WO1990007384A1 - Atomization method and atomizer - Google Patents

Atomization method and atomizer Download PDF

Info

Publication number
WO1990007384A1
WO1990007384A1 PCT/JP1989/001291 JP8901291W WO9007384A1 WO 1990007384 A1 WO1990007384 A1 WO 1990007384A1 JP 8901291 W JP8901291 W JP 8901291W WO 9007384 A1 WO9007384 A1 WO 9007384A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
air
jet
arc
spraying
Prior art date
Application number
PCT/JP1989/001291
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyoshi Nakagawa
Original Assignee
Mitsuyoshi Nakagawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63326730A external-priority patent/JP2799718B2/en
Priority claimed from JP9165689A external-priority patent/JP2742536B2/en
Priority claimed from JP1164326A external-priority patent/JPH0330853A/en
Application filed by Mitsuyoshi Nakagawa filed Critical Mitsuyoshi Nakagawa
Publication of WO1990007384A1 publication Critical patent/WO1990007384A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/18Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material having originally the shape of a wire, rod or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/224Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like

Definitions

  • the present invention provides an improved atomizing device for atomizing a fluid material typified by a metal droplet or paint melted by arc heat with jet air supplied separately, and then spraying the atomized object surface.
  • a fluid material typified by a metal droplet or paint melted by arc heat with jet air supplied separately, and then spraying the atomized object surface.
  • One of the forms of atomizing the flowable material is to blow compressed air from a nozzle, make the flowable material finer by the jetted airflow, disperse the material in the airflow, and spray the target surface.
  • various supply modes are applied to the supply form of the jet air flow in this type of spraying apparatus according to the difference in fluid material.
  • a wire or a spray is used in a general arc spraying apparatus.
  • the strip-shaped metal material is melted by arc heat, and it is made finer with compressed air for atomizing and sprayed on the base material while cooling, forming a continuous fine particle film on the base material surface.
  • Conventional techniques for supplying compressed air in this type of thermal spraying apparatus include: There are two methods: an outer envelope type that forms a main jet air curtain on the outer surface side of the arc region, and a penetration type that jets out the main jet from behind the center of the arc region toward the arc region.
  • the main jet air curtain is blown out from an annular nozzle into an R-cone shape, this R-cone-shaped air flow forms a low pressure in the conveyer, and the molten material is sent into the low-pressure area to be arc-discharged.
  • Atomizing is performed by bringing the droplets into contact with the airflow by the attraction of the air curtain.
  • This type of thermal spraying device is known, for example, in Japanese Patent Application Laid-Open No. 61-167472. It is.
  • a second nozzle is provided behind the center of the arc area, and an auxiliary jet air is jetted from this nozzle toward the center of the arc area.
  • An apparatus is known from Japanese Patent Publication No. 56-10103.
  • the main jet air curtain of a female and female shape is formed on the outer surface of the molten material and the arc area. Therefore, compared to the impure type, the size of the thermal spraying device is easily increased, and the structure is more likely to be exempt. In particular, in the case of using a whirlpool molten material, the arc area could not be covered with the main jet air curtain unless the diameter of the annular nozzle was enlarged, and the spraying equipment S could not be made smaller and lighter.
  • An auxiliary nozzle is provided behind the center of the arc area.
  • the main type has a main nozzle that blows out the main jet air behind the center of the arc area, and the linear main jet air that is blown out from the main nozzle directly acts on the metal droplet to atomize. I do.
  • This type of apparatus is described, for example, in Japanese Patent Application Publication No. 61-181580, and in Japanese Patent Application Publication No. 60-184643, an arc is provided separately from the main nozzle.
  • a pair of auxiliary nozzles are provided outside the region, auxiliary air is blown out from both nozzles toward the intersection of the tip of the molten material, and atomization is performed by the cooperation of the auxiliary air and the main jet air that acts directly on the gold droplet.
  • the conventional arc spraying apparatus has advantages and disadvantages in the structure or thermal spraying performance, both in the case of the envelope type and the poor type, and improvement thereof has been desired.
  • the present invention has been proposed in view of the above, and by improving the supply form of compressed air for atomization, the structure of the thermal spraying equipment is reduced, and the size and the size of the shoe are reduced.
  • the purpose is to realize arc spraying and to stably perform arc spraying without loss.
  • Another object of the present invention is to obtain a supply form of compressed air for atomizing suitable for a medical material.
  • the thermal spray pattern ⁇ 2 is almost circular, and the air volume ejected from the sozzle has a disadvantage that only a small spray area can be obtained. Then, the sprayed area can be enlarged to some extent.
  • the arc spray of the material is supercooled by a large amount of jet air, and the pinch phenomenon is likely to occur, and the arc spray is stable. It becomes difficult to perform it.
  • a strong reversing airflow is formed on the base material surface, so that the number of droplets that bounce off without being attached to the base material increases, and the adhesion of droplets Loss is urgent.
  • a suitable separation between the thermal spraying apparatus and the base material is about 20 cm.
  • the thermal spraying area can be enlarged to some extent.
  • the adhesion force of the fine droplets to the base material surface is small, and the separation resistance of the sprayed coating decreases.
  • the thickness of the circular sprayed pattern P2 is unnecessarily thick at the center portion and is reduced to the extent that the required thickness cannot be obtained at the peripheral portion. Therefore, there are disadvantages such as unevenness in the thickness of the thermal sprayed coating in the surface direction, which makes it impossible to form a uniform coating, and that the protection performance of the coating varies widely and lacks reliability. Furthermore, since the spray droplets are concentrated in the center, heat is likely to accumulate in the center, and the sprayed coating may be peeled off due to the difference in maturation from the periphery.
  • the small spray pattern area mentioned above has a great effect on work efficiency. It goes without saying that it takes a long time to form a sprayed coating of a predetermined thickness in a certain area, but it is not limited to that.
  • the base material is blasted before spraying.
  • the activated surface is easily oxidized, and depending on the material of the base material, the spraying operation is completed within 2 to 4 hours after blasting. Therefore, if the base material area reaches a certain value beyond the capacity of the thermal spraying device, growth cannot be performed within the above-mentioned time. Extra auxiliary work such as conversion processing is required.
  • Another object of the present invention is to improve the supply form of compressed air for atomizing, thereby increasing the sprayed area several times and achieving a highly efficient film thickness distribution.
  • the purpose is to obtain a thermal spraying device.
  • a spray gun for air-based coating is generally widely used.
  • an air cap is attached to the tip of the paint nozzle, paint and air are mixed at the paint nozzle port, and the coating liquid is atomized.
  • an auxiliary air nozzle port is provided. It promotes atomization of paint, adjusts coating patterns, and prevents spray paint from scattering.
  • the coating spray gun sprays a high-pressure pressurized coating liquid at a low speed from a small-diameter nozzle tip, and sprays it by friction with the surrounding air.
  • Airless people Formula types are also widely used.
  • the conventional spraying equipment for coating requires a paint nozzle to make the coating liquid indispensable. * Therefore, the problem of clogging at the paint nozzle is always noticed, and every time spraying work is performed. However, it was necessary to perform troublesome disassembly and cleaning. In addition, most of the downfalls, such as malfunctions and pattern failures of the ⁇ lin equipment, occurred due to paint nozzles, and their management was troublesome.
  • a second problem with the conventional firewood spray equipment is that it involves a large amount of invalid mist during spraying. This is because a plurality of jet air crossing each other at the paint nozzle position causes the paint to be atomized by the abrupt action, so that the straightness of the airflow after the street is weakened and its directivity is hindered. This is because When there are many invalid mist, the coating liquid is wasted and the working environment is polluted by the coating liquid and the solvent.
  • an airless spray gun is provided with a ring-shaped empty nozzle around the paint nozzle, and an air curtain ejected from this nozzle envelops the paint spray area. The disclosure is disclosed in Japanese Patent Publication No.
  • the spraying mechanism such as a paint nozzle or the like is required to be formed precisely, or a mutual relation between the spray nozzle and the air nozzle is made precise, so that the manufacturing cost of the spraying apparatus increases.
  • the airless spray gun presses the coating liquid to a high pressure of 100 to 200 OteZoi, so the spray gun was expensive, and the paint supply system was expensive.
  • Another object of the present invention is to eliminate the problem of nozzle clogging which has been inevitable in the spraying device, to facilitate the handling thereof and to simplify the management work.
  • Another object of the present invention is to prevent the generation of invalid mist, eliminate unnecessary consumption of the coating liquid, and at the same time, eliminate the contamination of the working environment with invalid mist.
  • the ultimate object of the present invention is to provide a simple and novel atomizing mechanism that can surely and stably atomize a flowable material such as metal droplets and paints,
  • the goal is to improve the reliability and at the same time reduce the manufacturing cost. . August
  • the spraying device according to the invention of the present invention supplies the jet airflow in a supply mode basically similar to that of the outer envelope type arc spraying device, but an air chamber formed by an air curtain made of planar jet air. Is characterized by a V-shape
  • a pair of planar jet air is ejected toward the central axis with the central axis of the spray material supply means for supplying the spray material made of a fluid material in a non-spray state interposed therebetween.
  • the jet air forms a converging air chamber at the tip
  • the spraying method is characterized in that the spraying material is supplied into the air chamber in a non-spouting shape, and the spraying material is sent into jet air to perform atomizing.
  • spout material made of a fluid material examples include metal droplets, paints, blast materials, adhesives, and powders that are melted by arc heat.
  • the first invention of the present invention is directed to a first aspect of the present invention, wherein planar jet air is jetted from a pair of nozzle ports disposed with a spraying central axis interposed therebetween toward the spraying central axis, and the jet air converges at the tip by the jet air.
  • Planar jet air is jetted from a pair of nozzle ports disposed with a spraying central axis interposed therebetween toward the spraying central axis, and the jet air converges at the tip by the jet air.
  • a pair of nozzle ports for forming planar jet air for atomizing is disposed at a position S sandwiching the spraying central axis at the front end of the case, and the ejection center lines of both nozzle ports are aligned with the spraying central axis.
  • the two nozzle ports were pointed so as to converge toward, and the arc intersection of the pair of molten materials was positioned S in the air chamber defined by the jet air.
  • the arc intersection continuously performs arc discharge in a weak wind zone with a low air flow velocity flowing in the direction of the convergence of the jet air in the air chamber, and the droplets of the molten material generated by the arc discharge are formed in the weak wind zone. If atomizing is performed by sending it into the jet air with a weak wind, stable arc spraying can be performed without causing a pinch phenomenon.
  • arc spraying can be performed with a small nozzle, and the spraying apparatus can be downsized.
  • a pair of nozzle ports each forming a flat jet air, are arranged with the droplet generation position (arc intersection) of the molten material in between, and the thickness center line of both jet air is the droplet generation position S of the molten material.
  • (Arc intersection) Inclines toward the spraying central axis at the front position, and the center lines in the width direction of both jet airs are tilted in opposite directions to the spraying central axis, and both jet airs are partially formed.
  • the two nozzle ports are directed so that they converge and intersect.
  • a spraying device supplies a spraying material to a non-culinary drawer, It is horizontal including an air nozzle that jets jet air to atomize the spray material.
  • the air nozzle has a pair of nozzle ports for jetting out flat jets of L-shaped air. The jet air converges toward the spray center axis, and the jet direction of the nozzle ports is directed so as to form a convergent airflow after convergence. Let it. Then, the supply section of the firewood supply means is arranged in the air chamber surrounded by the jet air.
  • the center of thickness of the pair of jet air is set to the spray center. It is preferable to converge toward the axis, and to incline the width direction center lines in opposite directions to the spray center axis.
  • the spray material is supplied in a non-spray state without using a nozzle by flowing the spray material or discharging the pressurized spray material from the pipeline.
  • the weak wind heading for the converging portion of the jet air moves the air chamber longitudinally and is taken into the airflow.
  • the spray material is shaved using As it passes through the converging section, it is subdivided and then struck by jet air in different directions to be atomized and dispersed in the airflow.
  • the jet air merges at the converging section to form a single converging flow along the central axis of the spray.
  • This converging flow consists of an orderly flow with strong directivity, and rather increases the velocity while drawing the surrounding air into the airflow. Decreases and hits target surface.
  • the spray nozzle can be omitted, and the problem derived from the spray nozzle can be eliminated.
  • the spray material atomized in the converging section is speeded up to the target surface by a convergent flow with high directivity. Therefore, generation of invalid mist can be prevented, and environmental pollution due to spray material or the like can be eliminated.
  • the spraying device can be manufactured at a low cost, and the spray material supply means can supply the spray material from a relatively large-diameter supply port in a non-firewood state. There is no worry about clogging or wear.
  • the jet air is pulverized by the flow action of jet air. In other words, it is possible to perform the atomization supply of the spray material without any instability factors, so that the rinsing can be performed reliably and stably. Akira's guise
  • 1 to 23 show the first invention of the present invention.
  • FIG. 1 is a cross-sectional plan view of the nozzle
  • Fig. 2 is a longitudinal sectional view of the nozzle
  • Fig. 3 is an arc
  • FIG. 4 is a cross-sectional plan view of the arc spraying device
  • FIG. 5 is a front view of the nozzle.
  • FIG. 6 and 7 show another embodiment of the arc spraying apparatus S according to the first invention
  • FIG. 6 is a cross-sectional plan view of the arc spraying apparatus
  • FIG. 7 is a sectional view taken along line AA in FIG. FIG.
  • Fig. 8 is a front view of the nozzle
  • Fig. 9 is a cross-sectional view taken along the line BB in Fig. 8
  • Fig. 10 is a perspective view conceptually showing the form of jet air ejected from the nozzle of Fig. 8.
  • FIG. 10 is a perspective view conceptually showing the form of jet air ejected from the nozzle of Fig. 8.
  • FIG. 11 and 12 are front views each showing a modified example of the nozzle port
  • FIG. 13 is a cross-sectional view taken along the line C-C in FIG.
  • FIG. 14 is a front view showing another modification of the nozzle port
  • FIG. 15 is a sectional view taken along line DD in FIG.
  • FIGS. 16 and 17 are front views each showing another modification of the nozzle port
  • FIGS. 1 & 2 are cross-sectional views showing another modification of the nozzle port.
  • Fig. 19 and Fig. 20 are cross-sectional views of the nozzle with the auxiliary nozzle port added, respectively.
  • FIG. 21 is a front view of the nozzle in which the opening position of the auxiliary nozzle opening is changed.
  • Fig. 22 is a front view of the nozzle to which the shape-retaining nozzle is added
  • Fig. 23 is a sectional view taken along line E-E in Fig. 22.
  • FIGS. 24 to 37 show a second invention of the present invention.
  • FIG. 24 to 31 show an embodiment of the arc spraying apparatus according to the second invention
  • FIG. 24 is a side view showing the jet air jetting form in principle
  • FIG. 25 is a plan view thereof.
  • FIG. 26 is a front view showing the thermal spray pattern
  • FIG. 27 is a vertical side view of the thermal spraying apparatus
  • FIG. 28 is a sectional view taken along line FF in FIG. 27
  • FIG. 29 is a sectional view taken along the line GG and the line HH in FIG. 29, respectively.
  • FIGS. 32 to 37 show the nozzles of the device of the second invention, respectively. Show a modified example of
  • FIG. 32 is a front view showing a modified example of the nozzle port.
  • FIG. 33 is a front view showing another modified example of the nozzle port.
  • FIGS. 34 and 35 show still another modified example of the nozzle.
  • FIG. 34 is a front view and FIG. The figure is a side view.
  • FIG. 36 and FIG. 37 show still another modified example of the nozzle.
  • FIG. 36 is a front view
  • FIG. 37 is a side view.
  • FIGS. 38 to 48 show the third invention of the present invention.
  • FIGS. 38 to 41 show an embodiment of the spraying device fi according to the third invention
  • FIG. 38 is a view for explaining the principle of the spraying device
  • FIG. 39 is a front view of an air nozzle
  • FIG. The figure is a cross-sectional view taken along the line J-J in FIG. 39
  • FIG. 41 is a side view of the spraying apparatus with the supply pipe changed.
  • FIGS. 42 to 45 show another embodiment of the spraying device according to the third invention
  • FIG. 42 is a view for explaining the principle of the spraying device
  • FIG. 43 is a front view of an air nozzle
  • FIG. FIGS. 44 and 45 are cross-sectional views taken along line K-K and line L-L in FIG. 43, respectively.
  • FIGS. 46 to 48 show another embodiment in which the third invention is applied to a spray gun for painting
  • FIG. 46 is a longitudinal side view of the spray gun
  • FIG. 47 is a view of the air nozzle
  • FIG. 48 is a sectional view taken along line MM in FIG. 47.
  • FIG. 3 show an arc spraying apparatus according to an embodiment of the first invention of the present invention.
  • the arc spraying apparatus performs arc spraying using a linear material W, so that the material W passes through the rectangular box-shaped case 1 in a vertically parallel manner.
  • a route is set, a melt feeding mechanism 2 is provided in the center of the inside of the case 1, and a nozzle 3 for jetting flat jet air 21 for atomizing is arranged on the outer surface of the front end of the case 1.
  • a pair of upper and lower guide pipes 6 and 7 that define the appropriate route for the molten material W are parallel, with the isolation blocks 4 and 5 fixed in front and back of case 1 and the blocks 4 and 5 are poorly inserted in the front and back. It is arranged in.
  • the rear guide tube 7 is directly fixed to the isolation block 5.
  • the guide tube 6 on the front side is screwed and fixed to a pair of upper and lower electrode rods 8 mounted on the isolation block 4. As shown in FIG.
  • one end of the pole 8 protrudes from the outer surface of the case 1, and a positive electrode 9 is connected to the protruding end to supply a positive current to one electrode rod 8 and the other A negative current is applied to the pole so that an arc current is applied to the molten material W through the guide tube 6 and an arc guide tube 10 described later.
  • each of the front guide pipes has a square j.
  • the arc guide tube 10 that curves to the right is fixed to the gun.
  • the arc guide tube 10 guides the upper and lower molten materials W so that they converge toward the spraying center axis P, and when turning, comes into close contact with the inner wall of the arc guide tube 10 to ensure the application of arc current. It shall be.
  • the molten material feeding mechanism 2 is configured to simultaneously send the upper and lower molten materials W toward the front of the case, and includes a large-diameter drive roller 12 shown in FIG. 4 and a pair of upper and lower members for pressing the molten material W against the drive roller 12. It is composed of a press roller 13 and a motor 14 for rotating the main roller 12.
  • the driving roller 12 is formed of a solid body, and is fitted with a metal V-shaped cross-section ring 12a only at a portion circumscribing the molten material W. A knurl for friction is applied to the peripheral surface of the ring 12a.
  • Pressing roller 1 3 It is rotatably supported by a pair of swinging arms 15 divided into upper and lower parts made of insulating material.
  • Each of swinging arms 15 is driven by leaf spring 16 and driven roller 1 2
  • the pressing motor 13 presses the pressing roller 13 to press the molten material W against the peripheral surface of the ring 12a.
  • the fr motor 14 is housed in a lip 17 fixed to the lower surface of the case 1.
  • the switch can be started by turning on the switch 25 provided on the rear side of the drip 17.
  • nozzle 3 is a thin square box
  • a concave portion 18 is provided in the left and right center of the upper half of the upper portion to avoid the arc guide tube 10, and each of the opposing edges of the concave portion 18 is symmetrical with the spraying center axis ⁇ interposed therebetween.
  • a pair of nozzle openings 19, 19 are opened.
  • a joint 20 for connecting the air hose protrudes. Compressed air is sent from this joint 20 to the air chamber 3a in the nozzle 3.
  • each nozzle port 19 is arranged symmetrically with respect to the spraying central axis, and a group of small holes 19a and the upper and lower portions formed to have a slightly larger diameter than these small holes 19a.
  • the end holes 19b are arranged so as to form a straight line in the vertical direction.
  • the holes 19a and 19b are inclined so that the ejection center line Q1 in the thickness direction converges toward the spraying center axis P (see FIG. 1).
  • the jet air ejected from the left and right nozzle openings 19 forms a V-shaped flat jet air 21 that merges at the ejection tip side, and a wedge-shaped air chamber 22 is formed in the internal area thereof. Is done. Further, inside the air chamber 22, an airflow region having a lower airflow velocity than the jet air is generated toward the converging portion of the jet,, and the air 21, and a weak wind zone 30 is formed.
  • the airflow spouted from the upper and lower end holes 19b is much larger than the airflow of the small holes 19a, and exhibits a stronger directivity. For this reason, the jerk near the upper and lower edges of the jaw chamber 22 is smaller than that near the center.
  • the width of the cross section of the air 21 widens, and acts so as to inwardly cover the top and bottom of the air chamber 22. That is, key-shaped airflow walls are formed at both ends of each jet air 21, and the cross-sectional shape of the jet air 21 becomes an I-shape.
  • the position relationship between the nozzle 3 and the arc intersection O of the molten material W is determined so that arc discharge occurs in the weak wind zone 30.
  • the arc intersection O is located on the spraying central axis P between the rear end 30 b and the front end 30 a of the weak wind zone 30, and The arc intersection O is located at a position where the arc region of the molten material W does not directly touch the jet air 21.
  • the arc portion of the material W is not directly exposed to the jet air 21, and the entire outer surface of the arc region is formed by the flat jet air 21.
  • Arc discharge can be performed as if covered with a curtain.
  • the outer surface of the arc region can be completely covered with the air curtain by using only the jet airflow from the pair of nozzle ports 19, as in the case of the envelope-shaped annular nozzle. Therefore, the structure and shape of the nozzle 3 can be simplified as compared with the conventional device in which a cone-shaped nozzle is indispensable, and the size and the size of the nozzle 3 can be easily reduced.
  • the air chamber 22 communicates with the atmosphere through upper and lower openings. Since the air is passed through, the air is drawn into the air chamber 22 by the air drawing action of the jet air 21, and the auxiliary airflow 24 as shown in FIG. 2 is generated.
  • the auxiliary airflow 24 together with the key-shaped airflow wall formed by the slightly large-diameter end hole 19 b prevents a part of the metal droplets from scattering outside the air chamber 22. Help. In other words, metal droplets attempt to scatter in all directions due to arc quarting, and in particular, scatter up and down and backward of the arc chamber 22. and a supplemental air flow 2 4 and the end hole 1 9 b the formed hook-shaped air flow wall suppressed, it is the to di X Tsu Toea 2 1 of air flow area Komu send a metal droplet ⁇
  • the droplets of the molten material W generated by the arc discharge mainly flow into the jet stream 21 due to the weak wind in the weak wind zone 30, and also to the auxiliary air stream 24 in cooperation. It is sent and atomized. At this time, the weak wind zone 30 and the auxiliary airflow 24 do not reach the pinch phenomenon at the time of arc discharge because of the low-speed weak wind.
  • group B there was no loss of droplets seen in group A and no explosive melting of molten material W seen in group C, and stable arc discharge was possible, and the finished state of the formed film was uneven. In view of the fact that the particle size was sufficiently small, it was confirmed that suitable atomizing was performed.
  • FIG. 6 and FIG. 7 show an embodiment in which the first invention is applied to an arc spraying apparatus using a whirl-like molten material W.
  • the arc spraying device fi of this embodiment has almost the same structure as the arc spraying device described in the previous embodiment, except that a pair of welding materials W There is a difference in that each molten material W is separately fed and driven by a dedicated molten material feeder connection 2, 2. Further, in the above embodiment, the ejection center line Q1 in the thickness direction of the nozzle port 19 and the convergence center line of the molten material W are positioned on a plane that intersects. However, in this embodiment, the ejection center line Q It was assumed that 1 and the convergence center line of the molten material W were almost parallel.
  • the opening structure of the nozzle port 19 is set to be the same as that of the above embodiment, but the vertical length thereof is set to be sufficiently larger than the width of the molten material W. Note that the same reference numerals are given to members equivalent to those of the above embodiment. Therefore, the description is omitted.
  • FIG. 8 and FIG. 20 show modified examples of the nozzle 3, in which the cross-sectional shape of the flat jet air 21 is more clearly defined as a U-shape.
  • the nozzle 21 has a straight (rectangular) cross section
  • the nozzle 19 has an auxiliary nozzle port 31 in addition to the nozzle port 19, and the nozzle retainer 3 reinforces the jet air 21. 2 is provided.
  • the same members as those in the previous embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • each nozzle opening 19 has a group of small holes 19a forming a straight line in the vertical direction, and a group of small holes 1a extending laterally inward at both upper and lower ends of the straight line.
  • 9c the angle of inclination of the ejection center line Q1 of both small holes 1 9a and 1c is set to be the same.
  • the upper and lower openings ⁇ of the air chamber 22 are provided with the airflow 21 1 ejected from the small holes 19 c at the upper and lower ends.
  • the cross-section of each jet air 21 covered by a can be made into a clear U-shape, and the vertical dispersion of the metal droplets can be completely prevented.
  • FIG. 11 shows that the cross section of the jet air 21 is formed into a U-shape by forming the nozzle opening 19 as a U-shaped slit.
  • Figures JL 2 and 13 show that the nozzle port 19 is formed by only a group of small holes 19a that form a vertical straight line, and the hole shape of the upper and lower end holes 19d Is formed in a tapered shape so that jet air 21 having a U-shaped cross section can be formed.
  • the small holes 19 e at the upper and lower ends are arranged so as to form a row outward in the horizontal direction.
  • the jet center line q of the small hole 19e is inclined inwardly from the center line Q1 of the small hole 19a to form the jet air 21 with a U-shaped cross section. I made it possible.
  • the nozzle 3 of the thermal spraying apparatus shown in FIGS. 1 to 15 described above actively forms key-shaped airflow walls at both ends of the linear portion of the jet air 21 formed by the nozzle 3 to scatter the metal droplets in the vertical direction.
  • the nozzle opening 19 of the nozzle 3 in FIG. 16 is a series of small holes of the same diameter linearly connected, and the nozzle 19 of the nozzle 3 in FIG. 17 is a slit that is linearly continuous.
  • a ceramic nozzle member 26 is attached to the nozzle body, and the nozzle member 26 is provided with the nozzle port 19 in Fig. 16 or Fig. 17. .
  • the flat jet air 21 formed by the nozzle port 19 in FIGS. 16 to 18 has a slight swelling at both ends thereof, but actively forms the key-shaped airflow wall. Since it is not formed, the length of the nozzle port 19 is increased by the jet air car Both ends of the ten 21 must be long enough to prevent the metal droplets from scattering in the vertical direction during arc discharge.
  • the nozzle 3 shown in FIG. 19 is provided with one auxiliary nozzle port 31 at the same height as the spraying center axis P of the opposite wall of the concave portion 18.
  • the direction is directed to the opposing concave side wall 18a.
  • the air flow ejected from the auxiliary nozzle port 31 strikes the concave side wall 18a and moves to the arc chamber 22 side.
  • the above-mentioned auxiliary nozzle port 31 for preventing the droplets from scattering toward the surface can be formed as a diverging hole as shown in FIG. Specifically, the hole shape is determined so that the jet stream converges on the nozzle 3 side from the arc intersection 0, and the rear auxiliary stream 33 prevents droplets from scattering behind.
  • the structure of the nozzle port 19 may be any of those described above.
  • the auxiliary nozzle port 31 can be formed adjacent to the nozzle port 19.
  • the nozzle 3 shown in FIG. 22 has a shape-retaining nozzle port 32 provided outside the nozzle port 19 in parallel with the nozzle port 19.
  • Shape Shape Nose The roulette 32 is composed of a group of small holes 32a forming a straight line in the vertical direction, and the ejection center line S is the same as the ejection center line Q1 of the nozzle port 19 as shown in Fig. 23.
  • the nozzle 3 is tilted so as to expand slightly outward. With this nozzle 3, the jet air 21 can be restricted from expanding outward, and the spray pattern can be flattened.
  • the shape-retaining nozzle port 32 can also be modified into a U shape or a C shape.
  • the shape of the nozzle port 19 is usually a group of small holes forming a straight line, a slit, a group of small holes having a U-shape, and a slit, but this is not limited to the spirit of the present invention.
  • the shape of the nozzle opening 19 is not limited, and can be deformed into a simple I shape, a C shape, a crescent shape, or the like, or a bent shape such as a U-shape. .
  • the pair of nozzle ports 19 are arranged so as to be symmetrical with respect to a vertical line passing through the spraying central axis ⁇ , but this is not necessarily required, as long as it does not contradict the spirit of the present invention. It can be provided anywhere around the spraying central axis ⁇ .
  • the outer surface of the arc region is covered only by the jet air curtain 21 ejected from the pair of nozzle ports 19 provided with the spraying central axis ⁇ interposed therebetween.
  • the nozzle structure is simpler than that of a conventional envelope-type thermal spraying device. It can be purified and downsized.
  • a pair of nozzle ports 19 forms an air chamber 22 consisting of jet air 21 and melts in a weak wind zone 30 surrounded by the jet air force 22 and having a low airflow velocity. If the material W is arced and droplets of the material W generated by the arc discharge are sent to the jet air curtain 21 by a weak wind in the troposphere 30 to perform atomization, a pinch phenomenon occurs. Arc spraying can be performed stably without any trouble.
  • the air curtain 21 can be formed along the outer surface, so that the small nozzle 3 can perform the arc thermal spraying, and the thermal spraying can be performed. This is advantageous in that the device can be downsized.
  • FIGS. 24 to 37 show an arc spraying apparatus according to the second invention of the present invention, which is a further improvement of the first invention.
  • FIGS. 24 to 31 show an embodiment of the arc-sprayed beard of the second invention.
  • the arc spraying apparatus performs arc spraying using a round wire-shaped material W, and the material W passes in a rectangular box-shaped case 51 in a vertically parallel posture.
  • the case 51 is provided with a molten material feeding mechanism 52 at the center of the inside of the case 51, and a nozzle 53 for jetting jet air for atomizing is arranged on the outer surface of the front end of the case 51.
  • a case 51 is made of a metal case body 54 having one side opening, insulating blocks 55 and 56 fixed to front and rear ends of the case body 54, and hinged to the opening.
  • the latch 60 can be easily opened by sliding the latch 60 against the spring 1.
  • the bracket 59 can be removed from the isolation block 55 by loosening the screw 62, which is convenient for replacing the nozzle 53.
  • a pair of upper and lower guide tubes 64 are fixed to the rear insulation block 56 to guide the molten material W, and are sent to the front insulation block 55 corresponding to these guide tubes 64. Pass holes 65 through. Further, a terminal 66 is provided continuously to each of the feed holes 65, and an arc guide tube 67 is screwed and fixed to the front surface of the terminal 66. A lined electric wire is connected to each of the terminals 66, and a positive current is applied to one of them and a negative current is applied to the other.
  • the upper and lower arc guide tubes 67 are arranged in an inclined position so that their protruding ends approach vertically, and the upper and lower molten material nozzles 53 have an arc on the front outer surface. Guide the deflection toward the intersection O During this deflection, the molten material W Pressing against the inner wall of 7 to ensure arc current application o
  • the molten material feed mechanism 52 is arranged between the front insulating block 55 and the guide tube 64, and works to temporarily send the upper and lower molten materials W toward the front of the case.
  • the material feed mechanism 52 is composed of a drive roller 68 supported rotatably by the upper and lower walls of the main case 54, and a drive roller 68 for transferring the material W.
  • a pressing roller 69 for pressing and a driving roller 8 are constituted by a motor 71 for rotating and driving via a pair of gears 70 and the like.
  • the shaft roller 6 S is formed by fixing an insulating roller 7 3 to a roller shaft 72.
  • a metal ring 7 4 having a V-shaped cross section is fixed to the upper and lower portions of the insulating roller 7 3.
  • the metal ring 74 is knurled to prevent ⁇ - slip, which causes the molten material W to be sandwiched between 4 and the holding roller 69 and is forcibly fed.
  • the pressing roller 6 is also formed of a frame like the driving roller 68, and is arranged vertically corresponding to each insulating roller 73.
  • the presser roller 69 is rotatably supported at one end of the spring arm 75, and is pressed against the drive roller 68 by the elastic force of the spring arm 75.
  • the base end of the spring arm 75 is fixed to the inner surface of ⁇ 58.
  • the motor 71 is mounted on the lower surface of the case 51. It is housed in a fixed lip 76, which is activated when a switch (not shown) is turned on, and transmits its rotational power to a drive roller 68 via a gear 70.
  • the nozzle 53 is formed in the shape of a hollow box that is long in the vertical direction.
  • a recess 78 is provided in the center of the upper half on the left and right sides to avoid the arc guide tube 67, and each of the left and right front end walls divided by the recess 78.
  • the nozzle opening 79 is opened.
  • 80 is a joint for connecting the air hose.
  • the nozzle port 79 is refined by a group of small holes 79a forming upper and lower linear rows, and the jet air merges after jetting to form planar jet air 81, 81.
  • the ejection direction of the jet air 81 is directed so that its thickness center line Q1 is inclined toward the spraying center axis P in front of the arc intersection point 0 (droplet generation position) of the material W, and As shown in FIGS. 30 and 31, the center lines Q 2 and Q 2 in the width direction of the jet airs 81 and 81 are inclined in opposite directions to the spraying center axis P, and
  • the jet air 81, 81 is directed so as to converge and intersect a part thereof (Fig. 24)
  • the angle 1 sandwiched by the thickness center line Q1 does not matter, It is preferable to set the angle in the range of 12 to 24 degrees, and the inclination angle of the center line Q2 in the width direction.
  • the angle 2 has a convergent part R and if it intersects, the angle is It does not matter, but it is preferable to set the angle in the range of 5 to 40 degrees.
  • the vertical position of the left and right nozzle ports 79 is vertically aligned in the direction of inclination of the radial center line Q2. * For details, as shown in Fig. 29, the nozzle port 79 on the left side of the figure is slightly deliquescent upward from the spraying center axis P, and the nozzle hole 7 on the right side Conversely, 9 is being drawn down.
  • the jet air 81, 81 jetted from the left and right nozzle openings 79, 79 forms a V-shaped air curtain in plan view, and defines an air chamber therein.
  • the arc intersection point 0 of the molten material W that makes the molten material W droplets is set on the spraying center axis P in the weak wind zone flowing in the direction of the converging portion of the jet air 81, 81. This is a collective airflow formed ahead of the converging section R of the air 81.
  • the droplets of the molten material W become finer in the gasosphere consisting of the crossed airflow 86 that intersects without converging with the gathered airflow 82.
  • an elliptical thermal spray pattern P1 was obtained.
  • the minor axis length of the thermal spray pattern P1 is almost the same as the diameter D of the thermal spray pattern P2 by the device of the first invention, and the major axis length L is Approximately three times D. This means that the droplets at the same position were dispersed over a wider range, and it was confirmed that even in the actual spray pattern P1, the thickness was uniform in the plane direction.
  • the long axis of the thermal spray pattern P1 is inclined at an angle with respect to the vertical center axis of the thermal spraying equipment S. This is because the center line Q2 in the width direction of the jet air -81 has an inclination. This is probably because the airflow after the intersection is twisted in one direction.
  • FIGS. 32 and 33 show modified examples in which the arrangement pattern of the small holes 79a is changed.
  • the left and right nozzle ports 79, 79 are arranged symmetrically so that the vertical positions of the left and right nozzle ports 79, 79 coincide.
  • an auxiliary nozzle port 34 is provided outside thereof.
  • the nozzle port 79 may be formed in a series of slits as shown in FIGS. 34 and 36.
  • the air tank 85 in the nozzle 53 must be provided at an angle, and in this case, the jet gates 81, 81 formed by the two nozzle ports 79, 79 are provided with the above-described embodiment. It is possible to have the directivity of the same air as the jet air. With this slit-shaped nozzle port 79, it is possible to supply a large amount of nozzle air, and it can be applied to a very large sprayer.
  • Fig. 34 Fig. 35 shows a combination of a pair of nozzles 53 and 53.In the modified example of Figs. 36 and 37, a single nozzle 53 is provided with a pair of nozzle ports 79 and 79.
  • the inclination angle of the center line Q2 in the width direction of the jet air 8 1 may be different between the left and right sides.
  • the molten material W may be in a whirlpool shape.
  • jet air 81 is jetted along the longitudinal direction of the molten material W.
  • a flat jet air 81, 81 is ejected from a pair of nozzle ports 79, 79, and an air flow surrounded by both jets, 81, 81 is formed.
  • the molten material is melted in the chamber, and at this time, the nozzle romas 9 and 79 are directed obliquely so that the widthwise center lines Q2 of the jet air 81 and 81 are inclined in opposite directions.
  • the droplets were dispersed in the jet air stream, resulting in a long and oval wide thermal spray pattern No. 1, and the pattern area could be increased several times compared to the conventional pattern. .
  • the sprayed coating can be efficiently formed in a short time, and the productivity of the film forming operation can be remarkably improved.
  • the thermal spray coating can be formed at a stretch before the surface appearance deteriorates.Also, since the thickness of the thermal spray coating in the surface direction is uniform, the coating quality is high.
  • the protection performance can be improved and reliability can be improved. Since a thick film portion is not formed, separation of the film due to local heat concentration can be eliminated.
  • FIGS. 38 to 48 show a third invention of the present invention in which the first invention and the second invention are applied to an apparatus for spraying a spray material such as paint, blast material, adhesive, or powder.
  • a spray material such as paint, blast material, adhesive, or powder.
  • the thermal spraying devices of the first and second inventions are also included in the spraying device because metal droplets are sprayed on the base material in the form of a firewood.
  • FIGS. 38 to 41 show an embodiment of the spraying device a of the third invention.
  • the spray device S includes a spray material supply means 102 for supplying a spray material 101 such as a paint, a blast material, an adhesive, or a powder, and a spray material supply device 102 for atomizing the spray material 101.
  • the spray mechanism is configured with the air nozzle 103 as an element member.
  • the spray material supply means 102 has a tank or a cup-shaped container 104 for storing the spray material 101, and a supply pipe 105 derived from the container 104, and is provided with air.
  • 1 1 5 is the surface to be sprayed Three
  • the air nozzle 103 is formed in a vertically long hollow box shape, and has a pair of left and right nozzle ports 107 opened at the front end wall.
  • the air nozzle 103 is provided so as to penetrate substantially the center of the air nozzle 103 back and forth, and is arranged so that both nozzle ports 107 are located symmetrically with the supply pipe 105 easily interposed therebetween.
  • Numeral 108 is a joint for connecting the air hose.
  • Each nozzle port 107 is composed of a group of small holes 109 forming an upper and lower linear row, and ejects planar jet air 110 as shown in FIG.
  • the jet direction of the jet air is directed so that the thickness center line Q 1 of the jet air 110 converges from the outlet (supply part) 111 of the ft ⁇ pipe 105 toward the center axis P of the spray. I have.
  • a V-shaped air curtain is formed by the two jet airs 110, and a wedge-shaped chamber 112 is defined therein.
  • the spray material 101 is supplied in a non-spray state. Specifically, the firewood material 101 is simply discharged into the chamber 112 from the outlet 111 of the supply pipe 105. A weak wind is formed in the chamber 1 12 toward the converging section 1 14 .Therefore, the spray material 101 is gradually accelerated by the weak wind and moves toward the converging section 1 14. And easily separated into small chunks of this movement, and finally taken into the jet air 110 from inside.
  • the spray material 101 is taken into the airflow by being scraped by the jet air 110, and is subdivided. After that, the subdivided spray material 101 is formed by the two jet airs 110. Pass through the converging section 1 1 4 where the streets are striking. In the converging section 114, the spray material 101 is hit by the jet air 110, and simultaneously pushed back in the direction of the hit, and is again struck by the jet air 110, which is different in direction, to be refined.
  • the atomized material 101 that has been sufficiently atomized while passing through the turbulent flow area of the converging portion 114 is evenly dispersed in the airflow, and is sprayed by the convergent airflow 113.
  • 1 1 5 are conveyed to * convergent stream 1 1 3 has strong directivity, fr is Machi ⁇ to spray the target surface with narrowing wind-ambient air therefore atomized spray material 1 0 1 convergence airflow 1 Drop from 1 3
  • the pattern No. 3 obtained by spraying has a substantially circular shape.
  • the outlet 111 of the supply pipe 105 can be changed as shown in FIG.
  • the outlet 111 is formed in a vertically long slit shape so that the spray material 101 can be distributed and supplied in the vertical direction of the jet air 110.
  • the spray pattern # 3 in this case also has the same shape as in FIG.
  • outlet 111 of the supply pipe 105 can be changed so as to open at the front wall of the air nozzle 103.
  • the spray material 101 can be supplied by utilizing the action of gravity, and it is not always necessary to supply it under pressure. Also, there is no need to supply using the supply pipe 105
  • FIGS. 42 to 45 show another embodiment of the third invention, in which the spray pattern 4 can be formed in an elliptical or elliptical flat shape.
  • the exit direction of the nozzle port 107 is directed such that the thickness center Q1 of the nozzle air 110 converges toward the spray center axis ⁇ .
  • the center lines Q2 in the width direction of the two jet airs 110 are inclined in opposite directions to the spray center axis ⁇ ⁇ , as in the second invention. Orientation.
  • both jet airs 110 cross each other in a V-shape in the width direction and converge, forming an airflow region 113a that does not converge above and below the convergent airflow 113.
  • the left and right small hole groups 109 a and 109 b are shown in FIGS. 43 to 45 in order to reduce the air gap when the center line Q 2 in the width direction is inclined. As shown in the figure, the holes are shifted S up and down, in detail. Conversely, the group 109b is lent downward.
  • an oblong spray pattern P4 as shown in FIG. 42 is obtained.
  • the short-axis length of the spray pattern P4 is substantially the same as that of the spray pattern P3 according to the above-described embodiment of the third invention, and the long-axis length is about three times the diameter. This means that the same amount of spray 101 is distributed over a wider range.
  • the long axis of the spray pattern P 4 is inclined by an angle ⁇ with respect to the vertical center axis H of the spraying device. This is because the center line Q 2 in the width direction of the jet air 110 has a slope and the air flow after the intersection
  • the air nozzle 103 is changed to the nozzle 53 described in FIGS. 34 to 37, and the nozzle port 107 is moved up and down. It can be formed as a long slit. in this way, -
  • the number of sprayed air per unit time can be increased since the air to be jetted is increased.
  • FIGS. 46 to 48 show an embodiment in which the third invention is applied to a spray gun for painting.
  • the spray gun opens and operates the body 13, the air valve 13 1 and the paint valve 13 2 incorporated therein, and these valves 13 1 and 13 2 It is composed of a trigger 133, an air nozzle 103 mounted on the front end of the body 130, a supply pipe 105, and the like.
  • the air valve 13 1 urges the valve case 13 4, the plug 13 6 that opens and closes the valve port 13 5 provided in the case 13 4, and the plug 13 6 in the closed state. It is formed by a valve spring 1337 and the like, and is disposed above the grip 140.
  • the trigger 1 33 is squeezed, the rest 1 36 moves backward against the valve spring 13 7 to form a gap between the plug 13 6 and the valve case 13 4. Compressed air enters from this gap and flows into the air nozzle 103 through the valve port 135 and the air passage 138.
  • the air nozzle 103 and the air passage 13 & communicate with each other via a joint 13.
  • the paint valve 1 3 2 is provided in front of the trigger 1 3 3,
  • the valve seat 1 4 3 attached to the front end of the valve ⁇ i 4 2, the valve stem 1 4 4 that opens and closes by contacting and separating from the valve seat 1 4 3, and the entire valve stem 1 4 4 as the valve seat 1 4 3 It is composed of a valve spring 1 4 5 etc. which is biased toward the surface.
  • the valve stem 144 consists of a valve body 144, a rod 144 extending vertically through the plug 131, and an interlocking piece 144 accepting one end of the valve spring 144. Triggered via body 13 36 and triggered by opening 13 3.
  • valve body 144 is configured to be separated from the valve seat 144 after the plug rest 136 is opened and the compressed air is ejected from the air nozzle 103. To obtain this movement, a small gap is provided between the plug 13 and the interlocking piece 1 48.
  • Reference numeral 150 denotes an inlet passage for paint. The paint is stored in a separate tank, and the inlet passage is formed by the action of gravity or the pressure of compressed air acting in the tank. Sent to 0.
  • the air nozzle 103 fights against a pair of jet air 110 ejected from the nozzle opening 107 consisting of a group of small holes, and its thickness center line Q1 and width center line Q2
  • the air nozzle 103 is directed to be inclined in the same manner as the air nozzle 103 of the embodiment, and is different in that compressed air is introduced from the upper rear surface of the air nozzle 103.
  • the supplied pipe 105 is screwed and fixed to the valve seat 144 with the air nozzle 103 in front and rear of the air nozzle 103, so that the outlet 1 1 If a plurality of supply pipes 105 having different diameters are prepared, the supply pipes 105 can be easily exchanged, for example, according to the difference in the viscosity of the paint.
  • the nozzle opening 107 can also open so as to be curved in a gentle arc shape.
  • the nozzle openings 107 may be arranged vertically in parallel. Furthermore, it can be changed so that jet air 110 is jetted from three or more nozzle ports 107.
  • the air nozzle 103 blows out the planar jet air 110, converges the jet air 110 toward the spray center axis P, and forms a chamber at a part thereof. 1 1 2 is partitioned, and the spray material 101 is supplied in a non-spray state into the chamber 1 12 to perform atomization. Further, the converged jet air 110 forms a converged airflow 113 and conveys the atomized spray material 101 to the spray target surface 105.
  • the spraying material 101 can be atomized without using a nozzle for jet rinsing, so that the problem of clogging in the nozzle which was inevitable in the conventional device can be reduced.
  • various problems arising from clogging can be eliminated, the handling thereof can be facilitated, and at the same time, the management work can be simplified, and there is no fear of clogging.
  • Glue there is Even powders can be reliably atomized.
  • the blast material 101 is supplied in a non-sprayed state, so that abrasion of the supply portion 111 can be prevented.
  • the final atomization is performed and the atomization is performed, and the atomized spray material 101 is formed into a convergent airflow that forms an orderly flow 1 113 Target surface
  • the rinin mechanism can be extremely simplified, and the rinsing device S can be manufactured at low cost. Can be manufactured.
  • the spraying device according to the present invention is useful as a metal spraying device S typified by an arc spraying device, as a spraying device for coating, and an adhesive other than paint. It sprays fluid materials such as powder, powder or blast material, and uses a spraying device based on atomization with compressed air.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

This invention relates to an atomization method for feeding an atomizing material into jet air and for making atomization, which comprises jetting a pair of planar jet air flows towards the center shaft of atomization material supply means for supplying, under non-atomization state, atomization materials consisting of a fluidizable material such as a metal molten droplet fused by arc heat, paint, blast material, adhesive, powder, etc, while interposing the center shaft between the pair of jet air flows, forming an air chamber which converges at the tip by the jet air flows, supplying the atomization material under the non-atomization state into this air chamber.

Description

明 細 書 喷霧方法および噴霖装置 技術分野  Description 喷 Fog method and jet rinsing device
本発明は、 アーク熱で溶融された金属溶滴や塗料に代表ざ れる流動性材料を、 これとは別に供耠されるジヱットエアで 微細化した後、 対象表面に吹き付けるための改良された喷霧 方法、 およびそのために使用される噴霖装 aに関する。 背景技術  The present invention provides an improved atomizing device for atomizing a fluid material typified by a metal droplet or paint melted by arc heat with jet air supplied separately, and then spraying the atomized object surface. The method, and the quinlin equipment used therefor. Background art
流動性材料を霧化供耠する形態のひとつに、 圧縮空気をノ ズルから吹き出し、 この噴出空気流で流動性材料を微細化し て気流中に分散させ、 対象表面に吹き付けるものがある。 ま た、 この種噴霧装置における噴出空気流の供耠形想には、 流 動性材料の違いに応じて様々な供耠形態が適用されている 例えば、 一般的なアーク溶射装置では線或は帯状の金属製 溶材をアーク熱で溶融し、 これをアトマイジング < a t o m i z i n g ) 用の圧縮空気で微細化し冷却しながら母材に吹 付け、 母材表面に微粒子状の連統被膜を形成する。 この種溶 射装置における圧縮空気の供耠形態の従来技術と しては、 ァ ーク域の外面側に主ジ ッ トエアーカーテンを形成する外包 型と、 主ジヱ、、) トエアをアーク域の中心後方からアーク域に 向かって噴出する貫通型との二方式がある A One of the forms of atomizing the flowable material is to blow compressed air from a nozzle, make the flowable material finer by the jetted airflow, disperse the material in the airflow, and spray the target surface. In addition, various supply modes are applied to the supply form of the jet air flow in this type of spraying apparatus according to the difference in fluid material.For example, in a general arc spraying apparatus, a wire or a spray is used. The strip-shaped metal material is melted by arc heat, and it is made finer with compressed air for atomizing and sprayed on the base material while cooling, forming a continuous fine particle film on the base material surface. Conventional techniques for supplying compressed air in this type of thermal spraying apparatus include: There are two methods: an outer envelope type that forms a main jet air curtain on the outer surface side of the arc region, and a penetration type that jets out the main jet from behind the center of the arc region toward the arc region.
外包型は、 主ジェットエアーカーテンを環状のノズルから R錐形に噴き出し、 こ R錐形 気流 i搬に低圧毆を形成 し、 低圧圏内に溶材を送込んでアーク放電させ、 主ジ X 、、,ト エアーカーテンの誘引作用によって溶滴を気流に接触させて アトマイジングを行うものである この方式の溶射装 ¾は例 えば日本特許出願公開開昭 6 1 - 1 6 7 4 7 2号に公知であ る。 又、 前記金属溶滴を主ジヱ トエアーカーテンへ確実に 送り込むために、 アーク域の中心後方に第 2のノズルを設け、 このノズルからアーク域の中心に向かって補助ジェットエア 一を噴出する装置が、 日本特許出騣公開昭和 5 6— 1 0 1 0 3号に公知である。  In the outer envelope type, the main jet air curtain is blown out from an annular nozzle into an R-cone shape, this R-cone-shaped air flow forms a low pressure in the conveyer, and the molten material is sent into the low-pressure area to be arc-discharged. Atomizing is performed by bringing the droplets into contact with the airflow by the attraction of the air curtain.This type of thermal spraying device is known, for example, in Japanese Patent Application Laid-Open No. 61-167472. It is. In order to reliably feed the metal droplets into the main jet air curtain, a second nozzle is provided behind the center of the arc area, and an auxiliary jet air is jetted from this nozzle toward the center of the arc area. An apparatus is known from Japanese Patent Publication No. 56-10103.
外包型の溶射装 Sでは、 溶材およびアーク域の外面に円雌 形状の主ジェットエアーカーテンを形成する。 そのため、 貧 通型に比べて溶射装置が大形化しやすく、 構造も祓雜になり やすい。 とくに、 蒂状の溶材を用いる場合は、 環状のノズル の口径を大きくしないと、 アーク域を主ジェットエアーカー テンで覆うことができず、 溶射装 Sの小形化、 軽量化を実現 できなかった 又、 アーク域の中心後方に補助ノズルを備え たものの場合は、 溶射装置の内部構造が更に褸雑化し、 主 - 補助それぞれのノズル用に供耠圧の異なるエアホースを接統 する必要上、 持ち重りがし、 操作性を阻害する欠点もあった。 In the outer type sprayer S, the main jet air curtain of a female and female shape is formed on the outer surface of the molten material and the arc area. Therefore, compared to the impure type, the size of the thermal spraying device is easily increased, and the structure is more likely to be exempt. In particular, in the case of using a whirlpool molten material, the arc area could not be covered with the main jet air curtain unless the diameter of the annular nozzle was enlarged, and the spraying equipment S could not be made smaller and lighter. An auxiliary nozzle is provided behind the center of the arc area. In this case, the internal structure of the thermal spraying equipment becomes even more ragged, and it is necessary to connect air hoses with different supply pressures for the main and auxiliary nozzles, and there is also a drawback that the weight increases and the operability is impaired. .
霣通型は、 アーク域の中心後方に主ジエツ 卜エアを噴き出 す主ノズルを備えており、 主ノズルから噴出される直線状の 主ジ ッ トエアを金属溶滴に直接作用させてアトマイジング を行う。 この種装置は例えば日本特許出願公開昭和 6 1 - 1 8 1 5 6 0号に記載されている 又、 日本特許出願公開昭和 6 0— 1 8 4 6 3号には、 主ノズルとは別にアーク域の外側 に一対の補助ノズルを設け、 両ノズルから溶材の先端交点に 向かって補助エアを噴き出し、 この補助エアと金 溶滴に直 接作用する主ジェットエアとの協働作用により、 アトマイジ ングを行うものが記載されている。  The main type has a main nozzle that blows out the main jet air behind the center of the arc area, and the linear main jet air that is blown out from the main nozzle directly acts on the metal droplet to atomize. I do. This type of apparatus is described, for example, in Japanese Patent Application Publication No. 61-181580, and in Japanese Patent Application Publication No. 60-184643, an arc is provided separately from the main nozzle. A pair of auxiliary nozzles are provided outside the region, auxiliary air is blown out from both nozzles toward the intersection of the tip of the molten material, and atomization is performed by the cooperation of the auxiliary air and the main jet air that acts directly on the gold droplet. Are described.
貧通型の場合は、 主ジェットエアをアーク域に直接吹付け てアトマイジングを行う。 そのため、 主ジエツ トエアで溶材 のアーク部が冷却されてビンチ効果による異常高溫を生じや すく、 主ジェッ トエア中の酸素が高温高密度のオゾンとなつ て溶融金属を激しく酸化させ、 或は溶材が爆発的に溶融して、 溶滴が微細化されないまま吹付けられ、 形成被膜にむらを生 じる等の欠点があった。 こう した不具合を輊狨するために前 述のように貫通型に於いても補助ノズルを用いることがあり、 溶射装置の構造が複雜化しがちであった。 In the case of a poor type, atomizing is performed by directly blowing the main jet air into the arc area. For this reason, the arc portion of the molten material is cooled by the main jet air, which tends to cause an abnormally high temperature due to the Vinch effect. It melted explosively and sprayed the droplets without being refined, resulting in defects such as unevenness in the formed film. As described above, auxiliary nozzles may be used even in the penetrating type in order to ascertain such problems. The structure of thermal spraying equipment tends to be complicated.
上記のように、 従来のアーク溶射装置では、 外包型および 貧逋型のいずれにしても、 構造或は溶射性能等に一長一短が あり、 その改善が望まれていた。  As described above, the conventional arc spraying apparatus has advantages and disadvantages in the structure or thermal spraying performance, both in the case of the envelope type and the poor type, and improvement thereof has been desired.
この発明は上記に鑑み提案されたものであって、 アトマイ ジング用の圧縮空気の供耠形憨を改良することにより、 溶射 装養の構造の箇素化を図り、 その小形化および鞋置化を実現 すること、 およびアーク溶射をロスなく安定的に行えるよう にすることを目的とする。  The present invention has been proposed in view of the above, and by improving the supply form of compressed air for atomization, the structure of the thermal spraying equipment is reduced, and the size and the size of the shoe are reduced. The purpose is to realize arc spraying and to stably perform arc spraying without loss.
この発明の他の目的は、 醫状の溶材に適したァ卜マイジン グ用圧縮空気の供耠形態を得ることにある  Another object of the present invention is to obtain a supply form of compressed air for atomizing suitable for a medical material.
上記のようなアーク溶射装置、 あるいは他方式の溶射装 S における第 2の問題点として、 その溶射パターンが小さく、 しかも母材表面に吹き付けられた微小溶滴の分布が不均一に なることを、 挙げることができる。  As a second problem in the above-described arc spraying apparatus or another type of spraying apparatus S, the fact that the spray pattern is small and the distribution of fine droplets sprayed on the base material surface becomes non-uniform, Can be mentioned.
つまり、 徒来装 Sでは、 第 2 6図に示すように、 溶射パタ ーン Ρ 2がほぼ円形となって、 小さな溶射面積しか得られな い不利がある ソズルから噴出される空気量を增加すると、 ある程度溶射面積を拡大することができる。 しかし、 この場 合、 アーク溶射では溶材のアーク部が大量のジエツトエアー で過冷却されてピンチ現象を生じやすく、 アーク溶射を安定 的に行うことが困難になる。 また、 アーク溶射方式あるいは ガス溶射方式のいずれにしても母材表面で势いの強い反転空 気流が形成されるため、 母材に付着せず跳ね返ってしまう溶 滴置が増え、 溶滴の付着ロス置が急增する。 In other words, as shown in Fig. 26, the thermal spray pattern Ρ2 is almost circular, and the air volume ejected from the sozzle has a disadvantage that only a small spray area can be obtained. Then, the sprayed area can be enlarged to some extent. However, in this case, the arc spray of the material is supercooled by a large amount of jet air, and the pinch phenomenon is likely to occur, and the arc spray is stable. It becomes difficult to perform it. Also, in both the arc spraying method and the gas spraying method, a strong reversing airflow is formed on the base material surface, so that the number of droplets that bounce off without being attached to the base material increases, and the adhesion of droplets Loss is urgent.
通常、 溶射装置と母材との簡隔は、 2 0 cm前後が適切であ るとされているが、 この間隔を大きくすることによつても溶 射面積をある程度拡大することができる。 しかし、 この場合 は、 微細化された溶滴の母材表面への付着力が狨少し、 溶射 被膜の耐剝離強度が低下する  Usually, it is considered that a suitable separation between the thermal spraying apparatus and the base material is about 20 cm. However, by increasing the distance, the thermal spraying area can be enlarged to some extent. However, in this case, the adhesion force of the fine droplets to the base material surface is small, and the separation resistance of the sprayed coating decreases.
また、 従来装置では第 2 6図に示すように、 円形の溶射パ ターン P 2の膜厚 が、 中央部では必要以上に厚く、 周緣側 では必要厚みが得られない程度にまで薄くなる。 そのため、 溶射被膜の面方向の胰厚にむらを生じやすく、 均質の被膜を 形成できないこと、 およびその保護性能のばらつきが大で信 頼性に欠けること等の不利があった。 さらに、 噴射溶滴が中 央に集中するため、 中央部に熱が蓄積されやすく、 周辺部と の熟膨脹差によつて溶射被膜が剥離することもあった。  Further, in the conventional apparatus, as shown in FIG. 26, the thickness of the circular sprayed pattern P2 is unnecessarily thick at the center portion and is reduced to the extent that the required thickness cannot be obtained at the peripheral portion. Therefore, there are disadvantages such as unevenness in the thickness of the thermal sprayed coating in the surface direction, which makes it impossible to form a uniform coating, and that the protection performance of the coating varies widely and lacks reliability. Furthermore, since the spray droplets are concentrated in the center, heat is likely to accumulate in the center, and the sprayed coating may be peeled off due to the difference in maturation from the periphery.
先に述べた溶射パターン面積が小さいことは、 作業能率に も大きく影響する。 もちろん、 一定面積に所定厚みの溶射被 腴を形成するのに長時間を必要とすることは当然であるが、 それだけには止まらない。 通常、 母材は溶射前にブラスト処 理され、 表面が活性化される 活性化された表面は酸化しや すい状憨になっており、 母材の材質にもよるが、 ブラスト処 理後 2〜4時間以内に溶射作業を終了する必要がある- 従つ て、 母材面積が溶射装置の容置を越えて一定値に達すると、 前記時間内に成胰を行うことができず、 例えば溶射作業を中 靳して液剤による活性化処理を行うなどの、 余分な補助作業 が必要となる。 The small spray pattern area mentioned above has a great effect on work efficiency. It goes without saying that it takes a long time to form a sprayed coating of a predetermined thickness in a certain area, but it is not limited to that. Usually, the base material is blasted before spraying. The activated surface is easily oxidized, and depending on the material of the base material, the spraying operation is completed within 2 to 4 hours after blasting. Therefore, if the base material area reaches a certain value beyond the capacity of the thermal spraying device, growth cannot be performed within the above-mentioned time. Extra auxiliary work such as conversion processing is required.
この発明の他の 的は、 アトマイジング用の圧縮空気の供 耠形憨を改良することにより、 溶射面積を数倍に拡大し、 し かもその膜厚分布を均一化できるようにした高能率の溶射装 置を得ることにある。  Another object of the present invention is to improve the supply form of compressed air for atomizing, thereby increasing the sprayed area several times and achieving a highly efficient film thickness distribution. The purpose is to obtain a thermal spraying device.
金属溶射装 ¾に比べて、 さらに身近な噴霧装置の代表例と して、 空気棼化式の塗装用スプレーガンが一般に広く使用さ れている。 これでは、 塗料ノズルの先端に空気キャップを装 着し、 塗料ノズル口位置で塗料と空気を混合し、 塗液の霧化 を行っており、 必要に応じて、 補助窆気ノズル口を設けて、 塗料の微粒化の促進や、 塗布パターンの調整、 噴霧塗料の飛 散防止を計っている  As a representative example of a more familiar spraying device than a metal spraying device, a spray gun for air-based coating is generally widely used. In this method, an air cap is attached to the tip of the paint nozzle, paint and air are mixed at the paint nozzle port, and the coating liquid is atomized.If necessary, an auxiliary air nozzle port is provided. It promotes atomization of paint, adjusts coating patterns, and prevents spray paint from scattering.
塗装用スプレ--ガンには、 上記のような空気霧化方式どは 別に、 高圧に加圧した塗液を、 小径のノズルチップから ¾速 度で噴出し、 周辺空気との摩擦作用で霧化を行うエアレス方 式のものも広く使用されている。 In addition to the above-mentioned air atomization method, the coating spray gun sprays a high-pressure pressurized coating liquid at a low speed from a small-diameter nozzle tip, and sprays it by friction with the surrounding air. Airless people Formula types are also widely used.
いずれの方式にせよ、 従来の塗装用噴霧装置では、 塗液を 霖化するための塗料ノズルを欠くことができない * そのため、 塗料ノズルでの目詰りの問題が常につきまとい、 吹付作業を 行う毎に、 煩しい分解清掃を行う必要があった。 また、 喷霖 装置の動作不良や、 パターン不良など、 故降の大半は塗料ノ ズルに起因して発生しており、 その管理が面倒であつた。  Regardless of the method, the conventional spraying equipment for coating requires a paint nozzle to make the coating liquid indispensable. * Therefore, the problem of clogging at the paint nozzle is always noticed, and every time spraying work is performed. However, it was necessary to perform troublesome disassembly and cleaning. In addition, most of the downfalls, such as malfunctions and pattern failures of the 喷 lin equipment, occurred due to paint nozzles, and their management was troublesome.
従来の塗装用噴薪装置の第 2の問題点として、 吹付時に大 置の無効ミストを伴うことが挙げられる。 これは、 塗料ノズ ルロ位置で、 互いに交差する複数のジヱッ 卜エアの街突作用 で塗料の微粒化を行うため、 街突後の空気流の直進性が弱ま り、 その指向性が阻害されてしまうためである。 無効ミスト が多いと、 塗液が無駄に消費され、 しかも塗液や溶剤によつ て作業環境が汚染されてしまう。 無効ミスト対策として、 エアレス方式のスプレーガンにお いて、 塗料ノズルの周囲に環状の空^ノズルを設け、 このノ ズルから噴出したエアカーテンで、 塗料の噴霖領域を包み込 むものが日本特許出願公開昭和 5 9— 2 0 6 0 6 6号、 ある いは日本実用新案出願公開昭和 5 7 - 5 5 5 6 0号に開示さ れている。 しかし、 これでは、 塗液の吹付と同時に、 エア力 一テンの一部が濡れた状態の吹付面を後追い状に走査するた め、 吹付面が乱されて塗膜品質を落としてしまう欠点がある また、 噴霧機構とは別に、 エアカーテン用の空気ノズルを別 途必要とする不利もある。 A second problem with the conventional firewood spray equipment is that it involves a large amount of invalid mist during spraying. This is because a plurality of jet air crossing each other at the paint nozzle position causes the paint to be atomized by the abrupt action, so that the straightness of the airflow after the street is weakened and its directivity is hindered. This is because When there are many invalid mist, the coating liquid is wasted and the working environment is polluted by the coating liquid and the solvent. As a countermeasure against invalid mist, an airless spray gun is provided with a ring-shaped empty nozzle around the paint nozzle, and an air curtain ejected from this nozzle envelops the paint spray area. The disclosure is disclosed in Japanese Patent Publication No. 59-206-66-6, or Japanese Utility Model Application Publication No. 57-555560. However, with this method, a part of the air force scans the spraying surface in a wet state at the same time as spraying the coating liquid. Therefore, there is a disadvantage that the spray surface is disturbed and the coating quality is deteriorated. In addition to the spray mechanism, there is a disadvantage that an air nozzle for an air curtain is separately required.
さらに、 従来装置では、 塗料ノズルなどの噴霧機構を精密 に形成し、 あるいは空気ノズルとの相互の位匱鬨係を精密化 する必要上、 噴霧装置の製造コストが高く付く不利があった, とくに、 エアレス方式のスプレーガンは、 塗液を 1 0 0〜2 0 O teZoiもの高圧に加圧するため、 スプレーガンはもちろ んのこと、 塗料の供耠システムが高価であった,  Furthermore, in the conventional apparatus, there is a disadvantage that the spraying mechanism such as a paint nozzle or the like is required to be formed precisely, or a mutual relation between the spray nozzle and the air nozzle is made precise, so that the manufacturing cost of the spraying apparatus increases. The airless spray gun presses the coating liquid to a high pressure of 100 to 200 OteZoi, so the spray gun was expensive, and the paint supply system was expensive.
この発明の他の目的は、 噴霧装置において不可避であつた ノズルの目詰りの問題を解消し、 その取扱いを容易化して管 理作業を簡素化することにある。  Another object of the present invention is to eliminate the problem of nozzle clogging which has been inevitable in the spraying device, to facilitate the handling thereof and to simplify the management work.
この発明の他の目的は、 無効ミストの発生を防止し、 塗液 の無駄な消費を解消すると同時に、 作業環境が無効ミストで 汚染されることを一掃することにある  Another object of the present invention is to prevent the generation of invalid mist, eliminate unnecessary consumption of the coating liquid, and at the same time, eliminate the contamination of the working environment with invalid mist.
結局、 この発明の究極の目的は、 .簡素化された新規な喷霧 機構によって、 金属溶滴や塗料に代表される流動性材料を確 実にしかも安定的に霧化できるようにし、 噴霧装置の信頼性 の向上と同時にその製造コストの低下とを実現することにあ る。 . 8月の Ultimately, the ultimate object of the present invention is to provide a simple and novel atomizing mechanism that can surely and stably atomize a flowable material such as metal droplets and paints, The goal is to improve the reliability and at the same time reduce the manufacturing cost. . August
の発明の噴霧装置は、 基本的に外包型のアーク溶射装置 と同等の供耠形態によって噴出空気流を供耠するが、 面状ジ ェッ 卜エアよりなるエアーカーテンによって形成されるエア 一チャンバを V字状とする点に特徴を有する  The spraying device according to the invention of the present invention supplies the jet airflow in a supply mode basically similar to that of the outer envelope type arc spraying device, but an air chamber formed by an air curtain made of planar jet air. Is characterized by a V-shape
具体的には、 流動性材料からなる噴霧材を非噴霧状に供耠 する噴霧材供耠手段の中心軸を間に挟んで、 前記中心軸に向 かって一対の面状のジヱッ 卜エアを噴出し、  Specifically, a pair of planar jet air is ejected toward the central axis with the central axis of the spray material supply means for supplying the spray material made of a fluid material in a non-spray state interposed therebetween. And
前記ジヱッ トエアによって; 先端で収束するエア一チャン バを形成し、  The jet air forms a converging air chamber at the tip;
このエアーチャンバ内に噴霧材を非噴薪状に供耠して、 噴 ϋ材をジェットエア内に送込みアトマイジングを行うことを 特徴とする噴霧方法である。  The spraying method is characterized in that the spraying material is supplied into the air chamber in a non-spouting shape, and the spraying material is sent into jet air to perform atomizing.
流動性材料からなる噴森材料とは、 具体的には、 アーク熱 で溶融した金属溶滴、 塗料、 ブラス卜材、 接着剤、 粉体など が例示され、 本発明者は、 以下に述べる第 1発明、 第 2発明、 第 3発明の順でその開発を進めた。  Specific examples of the spout material made of a fluid material include metal droplets, paints, blast materials, adhesives, and powders that are melted by arc heat. The development proceeded in the order of the first invention, the second invention, and the third invention.
本発明の第 1発明は、 溶射中心軸を間に挟んで配設された 一対のノズル口から溶射中心軸に向かって面状ジ Xットエア を噴出し、 前記ジェッ トエアによって、 先端で収束するエア —チヤンバを形成し、 エアーチヤンバ内で一対の溶材間にァ ーク放電を連統的に生じさせ、 アーク放霭により生じた溶材 の溶滴をジェッ 卜エア内に送込みアトマイジングを行うこと とした。 The first invention of the present invention is directed to a first aspect of the present invention, wherein planar jet air is jetted from a pair of nozzle ports disposed with a spraying central axis interposed therebetween toward the spraying central axis, and the jet air converges at the tip by the jet air. —Forms a chamber and creates a gap between a pair of materials in the air chamber. Arc discharge was continuously generated, and droplets of the molten material generated by the arc discharge were sent into the jet air to perform atomizing.
この第 1発明の装置は、 ケース前端の溶射中心軸を挟む位 Sに、 ァ卜マイジング用の面状ジヱットエアを形成する一対 のノズル口を配置し、 両ノズル口の噴出中心線が溶射中心軸 に向かって収束するよう、 両ノズル口を指向させ、 ジェッ ト エアで区面されるエアーチャンバに、 一対の溶材のアーク交 点を位 Sさせることとした。  In the apparatus of the first invention, a pair of nozzle ports for forming planar jet air for atomizing is disposed at a position S sandwiching the spraying central axis at the front end of the case, and the ejection center lines of both nozzle ports are aligned with the spraying central axis. The two nozzle ports were pointed so as to converge toward, and the arc intersection of the pair of molten materials was positioned S in the air chamber defined by the jet air.
このように、 一対のノズル口よりジエツトエアを噴出しこ れにより: I:ァーカーテンを形成し、 アーク溶射を安定的に行 うのに必要な最小領域だけをエアーカーテンで包み込むよう にすると、 ノズルの構造を単純化して噴霧装置の小形化を容 易に行うことができる。  In this way, jet air is ejected from a pair of nozzle ports. I: An arc curtain is formed, and only the minimum area necessary for stable arc spraying is wrapped by the air curtain. The structure can be simplified and the size of the spray device can be easily reduced.
また、 アーク交点は、 エアチャンバ内のジェットエアの収 束部方向に流れる気流速度の低い弱風圏でアーク放電を連統 的に行い、 アーク放電により生じた溶材の溶滴を弱風圈の弱 風によりジェットエア内に送込みアトマイジングを行うと、 ピンチ現象を生じることなく安定したアーク溶射を行うこと ができる。  In addition, the arc intersection continuously performs arc discharge in a weak wind zone with a low air flow velocity flowing in the direction of the convergence of the jet air in the air chamber, and the droplets of the molten material generated by the arc discharge are formed in the weak wind zone. If atomizing is performed by sending it into the jet air with a weak wind, stable arc spraying can be performed without causing a pinch phenomenon.
さらに、 蒂状の溶材を用いて溶射を行う埸合でも、 その外 面に沿ってジ ットエア一カーテンを形成できるので、 小形 のノズルでアーク溶射を行うことができ、 溶射装置を小形化 できる。 In addition, even if spraying is performed by using Since a jet air curtain can be formed along the surface, arc spraying can be performed with a small nozzle, and the spraying apparatus can be downsized.
溶射パターンについて改良された第 2の発明では、 エアー チャンバを V字状とすることに加えて、 たすき掛けされた平 ベルトが交差するのと同様に、 一対のジヱ、、,卜エアを逆向き に傾斜して交差させることにした  In the second aspect of the invention, which is improved with respect to the thermal spraying pattern, in addition to the V-shaped air chamber, a pair of ji,,, I decided to cross in a direction
即ち、 溶材の溶滴発生位置 (アーク交点》 を間に挟んで、 それぞれが平面状のジヱットエアを形成する一対のノズル口 を配置し、 両ジェッ トエアの厚み中心線が溶材の溶滴発生位 S (アーク交点) より前方位置の溶射中心軸に向かって傾斜 し、 且つ、 両ジヱットエアの幅方向中心線が溶射中心軸に対 して互いに逆向きに傾斜して、 両ジ Xットエアがその一部を 収束しつつ交差するよう両ノズル口を指向させることとした。  In other words, a pair of nozzle ports, each forming a flat jet air, are arranged with the droplet generation position (arc intersection) of the molten material in between, and the thickness center line of both jet air is the droplet generation position S of the molten material. (Arc intersection) Inclines toward the spraying central axis at the front position, and the center lines in the width direction of both jet airs are tilted in opposite directions to the spraying central axis, and both jet airs are partially formed. The two nozzle ports are directed so that they converge and intersect.
このように両ジェッ トエアの厚み中心線を溶射中心軸に向 かって傾斜し、 さらに各ジェッ トエアの幅方向中心锒を逆向 きに傾斜すると溶滴はジ Xッ トエアの収束部より前方の集合 気流と、 両ジ Xッ 卜エアの収束せず交差する交差気流からな る気流中で微細化され分散する。 その結果、 母材表面におい ては、 第 2 6図に示すような長円乃至は楕円状の溶射バター ンが得られ、 そのパターン面積を従来溶射パターンの 2 . 5 乃至 3倍強にまで拡大できる。 In this way, when the thickness center line of both jet airs is inclined toward the spraying center axis, and the center in the width direction of each jet air is also inclined in the opposite direction, the droplets gather in front of the converging portion of the jet air. In this case, the two jet air do not converge, but are made finer and dispersed in an airflow consisting of crossing airflows that intersect. As a result, an oblong or elliptical thermal spray pattern as shown in FIG. 26 is obtained on the base metal surface, and the pattern area is 2.5 times that of the conventional thermal spray pattern. It can be expanded up to 3 times or more.
この発明の原理を、 塗料等の流動性材料の噴霧装髭に適用 した第 3锩祖では、 噴籙装置が、 噴霖材を非喰霖拔に供袷す る喷霧材供給手段と、 ジ ツ トエアを噴出して噴霧材を霧化 する空気ノズルを含んで横成されている。 空気ノズルは、 面 状のジ: Lットエアを噴出する一対のノズル口を有し、 ジェッ トエアが噴霧中心軸に向って収束し、 収束後に収束気流を形 成するようノズル口の噴出方向を指向させる。 そして、 ジ ! 1 ットエアで囲まれるエアーチャンバ内に、 噴薪材供耠手段の 供耠部を配置する- 又、 溶射装置の第 2発明と同様に、 一対のジヱットエアの 厚み中心線を噴霧中心軸上に向って収束させ、 幅方向中心線 を噴霧中心軸に対して互いに逆向きに傾斜させることが好ま しい。  In a third family in which the principle of the present invention is applied to spray mustaches of a fluid material such as paint, a spraying device supplies a spraying material to a non-culinary drawer, It is horizontal including an air nozzle that jets jet air to atomize the spray material. The air nozzle has a pair of nozzle ports for jetting out flat jets of L-shaped air.The jet air converges toward the spray center axis, and the jet direction of the nozzle ports is directed so as to form a convergent airflow after convergence. Let it. Then, the supply section of the firewood supply means is arranged in the air chamber surrounded by the jet air. Also, similarly to the second invention of the thermal spraying apparatus, the center of thickness of the pair of jet air is set to the spray center. It is preferable to converge toward the axis, and to incline the width direction center lines in opposite directions to the spray center axis.
この噴霧装 gでは、 喷霧材を流動作用で、 あるいは加圧し た噴霖材を管路から放出することによって、 ノズルを用いる ことなく非噴霧状に供耠する《 供耠された噴霧材は、 ジエツ 卜エアの収束部に向かう弱風により、 エアーチャンバを縦断 状に移動し、 気流中に取り込まれる。 気流中に取り込まれる ときの、 噴霧材の移動速度とジ: 1:ットエアの流速とには大き な開きがある。 このため、 噴霧材は恰もジ Xットエアで削り 取られるようにして細分化され、 さらに、 収束部を通過する 間に、 向きの異るジェッ トエアに叩かれて微粒化され、 気流 中に分散する。 In this spraying device g, the spray material is supplied in a non-spray state without using a nozzle by flowing the spray material or discharging the pressurized spray material from the pipeline. However, the weak wind heading for the converging portion of the jet air moves the air chamber longitudinally and is taken into the airflow. There is a large gap between the velocity of the spray and the flow rate of the jet air when it is taken into the airflow. For this reason, the spray material is shaved using As it passes through the converging section, it is subdivided and then struck by jet air in different directions to be atomized and dispersed in the airflow.
ジエットエアは、 収束部で合流して噴霧中心軸に沿う一個 の収束流を形成する この収束流は、 強い指向性を有する整 然とした流れからなり、 むしろ周辺空気を気流中に引き込み ながら速度を減少し、 対象面に衝突する。 このように、 噴霧 材を非噴霖状に供耠することにより、 噴霧ノズルを省略でき、 噴森ノズルに由来する問題を一掃できる。 また、 収束部で微 粒化された噴霧材は、 指向性の強い収束流で対象面に速ばれ る。 従って無効ミズ卜の発生を防止して、 噴霧材等による環 境汚染を解消できる。  The jet air merges at the converging section to form a single converging flow along the central axis of the spray.This converging flow consists of an orderly flow with strong directivity, and rather increases the velocity while drawing the surrounding air into the airflow. Decreases and hits target surface. In this way, by supplying the spray material in a non-fountain shape, the spray nozzle can be omitted, and the problem derived from the spray nozzle can be eliminated. Also, the spray material atomized in the converging section is speeded up to the target surface by a convergent flow with high directivity. Therefore, generation of invalid mist can be prevented, and environmental pollution due to spray material or the like can be eliminated.
喷霖機構として、 微細で高度の加工精度を必要とする喷霧 ノズル等を省略することができ、 ごく単純な構造の喷霖材供 耠手段と空気ノズルだけで、 噴霧材を霧化し対象面に供耠で きる * 従って、 噴霧装置を安価に製造できる しかも、 喷霧 材供耠手段は、 非噴薪状態で、 比較的大径の供耠口より喷霧 材を供耠できるので、 目詰りや摩耗等の心配が全くない。 ま た、 ジエツ卜エアの流動作用によって噴霖材の微粒化を行う。 つまり、 不安定要因のない状態で噴霧材の霧化供耠を行うこ とができるので、 確実にしかも安定的に霖化を行うことがで きる の筋装な ^明 As a rinin mechanism, it is possible to omit fine mist nozzles that require a high degree of high processing accuracy, and use only a simple rinlin material supply means and air nozzles to atomize the spray material and apply it to the target surface. * Therefore, the spraying device can be manufactured at a low cost, and the spray material supply means can supply the spray material from a relatively large-diameter supply port in a non-firewood state. There is no worry about clogging or wear. In addition, the jet air is pulverized by the flow action of jet air. In other words, it is possible to perform the atomization supply of the spray material without any instability factors, so that the rinsing can be performed reliably and stably. Akira's guise
第 1図乃至第 2 3図は、 本発明の第 1発明を示すものであ る  1 to 23 show the first invention of the present invention.
第 1図及至第 5図は第 1発明に係るアーク溶射装 fiの実施 例を示し、 第 1図はノズル部の横断平面図、 第 2図はノズル 部の縦断面図、 第 3図はアーク溶射装置の縦断側面図、 第 4 図はアーク溶射装置の横断平面図、 第 5図はノズルの正面図 である。  Figs. 1 to 5 show an embodiment of the arc spraying fi according to the first invention, Fig. 1 is a cross-sectional plan view of the nozzle, Fig. 2 is a longitudinal sectional view of the nozzle, and Fig. 3 is an arc. FIG. 4 is a cross-sectional plan view of the arc spraying device, and FIG. 5 is a front view of the nozzle.
第 6図および第 7図は第 1発明に係るアーク溶射装 Sの他 の実施例を示し、 第 6図はアーク溶射装置の横断平面図、 第 7図は第 6図における A— A線断面図である。  6 and 7 show another embodiment of the arc spraying apparatus S according to the first invention, FIG. 6 is a cross-sectional plan view of the arc spraying apparatus, and FIG. 7 is a sectional view taken along line AA in FIG. FIG.
第 8図乃至第 2 3図はそれぞれ第 1発明の装篋のノズルの 変形例を示し、  8 to 23 show modified examples of the encircling nozzle of the first invention, respectively.
第 8図はノズルの正面図、 第 9図は第 8図における B— B 線断面図、 第 1 0図は第 8図のノズルから噴出するジ工ット エアの形態を概念的に示す斜視図である。  Fig. 8 is a front view of the nozzle, Fig. 9 is a cross-sectional view taken along the line BB in Fig. 8, and Fig. 10 is a perspective view conceptually showing the form of jet air ejected from the nozzle of Fig. 8. FIG.
第 1 1図および第 1 2図は、 それぞれノズル口の変形例を 示す正面図、 第 1 3図は第 1 2図における C一 C锒断面図で のる。 第 1 4図はノズル口の別の変形を示す正面図、 第 1 5図は 第 1 4図における D— D線断面図である。 11 and 12 are front views each showing a modified example of the nozzle port, and FIG. 13 is a cross-sectional view taken along the line C-C in FIG. FIG. 14 is a front view showing another modification of the nozzle port, and FIG. 15 is a sectional view taken along line DD in FIG.
第 1 6図および第 1 7図は、 それぞれノズル口のまた別の 変形を示す正面図、 第 1 &図はノズル口のまた別の変形を示 す横断面図である。  FIGS. 16 and 17 are front views each showing another modification of the nozzle port, and FIGS. 1 & 2 are cross-sectional views showing another modification of the nozzle port.
第 1 9図および第 2 0図は、 それぞれ補助ノズル口が付加 されたノズルの横断面図である,  Fig. 19 and Fig. 20 are cross-sectional views of the nozzle with the auxiliary nozzle port added, respectively.
第 2 1図は補助ノズル口の開口位置を変更したノズルの正 面図である。  FIG. 21 is a front view of the nozzle in which the opening position of the auxiliary nozzle opening is changed.
第 2 2図は保形ノズルが付記されたノズルの正面図、 第 2 3図は第 2 2図における E— E線断面図である,  Fig. 22 is a front view of the nozzle to which the shape-retaining nozzle is added, and Fig. 23 is a sectional view taken along line E-E in Fig. 22.
第 2 4図乃至第 3 7図は本発明の第 2発明を示すものであ る  FIGS. 24 to 37 show a second invention of the present invention.
第 2 4図乃至第 3 1図は第 2発明に係るアーク溶射装置の 実施例を示し、 第 2 4図はジエツ ドエアーの噴出形態を原理 的に示す側面図、 第 2 5図はその平面図、 第 2 6図は溶射パ ターンを示す正面図、 第 2 7図は溶射装置の縦断側面図、 第 2 8図は第 2 7図における F— F線断面図、 第 2 9図は溶射 装置の正面図、 第 3 0図および第 3 1図は、 それぞれ第 2 9 図における G— G線および H— H線に沿う断面図である。  24 to 31 show an embodiment of the arc spraying apparatus according to the second invention, FIG. 24 is a side view showing the jet air jetting form in principle, and FIG. 25 is a plan view thereof. , FIG. 26 is a front view showing the thermal spray pattern, FIG. 27 is a vertical side view of the thermal spraying apparatus, FIG. 28 is a sectional view taken along line FF in FIG. 27, and FIG. 29 is a sectional view taken along the line GG and the line HH in FIG. 29, respectively.
第 3 2図乃至第 3 7図は、 それぞれ第 2発明の装置のノズ ルの変形例を示す FIGS. 32 to 37 show the nozzles of the device of the second invention, respectively. Show a modified example of
第 3 2図はノズル口の変形例を示す正面図である。  FIG. 32 is a front view showing a modified example of the nozzle port.
第 3 3図はノズル口の別の変形例を示す正面図である 第 3 4図および第 3 5図は、 ノズルのさらに別の変形例を 示し、 第 3 4図は正面図、 第 3 5図は側面図である。  FIG. 33 is a front view showing another modified example of the nozzle port. FIGS. 34 and 35 show still another modified example of the nozzle. FIG. 34 is a front view and FIG. The figure is a side view.
第 3 6図および第 3 7図は、 ノズルのさらに別の変形例を 示し、 第 3 6図は正面図、 第 3 7図は側面図である。  FIG. 36 and FIG. 37 show still another modified example of the nozzle. FIG. 36 is a front view, and FIG. 37 is a side view.
第 3 8図乃至第 4 8図は本 明の第 3発明を示すものであ る。  FIGS. 38 to 48 show the third invention of the present invention.
第 3 8図乃至第 4 1図は第 3発明に係る噴霧装 fiの実施例 を示し、 第 3 8図は噴霧装置の原理説明図、 第 3 9図は空気 ノズルの正面図、 第 4 0図は第 3 9図における J一 J緣断面 図、 第 4 1図は供耠管を変更した噴霧装置の側面図である。  FIGS. 38 to 41 show an embodiment of the spraying device fi according to the third invention, FIG. 38 is a view for explaining the principle of the spraying device, FIG. 39 is a front view of an air nozzle, and FIG. The figure is a cross-sectional view taken along the line J-J in FIG. 39, and FIG. 41 is a side view of the spraying apparatus with the supply pipe changed.
第 4 2図乃至第 4 5図は第 3発明に係る噴霧装置の他の実 施例を示し、 第 4 2図は噴霧装置の原理説明図、 第 4 3図は 空気ノズルの正面図、 第 4 4図および第 4 5図はそれぞれ第 4 3図の K一 K線および L一 L線断面図である。  FIGS. 42 to 45 show another embodiment of the spraying device according to the third invention, FIG. 42 is a view for explaining the principle of the spraying device, FIG. 43 is a front view of an air nozzle, and FIG. FIGS. 44 and 45 are cross-sectional views taken along line K-K and line L-L in FIG. 43, respectively.
第 4 6図乃至第 4 8図は、 第 3発明を塗装用のスプレーガ ンに適用した他の実施例を示し、 第 4 6図はスプレーガンの 縦断側面図、 第 4 7図は空気ノズルの正面図、 第 4 8図は第 4 7図における M— M線断面図である。 . gflを 倫.するための の开 FIGS. 46 to 48 show another embodiment in which the third invention is applied to a spray gun for painting, FIG. 46 is a longitudinal side view of the spray gun, and FIG. 47 is a view of the air nozzle. FIG. 48 is a sectional view taken along line MM in FIG. 47. fl To do gfl
第 1図乃至第 5図は本発明の第 1発明の実施例のアーク溶 射装置を示す。 第 3図に於いて、 アーク溶射装廬は線状の溶 材 Wを用いてアーク溶射を行うものであって、 角箱状のケー ス 1内を溶材 Wが上下平行姿势で通過するよう溶材経路を設 定し、 ケース 1の内部中央に溶材送り機構 2を設け、 ケース 1の前端外面にアトマイジング用の平面状のジェットエア 2 1を噴き出すノズル 3を配置している。  1 to 5 show an arc spraying apparatus according to an embodiment of the first invention of the present invention. In FIG. 3, the arc spraying apparatus performs arc spraying using a linear material W, so that the material W passes through the rectangular box-shaped case 1 in a vertically parallel manner. A route is set, a melt feeding mechanism 2 is provided in the center of the inside of the case 1, and a nozzle 3 for jetting flat jet air 21 for atomizing is arranged on the outer surface of the front end of the case 1.
ケース 1の前後に絶緣ブロック 4、 5を固定し、 各ブロッ ク 4、 5を前後に貧通する状憨で、 溶材 Wの通適経路を規定 する上下一対のガイ ド管 6、 7を平行に配設している。 後側 のガイ ド管 7は、 絶緣ブロック 5に直接固定する。 又、 前側 のガイ ド管 6は、 絶緣ブロック 4に装着された上下一組の電 極棒 8にねじ込んで固定する。 第 4図に示すように、 «極棒 8の一端はケース 1の外面に突出しており、 この突端に耠電 镍 9を接統して、 一方の電極棒 8にプラス電流を、 他方の « 極棒にマイナス電流を印加し、 前記ガイ ド管 6および後述す るアークガイ ド管 1 0を介してアーク電流が溶材 Wに印加さ れるようにしている。  A pair of upper and lower guide pipes 6 and 7 that define the appropriate route for the molten material W are parallel, with the isolation blocks 4 and 5 fixed in front and back of case 1 and the blocks 4 and 5 are poorly inserted in the front and back. It is arranged in. The rear guide tube 7 is directly fixed to the isolation block 5. The guide tube 6 on the front side is screwed and fixed to a pair of upper and lower electrode rods 8 mounted on the isolation block 4. As shown in FIG. 4, one end of the pole 8 protrudes from the outer surface of the case 1, and a positive electrode 9 is connected to the protruding end to supply a positive current to one electrode rod 8 and the other A negative current is applied to the pole so that an arc current is applied to the molten material W through the guide tube 6 and an arc guide tube 10 described later.
溶材 Wをノズル 3の前方外面のアーク交点 0に向かって接 近移動させるために、 前側のガイ ド管らのそれぞれに Γく字 j に湾曲するアークガイ ド管 1 0を接銃固定している。 このァ ークガイ ド管 1 0によって、 上下の溶材 Wは溶射中心軸 Pに 向かって収束するよう変向案内され、 変向時にアークガイ ド 管 1 0の内壁に密接して、 アーク電流の印加を確実なものと する。 To move the welding material W closer to the arc intersection 0 on the front outer surface of the nozzle 3, each of the front guide pipes has a square j. The arc guide tube 10 that curves to the right is fixed to the gun. The arc guide tube 10 guides the upper and lower molten materials W so that they converge toward the spraying center axis P, and when turning, comes into close contact with the inner wall of the arc guide tube 10 to ensure the application of arc current. It shall be.
溶材送り機構 2は、 上下の溶材 Wを同時にケース前方に向 かって送り出すよう構成され、 第 4図に示す大径の駆動ロー ラ 1 2と、 溶材 Wを駆動ローラ 1 2に押し付ける上下一組の 押えローラ 1 3と、 躯勖ローラ 1 2を回転駆動するモータ 1 4などからなる。 躯動ローラ 1 2は铯緣体で形成されており、 溶材 Wに外接する箇所に限って金属製の V形断面のリング 1 2 aを嵌込んでいる。 リング 1 2 aの周面には、 增摩擦用の ローレツトが施されている。 押えローラ 1 3ほ絶縁体製の上 下に分割された一組の揺動アーム 1 5に回転自在に支持され ており、 揺動アーム 1 5のそれぞれを板ばね 1 6で駆動ロー ラ 1 2に向かって押圧付勢することにより、 押えローラ 1 3 が溶材 Wをリング 1 2 aの周面に圧接させるようにしている fr モータ 1 4はケース 1の下面に固定したダリップ 1 7内に収 められており、 ダリップ 1 7の後面に設けたスィツチ 2 5を オン操作すると起動できる。 The molten material feeding mechanism 2 is configured to simultaneously send the upper and lower molten materials W toward the front of the case, and includes a large-diameter drive roller 12 shown in FIG. 4 and a pair of upper and lower members for pressing the molten material W against the drive roller 12. It is composed of a press roller 13 and a motor 14 for rotating the main roller 12. The driving roller 12 is formed of a solid body, and is fitted with a metal V-shaped cross-section ring 12a only at a portion circumscribing the molten material W. A knurl for friction is applied to the peripheral surface of the ring 12a. Pressing roller 1 3 It is rotatably supported by a pair of swinging arms 15 divided into upper and lower parts made of insulating material. Each of swinging arms 15 is driven by leaf spring 16 and driven roller 1 2 The pressing motor 13 presses the pressing roller 13 to press the molten material W against the peripheral surface of the ring 12a.The fr motor 14 is housed in a lip 17 fixed to the lower surface of the case 1. The switch can be started by turning on the switch 25 provided on the rear side of the drip 17.
第 4図および第 5図に於いて、 ノズル 3は前後に薄い角箱 状に形成され、 その上半部の左右中央にアークガイ ド管 1 0 を避ける凹部 1 8を設け、 この凹部 1 8の対向縁のそれぞれ に、 溶射中心軸 Ρを間に挟んで対称となるよう一対のノズル 口 1 9 , 1 9を開口している。 ノズル 3の下端にはエアホー スを接統する継手 2 0が突設される。 この継手 2 0からノズ ル 3内のエアチャンバ 3 aに圧縮空気を送込む In Fig. 4 and Fig. 5, nozzle 3 is a thin square box A concave portion 18 is provided in the left and right center of the upper half of the upper portion to avoid the arc guide tube 10, and each of the opposing edges of the concave portion 18 is symmetrical with the spraying center axis 挟 interposed therebetween. A pair of nozzle openings 19, 19 are opened. At the lower end of the nozzle 3, a joint 20 for connecting the air hose protrudes. Compressed air is sent from this joint 20 to the air chamber 3a in the nozzle 3.
第 5図に示すように、 各ノズル口 1 9は、 溶射中心軸を挟 んで対称に配置され、 一群の小孔 1 9 aとこの小孔 1 9 aよ りやや大径に形成される上下の端孔 1 9 bとを、 上下方向に 直線列を構成するよう配置して形成する。 また、 各孔 1 9 a、 1 9 bはその厚み方向の噴出中心線 Q 1が溶射中心軸 Pに向 かって収束するよう傾斜させてある (第 1図参照) 。  As shown in FIG. 5, each nozzle port 19 is arranged symmetrically with respect to the spraying central axis, and a group of small holes 19a and the upper and lower portions formed to have a slightly larger diameter than these small holes 19a. And the end holes 19b are arranged so as to form a straight line in the vertical direction. The holes 19a and 19b are inclined so that the ejection center line Q1 in the thickness direction converges toward the spraying center axis P (see FIG. 1).
左右のノズル口 1 9から噴出されるジヱヅ トエアによって、 噴出先端側で合流する V字状の平面状ジ Xットエア 2 1が形 成され、 その内部領域にくさび体状のエアーチャンバ 2 2が 形成される。 また、 エアーチャンバ 2 2の内側にはジヱ、、, ト エア 2 1の収束部に向かい、 ジヱッ トエアより気流速度の低 い気流領域が発生し、 弱風圏 3 0が形成される。  The jet air ejected from the left and right nozzle openings 19 forms a V-shaped flat jet air 21 that merges at the ejection tip side, and a wedge-shaped air chamber 22 is formed in the internal area thereof. Is done. Further, inside the air chamber 22, an airflow region having a lower airflow velocity than the jet air is generated toward the converging portion of the jet,, and the air 21, and a weak wind zone 30 is formed.
上下端の端孔 1 9 bから噴出される気流は小孔 1 9 aの気 流径ょり大きく、 より強い指向力を発揮する。 このため、 ェ ァーチャンバ 2 2の上下縁付近では、 中央付近に比べてジェ 、、tトエア 2 1の断面幅が広がり、 エアーチャンバ 2 2の上下. 緣を内向きに覆うように作用する。 つまり、 各ジ ットエア 2 1の両端にカギ形の気流壁が形成され、 ジ ッ卜エア 2 1 の断面形が I字形となるのである。 The airflow spouted from the upper and lower end holes 19b is much larger than the airflow of the small holes 19a, and exhibits a stronger directivity. For this reason, the jerk near the upper and lower edges of the jaw chamber 22 is smaller than that near the center. The width of the cross section of the air 21 widens, and acts so as to inwardly cover the top and bottom of the air chamber 22. That is, key-shaped airflow walls are formed at both ends of each jet air 21, and the cross-sectional shape of the jet air 21 becomes an I-shape.
弱風圏 3 0内でアーク放電が行なわれるよう、 ノズル 3と 溶材 Wのアーク交点 Oとの位置開係を定める。 具体的には、 第 1図および第 2図に示すように弱風圏 3 0の後端 3 0 bと 先端 3 0 aとの間の溶射中心軸 P上にアーク交点 Oが位置し、 しかも溶材 Wのアーク領域がジェットエア 2 1に直接触れな い位置にアーク交点 Oを位置させる。  The position relationship between the nozzle 3 and the arc intersection O of the molten material W is determined so that arc discharge occurs in the weak wind zone 30. Specifically, as shown in FIGS. 1 and 2, the arc intersection O is located on the spraying central axis P between the rear end 30 b and the front end 30 a of the weak wind zone 30, and The arc intersection O is located at a position where the arc region of the molten material W does not directly touch the jet air 21.
以上のような空気供耠形媵によりアーク溶射を行うと、 溶 材 Wのアーク部をジェットエア 2 1に直接晒すことなく、 し かもアーク域の全外面を平面状ジヱットエア 2 1が形成する エアーカーテンで覆う状想でアーク放電させることができる。 つまり、 一対のノズル口 1 9からの噴出気流だけで、 外包型 の環状のノズルと同様に、 アーク域の外面をエアーカーテン で完全に覆うことができる。 従って、 コーン形状のノズルが 不可欠であつた従来装置に比べて、 ノズル 3の構造および形 状を簡素化でき、 その小形化と輊置化を容易に実現すること ができる。  When arc spraying is performed using the above air supply type, the arc portion of the material W is not directly exposed to the jet air 21, and the entire outer surface of the arc region is formed by the flat jet air 21. Arc discharge can be performed as if covered with a curtain. In other words, the outer surface of the arc region can be completely covered with the air curtain by using only the jet airflow from the pair of nozzle ports 19, as in the case of the envelope-shaped annular nozzle. Therefore, the structure and shape of the nozzle 3 can be simplified as compared with the conventional device in which a cone-shaped nozzle is indispensable, and the size and the size of the nozzle 3 can be easily reduced.
又、 エアーチャンバ 2 2は上下の開口面を介して大気と連 通しているので、 ジ ッ 卜エア 2 1の空気引込み作用によつ て、 外気のエアーチャンバ 2 2への菰入が促進され、 第 2図 に示すような補助気流 2 4が生起される。 この補助気流 2 4 は、 やや大径の端孔 1 9 bが形成するカギ形に張出した気流 壁と共に、 金属溶滴の一部がエアーチャンバ 2 2の外方へ飛 散するのを防止するのに役立つ。 つまり、 金属溶滴はアーク 衢擊によって全方位に飛散しようとし、 とくにアークチャン バ 2 2の上下および後方への飛散がロスに繁がるが、 こう し た上下および後方に向かう溶滴の飛散を、 補助気流 2 4と端 孔 1 9 bで形成されたカギ形気流壁とが抑え、 ジ Xッ トエア 2 1の気流圏へと金属溶滴を送込むのである β The air chamber 22 communicates with the atmosphere through upper and lower openings. Since the air is passed through, the air is drawn into the air chamber 22 by the air drawing action of the jet air 21, and the auxiliary airflow 24 as shown in FIG. 2 is generated. The auxiliary airflow 24 together with the key-shaped airflow wall formed by the slightly large-diameter end hole 19 b prevents a part of the metal droplets from scattering outside the air chamber 22. Help. In other words, metal droplets attempt to scatter in all directions due to arc quarting, and in particular, scatter up and down and backward of the arc chamber 22. and a supplemental air flow 2 4 and the end hole 1 9 b the formed hook-shaped air flow wall suppressed, it is the to di X Tsu Toea 2 1 of air flow area Komu send a metal droplet β
また、 アーク放電により生じた溶材 Wの溶滴は、 主として 弱風圈 3 0の弱風により、 また、 補助的には補助気流 2 4と の協働作用により、 ジェットエア 2 1の気流圉へ送り込まれ アトマイジングされる。 このとき、 弱風圏 3 0および補助気 流 2 4は、 低速度の弱風のため、 アーク放電時にピンチ現象 が生じるまでには至らない,  The droplets of the molten material W generated by the arc discharge mainly flow into the jet stream 21 due to the weak wind in the weak wind zone 30, and also to the auxiliary air stream 24 in cooperation. It is sent and atomized. At this time, the weak wind zone 30 and the auxiliary airflow 24 do not reach the pinch phenomenon at the time of arc discharge because of the low-speed weak wind.
このことは、 本発明者が上記のアーク溶射装置を試作し、 ジェッ 卜エア 2 1が形成するエアーカーテンとアーク交点 0 の相対的な位置鬨係を以下のように種々に変更して、 アーク 溶射を行った結果確認された A群は、 弱風圈 3 0の後端 3 0 bとノズル 3の前端との閎 でアーク交点 0を前後にずらしてアーク溶射を行った, This is because the inventor prototyped the above-described arc spraying apparatus, and variously changed the relative position between the air curtain formed by the jet air 21 and the arc intersection 0 as follows. Confirmed as a result of thermal spraying In group A, arc spraying was performed with the arc intersection 0 shifted back and forth between the rear end 30 b of the weak wind zone 30 and the front end of the nozzle 3,
B群は弱風圏 3 0の先端 3 0 aとその後端 3 0 bとの間で、 アーク交点 0を前後にずらしてアーク溶射を行った。  In group B, arc spraying was performed with the arc intersection 0 shifted back and forth between the leading end 30a and the trailing end 30b of the weak wind zone 30.
C群は、 弱風圏 3 0の先端 3 0 aより前方の、 エアーカー テンの気流圏の中でアーク交点 0を前後にずらしてアーク溶 射を行った。  In group C, arc spraying was performed with the arc intersection 0 shifted back and forth in the air curtain's troposphere ahead of the tip 30a of the weak wind zone 30.
その結果、 A群では飛散溶滴の一部がジ ットエアー 2 1 に取り込まれないまま飛散落下し、 とくにアーク交点 0がノ ズル 3に近い程、 溶滴の飛散ロスが多く発生した,  As a result, in the group A, a part of the scattered droplets scattered and fell without being taken into the jet air 21, and especially, the closer the arc intersection 0 was to the nozzle 3, the more scattered droplet loss occurred.
C群では、 钹来の貧通型に特有の、 ビンチ現象による溶材 Wの爆発的な溶融を生じ、 形成被膜にむらを生じた。  In group C, the explosive melting of the molten material W due to the vinch phenomenon, which is peculiar to the conventional poor type, caused unevenness in the formed coating.
B群では、 A群に見られた溶滴の飛散ロスや C群に見られ た溶材 Wの爆発的な溶融等もなく、 安定したアーク放電が行 え、 しかも形成被膜の仕上がり状態にむらがなく粒子径が充 分に小さいことからみて、 好適なアトマイジングが行なわれ ていることを確認した。  In group B, there was no loss of droplets seen in group A and no explosive melting of molten material W seen in group C, and stable arc discharge was possible, and the finished state of the formed film was uneven. In view of the fact that the particle size was sufficiently small, it was confirmed that suitable atomizing was performed.
以上の試験結果から本発明に於いては、 アーク交点 0を弱 風圈 3 0に位置させることとした。  From the above test results, in the present invention, it was decided that the arc intersection 0 was located in the weak wind zone 30.
又、 これ^の試敷中にジェッ トエアの収束角度を小さくす ると、 溶滴のジェッ トエア中への送り込みが良好になること が確かめられた。 In addition, if the convergence angle of the jet air is reduced during the test bed, the droplets can be more efficiently fed into the jet air. Was confirmed.
第 6図および第 7図は、 第 1発明を蒂状の溶材 Wを用いた アーク溶射装置に適用した実施例を示す。  FIG. 6 and FIG. 7 show an embodiment in which the first invention is applied to an arc spraying apparatus using a whirl-like molten material W.
第 6図に於いて本実施例のアーク溶射装 fiは先の実施例で 説明したアーク溶射装置とほぼ同様の構造とされるが、 一対 の溶材 Wがケース 1内を縦長姿勢で左右平行状に通適する点、 これに伴って各溶材 Wを専用の溶材送り機楝 2、 2で個別に 送り駆動する点に違いがある。 又、 前記実施例ではノズル口 1 9の厚み方向の噴出中心線 Q 1と、 溶材 Wの収束中心線と が交差する平面上に位置するものとしたが、 この実施例では、 噴出中心線 Q 1と溶材 Wの収束中心線とがほぼ並行するもの とした。 ノズル口 1 9の開口構造は前記実施例と同一に設定 するが、 その上下長さは溶材 Wの幅より十分に大きく設定す る 尚、 前記実施例と同等の部材には同一符号を付して、 そ の説明を省略する。  In FIG. 6, the arc spraying device fi of this embodiment has almost the same structure as the arc spraying device described in the previous embodiment, except that a pair of welding materials W There is a difference in that each molten material W is separately fed and driven by a dedicated molten material feeder connection 2, 2. Further, in the above embodiment, the ejection center line Q1 in the thickness direction of the nozzle port 19 and the convergence center line of the molten material W are positioned on a plane that intersects. However, in this embodiment, the ejection center line Q It was assumed that 1 and the convergence center line of the molten material W were almost parallel. The opening structure of the nozzle port 19 is set to be the same as that of the above embodiment, but the vertical length thereof is set to be sufficiently larger than the width of the molten material W. Note that the same reference numerals are given to members equivalent to those of the above embodiment. Therefore, the description is omitted.
第 8図以下第 2 0図はノズル 3の変形例を示しており、 平 面状ジエツ トエア 2 1の断面形をより明確なコ字形とするも の、 これとは逆にジヱ、、, トエア 2 1の断面形を直線状 (長四 角形状) にするもの、 ノズル口 1 9とは別に補助ノズル口 3 1を設けたもの、 およびジヱッ 卜エア 2 1を補強する保形ノ ズルロ 3 2を設けたものを示している なお、 第 8図以下の 図面については、 先の実施例と同一の部材には同じ符号を符 して、 その説明を省略する。 FIG. 8 and FIG. 20 show modified examples of the nozzle 3, in which the cross-sectional shape of the flat jet air 21 is more clearly defined as a U-shape. The nozzle 21 has a straight (rectangular) cross section, the nozzle 19 has an auxiliary nozzle port 31 in addition to the nozzle port 19, and the nozzle retainer 3 reinforces the jet air 21. 2 is provided. In the drawings, the same members as those in the previous embodiment are denoted by the same reference numerals, and description thereof will be omitted.
第 8図において、 各ノズル口 1 9は上下方向の直線列を形 成する一群の小孔 1 9 aと、 この直線列の上下両端に連統し て横向き内方に延びる一群の小孔 1 9 cとで、 正面視コ字状 に構成する 両小孔 1 9 a、 1 cの噴出中心線 Q 1の傾斜 角は同一に設定する,  In FIG. 8, each nozzle opening 19 has a group of small holes 19a forming a straight line in the vertical direction, and a group of small holes 1a extending laterally inward at both upper and lower ends of the straight line. 9c, the angle of inclination of the ejection center line Q1 of both small holes 1 9a and 1c is set to be the same.
このようにしたノズル口 1 9によれば、 第 9図および第 1 0図に示すように、 エアーチャンバ 2 2の上下の開口緣が上 下端の小孔 1 9 cから噴出される気流 2 1 aによって覆われ 各ジエツ卜エア 2 1の断面形を明確なコ字形にすることがで き、 金属溶滴の上下方向に向う飛散を完全に防止することが できる。  According to the nozzle port 19 thus configured, as shown in FIGS. 9 and 10, the upper and lower openings の of the air chamber 22 are provided with the airflow 21 1 ejected from the small holes 19 c at the upper and lower ends. The cross-section of each jet air 21 covered by a can be made into a clear U-shape, and the vertical dispersion of the metal droplets can be completely prevented.
第 1 1図は、 ノズル口 1 9をコ字形のスリットとして形成 することにより、 ジヱットエア 2 1の断面形をコ字形とする ものである。  FIG. 11 shows that the cross section of the jet air 21 is formed into a U-shape by forming the nozzle opening 19 as a U-shaped slit.
第 JL 2図および第 1 3図は、 上下方向の直線列を構成する 一群の小孔 1 9 aのみでノズル口 1 9を形成したものであり その上下端の端孔 1 9 dの孔形状を外拡がりテーパ状に形成 して、 コ字形断面のジェットエア 2 1を形成できるようにし た。 第 1 4図に示すノズル 3では、 第 8図で説明したノズル口 1 9の場合とは逆に、 上下端の小孔 1 9 e群が横向き外方に 列を構成するよう配置し、 さらに、 第 1 5図のように小孔 1 9 eの噴出中心線 qを小孔 1 9 aの噴出中心線 Q 1より内向 きに傾くよう傾斜させて、 コ字形断面のジェッ トエア 2 1を 形成できるようにした。 Figures JL 2 and 13 show that the nozzle port 19 is formed by only a group of small holes 19a that form a vertical straight line, and the hole shape of the upper and lower end holes 19d Is formed in a tapered shape so that jet air 21 having a U-shaped cross section can be formed. In the nozzle 3 shown in FIG. 14, contrary to the nozzle opening 19 described in FIG. 8, the small holes 19 e at the upper and lower ends are arranged so as to form a row outward in the horizontal direction. As shown in Fig. 15, the jet center line q of the small hole 19e is inclined inwardly from the center line Q1 of the small hole 19a to form the jet air 21 with a U-shaped cross section. I made it possible.
上記第 1図乃至第 1 5図の溶射装置のノズル 3は、 これが 形成するジヱットエア 2 1の直線部の両端にカギ形の気流壁 を積極的に形成し、 金属溶滴の上下方向に向かう飛散を防止 するものであるが、 こう したカギ形気流壁を積極的に形成す るノズル口にしなくてもよい。  The nozzle 3 of the thermal spraying apparatus shown in FIGS. 1 to 15 described above actively forms key-shaped airflow walls at both ends of the linear portion of the jet air 21 formed by the nozzle 3 to scatter the metal droplets in the vertical direction. However, it is not necessary to provide a nozzle opening that actively forms such a key-shaped airflow wall.
すなわち、 第 1 6図のノズル 3のノズル口 1 9は同径の小 孔を直線状に連ねたものであり、 第 1 7図のノズル 3のノズ ルロ 1 9は直線状に連続したスリットであり、 第 1 8図のノ ズル 3では、 ノズル本体にセラミック製のノズル部材 2 6を 装着し、 このノズル部材 2 6に第 1 6図もしくは第 1 7図の ノズル口 1 9を設けている。  That is, the nozzle opening 19 of the nozzle 3 in FIG. 16 is a series of small holes of the same diameter linearly connected, and the nozzle 19 of the nozzle 3 in FIG. 17 is a slit that is linearly continuous. Yes, in nozzle 3 in Fig. 18, a ceramic nozzle member 26 is attached to the nozzle body, and the nozzle member 26 is provided with the nozzle port 19 in Fig. 16 or Fig. 17. .
こう した第 1 6図乃至第 1 8図のノズル口 1 9が形成する 平面状ジ ットエア 2 1は、 その両端部で若干の脹らみがあ るが、 カギ形の気流壁を積極的に形成するものではないので、 ノズル口 1 9の長さを、 これが形成するジヱッ トエアーカー テン 2 1の両端がアーク放電時の金属溶滴の上下方向の飛散 を抑制できる程度の長さにする必要がある。 The flat jet air 21 formed by the nozzle port 19 in FIGS. 16 to 18 has a slight swelling at both ends thereof, but actively forms the key-shaped airflow wall. Since it is not formed, the length of the nozzle port 19 is increased by the jet air car Both ends of the ten 21 must be long enough to prevent the metal droplets from scattering in the vertical direction during arc discharge.
第 1 9図に示すノズル 3は、 凹部 1 8の対向壁の溶射中心 軸 Pと同じ高さ位 «に補助ノズル口 3 1を一個ずつ設けたも のであり、 補助ノズル口 3 1の気流噴出方向は対向する凹部 側壁 1 8 aに指向してある これでは、 補助ノズル口 3 1か ら噴出した気流が凹部側壁 1 8 aに街突してアークチャンバ 2 2側へ移行し、 このとき後方に向う溶滴の飛散を防止する 上記の補助ノズル口 3 1は第 2 0図に示すように外拡がり 状の孔として形成することもできる。 詳しくは、 噴出気流が アーク交点 0よりノズル 3側で収束するように孔形状を定め、 この後部補助気流 3 3によって、 溶滴の後方飛散を防止する のである。  The nozzle 3 shown in FIG. 19 is provided with one auxiliary nozzle port 31 at the same height as the spraying center axis P of the opposite wall of the concave portion 18. The direction is directed to the opposing concave side wall 18a. In this case, the air flow ejected from the auxiliary nozzle port 31 strikes the concave side wall 18a and moves to the arc chamber 22 side. The above-mentioned auxiliary nozzle port 31 for preventing the droplets from scattering toward the surface can be formed as a diverging hole as shown in FIG. Specifically, the hole shape is determined so that the jet stream converges on the nozzle 3 side from the arc intersection 0, and the rear auxiliary stream 33 prevents droplets from scattering behind.
なお、 第 1 9図、 および第 2 0図の補助ノズル口 3 1を設 けるについて、 ノズル口 1 9の構造は、 先に説明したいずれ のものであってもよい。  In addition, regarding the provision of the auxiliary nozzle port 31 in FIG. 19 and FIG. 20, the structure of the nozzle port 19 may be any of those described above.
第 2 1図に示すように、 ノズル口 1 9がコ字形に形成され るものでは、 ノズル口 1 9に隣接して補助ノズル口 3 1を形 成することができる。  As shown in FIG. 21, when the nozzle port 19 is formed in a U-shape, the auxiliary nozzle port 31 can be formed adjacent to the nozzle port 19.
第 2 2図に示すノズル 3では、 ノズル口 1 9の外側方にこ れと平行に保形ノズル口 3 2を設けたものである。 保形ノズ ルロ 3 2は上下に直線列を構成する一群の小孔 3 2 aで構成 され、 その噴出中心線 Sは第 2 3図に示すように、 ノズル口 1 9の噴出中心線 Q 1 と同じか、 これよりやや外向きに拡が るように傾斜させる このノズル 3では、 ジヱヅ卜エア 2 1 が外側方に膨脹するのを規制して、 溶射パターンを ϋ平化す ることができる。 なお、 保形ノズル口 3 2もコ字形や C字形 などに変形することができる。 The nozzle 3 shown in FIG. 22 has a shape-retaining nozzle port 32 provided outside the nozzle port 19 in parallel with the nozzle port 19. Shape Shape Nose The roulette 32 is composed of a group of small holes 32a forming a straight line in the vertical direction, and the ejection center line S is the same as the ejection center line Q1 of the nozzle port 19 as shown in Fig. 23. The nozzle 3 is tilted so as to expand slightly outward. With this nozzle 3, the jet air 21 can be restricted from expanding outward, and the spray pattern can be flattened. Note that the shape-retaining nozzle port 32 can also be modified into a U shape or a C shape.
上記のように、 ノズル口 1 9の形状は、 直線列を形成する 小孔群 · スリッ トゃコ字形の小孔群 · スリツトが通常である が、 本発明の趣旨に反しない限り、 これに限られず、 ノズル 口 1 9の正面視形状で、 単純な I字状や、 C字形あるいは三 日月形等に湾曲したもの、 あるいはく字形に屈折した形状等 に変形することもできるものである。  As described above, the shape of the nozzle port 19 is usually a group of small holes forming a straight line, a slit, a group of small holes having a U-shape, and a slit, but this is not limited to the spirit of the present invention. The shape of the nozzle opening 19 is not limited, and can be deformed into a simple I shape, a C shape, a crescent shape, or the like, or a bent shape such as a U-shape. .
上記の説明では、 一対のノズル口 1 9が溶射中心軸 Ρを通 る垂直線に対して対称となるように配置したが、 本発明の趣 旨に反しない限り、 必ずしもその必 Sはなく、 溶射中心軸 Ρ の回りであればどこでも設けることができる。  In the above description, the pair of nozzle ports 19 are arranged so as to be symmetrical with respect to a vertical line passing through the spraying central axis 溶, but this is not necessarily required, as long as it does not contradict the spirit of the present invention. It can be provided anywhere around the spraying central axis Ρ.
以上のように構成された噴霧装置によれば、 溶射中心軸 Ρ を間に挟んで設けた一対のノズル口 1 9から噴出したジェッ トエアーカーテン 2 1だけでアーク域の外面を覆うようにす るので、 従来の外包型の溶射装置に比べて、 ノズル構造を単 純化でき、 小形化 ·輊置化を容易に実現できる。 According to the spray device configured as described above, the outer surface of the arc region is covered only by the jet air curtain 21 ejected from the pair of nozzle ports 19 provided with the spraying central axis 挟 interposed therebetween. As a result, the nozzle structure is simpler than that of a conventional envelope-type thermal spraying device. It can be purified and downsized.
とくに、 —対のノズル口 1 9によってジエツ卜エア 2 1か らなるエア一チャンバ 2 2を形成し、 このジェットエアー力 一テン 2 2で囲まれた気流速度の低い弱風圏 3 0において溶 材 Wをアークさせ、 アーク放電により生じた溶材 Wの溶滴を 傍流圏 3 0の弱風によりジヱットエアーカーテン 2 1內に送 込みアトマイジングを行うようにすれば、 ピンチ現象を生じ ることなく安定してアーク溶射を行うことができる。  In particular, a pair of nozzle ports 19 forms an air chamber 22 consisting of jet air 21 and melts in a weak wind zone 30 surrounded by the jet air force 22 and having a low airflow velocity. If the material W is arced and droplets of the material W generated by the arc discharge are sent to the jet air curtain 21 by a weak wind in the troposphere 30 to perform atomization, a pinch phenomenon occurs. Arc spraying can be performed stably without any trouble.
さらに、 蒂状の溶材 Wを用いて溶射を行う場合でも、 その 外面に沿ってジヱ、、》トエアーカーテン 2 1を形成できるので、 小形のノズル 3でアーク溶射を行うことができ、 溶射装置を 小形化できる点で有利である。  Furthermore, even when the thermal spraying is performed using the whirlpool-shaped molten material W, the air curtain 21 can be formed along the outer surface, so that the small nozzle 3 can perform the arc thermal spraying, and the thermal spraying can be performed. This is advantageous in that the device can be downsized.
第 2 4図乃至第 3 7図は、 第 1発明をさらに改良した本発 明の第 2発明のアーク溶射装置を示す。  FIGS. 24 to 37 show an arc spraying apparatus according to the second invention of the present invention, which is a further improvement of the first invention.
第 2 4図乃至第 3 1図は第 2発明のアーク溶射装髭の実施 例を示す。 第 2 7図に於いて、 アーク溶射装置は丸線状の溶 材 Wを用いてアーク溶射を行うものであって、 角箱状のケー ス 5 1内を溶材 Wが上下平行姿勢で通過するよう溶材轻路を 設定し、 ケース 5 1の内部中央に溶材送り機構 5 2を設け、 ケース 5 1の前端外面にアトマイジング用のジヱットエアを 噴き出すノズル 5 3を配置している。 第 2 8図において、 ケース 5 1は、 一側面が開口する金 ¾ 製のケース本体 5 4と、 ケース本体 5 4の前後端に固定され る絶縁ブロック 5 5、 5 6と、 前記開口をヒンジ 5 7を介し て摇動開閉する養 5 8と、 前側の絶縁ブロック 5 5の前面を 覆うノズル 5 3用のブラケッ ト 5 9などで構成されている, 蘧 5 8はラッチ 6 0によって閉じ姿勢が維持されており、 ラ ツチ 6 0をばねら 1に抗してスライ ド操作すると、 容易に開 くことができる。 また、 ブラケット 5 9は、 ねじ 6 2を緩め ることにより絶緣ブロック 5 5から取外すことができ、 ノズ ル 5 3の交換を行うのに都合が良い。 FIGS. 24 to 31 show an embodiment of the arc-sprayed beard of the second invention. In FIG. 27, the arc spraying apparatus performs arc spraying using a round wire-shaped material W, and the material W passes in a rectangular box-shaped case 51 in a vertically parallel posture. The case 51 is provided with a molten material feeding mechanism 52 at the center of the inside of the case 51, and a nozzle 53 for jetting jet air for atomizing is arranged on the outer surface of the front end of the case 51. In FIG. 28, a case 51 is made of a metal case body 54 having one side opening, insulating blocks 55 and 56 fixed to front and rear ends of the case body 54, and hinged to the opening. It consists of a nut 58 that opens and closes automatically via a pin 57, and a bracket 59 for a nozzle 53 that covers the front of the front insulating block 55. The latch 60 can be easily opened by sliding the latch 60 against the spring 1. The bracket 59 can be removed from the isolation block 55 by loosening the screw 62, which is convenient for replacing the nozzle 53.
溶材 Wを送耠案内するために、 後側の絶縁ブロック 5 6に 上下一対のガイ ド管 6 4を固定し、 これらガイ ド管 6 4に対 応して前側の絶緣ブロック 5 5に送耠穴 6 5を通設する。 さ らに、 各送耠穴 6 5に連続して端子 6 6を設け、 端子 6 6の 前面にアークガイ ド管 6 7を捩込み固定している。 両端子 6 6には、 それぞれ袷電線が接続され、 その一方にプラス電流 が印加され、 他方にマイナス電流が印加される。  A pair of upper and lower guide tubes 64 are fixed to the rear insulation block 56 to guide the molten material W, and are sent to the front insulation block 55 corresponding to these guide tubes 64. Pass holes 65 through. Further, a terminal 66 is provided continuously to each of the feed holes 65, and an arc guide tube 67 is screwed and fixed to the front surface of the terminal 66. A lined electric wire is connected to each of the terminals 66, and a positive current is applied to one of them and a negative current is applied to the other.
第 2 7図に示すように、 上下のアークガイ ド管 6 7は、 そ れぞれの突端が上下に接近する傾斜姿勢で配 Sしてあり、 上 下の溶材 ノズル 5 3の前方外面のアーク交点 Oに向かつ て変向案内する この変向時に、 溶材 Wがアークガイ ド管 6 7の内壁に圧接して、 アーク電流の印加を確実なものとして いる o As shown in Fig. 27, the upper and lower arc guide tubes 67 are arranged in an inclined position so that their protruding ends approach vertically, and the upper and lower molten material nozzles 53 have an arc on the front outer surface. Guide the deflection toward the intersection O During this deflection, the molten material W Pressing against the inner wall of 7 to ensure arc current application o
溶材送り機構 5 2は、 前側の絶縁ブロック 5 5とガイ ド.管 6 4との間に配置され、 上下の溶材 Wをケース前方に向かつ て问時に送り搽作する。 第 2 7図及び第 2 8図において、 溶 材送り機構 5 2は、 ケース本休 5 4の上下壁で回転自在に支 持される駆動ローラ 6 8と、 溶材 Wを駆勅ローラ 6 8に押付 ける押えローラ 6 9と、 駆動ローラら 8を一組のギヤ 7 0を 介して回転駆動するモータ 7 1などで構成する。  The molten material feed mechanism 52 is arranged between the front insulating block 55 and the guide tube 64, and works to temporarily send the upper and lower molten materials W toward the front of the case. In FIGS. 27 and 28, the material feed mechanism 52 is composed of a drive roller 68 supported rotatably by the upper and lower walls of the main case 54, and a drive roller 68 for transferring the material W. A pressing roller 69 for pressing and a driving roller 8 are constituted by a motor 71 for rotating and driving via a pair of gears 70 and the like.
躯勅ローラ 6 Sは、 ローラ軸 7 2に絶縁ローラ 7 3を固定 して形成する 絶縁ローラ 7 3の上下 2箇所には、 断面 V形 の金属リング 7 4が固定されており、 このリング 7 4と押え ローラ 6 9で溶材 Wを挟み、 強制的に送り駆動する β スリッ プ防止のために、 金属リング 7 4の周面に.はローレツト加工 が施されている。 The shaft roller 6 S is formed by fixing an insulating roller 7 3 to a roller shaft 72. A metal ring 7 4 having a V-shaped cross section is fixed to the upper and lower portions of the insulating roller 7 3. The metal ring 74 is knurled to prevent β- slip, which causes the molten material W to be sandwiched between 4 and the holding roller 69 and is forcibly fed.
押えローラ 6 も駆動ローラ 6 8と同様に艳縁体で形成さ れ、 各絶縁ローラ 7 3に対応して上下に配置される。 押え口 ーラ 6 9はばね腕 7 5の一端に回転自在に支持されており、 ばね腕 7 5の弾性力によって駆動ローラ 6 8に圧接付势され ている。 ばね腕 7 5の基端は蓥 5 8の内面に固定してある 第 2 7図に示すように、 モータ 7 1はケース 5 1の下面に 固定したダリップ 7 6内に収められており、 図外のスィ ツチ をオン操作すると起動し、 その回転動力をギヤ 7 0を介して 駆動ローラ 6 8に伝える。 The pressing roller 6 is also formed of a frame like the driving roller 68, and is arranged vertically corresponding to each insulating roller 73. The presser roller 69 is rotatably supported at one end of the spring arm 75, and is pressed against the drive roller 68 by the elastic force of the spring arm 75. The base end of the spring arm 75 is fixed to the inner surface of 蓥 58. As shown in FIG. 27, the motor 71 is mounted on the lower surface of the case 51. It is housed in a fixed lip 76, which is activated when a switch (not shown) is turned on, and transmits its rotational power to a drive roller 68 via a gear 70.
ノズル 5 3は上下に長い中空箱状に形成され、 その上半部 の左右中央にアークガイ ド管 6 7を避ける凹部 7 8を設け、 この凹部 7 8で区分された左右の前端壁のそれぞれにノズル 口 7 9を開口したものである。 8 0はエアホースを接統する ための継手である。  The nozzle 53 is formed in the shape of a hollow box that is long in the vertical direction.A recess 78 is provided in the center of the upper half on the left and right sides to avoid the arc guide tube 67, and each of the left and right front end walls divided by the recess 78. The nozzle opening 79 is opened. 80 is a joint for connecting the air hose.
ノズル口 7 9は、 上下の直線列を形成する一群の小孔 7 9 aで精成され、 ジヱットエアは噴出後合流して平面状のジェ ットエア 8 1 、 8 1を形成する。 ジェッ トエア 8 1の喷出方 向は、 その厚み中心線 Q 1が溶材 Wのアーク交点 0 (溶滴発 生位置〉 より前方位置の溶射中心軸 Pに向かって傾斜するよ う指向され、 しかも、 第 3 0図及び第 3 1図に示すように両 ジェッ トエア 8 1、 8 1の幅方向中心線 Q 2、 Q 2が溶射中 心軸 Pに対して互いに逆向きに傾斜して、 両ジヱットエア 8 1、 8 1がその一部を収束しつつ交差する (第 2 4図) よう 指向されている。 ここで、 前記厚み中心線 Q 1が挟む角度 1は、 その角度は問わぬが、 1 2乃至 2 4度の角度範囲に設 定することが好ましい。 また、 幅方向中心線 Q 2の傾き角度  The nozzle port 79 is refined by a group of small holes 79a forming upper and lower linear rows, and the jet air merges after jetting to form planar jet air 81, 81. The ejection direction of the jet air 81 is directed so that its thickness center line Q1 is inclined toward the spraying center axis P in front of the arc intersection point 0 (droplet generation position) of the material W, and As shown in FIGS. 30 and 31, the center lines Q 2 and Q 2 in the width direction of the jet airs 81 and 81 are inclined in opposite directions to the spraying center axis P, and The jet air 81, 81 is directed so as to converge and intersect a part thereof (Fig. 24) Here, the angle 1 sandwiched by the thickness center line Q1 does not matter, It is preferable to set the angle in the range of 12 to 24 degrees, and the inclination angle of the center line Q2 in the width direction.
2は収束部 Rを持ち且つ交差するものであればその角度は 問わぬが、 5乃至 4 0度の角度範囲に設定することが好まし い。 2 has a convergent part R and if it intersects, the angle is It does not matter, but it is preferable to set the angle in the range of 5 to 40 degrees.
小孔 7 9 aの開口数を少なくし、 空気消費 ¾を低滅するた めに、 左右のノズル口 7 9の上下高さ位置は、 輻方向中心線 Q 2の傾斜方向に鬨連して上下にずらしてある * 詳しくは、 第 2 9図に示すように、 図に向かって左方のノズル口 7 9を 溶射中心軸 Pに対してわずかに上方に儷寄させ、 右方のノズ ルロ 7 9を逆に下方へ傭寄させている。  In order to reduce the numerical aperture of the small hole 79a and reduce air consumption 上下, the vertical position of the left and right nozzle ports 79 is vertically aligned in the direction of inclination of the radial center line Q2. * For details, as shown in Fig. 29, the nozzle port 79 on the left side of the figure is slightly deliquescent upward from the spraying center axis P, and the nozzle hole 7 on the right side Conversely, 9 is being drawn down.
左右のノズル口 7 9、 7 9から噴出されるジェットエア 8 1、 8 1によって平面視で V字形のエアーカーテンが形成さ れ、 その内部にエアーチャンバが区画される。 溶材 Wを溶滴 化する溶材 Wのアーク交点 0は、 ジェッ トエア 8 1, 8 1の 収束部方向に流れる弱風圏内の溶射中心軸 P上に設定される < 図中、 符号 8 2はジェットエアー 8 1の収束部 Rより前方に 形成される集合気流である。  The jet air 81, 81 jetted from the left and right nozzle openings 79, 79 forms a V-shaped air curtain in plan view, and defines an air chamber therein. The arc intersection point 0 of the molten material W that makes the molten material W droplets is set on the spraying center axis P in the weak wind zone flowing in the direction of the converging portion of the jet air 81, 81. This is a collective airflow formed ahead of the converging section R of the air 81.
以上のように構成されたノズル 5 3を用いてアーク溶射を 行うと、 溶材 Wの溶滴は集合気流 8 2と収束せずに交差する 交差気流 8 6からなる気流圏中で微細化 '分散し、 第 2 6図 に示すように、 長円状の溶射パターン P 1が得られた。 この 溶射パターン P 1の短軸長さは、 第 1発明の装置による溶射 パターン P 2の直径 Dとほぼ同じで、 長軸長さ Lは前記直径 Dのおよそ 3倍に達した。 このことは、 同一置の溶滴がより 広い範囲に分散したことを意味しており、 実際の溶射パター ン P 1においても胰厚が面方向に一様であることが確認され た。 なお、 溶射パターン P 1の長軸は、 溶射装 Sの上下中心 軸に対して、 角度なだけ傾いており、 これは、 ジ tッ トエア - 8 1の幅方向中心線 Q 2が傾きを有し、 交差後の気流が一 方向に捻られるためであると思われる。 When arc spraying is performed using the nozzle 53 configured as described above, the droplets of the molten material W become finer in the gasosphere consisting of the crossed airflow 86 that intersects without converging with the gathered airflow 82. However, as shown in FIG. 26, an elliptical thermal spray pattern P1 was obtained. The minor axis length of the thermal spray pattern P1 is almost the same as the diameter D of the thermal spray pattern P2 by the device of the first invention, and the major axis length L is Approximately three times D. This means that the droplets at the same position were dispersed over a wider range, and it was confirmed that even in the actual spray pattern P1, the thickness was uniform in the plane direction. The long axis of the thermal spray pattern P1 is inclined at an angle with respect to the vertical center axis of the thermal spraying equipment S. This is because the center line Q2 in the width direction of the jet air -81 has an inclination. This is probably because the airflow after the intersection is twisted in one direction.
第 3 2図および第 3 3図は、 それぞれ小孔 7 9 aの配置パ ターンを変更した変形例を示す。 第 3 2図に示すノズルでは、 左右のノズル口 7 9、 7 9の上下高さ位置を一致させて、 両 ノズル口 7 9、 7 9を対称に配置した。 また、 第 3 3図に示 すノズルでは、 上記実施例で説明したノズル口 7 9、 7 9に 加え、 その外側に補助ノズル口 3 4を設けるようにした,  FIGS. 32 and 33 show modified examples in which the arrangement pattern of the small holes 79a is changed. In the nozzle shown in Fig. 32, the left and right nozzle ports 79, 79 are arranged symmetrically so that the vertical positions of the left and right nozzle ports 79, 79 coincide. In addition, in the nozzle shown in FIG. 33, in addition to the nozzle ports 79 and 79 described in the above embodiment, an auxiliary nozzle port 34 is provided outside thereof.
上記以外に、 ノズル口 7 9は、 第 3 4図および第 3 6図に 示すように一連のスリット状に形成してもよい。 この時、 ノ ズル 5 3内のエアー槽 8 5は傾斜して設ける必要があり、 そ うすると両ノズル口 7 9、 7 9により形成されるジヱットェ ァー 8 1 、 8 1に、 上記実施例のジヱットエアーと同棣の指 向性を持たせることができる。 このスリット状ノズル口 7 9 にすると、 大置のノズルエアーの供袷が可能となり超大型溶 射機にも適用できる。 尚、 図に示される如く、 第 3 4図、 第 3 5図は一対のノズル 5 3、 5 3を組み合わせて用いたもの で、 第 3 6図、 第 3 7図の変形例は一個のノズル 5 3に一対 のノズル口 7 9 , 7 9を設けたものである- ジェットエア一 8 1の幅方向中心線 Q 2の傾き角は、 左右 で違っていてもよい。 In addition to the above, the nozzle port 79 may be formed in a series of slits as shown in FIGS. 34 and 36. At this time, the air tank 85 in the nozzle 53 must be provided at an angle, and in this case, the jet gates 81, 81 formed by the two nozzle ports 79, 79 are provided with the above-described embodiment. It is possible to have the directivity of the same air as the jet air. With this slit-shaped nozzle port 79, it is possible to supply a large amount of nozzle air, and it can be applied to a very large sprayer. As shown in Fig. 34, Fig. 34 Fig. 35 shows a combination of a pair of nozzles 53 and 53.In the modified example of Figs. 36 and 37, a single nozzle 53 is provided with a pair of nozzle ports 79 and 79. The inclination angle of the center line Q2 in the width direction of the jet air 8 1 may be different between the left and right sides.
溶材 Wは蒂状でもよく、 この場合は溶材 Wの長手方向に沿 つてジェットエア 8 1を噴出する。  The molten material W may be in a whirlpool shape. In this case, jet air 81 is jetted along the longitudinal direction of the molten material W.
以上のように構成した溶射装簠では、 一対のノズル口 7 9、 7 9から平面状のジヱットエア 8 1、 8 1を噴出し、 両ジェ 、、, トエア 8 1、 8 1で囲まれるエア一チャンバ内で溶材の溶 融を行うようにし、 このときジ ットエア 8 1、 8 1の幅方 向中心線 Q 2が互いに逆向きに傾斜するようノズルロマ 9、 7 9を斜めに指向させるので、 アトマイジング時に溶滴はジ エツ トエアの気流内で分散し、 長円乃至榷円状の広幅の溶射 パターン Ρ 1が得られ、 そのパターン面積を従来パターンに 比べて数倍に拡大することができた。  In the thermal spraying apparatus configured as described above, a flat jet air 81, 81 is ejected from a pair of nozzle ports 79, 79, and an air flow surrounded by both jets, 81, 81 is formed. The molten material is melted in the chamber, and at this time, the nozzle romas 9 and 79 are directed obliquely so that the widthwise center lines Q2 of the jet air 81 and 81 are inclined in opposite directions. During Ising, the droplets were dispersed in the jet air stream, resulting in a long and oval wide thermal spray pattern No. 1, and the pattern area could be increased several times compared to the conventional pattern. .
従って、 上記の.溶射装!!によれば、 溶射被膜を能率良く短 時間で形成でき、 成膜作業の生産性を著しく向上することが できる。 とくに、 母材面積が大きな場合でも、 表面状想が悪 化するまでに一気に溶射被膜を形成することができる また、 溶射被膜の面方向の膜厚が均一化されるので、 被膜品贫を格 段に向上でき、 その保護性能にばらつきが生じることを解消 して、 信頼性を向上できる。 厚膜部が形成されないので、 局 都的な熱の集中による被膜の剝離も一掃できる。 Therefore, the above. Thermal spray! According to!, The sprayed coating can be efficiently formed in a short time, and the productivity of the film forming operation can be remarkably improved. In particular, even when the base material area is large, the thermal spray coating can be formed at a stretch before the surface appearance deteriorates.Also, since the thickness of the thermal spray coating in the surface direction is uniform, the coating quality is high. The protection performance can be improved and reliability can be improved. Since a thick film portion is not formed, separation of the film due to local heat concentration can be eliminated.
第 3 8図乃至第 4 8図は、 第 1発明および第 2発明を塗料、 ブラスト材、 接着剤、 あるいは粉体等の噴霧材の噴霧装置に 応用した本発明の第 3発明を示す。 尚、 第 1発明および第 2 発明の溶射装置も、 広義では、 金属溶滴が噴薪状想で母材に 吹付られるので噴霧装置に含まれる。  FIGS. 38 to 48 show a third invention of the present invention in which the first invention and the second invention are applied to an apparatus for spraying a spray material such as paint, blast material, adhesive, or powder. Note that, in a broad sense, the thermal spraying devices of the first and second inventions are also included in the spraying device because metal droplets are sprayed on the base material in the form of a firewood.
第 3 8図乃至第 4 1図は第 3発明の噴霧装 aの実施例を示 す。  FIGS. 38 to 41 show an embodiment of the spraying device a of the third invention.
この噴霧装 Sは、 塗料、 ブラスト材、 接着剤、 あるいは粉 体等の噴霧材 1 0 1を供耠する噴霧材供耠手段 1 0 2と、 噴 霧材 1 0 1を霧化するための空気ノズル 1 0 3を要素部材と して噴霧機構を構成する。  The spray device S includes a spray material supply means 102 for supplying a spray material 101 such as a paint, a blast material, an adhesive, or a powder, and a spray material supply device 102 for atomizing the spray material 101. The spray mechanism is configured with the air nozzle 103 as an element member.
噴霧材供耠手段 1 0 2は、 噴霧材 1 0 1を貯溜するタンク あるいはカップ状の容器 1 0 4と、 この容器 1 0 4から導出 される供耠管 1 0 5とを有し、 空気通路 1 0 6を介して送耠 される圧縮空気の圧力で、 容器 1 0 4内の噴霧材 1 0 1を供 耠管 1 0 5から放出する 9 図示していないが、 供耠管 1 0 5 には噴霧材 1 0 1の供耠を断続する開閉弁や、 放出置を調整 する流置調節弁が設けられている。 1 1 5は吹付対象面であ 3 The spray material supply means 102 has a tank or a cup-shaped container 104 for storing the spray material 101, and a supply pipe 105 derived from the container 104, and is provided with air. at a pressure of compressed air Oku耠through passages 1 0 6, although not 9 illustrates releasing spray material 1 0 1 container 1 0 4 from subjected耠管1 0 5, provided耠管1 0 5 is provided with an on-off valve for interrupting the supply of the spray material 101 and a flow control valve for adjusting the discharge position. 1 1 5 is the surface to be sprayed Three
る, ,
第 3 9図において、 空気ノズル 1 0 3は上下に長い中空箱 状に形成され、 その前端壁に左右一対のノズル口 1 0 7を開 口したものである 前述の供耠管 1 0 5は、 空気ノズル 1 0 3のほぼ中央を前後に貧通する状態で設けられており、 供耠 管 1 0 5を簡に挟んで両ノズル口 1 0 7が対称位置に位置す るよう配置されている 1 0 8はエアホースを接統するため の継手である。  In FIG. 39, the air nozzle 103 is formed in a vertically long hollow box shape, and has a pair of left and right nozzle ports 107 opened at the front end wall. The air nozzle 103 is provided so as to penetrate substantially the center of the air nozzle 103 back and forth, and is arranged so that both nozzle ports 107 are located symmetrically with the supply pipe 105 easily interposed therebetween. Numeral 108 is a joint for connecting the air hose.
各ノズル口 1 0 7は、 上下の直線列を形成する一群の小孔 1 0 9で構成され、 平面状ジヱッ トエア 1 1 0を噴出する 第 4 0図に示すように、 ノズル口 1 0 7の噴出方向は、 ジェ ットエア 1 1 0の厚み中心線 Q 1が ft耠管 1 0 5の出口 (供 耠部) 1 1 1より萌方の噴霧中心軸 Pに向って収束するよう 指向されている。 これにより、 両ジヱットエア 1 1 0で平面 視 V字形のエアカーテンが形成され、 その内部にくさび状の チャンバ 1 1 2が区画される。 ジェ " /トエア 1 1 0は厚 中 心線 Q 1の前後で合流し、 一個の収束気流 1 1 3を形成する, この収束気流 1 1 3は、 噴霧中心軸 Pに沿って徐々に断面積 を增加しながら直線状に形成され、 強い指向性を発揮する。 供耠管 1. 0 5の出口 1 1 1は、 エアチャンバ 1 1 2内の弱 風圈内の噴霧中心軸 P上に配置されている。 以上のように構成された噴霧機構では、 噴霧材 1 0 1を非 噴霧状に供耠する。 具体的には、 供耠管 1 0 5の出口 1 1 1 から噴薪材 1 0 1をチャンバ 1 1 2内に単に放出する。 チヤ ンバ 1 1 2内には、 収束部 1 1 4に向う弱風が形成されてい る このため、 噴霧材 1 0 1は、 弱風で徐々に加速されなが ら収束部 1 1 4に向かって移動し、 この移動の簡に小さな塊 に分離し、 ついにはジヱッ トエア 1 1 0に内側から取り込ま れる《 Each nozzle port 107 is composed of a group of small holes 109 forming an upper and lower linear row, and ejects planar jet air 110 as shown in FIG. The jet direction of the jet air is directed so that the thickness center line Q 1 of the jet air 110 converges from the outlet (supply part) 111 of the ft 耠 pipe 105 toward the center axis P of the spray. I have. As a result, a V-shaped air curtain is formed by the two jet airs 110, and a wedge-shaped chamber 112 is defined therein. J / "1 1 0 merges before and after the thick core Q 1 to form one convergent air flow 1 13, which gradually cross-sectional area along the spray center axis P The supply pipe 1.05 outlet 1 1 1 is located on the spray center axis P in the weak wind area in the air chamber 1 1 2 Have been. In the spray mechanism configured as described above, the spray material 101 is supplied in a non-spray state. Specifically, the firewood material 101 is simply discharged into the chamber 112 from the outlet 111 of the supply pipe 105. A weak wind is formed in the chamber 1 12 toward the converging section 1 14 .Therefore, the spray material 101 is gradually accelerated by the weak wind and moves toward the converging section 1 14. And easily separated into small chunks of this movement, and finally taken into the jet air 110 from inside.
ところで、 噴霧材 1 0 1の移動速度とジ ッ卜エア 1 1 0 の流速には、 大きな開きがある。 そのため、 噴霧材 1 0 1は、 ジエツ トエア 1 1 0で削られるようにして気流中に取り込ま れ、 細分化される やがて、 細分化された噴霧材 1 0 1は、 両ジエツ 卜エア 1 1 0が街突する収束部 1 1 4を通通する。 収束部 1 1 4では噴霧材 1 0 1はジヱットエア 1 1 0に叩か れ、 同時に叩かれた方向に押し戻され、 再び向きのことなる ジェッ トエア 1 1 0で叩かれ微細化される。 このようにして、 収束部 1 1 4の乱流域を通過する間に十分に微粒化された喷 霧材 1 0 1は、 気流中に均等に分散し、 収束気流 1 1 3で吹 付対象面 1 1 5へと運ばれる * 収束気流 1 1 3は強い指向性 を有し、 周辺空気を卷き込みながら吹付対象面に街突する fr 従って、 霧化した噴霧材 1 0 1が収束気流 1 1 3から脱落す ることはなく、 無効ミス卜の発生を防止できる 第 3 8図に 示すように、 吹付により得られるパターン Ρ 3は、 ほぼ円形 となる。 By the way, there is a large difference between the moving speed of the spray material 101 and the flow velocity of the jet air 110. Therefore, the spray material 101 is taken into the airflow by being scraped by the jet air 110, and is subdivided. After that, the subdivided spray material 101 is formed by the two jet airs 110. Pass through the converging section 1 1 4 where the streets are striking. In the converging section 114, the spray material 101 is hit by the jet air 110, and simultaneously pushed back in the direction of the hit, and is again struck by the jet air 110, which is different in direction, to be refined. In this way, the atomized material 101 that has been sufficiently atomized while passing through the turbulent flow area of the converging portion 114 is evenly dispersed in the airflow, and is sprayed by the convergent airflow 113. 1 1 5 are conveyed to * convergent stream 1 1 3 has strong directivity, fr is Machi突to spray the target surface with narrowing wind-ambient air therefore atomized spray material 1 0 1 convergence airflow 1 Drop from 1 3 As shown in FIG. 38, the pattern No. 3 obtained by spraying has a substantially circular shape.
供耠管 1 0 5の出口 1 1 1を、 第 4 1図に示すように変更 することもできる。 これでは、 出口 1 1 1を上下に長いスリ ッ ト状に形成し、 噴霧材 1 0 1をジ Xットエア 1 1 0の上下 方向に分散供耠できるようにしている。 この場合の吹付バタ ーン Ρ 3も第 3 8図と同一形状となる。  The outlet 111 of the supply pipe 105 can be changed as shown in FIG. In this configuration, the outlet 111 is formed in a vertically long slit shape so that the spray material 101 can be distributed and supplied in the vertical direction of the jet air 110. The spray pattern # 3 in this case also has the same shape as in FIG.
また、 供耠管 1 0 5の出口 1 1 1を、 空気ノズル 1 0 3の 前面壁で開口するように変更することもできる。  Further, the outlet 111 of the supply pipe 105 can be changed so as to open at the front wall of the air nozzle 103.
さらに、.噴霧材 1 0 1は重力作用を利用して供耠すること もでき、 必ずしも加圧供耠する必要はない。 また、 供耠管 1 0 5を用いて供耠する必要もない  Further, the spray material 101 can be supplied by utilizing the action of gravity, and it is not always necessary to supply it under pressure. Also, there is no need to supply using the supply pipe 105
第 4 2図乃至第 4 5図は、 第 3発明の他の実施例を示し、 とくに、 吹付パターン Ρ 4を長円乃至は楕円状の儇平形状に 形成できるようにしたものである。 - これでは、 前記実施例と同様に、 ノズル口 1 0 7の喷出方 向を、 ジ: nットエア 1 1 0の厚み中心镍 Q 1が噴霧中心軸 Ρ に向って収束するよう指向させる。 さらに、 第 4 2図に示す ように、 両ジエツトエア 1 1 0の幅方向中心線 Q 2が、 第 2 発明と同様に噴霧中心軸 Ρに対して互いに逆向きに傾斜する よう指向させる。 これにより、 両ジェッ トエア 1 1 0は、 そ の幅方向の大半が V字状に交差して収束し、 収束気流 1 1 3 の上下に収束しなかった気流域 1 1 3 aを形成する。 FIGS. 42 to 45 show another embodiment of the third invention, in which the spray pattern 4 can be formed in an elliptical or elliptical flat shape. -In this case, similarly to the above embodiment, the exit direction of the nozzle port 107 is directed such that the thickness center Q1 of the nozzle air 110 converges toward the spray center axis Ρ. Further, as shown in FIG. 42, the center lines Q2 in the width direction of the two jet airs 110 are inclined in opposite directions to the spray center axis 同 様, as in the second invention. Orientation. As a result, both jet airs 110 cross each other in a V-shape in the width direction and converge, forming an airflow region 113a that does not converge above and below the convergent airflow 113.
幅方向中心線 Q 2を傾斜させるにつ て、 空気消燹置を低 減するために、 左右の小孔群 1 0 9 a , 1 0 9 bは、 第 4 3 図乃至第 4 5図に示すように上下にずらして配 Sされている, 詳しくは、 図に向って左側の小孔群 1 0 9 aを噴霧中心軸 P に対して僅かに上方に儷寄させ、 右方の小孔群 1 0 9 bを逆 に下方へ傭寄させている。  The left and right small hole groups 109 a and 109 b are shown in FIGS. 43 to 45 in order to reduce the air gap when the center line Q 2 in the width direction is inclined. As shown in the figure, the holes are shifted S up and down, in detail. Conversely, the group 109b is lent downward.
以上のようにした噴霧装置で吹付を行うと、 第 4 2図に示 すような長円状の吹付パターン P 4が得られる。 この吹付パ ターン P 4の短軸長さは、 第 3発明の上記実施例による吹付 パターン P 3とほぽ同径で、 長軸長さは前記直径のおよそ 3 倍になる。 このことは、 同一量の噴霧材 1 0 1がより広い範 囲に分散することを意味している。 なお、 吹付パターン P 4 の長軸は、 噴霧装置の上下中心軸 Hに対して角度《だけ傾く これは、 ジェッ トエア 1 1 0の幅方向中心線 Q 2が傾きを有 し、 交差後の気流が一方向に捻られるためであると思われる なお、 空気ノズル 1 0 3は、 第 3 4図乃至第 3 7図で説明 したノズル 5 3のように変更し、 そのノズル口 1 0 7を上下 に長いスリッ トとして形成することができる。 このように、 - When spraying is performed by the spraying apparatus described above, an oblong spray pattern P4 as shown in FIG. 42 is obtained. The short-axis length of the spray pattern P4 is substantially the same as that of the spray pattern P3 according to the above-described embodiment of the third invention, and the long-axis length is about three times the diameter. This means that the same amount of spray 101 is distributed over a wider range. The long axis of the spray pattern P 4 is inclined by an angle << with respect to the vertical center axis H of the spraying device. This is because the center line Q 2 in the width direction of the jet air 110 has a slope and the air flow after the intersection The air nozzle 103 is changed to the nozzle 53 described in FIGS. 34 to 37, and the nozzle port 107 is moved up and down. It can be formed as a long slit. in this way, -
ノズル口 1 0 7をスリツト構造にすると、 噴出空気置が增ぇ るので噴霧材 1 0 1の単位時間当りの吹付置を増やすことが できる。 If the nozzle port 107 has a slit structure, the number of sprayed air per unit time can be increased since the air to be jetted is increased.
第 4 6図乃至第 4 8図は、 第 3発明を塗装用のスプレーガ ンに適用した実施例を示す。  FIGS. 46 to 48 show an embodiment in which the third invention is applied to a spray gun for painting.
第 4 8図において、 スプレーガンは、 ボディ 1 3 0と、 こ れの内部に組み込まれる空気弁 1 3 1および塗料弁 1 3 2と、 これら両弁 1 3 1、 1 3 2を開き操作するトリガ 1 3 3と、 ボディ 1 3 0の前端に装着される空気ノズル 1 0 3、 および 供耠管 1 0 5等で構成されている。  In FIG. 48, the spray gun opens and operates the body 13, the air valve 13 1 and the paint valve 13 2 incorporated therein, and these valves 13 1 and 13 2 It is composed of a trigger 133, an air nozzle 103 mounted on the front end of the body 130, a supply pipe 105, and the like.
空気弁 1 3 1は、 バルブケース 1 3 4と、 このケース 1 3 4に設けられた弁口 1 3 5を開閉する栓体 1 3 6、 および栓 体 1 3 6を閉じ姿势に付勢する弁ばね 1 3 7等で楕成され、 グリップ 1 4 0の上方に配置されている。 トリガ 1 3 3を弓 I き絞ると、 拴休 1 3 6が弁ばね 1 3 7に抗して後退し、 栓体 1 3 6とバルブケース 1 3 4との間に隙閭を形成する。 この 隙簡から圧縮空気が入り込み、 弁口 1 3 5および空気通路 1 3 8を介 tて空気ノズル 1 0 3に流入する。 空気ノズル 1 0 3と空気通路 1 3 &とは継手 1 3 9を介して連通している。  The air valve 13 1 urges the valve case 13 4, the plug 13 6 that opens and closes the valve port 13 5 provided in the case 13 4, and the plug 13 6 in the closed state. It is formed by a valve spring 1337 and the like, and is disposed above the grip 140. When the trigger 1 33 is squeezed, the rest 1 36 moves backward against the valve spring 13 7 to form a gap between the plug 13 6 and the valve case 13 4. Compressed air enters from this gap and flows into the air nozzle 103 through the valve port 135 and the air passage 138. The air nozzle 103 and the air passage 13 & communicate with each other via a joint 13.
1 4 9は圧縮空気の入口通路である。 149 is a compressed air inlet passage.
塗料弁 1 3 2は、 トリガ 1 3 3の前方に設けられており、 弁茧 i 4 2の前端に装着された弁座 1 4 3と、 弁座 1 4 3に 接離して開閉を行う弁棒 1 4 4と、 弁棒 1 4 4の全体を弁座 1 4 3に向って柙付け付勢する弁ばね 1 4 5等で構成する。 弁棒 1 4 4は、 弁本体 1 4 6と、 栓体 1 3 6を縦通するロッ ド 1 4 7と、 弁ばね 1 4 5の一端を受止める連動ピース 1 4 8とからなり、 栓体 1 3 6を介してトリガ 1 3 3で開き搮作 される。 詳しくは、 栓休 1 3 6が開操作され、 圧縮空気が空 気ノズル 1 0 3から噴出された後に、 弁本体 1 4 6が弁座 1 4 3から離れるよう構成されている。 この動作運れを得るた めに、 栓体 1 3 6と連動ピース 1 4 8との間に小さな隙間が 設けられている。 1 5 0は塗料の入口通路である, なお、 塗 料は別設されたタンクに貯溜されており、 重力の作用で、 あ るいはタンク内に作用する圧縮空気の圧力作用によって入口 通路 1 5 0へと送耠される。 The paint valve 1 3 2 is provided in front of the trigger 1 3 3, The valve seat 1 4 3 attached to the front end of the valve 茧 i 4 2, the valve stem 1 4 4 that opens and closes by contacting and separating from the valve seat 1 4 3, and the entire valve stem 1 4 4 as the valve seat 1 4 3 It is composed of a valve spring 1 4 5 etc. which is biased toward the surface. The valve stem 144 consists of a valve body 144, a rod 144 extending vertically through the plug 131, and an interlocking piece 144 accepting one end of the valve spring 144. Triggered via body 13 36 and triggered by opening 13 3. Specifically, the valve body 144 is configured to be separated from the valve seat 144 after the plug rest 136 is opened and the compressed air is ejected from the air nozzle 103. To obtain this movement, a small gap is provided between the plug 13 and the interlocking piece 1 48. Reference numeral 150 denotes an inlet passage for paint. The paint is stored in a separate tank, and the inlet passage is formed by the action of gravity or the pressure of compressed air acting in the tank. Sent to 0.
空気ノズル 1 0 3は、 小孔群からなるノズル口 1 0 7より 噴出される一対のジエツトエア 1 1 0に鬨して、 その厚み中 心線 Q 1および幅方向中心線 Q 2が、 第 5実施例の空気ノズ ル 1 0 3と同様に傾斜するよう指向させてあり、 空気ノズル 1 0 3の背面上部から圧縮空気を導入する点が異つている。 供袷管 1 0 5は、 空気ノズル 1 0 3を前後に貧通する状瓛 で弁座 1 4 3にねじ込み固定されている 従って、 出口 1 1 1の直径が異る複数の供耠管 1 0 5を用意しておけば、 例え ば塗料の粘度の違いに応じて、 簡単に供耠管 1 0 5を交換す ることができる。 The air nozzle 103 fights against a pair of jet air 110 ejected from the nozzle opening 107 consisting of a group of small holes, and its thickness center line Q1 and width center line Q2 The air nozzle 103 is directed to be inclined in the same manner as the air nozzle 103 of the embodiment, and is different in that compressed air is introduced from the upper rear surface of the air nozzle 103. The supplied pipe 105 is screwed and fixed to the valve seat 144 with the air nozzle 103 in front and rear of the air nozzle 103, so that the outlet 1 1 If a plurality of supply pipes 105 having different diameters are prepared, the supply pipes 105 can be easily exchanged, for example, according to the difference in the viscosity of the paint.
上記ノズル口 1 0 7は直線妆に開口する以外に、 緩かな弧 状に湾曲するよう開口することもできる。 また、 ノズル口 1 0 7を一対設けるものでは、 各ノズル口 1 0 7を上下平行に 配 Sしてもよい。 さらに、 3以上のノズル口 1 0 7からジェ ットエア 1 1 0を噴出するよう変更することもできる  In addition to the nozzle opening 107 opening in a straight line で き る, the nozzle opening 107 can also open so as to be curved in a gentle arc shape. When a pair of nozzle openings 107 is provided, the nozzle openings 107 may be arranged vertically in parallel. Furthermore, it can be changed so that jet air 110 is jetted from three or more nozzle ports 107.
以上説明したように、 この噴薪装置では、 空気ノズル 1 0 3で面状のジェットエア 1 1 0を噴出し、 ジヱットエア 1 1 0を噴霧中心軸 Pに向って収束させて、 その內部にチャンバ 1 1 2を区画し、 このチャンバ 1 1 2内に噴霧材 1 0 1を非 噴霧状に供耠して霧化を行う。 また、 収束したジ Xットエア 1 1 0で収束気流 1 1 3を形成して、 これで霧化した噴霧材 1 0 1を吹付対象面 1 0 5に運ぶ。  As described above, in this firewood apparatus, the air nozzle 103 blows out the planar jet air 110, converges the jet air 110 toward the spray center axis P, and forms a chamber at a part thereof. 1 1 2 is partitioned, and the spray material 101 is supplied in a non-spray state into the chamber 1 12 to perform atomization. Further, the converged jet air 110 forms a converged airflow 113 and conveys the atomized spray material 101 to the spray target surface 105.
従って、 この噴霧装置によれば、 噴霖用ノズルを用いるこ となく噴霧材 1 0 1を霧化できるので、 従来装置において不 可避であったノズルでの目詰りの問題をー掎できる。 これに より、 目詰りに由来する諸々の問題点を解消してその取扱い を容易化し、 同時に管理作業を箇素化することができる ま た、 目詰りの心配がないので、 高粘度の塗料や接着剤、 ある いは粉体でも、 確実に霧化することができる。 Therefore, according to this spraying device, the spraying material 101 can be atomized without using a nozzle for jet rinsing, so that the problem of clogging in the nozzle which was inevitable in the conventional device can be reduced. As a result, various problems arising from clogging can be eliminated, the handling thereof can be facilitated, and at the same time, the management work can be simplified, and there is no fear of clogging. Glue, there is Even powders can be reliably atomized.
又、 噴霧材 1 0 1 としてショ ットブラスト用のブラスト材 を使用しても、 ブラスト材は非噴霧状に供耠されるので、 供 耠部 1 1 1の摩耗を防止できる。  Further, even if a blast material for shot blasting is used as the spray material 101, the blast material is supplied in a non-sprayed state, so that abrasion of the supply portion 111 can be prevented.
収束するジヱットエア 1 1 0の収束部 1 1 4で最終的な微 粒化を行って 化を行うこととし、 霧化された噴霧材 1 0 1 を、 整然とした流れを形成する収束気流 1 1 3で吹付対象面 At the converging section 1 14 of the converging jet air 110, the final atomization is performed and the atomization is performed, and the atomized spray material 101 is formed into a convergent airflow that forms an orderly flow 1 113 Target surface
1 1 5へと連ぶようにしたので、 無効ミストの発生を防止で き、 例えば噴霧材 1 0 1や溶剤等による作業環境の汚染を防 止できる点、 および噴薪材 1 0 1の無駄な消費を防止できる 点で有利である。 また、 高精度に加工された噴霖ノズルや空 気キャップ等を用いて霧化を行う従来装 gに比べて、 噴霖機 構を極めて単純化することができ、 噴棼装 Sを安価に製造す ることができる。 Since it is connected to 115, it is possible to prevent generation of invalid mist, for example, to prevent contamination of the working environment by spray material 101 and solvents, etc., and waste of firewood material 101 This is advantageous because it can prevent unnecessary consumption. In addition, compared to the conventional device g, which atomizes using a highly-accurate rinin nozzle or air cap, the rinin mechanism can be extremely simplified, and the rinsing device S can be manufactured at low cost. Can be manufactured.
さらに、 噴霖材供耠手段に閧して、 目詰りや摩耗の心配が 全くなく、 霧化原理が単純であるので、 不安定要因のない状 想で霧化を行うことができる。 例えば、 供耠部 1 1 1に喷霧 材 1 0 1が膠着しているような場合にでも、 確実にしかも安 定的に霧化を行うことができ、 噴霧装置の動作上の信頼性を 向上することができる。  In addition, there is no fear of clogging or wear in the means of supplying ginlin material, and the atomization principle is simple, so that atomization can be performed with no instability factors. For example, even when the atomizing material 101 adheres to the supply unit 111, atomization can be performed reliably and stably, and the operational reliability of the spraying device is improved. Can be improved.
産業上の利用可能性 以上の説明から理解できるように、 この発明に係る噴霧装 置は、 アーク溶射装置に代表される金属溶射装 Sとして、 ま た、 塗装用の噴霧装置として有用であり、 さらに塗料以外の 接着剤や粉休あるいはブラスト材等の流動性材料を噴霧対象 とし、 これらを圧縮空気により霧化する形據の噴霧装置に逋 している。 Industrial applicability As can be understood from the above description, the spraying device according to the present invention is useful as a metal spraying device S typified by an arc spraying device, as a spraying device for coating, and an adhesive other than paint. It sprays fluid materials such as powder, powder or blast material, and uses a spraying device based on atomization with compressed air.

Claims

請 求 の 範 囲 The scope of the claims
1 . 流動性材料からなる噴霧材を非噴霧状に供耠する噴霖材 供耠手段の中心軸を間に挟んで、 前記中心軸に向かって一対 の面状のジ: Lットエアを噴出し、  1. Spray material that supplies spray material made of a fluid material in a non-sprayed state. A pair of planar jets: L-jet air is ejected toward the center axis with the center axis of the supply means interposed therebetween. ,
前記ジ: Lッ トエアによって、 先端で収束するエアーチャン バを形成し、  The above-mentioned di: the air chamber forms a converging air chamber at the tip,
このエアーチャンバ内に噴霧材を非噴霧状に供耠して、 噴 霧材をジヱッ トエア内に送込みアトマイジングを行うことを 特徴とする噴霧方法  A spraying method characterized by supplying the sprayed material in a non-sprayed state into the air chamber, sending the sprayed material into the jet air and performing atomization.
2 · —対のジェッ トエアの厚み中心線を噴霧中心軸上に向つ て収束させ、 幅方向中心線を中心軸に対して互いに逆向きに 傾斜させた請求項 1の噴霧方法。  2. The spray method according to claim 1, wherein the thickness center lines of the pair of jet air are converged toward the spray center axis, and the width center lines are inclined in opposite directions to the center axis.
3 . 流動性材料からなる噴霧材を非噴棼状に供耠する噴霧材 供耠手段と、 ジェッ トエアを噴出して噴霧材を霧化する空気 ノズルとを備えており、  3. A spray material supply means for supplying the spray material made of a fluid material in a non-spray form, and an air nozzle for ejecting jet air to atomize the spray material.
空気ノズルは、 面状のジェッ トエアを噴出する一対のノズ ルロを有し、 ジェットエアが噴霧中心軸に向って収束し、 収 束後に収束気流を形成するようノズル口の噴出方向を指向さ せ、  The air nozzle has a pair of nozzles for jetting planar jet air, and the jet air converges toward the spray center axis and directs the jet direction of the nozzle port so that a converged airflow is formed after convergence. ,
ジェ、、, トエアで囲まれるチャンバ内に、 噴霧材供耠手段の 供耠部を配置することを特徴とする噴霖装鬣。 An injection mannequin, characterized in that a supply part of spraying material supply means is arranged in a chamber surrounded by a jet.
4 . 一対のジェッ卜エアの厚み中心線を噴霧中心軸上に向つ て収束させ、 幅方向中心線を噴霧中心軸に対して互いに逆向 きに傾斜させるようにノズル口の噴出方向を指向させた請求 項 3の噴霧装置。 4. Concentrate the thickness center lines of the pair of jet air toward the spray center axis, and direct the jet direction of the nozzle port so that the width center lines are inclined in opposite directions to the spray center axis. The spray device according to claim 3.
5 . 溶射中心軸 Pを間に挟んで配設された一対のノズル口か ら溶射中心軸に向かって面状のジェットエアを噴出し、 前記ジヱットエアによって、 先端で収束するエアーチャン バを形成し、  5. A plane jet of air is ejected from a pair of nozzle ports arranged with the spraying center axis P interposed therebetween toward the spraying center axis, and the jet air forms an air chamber that converges at the tip. ,
エアーチャンバ内で一対の溶材間にアーク放電を連統的に 生じさせ、  Arc discharge is continuously generated between a pair of molten materials in the air chamber,
アーク放電により生じた溶材の溶滴をジ ットエア内に送 込みアトマイジングを行うことを特徴とするアーク溶射方法 Arc spraying method wherein atomization is performed by sending droplets of a molten material generated by arc discharge into jet air and performing atomization.
6 . ケース前端の溶射中心軸を挟んで、 アトマイジング用の 面状のジヱットエアを形成する一対のノズル口を配置し、 両ノズル口の噴出中心镍が溶射中心軸に向かって収束する よう、 両ノズル口を指向させ、 6. A pair of nozzle ports that form planar jet air for atomizing are arranged with the spraying center axis at the front end of the case sandwiched between them, so that the ejection centers of both nozzle ports converge toward the spraying center axis. Point the nozzle opening,
ジヱットエアで区面されるエアーチャンバ内に一対の溶材 wのアーク交点を位置させることを特徴とするアーク溶射装 An arc spraying apparatus characterized in that an arc intersection of a pair of molten materials w is located in an air chamber defined by jet air.
7 . 各ノズル口が直線状に形成してある請求項 6に記載のァ 一ク溶射装 S 7. The arc spraying device S according to claim 6, wherein each nozzle port is formed in a straight line.
8 . 各ノズル口が正面視コ字形に形成してある請求項 6のァ 一ク溶射装置。 8. The arc spraying device according to claim 6, wherein each nozzle opening is formed in a U-shape in a front view.
9 . エアーチャンバ內において、 ノズル側からアーク交点側 に向かう気流を形成する補助ノズル口がノズルに設けてある 請求項 7のアーク溶射装置。  9. The arc spraying apparatus according to claim 7, wherein an auxiliary nozzle port for forming an airflow from the nozzle side toward the arc intersection side is provided in the air chamber.
1 0 . ジヱッ トエアの外面に沿ってほぼ平行な気流を形成す る保形ノズル口がノズルに形成してある請求項 7のアーク溶 射装置。  10. The arc spraying device according to claim 7, wherein the nozzle has a shape-retaining nozzle opening for forming a substantially parallel air flow along the outer surface of the jet air.
1 1 . 溶材の溶滴発生位置を間に挟んで、 一対の平面状ジェ ッ トエアを、 両ジヱッ 卜エアの厚み中心線が溶材の溶滴発生 位置より前方位置の溶射中心軸に向かって傾斜し、 且つ、 両 ジェットエアの幅方向中心線が溶射中心軸に対して互いに逆 向きに傾斜して、 両ジヱッ 卜エアがその一部を収束しつつ交 差するように噴出し、  1 1. A pair of flat jet air is sandwiched between the positions where the droplets of the molten material are generated, and the thickness center lines of both jet air are inclined toward the spraying central axis located forward of the positions where the droplets of the molten material are generated. In addition, the center lines in the width direction of the jet airs are inclined in opposite directions to the spraying center axis, and the jet airs are jetted so as to converge and converge a part thereof.
前記ジ Xッ トエアの収束部分にエアーチャンバを形成し、 エアーチャ バ內で一対の溶材間にアーク放電を連統的に 生じさせ、  An air chamber is formed at the converging portion of the jet air, and an arc discharge is continuously generated between the pair of molten materials by the air chamber,
アーク放電により生じた溶材の溶滴をジヱットエア内に送 込みアトマイジングを行うことを特徴とするアーク溶射方法。  An arc spraying method, characterized in that droplets of a molten material generated by arc discharge are sent into jet air to perform atomizing.
1 2 . 溶材の溶滴発生位置を間に挟んで、 それぞれが平面状 のジヱッ トエアを形成する一対のノズル口を配篋し、 δ 1 2. A pair of nozzle ports, each forming a flat jet air, are interposed between the positions where the droplets of the molten material are generated. δ
両ジ ットエアの厚み中心線が溶材の溶滴発生位 ffiより前 方位置の溶射中心軸に向かって傾斜し、 且つ、 両ジ ットェ ァの幅方向中心線が溶射中心軸に対して互いに逆向きに傾斜 して、 両ジ Xッ トエアがその一部を収束しつつ交差するよう 両ノズル口を指向させたことを特徴とするアーク溶射装置。 The thickness center lines of both jet airs are inclined toward the spraying center axis located in front of the droplet generation position ffi of the molten material, and the center lines in the width direction of both jetters are opposite to each other with respect to the spraying center axis. An arc spraying apparatus characterized in that both nozzle openings are directed such that both jet airs converge and intersect with a part of the nozzles.
1 3 . 各ノズル口が直線状に形成した小孔群からなる請求項 1 2のアーク溶射装蘆  13. An arc spraying apparatus according to claim 12, wherein each nozzle port comprises a group of small holes formed in a straight line.
1 4 . ジ Xッ トエアの外面に沿ってほぼ平行な気流を形成す る保形ノズル口がノズルに形成してある請求項 1 3に記載の アーク溶射装篋。  14. The arc spraying apparatus according to claim 13, wherein the nozzle has a shape-retaining nozzle opening that forms a substantially parallel air flow along the outer surface of the jet air.
1 5 . 各ノズル口が直線状に形成した小孔群からなる請泶項 1 2のアーク溶射装置。  15. The arc spraying apparatus according to claim 12, wherein each nozzle port comprises a group of small holes formed in a straight line.
1 ら . ジヱッ トエアの外面に沿ってほぼ平行な気流を形成す る保形ノズル口がノズルに形成してある請求項 1 5に記載の アーク溶射装置。  16. The arc spraying apparatus according to claim 15, wherein the nozzle has a shape-retaining nozzle opening for forming a substantially parallel air flow along the outer surface of the jet air.
PCT/JP1989/001291 1988-12-23 1989-12-22 Atomization method and atomizer WO1990007384A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP63326730A JP2799718B2 (en) 1988-12-23 1988-12-23 Arc spraying method and apparatus
JP63/326730 1988-12-23
JP9165689A JP2742536B2 (en) 1989-04-10 1989-04-10 Thermal spray equipment
JP1/91656 1989-04-10
JP1164326A JPH0330853A (en) 1989-06-27 1989-06-27 Spray apparatus
JP1/164326 1989-06-27

Publications (1)

Publication Number Publication Date
WO1990007384A1 true WO1990007384A1 (en) 1990-07-12

Family

ID=27306805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001291 WO1990007384A1 (en) 1988-12-23 1989-12-22 Atomization method and atomizer

Country Status (3)

Country Link
KR (1) KR0158189B1 (en)
AU (1) AU4800690A (en)
WO (1) WO1990007384A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177213B1 (en) 2008-06-04 2012-08-24 구로사키 하리마 코포레이션 Flame spraying repair equipment, and flame spraying repair method of coke oven
CN112403719A (en) * 2020-12-30 2021-02-26 安徽旭晨保温材料有限公司 Surface even-amount spraying device for plate processing
WO2023076400A1 (en) * 2021-10-28 2023-05-04 Integrated Global Services, Inc. Apparatus and system for thermal spray and related methods thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051038A (en) * 1973-09-06 1975-05-07
JPS53142927A (en) * 1977-05-20 1978-12-13 Riyouichi Kasagi Metal melting and injection method that does not generate contraction and distortion to film and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051038A (en) * 1973-09-06 1975-05-07
JPS5610103B2 (en) * 1973-09-06 1981-03-05
JPS53142927A (en) * 1977-05-20 1978-12-13 Riyouichi Kasagi Metal melting and injection method that does not generate contraction and distortion to film and its device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177213B1 (en) 2008-06-04 2012-08-24 구로사키 하리마 코포레이션 Flame spraying repair equipment, and flame spraying repair method of coke oven
CN112403719A (en) * 2020-12-30 2021-02-26 安徽旭晨保温材料有限公司 Surface even-amount spraying device for plate processing
WO2023076400A1 (en) * 2021-10-28 2023-05-04 Integrated Global Services, Inc. Apparatus and system for thermal spray and related methods thereof

Also Published As

Publication number Publication date
AU4800690A (en) 1990-08-01
KR0158189B1 (en) 1998-11-16
KR910700102A (en) 1991-03-13

Similar Documents

Publication Publication Date Title
US5687906A (en) Atomization method and atomizer
US5487695A (en) Blast nozzle combined with multiple tip water atomizer
US4911956A (en) Apparatus for spraying droplets of hot melt adhesive
JPS6012915B2 (en) Equipment for spraying paint or similar materials
EP0650766B1 (en) Suction feed nozzle assembly for HVLP spray gun
US5685482A (en) Induction spray charging apparatus
US4343433A (en) Internal-atomizing spray head with secondary annulus suitable for use with induction charging electrode
US4957783A (en) Method and apparatus for dispensing droplets of molten thermoplastic adhesive
TWI224030B (en) Spray gun with improved pre-atomization fluid mixing and breakup
JP2992760B2 (en) Method for deflecting and distributing liquid or melt flowing out of a nozzle hole by gas jet from surrounding area
US4232824A (en) Method and apparatus for the pneumatic spraying of liquid products
CN1775374B (en) Spray nozzle and method for spraying freshly printed products
US20100213273A1 (en) Ultrasonic atomizing nozzle with variable fan-spray feature
US4715535A (en) Powder spray gun
US4928884A (en) Fluid assist airless spray nozzle
US4273287A (en) Atomizer head for paint spray guns
US9346064B2 (en) Radius edge bell cup and method for shaping an atomized spray pattern
WO1991012183A1 (en) Inside diameter arc spray gun
JPS6353860B2 (en)
WO1990007384A1 (en) Atomization method and atomizer
EP1714704B1 (en) Thermal spraying device and thermal spraying method
JP2000504990A (en) Spray device and method for agricultural and others
US4494699A (en) Adjustable spray nozzle
JPH04171067A (en) Spray gun
JPS5946159A (en) Airless spray painting method and gun therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE