄な時間が掛かり、 量産ライ ンの生産効率を上げる ことができないという問題があった。 即ち、 現行の一軸 N C の場合、 軸移動後、 補助機能を実行し、 また軸制御を行うと、 前の軸制御の実行と補助機能の実行との間のブ πックの変わ り目で時間の口スが生じ、 タク トタイムを小さ くするのが困 難であった。 When signals are transmitted and received using the DIZD II of the PC as in the past, the overhead required to execute these auxiliary functions is reduced. Wasted time, and the production efficiency of mass production lines could not be increased. In other words, in the case of the current single-axis NC, the auxiliary function is executed after the axis is moved, and when the axis control is performed, the change in the block between the execution of the previous axis control and the execution of the auxiliary function occurs. Time was short and it was difficult to reduce tact time.
また、 N C装置は各軸毎に N Cプログラムを有しているの で、 信号の送受信用のプログラムも各軸毎に備えておかなけ ればならず、 プログラ ミ ングの複雑化を招いていた。  In addition, since the NC device has an NC program for each axis, a program for transmitting and receiving signals must be provided for each axis, which has led to complications in programming. .
本発明の目的は多軸多系統制御での軸間の同期待合せ制御 をプログラムも増加させることなくタク トタイムを最小化で きる ト ラ ンスフ ァ 一ライ ン用数値制御装置を提供することに ある。 発 明 の 開 示  SUMMARY OF THE INVENTION An object of the present invention is to provide a numerical control device for a transfer line that can minimize the tact time without increasing the program for the same expectation matching control between axes in multi-axis multi-path control. Disclosure of the invention
本発明では上記課題を解決するために、  In the present invention, in order to solve the above problems,
複数個の数値制御装置をト ラ ンスフ ァ ーラ イ ン上に組み込 んだト ラ ンスフ ァーライ ン用数値制御装置において、 前記数 値制御装置は前記ト ラ ンスフ ァ 一ライ ン上の各軸を制御する 複数個の軸制御手段と、 前記軸制御手段の複数個を共通に制 御する主制御手段とから構成され、 前記主制御手段は前記軸 制御手段を上下通信可能なように接続された通信回線によつ て、 前記軸制御手段の制御状態を判別し、 前記軸制御手段の 各軸間の同期待合せ制御を行うことを特徵とする ト ラ ンスフ ァーライ ン用数値制御装置が、 提供される。 主制御手段は各軸制御手段の制御状態を通信回線を介して 判別し、 その制御状態を更に通信回線を介して各軸制御手段 に転送する。 これによつて、 各軸制御手段は他の軸制御手段 の制御状態を高速に知ることができ、 各軸間の同期待合せ制 御を柔軟に行う ことができる。 図 面 の 簡 単 な 説 明 第 1図は本発明の一実施例の全体構成を示す図、 In a numerical control device for a transfer line in which a plurality of numerical control devices are incorporated on a transfer line, the numerical control device is each axis on the transfer line. A plurality of axis control means, and a main control means for commonly controlling a plurality of the axis control means, wherein the main control means is connected so that the axis control means can be communicated up and down. A numerical control device for a transfer line characterized in that the control state of the axis control means is determined by the communication line, and the same expectation matching control between the axes of the axis control means is performed. Is done. The main control means determines the control state of each axis control means via the communication line, and transfers the control state to each axis control means via the communication line. Thus, each axis control means can quickly know the control state of the other axis control means, and can flexibly perform the same expectation matching control between the axes. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention,
第 2図は第 1図の P C制御手段と軸制御手段との接続関係 を示す図、  FIG. 2 is a diagram showing a connection relationship between the PC control means and the axis control means of FIG. 1,
第 3図はシ リ アルデータの 1 プロ ックの内容を示す図であ る。 発明を実施するための最良の形態 以下、 本発明の一実施例を図面に基づいて説明する。 本実 施例では一軸制御 N C装置を対象に説明する。  Figure 3 shows the contents of one block of serial data. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, a single-axis control NC device will be described.
第 1図は本発明の一実施例の全体構成を示す図である。 主制御手段 1 は通信プロ トコル制御手段 1 1、 系銃間制御 手段 1 2、 テープ記憶手段 1 3及び P C制御手段 1 4から構 成される。 通信プロ ト コ ル制御手段 1 1 は外部に設けられた L A N 3との間のプロ トコルを制御する。 系統間制御手段 1 2 は C R T / M D I 4、 手動パルス発生器 5及び外部ィ ンタ —フ ェ ース ( R S— 2 3 2 C ) 6の各系統間の制御を行い、 またシ リ アルポー ト管理も行う。 テープ記憶手段 1 3は系統 間制御手段 1 2からのデータを一時的に記憶する。 P C制御 手段 1 4は D I ZD〇を介して外部信号のやりとりを行う。 また、 P C制御手段 1 4は軸制御手段 2 a及び 2 bにシリア ル · リ ンク '制御回路 (S L C) 2 1 a及び 2 1 bを介して 通信回線 L l、 L 2及び L 3で接続される。 図では軸制御手 段は 2つだけ示したが、 ト ラ ンスフ ァ一ライ ンの状態によつ てはこれ以上の連結でもよいことはいうまでもない。 FIG. 1 is a diagram showing the overall configuration of one embodiment of the present invention. The main control means 1 comprises communication protocol control means 11, inter-gun control means 12, tape storage means 13, and PC control means 14. The communication protocol control means 11 controls a protocol with the LAN 3 provided outside. The inter-system control means 12 controls the CRT / MDI 4, the manual pulse generator 5, and the external interface (RS-232C) 6, and also manages the serial port. Also do. The tape storage means 13 temporarily stores data from the inter-system control means 12. PC control Means 14 exchanges external signals via DI ZD〇. Also, the PC control means 14 is connected to the axis control means 2a and 2b via the serial link 'control circuit (SLC) 21a and 21b via the communication lines L1, L2 and L3. Is done. Although only two axis control means are shown in the figure, it goes without saying that more connections may be used depending on the state of the transfer line.
軸制御手段 2 aと軸制御手段 2 bとはともに同じ構成であ るので、 ここでは軸制御手段 2 aについて説明する。 軸制御 手段 2 aは S L C 2 1 aと軸制御回路 2 2 aとからなる。 軸 制御回路 2 2 aにはサ一ボアンプ 8 aを介してサーポモータ 9 aが接続される。 サ一ボモータ 9 aはサーボアンプ 8 aに よって駆動される。  Since the axis control means 2a and the axis control means 2b have the same configuration, only the axis control means 2a will be described here. The axis control means 2a includes an SLC 21a and an axis control circuit 22a. A servomotor 9a is connected to the axis control circuit 22a via a servo amplifier 8a. The servomotor 9a is driven by the servo amplifier 8a.
第 2図は第 1図の P C制御手段 1 4と軸制御手段 2 a及び 2 bとの接続関係を示す図である。 P C制御手段 1 4はホス ト C P U 1 5、 ホス ト S L C 1 6及び RAM 1 7を有する ( 本実施例に係わる部分のみを示す) 。 ホス ト C P U 1 5は 1 6ビッ ト構成であり、 ホス ト S L C 1 6及び R AM 1 7は 8 ビッ ト構成であるため、 両者間にはビッ ト変換器 1 8が設け られている。 ホス ト C PU 1 5はホス ト S L C 1 6及び R A M l 7を制御する。 RAM I 7には入出力信号、 各種のデー タが記憶される。  FIG. 2 is a diagram showing a connection relationship between the PC control means 14 and the axis control means 2a and 2b in FIG. The PC control means 14 has a host CPU 15, a host SLC 16 and a RAM 17 (only the parts relating to the present embodiment are shown). The host CPU 15 has a 16-bit configuration, and the hosts SLC 16 and RAM 17 have an 8-bit configuration. Therefore, a bit converter 18 is provided between the two. Host CPU 15 controls hosts SLC 16 and RAM17. RAM I7 stores input / output signals and various data.
ホス ト S L C 1 6は軸制御手段 2 a内の 一カル S L C 2 1 aと通信回線 (R S— 4 2 2 ) L 1を介して接続される。 また、 ローカル S L C 2 1 aとローカル S L C 2 1 bの間も 同様に通信回線 (R S _ 4 2 2 ) L 2を介して接続される。 この通信回線に光ケーブルを用いて光通信を行ってもよい。 ローカル S L C 2 1 a内にはデータ通信用の入カメモ リ 2 8 a と出力メ モ リ 2 9 aを有する。 軸制御回路 2 2 aは口一 カル C P U 2 3 a、 プロ グラ ムメ モ リ 2 4 a、 設定デ一タ 2 5 a、 偏差レジスタ 2 6 aひ及び DZ A変換器 2 7 aから構 成される。 軸制御回路 2 2 bの構成も軸制御回路 2 2 a と同 じなので、 その説明は省略する。 The host SLC 16 is connected to a single SLC 21 a in the axis control means 2 a via a communication line (RS-422) L 1. Similarly, the local SLC 21 a and the local SLC 21 b are connected via the communication line (RS_422) L2. Optical communication may be performed using an optical cable for this communication line. The local SLC 21a has an input memory 28a for data communication and an output memory 29a. The axis control circuit 22a is composed of a oral CPU 23a, program memory 24a, setting data 25a, deviation register 26a and DZA converter 27a. You. The configuration of the axis control circuit 22b is the same as that of the axis control circuit 22a, and a description thereof will be omitted.
各軸間の通信はこの入カメモ リ 2 8 a と出カメモ リ 2 9 a に情報をリー ド * ライ トすることにより行う。 即ち、 軸制御 手段 2 a内のローカル C P U 2 3 aが自己の担当している軸 が他の軸の待合せをしてもよいことを表す信号 『〇 K信号』 を出力メ モ リ 2 9 aにライ 卜することによって、 他の軸制御 手段 2 bは軸制御手段 2 aが軸の待合せをしてもよいとの信 号をホス ト S L C 1 6から受ける。 逆に、 他の軸制御手段 2 bからの Γ 0 K信号』 を受ける時は、 ローカル C P U 2 3 a が入カメモ リ 2 8 aをリ ー ドして、 その信号がホス ト S L C 1 6 により出力された 『〇 K信号』 であるか否かを判断する ことにより行われる。  Communication between the axes is performed by reading and writing information to the input memory 28a and output memory 29a. That is, the local CPU 23a in the axis control means 2a outputs a signal "〇K signal" indicating that the axis in charge of itself may wait for another axis. Then, the other axis control means 2b receives a signal from the host SLC 16 that the axis control means 2a may wait for the axis. Conversely, when receiving the Γ0 K signal from the other axis control means 2 b, the local CPU 23 a reads the input memory 28 a and the signal is sent by the host SLC 16. This is performed by determining whether or not the output is the "〇K signal".
DZA変換器 2 7 aの出力はサーボア ンプ 8 aに取り込ま れる。 サーボモータ 9 aのエ ンコーダの出力がフ ィ ー ドバッ クパルス として偏差レジスタ 2 6 aに取り込まれる。  The output of the DZA converter 27a is taken into the servo amplifier 8a. The output of the encoder of the servo motor 9a is taken into the deviation register 26a as a feedback pulse.
以上のように、 主制御手段 1 と軸制御手段 2 a及び 2 bと の間のリ ンクはシ リ アルデータ ライ ンで行う。 この通信ライ . ンを介して主制御手段 1が各軸間の待合せ状態信号を必要に 応じて各軸制御手段に転送する。 次に、 シリアルデータの 1ブロックの内容を第 3図に示す。 シリァルデータの 1 ブロ ッ クは N個のデータフ レーム (デ一 タ A、 B〜! 1 ) と 2個のヘッダ一フ レーム (ヘッダー A、 B ) と B C C (ブロック · チェック ' キャラクタ) フ レームの ( + 3 ) 個のフレームから構成される。 1 フ レームは 1 0 ビッ ト構成であり、 各フ レームの前後はスター トビッ ト とス ト ップビッ トになっており、 各フレームの間にはダミービッ トが設けられている。 As described above, the link between the main control means 1 and the axis control means 2a and 2b is performed by a serial data line. Through this communication line, the main control means 1 transfers a waiting state signal between each axis to each axis control means as required. Next, Fig. 3 shows the contents of one block of serial data. One block of serial data consists of N data frames (data A, B ~! 1), two header frames (header A, B), and BCC (block check 'character) frame. + 3) frames. One frame is composed of 10 bits, with a start bit and a stop bit before and after each frame, and a dummy bit is provided between each frame.
へッダ一 Aにはア ドレスに対応するシ リ アル審号及びひ― ド · ライ トを指令する指令コ一ドが、 へッダ一 Bにはデータ のバイ ト数が格納されている。 データ A、 B〜nには各軸の 制御デ一タが格納されている。 B C Cにはブロック内に生ず る誤りを検出するための冗長な文字列が格納されている。  Header A stores the serial code corresponding to the address and the command code for commanding the headlight, and header B stores the number of data bytes. . Data A and B to n store control data for each axis. BCC stores redundant character strings for detecting errors occurring in the blocks.
以上の実施例では、 各軸は独立に制御される場合について 説明したが、 軸制御手段 2 a及び 2 bが互いに直交する 2軸 直交のドリ リ ングマシンを制御する場合について説明する。 この場合は、 互いの刃物が干渉する領域が存在するので、 そ の領域では軸の排他的制御が必要になる。 そこで、 軸制御手 段 2 aのローカル C P U 2 3 aはローカル S L C 2 1 aの出 カメモリ 2 9 aに、 刃物が現在干渉領域に存在することを出 力する。 ホス ト S L C 1 6 はこの出力メ モ リ 2 9 aを読み、 軸制御手段 2 bの口一カル S L C 2 1 b内の入カメモ リ 2 8 bに軸制御手段 2 aの刃物の状態を書き込む。 これによつて、 軸制御手段 2 bは軸制御手段 2 aの刃物が干渉領域にあるこ とを知る。 また、 軸制御手段 2 aはこの干渉領域に入る直前 に軸制御手段 2 bの状態を入カメモリ 2 8 aから読み取るこ ともできる。 In the above embodiment, the case where each axis is controlled independently has been described. However, the case where the axis control means 2a and 2b control a two-axis orthogonal drilling machine which is orthogonal to each other will be described. In this case, since there is a region where the blades interfere with each other, exclusive control of the axis is required in that region. Then, the local CPU 23a of the axis control means 2a outputs to the output memory 29a of the local SLC 21a that the blade is presently in the interference area. The host SLC 16 reads this output memory 29 a and writes the state of the blade of the axis control means 2 a to the input memory 28 b in the mouth SLC 21 b of the axis control means 2 b . Thereby, the axis control means 2b knows that the blade of the axis control means 2a is in the interference area. In addition, the axis control means 2a is just before entering this interference area. Alternatively, the status of the axis control means 2b can be read from the input memory 28a.
この S L Cは 1 M B P S以上の転送能力を持つので、 その 情報交換速度は非常に高速になる。 また、 プライオ リティ制 御は主制御手段 1が行うので、 他の軸が待ち状態におちいる デッ ド口 ック状態の発生を未然に防止することができる。 本実施例では数値制御装置と して一軸制御 N C装置を例に 説明したが、 これ以外の F A装置、 例えばト ラ ンスフ ァ ーラ ィ ン用の N C装置や口ボッ ト制御装置等に適用しても本発明 の効果を奏することは明らかである。  Since this SLC has a transfer capability of 1 MBPS or more, its information exchange speed is extremely high. Further, since the priority control is performed by the main control means 1, it is possible to prevent a deadlock state in which another axis is in a waiting state. In the present embodiment, a single-axis control NC device has been described as an example of a numerical control device. However, it is clear that the effects of the present invention can be obtained.
以上説明したように本発明によれば、 軸間の同期待合せ制 御を高速かつ簡単なプログラムで実施することができ、 ト ラ ンス フ ァ ーラ イ ンの生産性の向上及びト ラ ンスフ ァ ーラ イ ン の導入に伴うプログラ ミ ングが短期間にできるという効果が ある。  As described above, according to the present invention, the same expectation matching control between axes can be performed with a high-speed and simple program, thereby improving the productivity of the transfer line and improving the transfer efficiency. This has the effect that programming with the introduction of the license can be done in a short period of time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数個の数値制御装置をト ラ ンスフ ァ ーラ イ ン上に組 み込んだト ラ ンスフ ァ ーライ ン甩数値制御装置において、 前記数値制御装置は前記ト ラ ンスフ ァーラ イ ン上の各軸を 制御する複数個の軸制御手段と、 前記軸制御手段の複数個を 共通に制御する主制御手段とから構成され、  1. A transfer line that incorporates a plurality of numerical controllers on a transfer line. In the numerical control unit, the numerical control unit is provided on each of the transfer lines. A plurality of axis control means for controlling the axis, and a main control means for commonly controlling a plurality of the axis control means;
前記主制御手段は前記軸制御手段を上下通信可能なように 接続された通信回線によって、 前記軸制御手段の制御状態を 判別し、 前記軸制御手段の各軸間の同期待合せ制御を行うこ とを特徴とする ト ラ ンスフ ァーラ イ ン用数値制御装置。  The main control means determines the control state of the axis control means through a communication line connected to the axis control means so as to be able to communicate up and down, and performs the same expectation matching control between the axes of the axis control means. Numerical control unit for transfer line characterized by the following.
2 . 前記軸制御手段は 1軸制御装置であることを特徴とす る特許請求の範囲第 1項記載のト ラ ンスフ ァーライ ン用数値 制御装置。  2. The numerical control device for a transfer line according to claim 1, wherein said axis control means is a one-axis control device.
3 . 前記軸制御手段は互いに直交する 2軸ドリ リ ングマシ ンを制御することを特徴とする特許請求の範囲第 1項記載の ト ラ ンスフ ァ ーラ イ ン用数値制御装置。  3. The numerical controller according to claim 1, wherein said axis control means controls two-axis drilling machines orthogonal to each other.
4 . 前記通信回線はシ リ アル , リ ンク ♦制御回路を介して 接続されることを特徴とする特許請求の範囲第 1項記載のト ラ ンスフ ァーラ イ ン用数値制御装置。  4. The numerical control device for a transfer line according to claim 1, wherein the communication line is connected via a serial / link control circuit.
PCT/JP1989/001268 1989-01-10 1989-12-15 Numeric controller for transfer line WO1990008352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/4150 1989-01-10
JP1004150A JPH02183809A (en) 1989-01-10 1989-01-10 Numerical controller for transfer line

Publications (1)

Publication Number Publication Date
WO1990008352A1 true WO1990008352A1 (en) 1990-07-26

Family

ID=11576739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001268 WO1990008352A1 (en) 1989-01-10 1989-12-15 Numeric controller for transfer line

Country Status (2)

Country Link
JP (1) JPH02183809A (en)
WO (1) WO1990008352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573903A1 (en) * 1992-06-06 1993-12-15 Maschinenfabrik Müller-Weingarten AG Transport device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566709U (en) * 1992-02-12 1993-09-03 株式会社不二越 Multi-axis integrated control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717012A (en) * 1980-07-07 1982-01-28 Fanuc Ltd Numerical controller
JPS605303A (en) * 1983-06-22 1985-01-11 Yaskawa Electric Mfg Co Ltd Common frame synchronizing system accompanied by timer supplement of decentralized numerical control system
JPS6368905A (en) * 1986-09-10 1988-03-28 Toshiba Mach Co Ltd Positioning control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717012A (en) * 1980-07-07 1982-01-28 Fanuc Ltd Numerical controller
JPS605303A (en) * 1983-06-22 1985-01-11 Yaskawa Electric Mfg Co Ltd Common frame synchronizing system accompanied by timer supplement of decentralized numerical control system
JPS6368905A (en) * 1986-09-10 1988-03-28 Toshiba Mach Co Ltd Positioning control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573903A1 (en) * 1992-06-06 1993-12-15 Maschinenfabrik Müller-Weingarten AG Transport device

Also Published As

Publication number Publication date
JPH02183809A (en) 1990-07-18

Similar Documents

Publication Publication Date Title
CN103425106A (en) Linux-based Ethercat maser/slave station control system and method
WO1998035296A1 (en) Bus controller and bus control system
CN108650159A (en) A kind of field bus communication method based on RS485 interfaces
CN101178595A (en) Drive and connecting apparatus of full digital numerical control system
WO1990008352A1 (en) Numeric controller for transfer line
JP4029617B2 (en) Numerical control system and communication timing setting method in the numerical control system
WO1989008876A1 (en) Numerical controller
JPH1083215A (en) Motor controller
JPS59223818A (en) Multiplex communication device for control of robbot
WO1990008993A1 (en) Numeric controller for transfer line
CN108170102B (en) Motion control system
JP4118695B2 (en) Numerical control system
KR19980067076A (en) Real time communication method using LAN
JPH11231923A (en) Numerical controller
JPS6368905A (en) Positioning control system
CN112405107A (en) Numerical control machine tool communication heterogeneous feeding system and debugging method thereof
JPS59200309A (en) Common frame synchronizing system for distributed numerical control system
CN214335705U (en) EtherCAT bus servo system with programmable IO
JPH02228709A (en) Position display system for numerical controller
CN114043504B (en) Robot system
JPS62251902A (en) Data transmission system
JPS6344266A (en) Data transmission system
JPH04283B2 (en)
JPH1049216A (en) Inter-device data communication method
JPH04134501A (en) Robot controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT