WO1990002079A1 - Generation of an aerodynamic force by lateral blowing of air at the underwing of aircraft wings from the wing extremities towards the wing root at the aircraft fuselage - Google Patents

Generation of an aerodynamic force by lateral blowing of air at the underwing of aircraft wings from the wing extremities towards the wing root at the aircraft fuselage Download PDF

Info

Publication number
WO1990002079A1
WO1990002079A1 PCT/FR1989/000429 FR8900429W WO9002079A1 WO 1990002079 A1 WO1990002079 A1 WO 1990002079A1 FR 8900429 W FR8900429 W FR 8900429W WO 9002079 A1 WO9002079 A1 WO 9002079A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
aircraft
wing
aerodynamic
blowing
Prior art date
Application number
PCT/FR1989/000429
Other languages
French (fr)
Inventor
Bernard Edouard Emilien Touret
Original Assignee
Bernard Edouard Emilien Touret
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernard Edouard Emilien Touret filed Critical Bernard Edouard Emilien Touret
Publication of WO1990002079A1 publication Critical patent/WO1990002079A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/38Jet flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • B64C21/04Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/04Boundary layer controls by actively generating fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/06Boundary layer controls by explicitly adjusting fluid flow, e.g. by using valves, variable aperture or slot areas, variable pump action or variable fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/16Boundary layer controls by blowing other fluids over the surface than air, e.g. He, H, O2 or exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention consists in creating an aerodynamic force by blowing air on the underside of an airplane wing, laterally, from the wing ends towards the root.
  • this air blowing opens to the lower surface of the airfoil, between the ends and the root, symmetrically with respect to the vertical plane of symmetry of. the airplane, and depending on the importance of the blown air flow, this lateral blowing produces, in a combined way or not:
  • Aeronautics and more generally aerodynamics are the fields concerned by this invention.
  • this lateral blowing therefore has the effects, on the one hand, of increasing the range, and on the other hand of decreasing correlative aerodynamic drag.
  • air blowing can be obtained by sampling at the compressor level. It can be on pressurized fuselage airplanes by bringing, using appropriate piping required, the air evacuated by the pressure regulating valves of the fuselage at the wing ends.
  • the gain in aerodynamic drag will depend on the flow of blown air and the construction of the air outlets.
  • the lateral blowing of a large air flow can produce times a lift force (in a way comparable to the effects of a crosswind on a half-wing) and a propulsion force obtained by continuous deflection backwards of the air blown from the air outlets to '' at the wing / fuselage connection.
  • this variant allows, by asymmetrical variation of the air flow blown under each of the half-wings, the piloting of the aircraft both in roll and in pitch.
  • FIG. 1 represents, seen from the lower surface, the schematic diagram of the realization of the lateral blowing of the air evacuated by the pressure regulating valves of a pressurized fuselage.
  • the essential objective is to reduce the aerodynamic drag in a moderate manner.
  • FIG. 2 represents, seen from the lower surface, the planed shape of a wing supported and propelled by blowing lateral air with maintenance of the roll control by the conventional means of the ailerons.
  • FIG. 3 represents the shape of the profile of the airfoil lifted and propelled by blowing lateral air into the part where it is blown.
  • FIG. 4 represents the shape of the profile of a wing supported and propelled by lateral air blowing in the part where it is not blown. Also shown is the air blowing mouth.
  • the air supply vents (1) can not only receive the air evacuated by the pressure regulating valves (2) corresponding to the ventilation air flow rate of the fuselage, but also the air evacuated from the leading edge anti-icing system (if this system is used) without taking into account any additional air taken from the compressors of the engines propelling the aircraft.
  • the propelling force is obtained by continuous deflection of the blown air towards the rear thanks to the development of the shape of the profiles, the inflection points of which (marked) (3) in FIG. 3 are shown. by the curved line marked (4) in FIG. 2.
  • the shape of the connection of the wing to the fuselage also plays an important role in obtaining this propulsion and range force which requires a large air flow to allow the flight of an aircraft. For example, an aircraft with a mass of 1,300 kg. And an airfoil area of 8 m2 can be propelled at more than 250 km / h with an air flow of approximately 11 kg / s supplied by a turbomachine delivering a power of 180 KW.
  • the downward deflection of the supply air which depends on the shape of the airfoils and the shape of the airfoil / fuselage connection, can also help to reduce the weight of the aircraft.
  • the deflection of leading edge nozzles and trailing edge flaps should have the effect of increasing the deflection of the blown air and thus lightening the aircraft all the more . With an even higher air flow it should be possible to lift it completely.
  • the air blowing vents can be made orientable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The lateral blowing of air modifies the aerodynamic field about the wings and, according to the importance of the blown air flow rate, it improves the aerodynamic efficiency of the wings or even provides for the propulsion of the aircraft or for its lift or yet to pilot the aircraft according to its roll and pitch axes. This lateral air blowing may be carried out in part or completely by taking air from the turbomachine compressors, by using pressure air evacuated from the fuselage or by any other gas mixture evacuated to the outside. Aerodynamics and more particularly aircraft engineering are the fields concerned by said lateral air blowing.

Description

Création d'une force aérodynamique par soufflage latéral d'air à l'Intrados d'une voilure d'avion. de ses extrémités vers son emplanture au fuselage de l'avion.  Creation of an aerodynamic force by blowing air from the intrados of an airplane wing. from its ends towards its root at the fuselage of the airplane.
La présente invention consiste à créer une force aérodynamique par soufflage d'air à l'intrados d'une voilure d'avion, latéralement, des extrémités de fa voilure vers l'emplanture. Selon l'emplacement d'où ce soufflage d'air débouche à l'intrados de la voilure, entre les extrémités et l'emplanture, symétriquement par rapport au plan de symétrie vertical de. l'avion, et selon l'importance du débit d'air soufflé, ce soufflage latéral produit, d'une façon combinée ou non:  The present invention consists in creating an aerodynamic force by blowing air on the underside of an airplane wing, laterally, from the wing ends towards the root. Depending on the location from which this air blowing opens to the lower surface of the airfoil, between the ends and the root, symmetrically with respect to the vertical plane of symmetry of. the airplane, and depending on the importance of the blown air flow, this lateral blowing produces, in a combined way or not:
- une augmentation de la portanee aérodynamique avec une diminution corrélative de la traînée aérodynamique,  - an increase in aerodynamic range with a corresponding decrease in aerodynamic drag,
- une force de propulsion, lorsque la forme des profils de la voilure et la forme en plan de celle-ci sont convenablement choisies et que le fuselage est accolé sous ta voilure.  - a propelling force, when the shape of the profiles of the airfoil and the plan shape of the latter are suitably chosen and the fuselage is joined against your airfoil.
L'aéronautique et plus généralement l'aérodynamique sont les domaines concernés par cette invention.  Aeronautics and more generally aerodynamics are the fields concerned by this invention.
Que ce soit pour les avions civils, de loisir ou de transport, ou que ce soit pour les avions militaires de transport et, en particulier pour ces derniers, les Avions à Décollage et Atterrissages Courts (ADAC), l'augmentation de la portanee aérodynamique et la diminution de la traînée aérodynamique ont toujours été des soucis constants des bureaux d'études des avionneurs. L'utilisation de dispositifs hypersustentateurs sophistiqués et le soufflage de la voilure selon une direction parallèle à l'axe longitudinal de l'avion ont permis d'accroître sensiblement les forces de portanee avec, cependant, une augmentation corrélative de la traînée. L'utilisation de "cloisons" en extrémités de voilure (dénommées "winglets" en anglais) constitue une des solutions actuelles pour diminuer la traînée aérodynamique (gain de traînée d'environ 1 à 2% en croisière).  Whether for civil, leisure or transport aircraft, or for military transport aircraft and, in particular for the latter, Take-Off and Short Landing Aircraft (ADAC), the increase in aerodynamic range and the reduction in aerodynamic drag have always been a constant concern of the design offices of aircraft manufacturers. The use of sophisticated high-lift devices and the blowing of the airfoil in a direction parallel to the longitudinal axis of the aircraft made it possible to significantly increase the lift forces with, however, a correlative increase in drag. The use of "bulkheads" at the wing ends (called "winglets" in English) constitutes one of the current solutions for reducing aerodynamic drag (drag gain of approximately 1 to 2% when cruising).
Lorsque le soufflage latéral de l'air débouche en extrémités de voilure, il s'oppose aux tourbillons marginaux qui se forment a ces extrémités. En s'opposant ainsi à la fuite d'air de l'intrados (sone de surpression) vers l'extrados (zone de dépression), ce soufflage latéral a pour effet d'augmenter d'une manière fictive l'allongement aérodynamique de la voilure et par conséquent la finesse aérodynamique.  When the lateral air blowing opens at the wing ends, it opposes the marginal vortices which form at these ends. By thus opposing the air leakage from the lower surface (overpressure area) to the upper surface (vacuum zone), this lateral blowing has the effect of fictitiously increasing the aerodynamic elongation of the aerofoil and consequently aerodynamic finesse.
Pour une incidence donnée de la voilure ce soufflage latéral a donc pour effets d'une part d'augmenter la portanee, d'autre part de diminuer corrélativemeruia traînée aérodynamique.  For a given incidence of the airfoil, this lateral blowing therefore has the effects, on the one hand, of increasing the range, and on the other hand of decreasing correlative aerodynamic drag.
Sur les avions équipés de turbomachines le soufflage d'air peut être obtenu par prélèvement au niveau ms compresseurs. Il peut l'être sur les avions à fuselage pressurisé en amenant, à l'aide d'une tuyauterie appro priée, l'air évacué par les soupapes de régulation de pression du fuselage en extrémités de voilure. Le gain de traînée aérodynamique dépendra du débit d'air soufflé et de la réalisation des bouches de soufflage. On airplanes equipped with turbomachines, air blowing can be obtained by sampling at the compressor level. It can be on pressurized fuselage airplanes by bringing, using appropriate piping required, the air evacuated by the pressure regulating valves of the fuselage at the wing ends. The gain in aerodynamic drag will depend on the flow of blown air and the construction of the air outlets.
Selon une variante intégrant la forme des profils de la voilure, la forme en plan de celle-ci et la forme du raccordement avec le fuselage sur lequel la voilure est installée, le soufflage latéral d'un important débit d'air peut produire à la fois une force de portanee (d'une façon comparable aux effets d'un vent de travers sur une demi-voilure) et une force de propulsion obtenue par déviation continue vers l'arrière de l'air soufflé à partir des bouches de soufflage jusqu'au raccordement voilure/fuselage. Dans cette variante, il pourra être suffisant de disposer les bouches de soufflage plus près de l'emplanture si le contrôle de l'avion reste assuré au moyen classique d'aiierons ou de "spoiiers". En fait cette variante autorise, par variation dissymétrique du débit d'air soufflé sous chacune des demivoilures, le pilotage de l'avion à la fois en roulis et en tangage.  According to a variant integrating the shape of the profiles of the airfoil, the plan shape of the latter and the shape of the connection with the fuselage on which the airfoil is installed, the lateral blowing of a large air flow can produce times a lift force (in a way comparable to the effects of a crosswind on a half-wing) and a propulsion force obtained by continuous deflection backwards of the air blown from the air outlets to '' at the wing / fuselage connection. In this variant, it may be sufficient to have the air outlets closer to the root if the control of the aircraft remains ensured by conventional means of ailerons or "spoiiers". In fact this variant allows, by asymmetrical variation of the air flow blown under each of the half-wings, the piloting of the aircraft both in roll and in pitch.
La figure 1 représente, vu de l'intrados, le shéma de principe de la réalisation du soufflage latéral de l'air évacué par les soupapes de régulation de pression d'un fuselage pressurisé. Dans une telle réalisation, l'objectif essentiel est de diminuer la traînée aérodynamique d'une façon modérée. La figure 2 représente, vue de l'intrados, la forme en pian d'une voilure sustentée et propulsée par soufflage d'air latéral avec maintien du contrôle en roulis par le moyen classique des ailerons.  FIG. 1 represents, seen from the lower surface, the schematic diagram of the realization of the lateral blowing of the air evacuated by the pressure regulating valves of a pressurized fuselage. In such an embodiment, the essential objective is to reduce the aerodynamic drag in a moderate manner. FIG. 2 represents, seen from the lower surface, the planed shape of a wing supported and propelled by blowing lateral air with maintenance of the roll control by the conventional means of the ailerons.
La figure 3 représente la forme du profil de la voilure sustentée et propulsée par soufflage d'air latéral dans la partie où elle est soufflée.  FIG. 3 represents the shape of the profile of the airfoil lifted and propelled by blowing lateral air into the part where it is blown.
La figure 4 représente la forme du profil d'une voilure sustentée et propulsée par soufflage d'air latéral dans la partie où elle n'est pas soufflée. Y est également représentée la bouche cfe soufflage d'air.  FIG. 4 represents the shape of the profile of a wing supported and propelled by lateral air blowing in the part where it is not blown. Also shown is the air blowing mouth.
Dans la figure 1 les bouches de soufflage d'air (1) peuvent non seulement recevoir l'air évacué par les soupapes de régulation de pression (2) correspondant au débit d'air de ventilation du fuselage, mais aussi l'air évacué du système d'antigivrage des bords d'attaque (si ce système est utilisé) sans compter un supplément éventuel d'air prélevé au niveau des compresseurs des moteurs propulsant l'aéronef.  In FIG. 1, the air supply vents (1) can not only receive the air evacuated by the pressure regulating valves (2) corresponding to the ventilation air flow rate of the fuselage, but also the air evacuated from the leading edge anti-icing system (if this system is used) without taking into account any additional air taken from the compressors of the engines propelling the aircraft.
Dans la figure 2 la force de propulsion est obtenue par déviation continue vers l'arrière de l'air soufflé grâce à l'évolution de la forme des profils dont les points d'inflexion, repérés (3) sur la figure 3, sont représentés par la ligne courbe repérée (4) sur la figure 2. La forme du raccordement de la voilure au fuselage joue aussi un rôle important dans l'obtention de cette force de propulsion et de portanee qui nécessite un important débit d'air pour permettre le vol d'un avion. Par exemple, un avion ayant une masse de 1.300 Kg. et une surface voilure de 8 m2 peut être propulsé à plus de 250 Km/h avec un débit d'air d'environ 11 Kg/s fourni par une turboma- chine délivrant une puissance de 180 KW. La déviation vers le bas de l'air soufflé qui dépend de la forme des profils de voilure et de la forme du raccordement voilure/fuselage peut, de plus, contribuer à alléger le poids de l'avion. En particulier à basses vitesses, le braquage de becs de bords d'attaque et de volets de bords de fuite devrait avoir pour effet d'augmenter la déviation de l'air soufflé vers le bas et d'alléger ainsi d'autant l'avion. Avec un débit d'air encore plus important il doit être possible de le soulever complètement. Enfin en vue d'adapter le rendement du soufflage latéral de l'air avec la vitesse de l'avion, les bouches de soufflage d'air peuvent être rendues orientables. In FIG. 2, the propelling force is obtained by continuous deflection of the blown air towards the rear thanks to the development of the shape of the profiles, the inflection points of which (marked) (3) in FIG. 3 are shown. by the curved line marked (4) in FIG. 2. The shape of the connection of the wing to the fuselage also plays an important role in obtaining this propulsion and range force which requires a large air flow to allow the flight of an aircraft. For example, an aircraft with a mass of 1,300 kg. And an airfoil area of 8 m2 can be propelled at more than 250 km / h with an air flow of approximately 11 kg / s supplied by a turbomachine delivering a power of 180 KW. The downward deflection of the supply air, which depends on the shape of the airfoils and the shape of the airfoil / fuselage connection, can also help to reduce the weight of the aircraft. In particular at low speeds, the deflection of leading edge nozzles and trailing edge flaps should have the effect of increasing the deflection of the blown air and thus lightening the aircraft all the more . With an even higher air flow it should be possible to lift it completely. Finally, in order to adapt the efficiency of the lateral air blowing with the speed of the aircraft, the air blowing vents can be made orientable.
Le soufflage d'air latéral est susceptible d'applications industrielles sur des avions de transport pour réduire la traînée aérodynamique et par conséquent la consommation de carburant. Sur les avions légers de loisir elle peut constituer un mode de propulsion nouveau remplaçant le moteur à pistons classique et son hélice par une turbomachine plus légère, plus fiable, consommant moins de carburant et un carburant moins chère. Sur les avions militaires de transport, la sustentation et la propulsion par soufflage d'air latéral peut constituer une solution possible pour la conception des Avions à Décollage et à Atterrissage Courts (A.D.A.C.). De plus, la commande contrôlée d'un débit d'air dissymétrique entre les deux extrémités de voilure peut permettre le pilotage de l'avion en roulis et en tangage. En dehors du domaine aéronautique le soufflage latéral à l'intrados de toute surface portante (ou à l'extrados lorsque la surface est déportante), peut contribuer à réduire la trainée: ainsi sur les voitures de "Formule 1", la totalité ou une partie des gaz d'échappement du moteur pourraient être dirigés en extrémités des surfaces stabilisatrices pour assurer un tel soufflage.  Side air blowing is susceptible of industrial applications on transport aircraft to reduce aerodynamic drag and therefore fuel consumption. On light leisure aircraft it can constitute a new propulsion mode replacing the conventional piston engine and its propeller with a lighter, more reliable turbomachine, consuming less fuel and less expensive fuel. On military transport aircraft, lift and propulsion by lateral air blowing may constitute a possible solution for the design of Short Takeoff and Landing Airplanes (A.D.A.C.). In addition, the controlled command of an asymmetrical air flow between the two wing ends can allow the aircraft to be rolled and pitched. Outside the aeronautical field, the side blowing on the lower surface of any bearing surface (or on the upper surface when the surface is offset), can contribute to reducing drag: thus on "Formula 1" cars, all or one part of the engine exhaust gas could be directed to the ends of the stabilizing surfaces to ensure such blowing.

Claims

REVENDICATIONS
1) Procédé d'amélioration de la finesse aérodynamique d'une voilure d'aéronef, caractérisé en ce qu'un jet d'air esl dirigé de l'extrémité de l'intrados de la voilure vers l'emplanture de ladite voilure.  1) Method for improving the aerodynamic fineness of an aircraft wing, characterized in that an air jet is directed from the end of the lower surface of the wing towards the root of said wing.
2) Procédé d'amélioralion de la finesse aérodynamique selon la revendication 1, caractérisé en ce que ledit jet d'air de fort débit, est dévié de façon continue vers l'arrière de la voilure .  2) A method of improving aerodynamic finesse according to claim 1, characterized in that said high-flow air jet is deflected continuously towards the rear of the airfoil.
3) Procédé d'amélioration de la finesse aérodynamique selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le jet d'air provient de l'enceinte pressurisée de l'avion et éventuellement des systèmes d'air de protection contre le givrage.  3) A method of improving the aerodynamic fineness according to any one of claims 1 or 2, characterized in that the air jet comes from the pressurized enclosure of the aircraft and possibly from the air protection systems against icing.
4) Procédé d'amélioralion de la finesse aérodynamique d'une voilure d'avion selon l'une quelconque des revendicaiions 1 à 2. caractérisé en ce que le jel d'air esl constitué par les gaz d'échappement des moteurs thermodynamiques de l'avion.  4) A method for improving the aerodynamic fineness of an airplane wing according to any one of claims 1 to 2. characterized in that the air jel is formed by the exhaust gases from the thermodynamic engines of the 'plane.
5} Procédé d'amélioration de la finesse aérodynamique d'une voilure selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le débit d'air soufflé à chacune des extrémités de l'intrados esl asservi aux commandes de pilotage de l'aéronef.  5} A method of improving the aerodynamic fineness of a wing according to any one of claims 1 to 4, characterized in that the flow of air blown at each end of the lower surface is slaved to the piloting controls of the aircraft.
6) Procédé d'amélioration de la finesse aérodynamique d'une voilure, caractérisé en ce que l'angle entre l'axe longitudinal de l'avion et l'axe du jel d'air est asservi à la vitesse de l'avion.  6) A method of improving the aerodynamic fineness of a wing, characterized in that the angle between the longitudinal axis of the aircraft and the axis of the air jet is controlled by the speed of the aircraft.
7) Aéronef, caractérisé en ce que sa voilure comporte à l'intrados, à chaque extrémité ou enlre chacune des extrémités et l'emplanlure, au moins une bouche de soufflage d'un jet d'air orienté vers rempianiure.  7) Aircraft, characterized in that its wing comprises at the lower surface, at each end or remove each of the ends and the planking, at least one mouth for blowing an air jet oriented towards the rampianiure.
8) Aéronef selon la revendication 7, caractérisé en ce qu'il comporte des moyens de contrôle du débit d'air soufflé par lesdîtes bouches d'air.  8) An aircraft according to claim 7, characterized in that it comprises means for controlling the flow of air blown by said air vents.
9) Aéronef selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que lesdites bouches d'air sont orientables dans un plan parallèle à l'intrados de la voilure.  9) An aircraft according to any one of claims 7 or 8, characterized in that said air vents are orientable in a plane parallel to the lower surface of the airfoil.
PCT/FR1989/000429 1988-08-30 1989-08-25 Generation of an aerodynamic force by lateral blowing of air at the underwing of aircraft wings from the wing extremities towards the wing root at the aircraft fuselage WO1990002079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8811352A FR2635750A1 (en) 1988-08-30 1988-08-30 CREATION OF AERODYNAMIC FORCE BY LATERAL AIR BLOWING INTO THE INTRADOS OF AN AIRCRAFT VESSEL, FROM ITS EXTREMITES TO ITS EMPLANTURE IN FUSELAGE OF THE AIRPLANE
FR88/11352 1988-08-30

Publications (1)

Publication Number Publication Date
WO1990002079A1 true WO1990002079A1 (en) 1990-03-08

Family

ID=9369592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000429 WO1990002079A1 (en) 1988-08-30 1989-08-25 Generation of an aerodynamic force by lateral blowing of air at the underwing of aircraft wings from the wing extremities towards the wing root at the aircraft fuselage

Country Status (3)

Country Link
AU (1) AU4214789A (en)
FR (1) FR2635750A1 (en)
WO (1) WO1990002079A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734770A1 (en) * 1997-08-11 1999-02-18 Tina Artinger Fluid dynamic profile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR55452E (en) * 1938-09-05 1952-06-30 Improvements to air navigation devices
US3480234A (en) * 1967-08-18 1969-11-25 Lockheed Aircraft Corp Method and apparatus for modifying airfoil fluid flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR55452E (en) * 1938-09-05 1952-06-30 Improvements to air navigation devices
US3480234A (en) * 1967-08-18 1969-11-25 Lockheed Aircraft Corp Method and apparatus for modifying airfoil fluid flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734770A1 (en) * 1997-08-11 1999-02-18 Tina Artinger Fluid dynamic profile

Also Published As

Publication number Publication date
FR2635750A1 (en) 1990-03-02
AU4214789A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
CA2748756C (en) Method for improved aerodynamic and transport characteristics in a wing-in-ground-effect vehicle
CA2758220C (en) Aircraft having a lambda-box wing configuration
US10144499B2 (en) Aerofoil accessories and method for modifying the geometry of a wing element
JP2020525340A (en) Configuration of vertical takeoff and landing system for aircraft
US11661952B2 (en) Load-bearing members for aircraft lift and thrust
US11970275B2 (en) Air vehicle configurations
US3995794A (en) Super-short take off and landing apparatus
US20220315250A1 (en) Space aircraft with optimised design and architecture
Orchard et al. The fundamental configuration and design of the compound helicopter
US3275266A (en) Foils for movement in a fluid
WO1990002079A1 (en) Generation of an aerodynamic force by lateral blowing of air at the underwing of aircraft wings from the wing extremities towards the wing root at the aircraft fuselage
EP1574426A1 (en) Method for producing a lifting force, aeroplane, take off and landing method
US2998209A (en) Multi-purpose, jet propelled aircraft
CA2505013C (en) Flight device with a lift-generating fuselage
US20050178884A1 (en) Flight device with a lift-generating fuselage
EP4155210B1 (en) Aircraft with a combustion engine having an exhaust ahead of its air intake
CA2426219A1 (en) Apparatus and method for the reduction of drag
WO1997030894A1 (en) Amphibious aircraft
FR3127475A1 (en) AIRCRAFT AND ITS IMPLEMENTATION
Wright Speed-And Airplane Possibilities
CA1054125A (en) Super-short take off and landing apparatus
van der Velden et al. Design of a small supersonic oblique-wing transport aircraft
WO2024184757A1 (en) Short takeoff and landing amphibious aircraft
FR3127477A1 (en) PROPULSION GROUP, AIRCRAFT AND RELATED IMPLEMENTATION
Petrov et al. Development of a technique and method of testing aircraft models with turboprop engine simulators in a small-scale wind tunnel-Results of tests

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE