WO1990001142A1 - Method and apparatus for measuring the surface condition - Google Patents

Method and apparatus for measuring the surface condition Download PDF

Info

Publication number
WO1990001142A1
WO1990001142A1 PCT/JP1989/000732 JP8900732W WO9001142A1 WO 1990001142 A1 WO1990001142 A1 WO 1990001142A1 JP 8900732 W JP8900732 W JP 8900732W WO 9001142 A1 WO9001142 A1 WO 9001142A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving element
light
measured
light receiving
light source
Prior art date
Application number
PCT/JP1989/000732
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Ibe
Original Assignee
Kabushiki Kaisha Ksp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Ksp filed Critical Kabushiki Kaisha Ksp
Publication of WO1990001142A1 publication Critical patent/WO1990001142A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to a method for measuring the surface state of an object and an apparatus for performing the method.
  • the present invention relates to a method for measuring, confirming, and further discriminating a surface condition such as a surface roughness of a polished object, that is, a surface roughness.
  • the present invention also relates to a method and an apparatus for detecting scratches generated on the surface of an object polished to a mirror surface, and confirming or discriminating the degree of oxidation or dirt on the surface of a substance. .
  • a light source 1 for emitting a light beam la and a light receiving element 2 for detecting a reflected light beam lb are provided on the inner surface of a cup-shaped housing 3 as shown in the sectional view of FIG. It is fixed at a fixed angle and measures the object 4 under test.
  • the distance L between the light source 1 and the light receiving element 2 and the surface 4a to be measured is made constant by the action of the housing 3.
  • the output of the light receiving element 2 is when the case 3 is set on the DUT 4 and the flat measured surface 4a coincides with the intersection P of the optical axis of the light source 1 and the optical axis of the light receiving element 2.
  • the surface state of the surface 4a to be measured is determined by comparing the value of the signal detected by the light receiving element 2 at that time with a known measured value of the surface state obtained in advance through experiments or the like. It is like that.
  • the present invention has been made to solve the above-mentioned problems, and the object thereof is to provide almost the same conditions regardless of the surface condition, such as unevenness or inclination of the surface to be measured, etc.
  • the distance between the light source and the light receiving element and the surface to be measured is maintained at a constant value, and the desired measurement can be performed while maintaining the projection and reflection angles of the luminous flux on the surface to be measured at a constant value. It is to provide a method and an apparatus.
  • a light beam obtained by turning on / off a light beam in the infrared region in a pulsed manner at a predetermined cycle is used.
  • the peak value of the output signal is held, and the maximum value of the obtained detection signal is compared with a known signal value relating to the surface condition.
  • a light source for projecting a light beam formed by turning on and off a light beam in an infrared region in a pulsed manner at a predetermined cycle toward a surface to be measured;
  • a light-receiving element for receiving a light beam reflected from the surface to be measured a housing in which the light source and the light-receiving element are fixed such that their optical axes cross at a predetermined angle
  • a pulse generator that synchronizes and controls the on / off operation of the light source in the predetermined cycle and the operation of the gate path for passing the detection signal from the light receiving element;
  • a peak hold circuit that holds a peak value of a detection signal of the light receiving element that has passed through the gate circuit, An indicator for displaying the hold value of the beak hold circuit,
  • a beak update detection circuit that activates a desired annunciator when an update speed of a beak value held on the beak hold surface is a predetermined value or more;
  • the present invention can be implemented by a surface condition measuring device characterized by providing the above.
  • the distance between the light source and the light receiving element and the surface to be measured is kept constant, and the projection and reflection angles of the luminous flux on the surface to be measured are kept constant. Since the measurement can always be performed under the same conditions regardless of the surface condition, such as the presence or absence of unevenness or inclination of the surface to be measured, the surface can be compared with a known measurement value of the same object. The measurement and discrimination of the state will be performed much more accurately than in the past.
  • FIG. 1 is an explanatory diagram of a conventional measuring device for surface condition
  • Fig. 2 is a graph showing characteristic curves of measurement results by the conventional measuring device shown in Fig. 1
  • Figs. 3 (a) and (b) are FIG. 1 is an explanatory diagram showing the problems of the conventional measuring device shown in FIG. 1
  • FIG. 4 is an explanatory diagram showing an apparatus for implementing the measuring method according to the present invention.
  • FIG. 5 is an explanatory diagram showing an outline of a main part
  • FIG. 5 is an explanatory diagram showing an original material of the measuring method according to the present invention
  • FIG. 6 is an electric circuit of an apparatus for performing the measuring method according to the present invention.
  • FIG. 7 is a block diagram showing one embodiment of the present invention, FIG.
  • FIG. 7 is a graph showing an example of a measurement result by the method according to the present invention
  • FIG. 8 is a diagram for implementing the measuring method according to the present invention.
  • FIG. 9 is a front view showing an embodiment of the apparatus, and FIG. 9 is a side view thereof. Best form for carrying out the invention
  • Fig. 4 shows the main part of the apparatus for carrying out the measurement method according to the present invention.
  • the light source 1 and the light receiving element 2 are arranged at a fixed angle on the inner wall of the cup-shaped housing 3A.
  • the fixing is the same as that of the embodiment shown in FIG. 1, but the length of the hood of the housing 3A is configured to be shorter than the above L by £ and the optical axis of the light source 1 is set.
  • P the intersection of the axis of the projected light beam la from the light source 1 and the axis of the reflected light beam lb from the measured surface 4a when the detection output at the light receiving element 2 is maximized. It is configured such that P is formed further forward than the tip of the hood.
  • the support wheel 5 of the housing 3A is shown in FIG. 8 and FIG.
  • the object to be measured 4 is held on a stand body head via a predetermined rotating mechanism, and the object 4 to be measured is located on the XY axis of the stand body bed provided immediately below the head. It is placed on a cross slide table, and a desired measurement site of the DUT 4 can be made to face the housing 3A by moving and positioning the XY cross slide table in two axes.
  • the head to which the above-mentioned housing 3A is attached and the cross slide table are configured so as to be able to approach and separate in the vertical direction (the Z-axis direction).
  • a rotary positioning table is provided between the loss slide table and the measured object 4 or between the cross slide table and the bed.
  • the luminous flux from the light source 1 is always projected onto the surface 4a to be measured at a constant incident angle, so that the angle of reflection from the surface 4a to be measured is also constant, and It is designed so that measurements are always made under constant conditions.
  • the movement of the housing 3A along the spherical surface around the intersection P is desirably performed by moving the housing 3A along the X-axis passing through the intersection P (or the U-axis parallel to this), as shown in FIG. ) Around the arrow M, and rotate along the arrow N about the Y-axis (or V-axis parallel to it) perpendicular to the X-axis at the intersection P. Achieved by:
  • the housing 3A is moved along the arrows M and N while the housing 3A is moved toward and away from the surface 4a to be measured, and the output of the light-receiving element 2 is constantly output during the operation. If the maximum value is detected, the intersection point P coincides with the surface 4a to be measured at the time when the maximum value is obtained, and the center line A of the housing 3A is located at the portion of the surface 4a to be measured. This indicates that the surface normal is measured and discriminated under constant conditions by comparing the maximum value with known measured values of the same object.
  • the hood of the housing 3A was shorter than the distance L between the light source 1 and the light receiving element 2 and the intersection P of their optical axes. This is to prevent the tip of the hood from colliding with the surface to be measured 4a during the rotation operation of 3A as described above.
  • the portion of the luminous flux projection point P on the surface 4a to be measured is exposed to ambient environmental light, so the wavelength of the luminous flux for measurement from the light source 1 is set in the infrared region. Needless to say, it is necessary to perform other distribution.
  • FIG. 6 is the light source 1 and the light receiving element 2.
  • a light source 1 emits a luminous flux having a wavelength in the infrared region described above, and a predetermined frequency, that is, a commercial frequency and its harmonics by a pulse generator 7.
  • the switching element 8 is turned on and off at a frequency different from that of, for example, 270 Hz to emit a pulsed light beam.
  • the pulse-shaped light beam emitted from the light source 1 and reflected on the surface to be measured is detected by the light receiving element 2, and the detection signal passes through a buffer circuit 9 and is controlled by the pulse generator 7 by the pulse generator 7.
  • the output through the path 10 removes the above-mentioned disturbance of the detected waveform due to the ambient light and the overshooting / undershooting of the detected square wave.
  • the housing 3 A is It is sufficient that the light receiving element 2 and the light receiving element 2 can be set at predetermined projection and light reception angle positions, and the light receiving element 2 does not need to have a function as a special light shield for environmental light.
  • 11 is an operational amplifier for amplifying the output of the gate circuit 10 at a predetermined magnification
  • 12 is a beak hold circuit having an input terminal and a reset input terminal for the output of the amplifier 11, and an AZD core having a hold key.
  • the beak value of the detection signal obtained by the light receiving element 2 is displayed on the desired analog meter or digital LCD display 14 via the inverter 13, while peak update detection having a subdivision circuit and a comparator circuit is performed.
  • the beacon circuit 12 is notified by a light, sound, vibration, or the like by a notifier 16.
  • the distance adjustment of the sensor section 6 (housing 3A) to the surface to be measured by manual or other means and the adjustment of the inclination angle of the support shaft of the housing 3A can be performed without the display unit 14. .
  • Reference numeral 17 denotes a switch for switching between measurement and hold, which is measured by turning on the switch, that is, in such a manner that the light reflected from the light receiving element 2 of the light projected from the light source 1 to the surface 4a to be measured is maximized.
  • the measuring device includes the sensor unit 6 movably supported within a predetermined range along a spherical surface centered on the intersection P of the optical axis of the light source 1 and the light receiving element 2.
  • the operation of adjusting the distance to the surface 4a to be measured with respect to the housing 3A so that the intersection point P is on the measurement surface, and the center axis A of the housing 3A in the direction normal to the surface to be measured When the angle adjustment operation is performed before and after the measured position at the measured position, the display 14 or the annunciator is set so that the detection signal of the light receiving element of the sensor unit 6 is maximized.
  • the measurement value (intensity of reflected light, that is, the reflected light intensity, ie, the distance from the light source and the light receiving element to the surface to be measured, and the angle of incidence and reflection of the luminous flux on the surface to be measured) is always constant. (Detected output value of the light-receiving element) is obtained. Measurements of the surfaces condition by comparing child with known measurement value each, in which determination is made possible in a more accurate state.
  • FIG. 7 is a characteristic curve diagram showing an example of the measurement results obtained by the measurement method according to the present invention.
  • Surface roughness // m R max with the vertical axis representing the detection output (V) on an equally spaced scale and the horizontal axis representing the surface roughness (rnR max) on a logarithmic scale Therefore, the relationship is almost inversely proportional.
  • 8 and 9 are a front view and a side view showing a schematic configuration of one embodiment of a mechanical device for performing the measuring method according to the present invention, wherein 21 is a bed for supporting the entire device, Reference numeral 22 denotes a saddle supported so as to be movable in the Y-axis direction. Reference numeral 23 denotes a table supported by the saddle 22 so as to be slidable in a direction (X-axis direction) perpendicular to the moving direction.
  • Reference numeral 26 denotes a swivel provided on the upper surface of the table 23.
  • the swivel 26 has the object 4 to be measured mounted thereon.
  • the swivel 26 passes through the center of the swivel 26 and vertically intersects the table 23 around Z 23. (For example, the W axis), and can be moved by a driving device 37.
  • Reference numeral 3 denotes a housing of the sensor unit
  • 27 denotes a head for supporting the support shaft 5 of the housing 3 c 28 rotationally positions the housing 3 around the shaft of the support shaft 5
  • the device 29 is a head table for supporting the head 27 and is movably held on the arm 30.
  • the arm 30 forms a part of a circular orbit such that the head table 29 rotates about a U-junction (parallel to the X-junction) passing through the intersection P of the housing 3,
  • a tooth shape (omitted in the figure) is engraved on the inner periphery to form a sector gear, which engages with the small gear or worm provided on the head table, and a drive provided on the head table 29 similarly.
  • the small gear or micro-ohm By rotating the small gear or micro-ohm by the device 31, the head table 29 is rotated about the U ⁇ along the arc trajectory of the arm 30.
  • reference numeral 32 denotes a turntable which supports the arm 30 so as to be movable on the slide table 33.
  • the center of rotation (V-axis) of the turntable 32 is parallel to Y, and is an extension line thereof. Is the light source 1 and
  • the arm 30 is configured to pass through the intersection point P of the above two optical axes, and the entire arm 30 rotates around the V axis.
  • Numeral 34 is a drive unit for the surface turning table 32
  • numeral 35 is a core supporting the slide table 33 so as to be slidable in a vertical axis (z) direction perpendicular to a horizontal plane containing the X and ⁇ axes.
  • Reference numeral 36 denotes a driving device for moving the slide table 33 in the Z-axis direction.
  • Reference numeral 28 denotes a device for rotating the housing 3 around its central axis A (that is, the bisector of the angle formed by the optical axes of the light source and the light receiving element).
  • the housing 3 is turned around its center axis A, and the light receiving element generates the maximum amount of light. It is positioned so that it can be obtained.
  • the DUT 4 is positioned and attached to a predetermined position on the swivel 26, and the driving devices 24, 25, and 37 are manually or manually operated by a numerical control device to be measured.
  • the measurement part is usually positioned directly below the housing 3 and the head 27 at the origin position, and then the distance of the housing 3 to the measured surface 4a by moving the driving device 36 manually or in the Z-axis direction by a numerical controller.
  • the rotation of the housing 3 around its center line by the image transfer device 28 is performed while monitoring the notification by the detection of the peak detection circuit 15.
  • the distance between the light source and the light receiving element and the surface to be measured is maintained at a predetermined constant value, and the projection angle of the luminous flux on the surface to be measured is always constant with respect to the surface to be measured. Since the measurement is performed so that it is constant, the measured value that is the detection output value of the light-receiving element is always obtained under constant conditions, and the surface condition is measured by comparing with the known measured value of the same substance. Discrimination can be made much more accurately than in the past. ,
  • the senor since the sensor is combined with the peak hold circuit as described above, it does not operate with an output less than the display on the display, and the measurer does not need to operate the sensor at the position to be measured. I can minimize three-dimensional movement with respect to the housing
  • the method and apparatus for measuring the surface state according to the present invention include, for example, the unevenness of the surface of various polished objects, surface roughness, presence or absence of scratches, the degree of oxidation of the surface, and the degree of discoloration. It is most suitable and widely used for checking and discriminating. .

Abstract

A method and an apparatus for measuring surface coarseness, ruggedness, scars, degree of oxidation, discoloration and the like of materials. The operation is carried out such that an intersecting point P of the optical axis of a source of light (1) and of the optical axis of a light-receiving element (2) is positioned on a plane (4a) that is to be measured and another operation is carried out to move the source of light (1) and the light-receiving element (2) along the spherical surface with the intersecting point P as a center over a predetermined range, until the detect output of the light-receiving element reaches a maximum value. Thus, measurement can be carried out under predetermined conditions at all times, and the measuring precision is greatly improved compared with that of the prior art.

Description

明 ホ 表面状態の測定 '法及び奘 分野  Ming E Measurement of surface condition
本発明は、 物体の表面状態の測定方法及びこれを実施 するための装置に関し、 例えば、 研磨加工された物体の 表面の凹凸状況、 即ち表面粗さの如き表面状況の測定、 確認、 更には判別を行ない、 同様に又、 例えば鏡面に研 磨加工された物体の表面に発生した傷の検知とか、 物質 表面の酸化の程度や汚れの程度の確認や判別等を行なう 方法及び装置に関するものである。  The present invention relates to a method for measuring the surface state of an object and an apparatus for performing the method. For example, the present invention relates to a method for measuring, confirming, and further discriminating a surface condition such as a surface roughness of a polished object, that is, a surface roughness. The present invention also relates to a method and an apparatus for detecting scratches generated on the surface of an object polished to a mirror surface, and confirming or discriminating the degree of oxidation or dirt on the surface of a substance. .
物体表面の凹凸、 粗さ等を測定又は判別する方法とし ては、 種々のものがあるが、 被測定面に投射した光束の 反射光束を検知して判別するものが、 簡便かつ安価なた め多用されている。 There are various methods for measuring or discriminating the unevenness, roughness, etc. of the object surface.However, the method of detecting and judging the reflected light beam of the light beam projected on the surface to be measured is simple and inexpensive. It is heavily used.
斯種のものとしては、 例えば第 1 図の断面図で示すよ うに、 カ ップ状の筐体 3 の内面に、 光束 l aを発する光源 1 と、 反射光束 l bを検知する受光素子 2 とが一定の角度 で固定してあり、 被測定体 4 の被測定.面 4 aに上記筐体 3 をセ ッ ト したとき、 筐体 3 の作用により光源 1及び受光 素子 2 と被測定面 4aとの距離 Lが一定になるように構成 されている。 For example, as shown in the cross-sectional view of FIG. 1, a light source 1 for emitting a light beam la and a light receiving element 2 for detecting a reflected light beam lb are provided on the inner surface of a cup-shaped housing 3 as shown in the sectional view of FIG. It is fixed at a fixed angle and measures the object 4 under test. When is set, the distance L between the light source 1 and the light receiving element 2 and the surface 4a to be measured is made constant by the action of the housing 3.
これは、 第 2図のグラフ、 即ち、 光源 1及び受光素子 2 と被測定面 4aとの間の距離 L (關)と受光素子 2の出力 V (mV)との特性曲線図に示すように、 受光素子 2 の出力 は、 筐体 3を被測定体 4上にセッ ト したときに、 平坦な 被測定面 4aが光源 1 の光軸と受光素子 2の光軸の交点 P と一致するときに最大となることに鑑み、 そのときの受 光素子 2による検出信号値を、 予め実験等で求めた表面 状態に関する既知の測定値と比較することによって被測 定面 4aの表面状態を判別するようにしたものである。  This is as shown in the graph of FIG. 2, that is, the characteristic curve diagram of the distance L (relationship) between the light source 1 and the light receiving element 2 and the surface 4a to be measured and the output V (mV) of the light receiving element 2. The output of the light receiving element 2 is when the case 3 is set on the DUT 4 and the flat measured surface 4a coincides with the intersection P of the optical axis of the light source 1 and the optical axis of the light receiving element 2. In consideration of the maximum value, the surface state of the surface 4a to be measured is determined by comparing the value of the signal detected by the light receiving element 2 at that time with a known measured value of the surface state obtained in advance through experiments or the like. It is like that.
然しながら、 第 3図 _ ( a ) に示すように被測定面 4aに 投射光束 l aの柽ょり大きな凹凸 4bが存在する場合には、 光源 1及び受光素子 2から被測定面 4aまでの前記距離 L が変わってしまう。 又、 第 3図 ( b ) に示すように投射 光束 laの投射箇所が傾斜面 4cとなっているような場合等 には、 投射光束 l aと反射光束 l bのなす角度が変わり、 受 光素子 lbへの入射光量が大幅に減少する。 そのため、 被 測定面 4aが平坦であることを前提とした場合と条件が異 なることになり、 受光素子 2 の検出出力についての評価 や基準値との比較等を行なうには複雑.な補正等が必要と なり、 斯種の光束を利用した表面状態の測定方法の利点 である簡便さが損なわれる結果となっていた。 発明の開示 However, as shown in FIG. 3 _ (a), when there is a large unevenness 4b of the projected light beam la on the surface 4a to be measured, the distance from the light source 1 and the light receiving element 2 to the surface 4a to be measured is L changes. In addition, as shown in FIG. 3 (b), when the projection spot of the projected light beam la is an inclined surface 4c, the angle between the projected light beam la and the reflected light beam lb changes, and the light receiving element lb The amount of light incident on the device is greatly reduced. Therefore, the conditions are different from the case where the measured surface 4a is assumed to be flat, and it is complicated to evaluate the detection output of the light receiving element 2 and compare it with the reference value. Need As a result, the simplicity, which is an advantage of the method for measuring the surface state using such a light beam, is impaired. Disclosure of the invention
本発明は、 上記の問題点を解決するためになされたも のであり、 その目的とするところは、 被測定面の凹凸や 傾斜の有無等、 表面状態の如何にかかわらず常にほぼ同 一の条件で、 即ち上記光源及び受光素子と被測定面との 間の距離を一定値に保つと共に、 被測定面に対する光束 の投射及び反射角度を一定に保って所期の測定を行ない 得る比較的簡単な方法及び装置を提供することにある。  The present invention has been made to solve the above-mentioned problems, and the object thereof is to provide almost the same conditions regardless of the surface condition, such as unevenness or inclination of the surface to be measured, etc. In other words, the distance between the light source and the light receiving element and the surface to be measured is maintained at a constant value, and the desired measurement can be performed while maintaining the projection and reflection angles of the luminous flux on the surface to be measured at a constant value. It is to provide a method and an apparatus.
上記の目的は、  The purpose of the above is
光源から被測定面に光束を投射しその反射光束を上記 光源に対して一定位置に配置した受光素子により検出し て表面状態を測定する方法において、  In a method of projecting a light beam from a light source to a surface to be measured and detecting a reflected light beam by a light receiving element arranged at a fixed position with respect to the light source to measure a surface state,
上記光束として赤外領域の光線を所定の周期でパルス 状にオン · オフして成る光束を用いると共に、  As the light beam, a light beam obtained by turning on / off a light beam in the infrared region in a pulsed manner at a predetermined cycle is used.
相互に一定位置に配置された上記光源と受光素子の両 光蚰の交点に被測定面が合致するよう上記光源及び受光 素子と被測定面間の距離を調整しっ ゝ、 かつ上記光源及 び受光素子を上記交点を中心とする球面に沿って所定の 範囲内で移動させつ ゝ上記受光素子による反射光束の検 出信号のピークホールドを行ない、 得られた検出信号の 最大値を、 表面状態に関する既知の信号値と比較するこ とを特徴とする表面状態の測定方法によって達成し得る, 又、 上記の測定方法は、 Adjust the distance between the light source and the light-receiving element and the surface to be measured so that the surface to be measured coincides with the intersection of the two light beams of the light source and the light-receiving device arranged at a fixed position with respect to each other; and Move the light receiving element within a predetermined range along the spherical surface centered on the intersection point. The peak value of the output signal is held, and the maximum value of the obtained detection signal is compared with a known signal value relating to the surface condition. Is
赤外領域の光線を所定の.周期でパルス状にォン · オフ して成る光束を被測定面に向けて投射する光源と、  A light source for projecting a light beam formed by turning on and off a light beam in an infrared region in a pulsed manner at a predetermined cycle toward a surface to be measured;
被測定面からの反射光束を受光する受光素子と、 上記光源及び受光素子を両者の光軸が所定の角度で交 差するよう固定して成る筐体と、  A light-receiving element for receiving a light beam reflected from the surface to be measured, a housing in which the light source and the light-receiving element are fixed such that their optical axes cross at a predetermined angle,
' 上記筐体を被測定面に対して近接、 開離せしめる駆動 機構と、  '' A drive mechanism that moves the housing close to and away from the surface to be measured,
上記筐体を上記光源及び受光素子の両光蚰の交点を通 る水平な U軸を中心に回動させる第 1 の回動機構と、 上記筐体を上記交点において上記 u軸と直角に交差す る水平な V軸を中心に回動させる第 2の回動機構と、 上記筐体自体を、 上記光源及び受光素子の両光軸のな す角度の 2等分線を軸として回転させる機構と、  A first rotation mechanism for rotating the housing around a horizontal U-axis passing through an intersection of both light sources and light-receiving elements, and intersecting the housing at a right angle with the u-axis at the intersection And a mechanism for rotating the housing itself about an angle bisector of the optical axis of the light source and the light receiving element as an axis. When,
上記光源の上記所定の周期でのォン · オフ動作と、 上 記受光素子からの検出信号を通過させるゲー ト画路の動 作を同期させて制御するパルス発生器と、  A pulse generator that synchronizes and controls the on / off operation of the light source in the predetermined cycle and the operation of the gate path for passing the detection signal from the light receiving element;
上記ゲー ト回路を通過した受光素子の検出信号のビー ク値を保持するピークホール ド回路と、 上記ビークホール ド回路のホール ド値を表示する表示 器と、 A peak hold circuit that holds a peak value of a detection signal of the light receiving element that has passed through the gate circuit, An indicator for displaying the hold value of the beak hold circuit,
上記ビークホールド面路にホールドされるビーク値の 更新速度が所定値以上のとき所望の報知器を作動させる ビーク更新検知回路と、  A beak update detection circuit that activates a desired annunciator when an update speed of a beak value held on the beak hold surface is a predetermined value or more;
を設けたことを特徴とする表面状態の測定装置によつ て実施し得る。  The present invention can be implemented by a surface condition measuring device characterized by providing the above.
このような本発明にか ^ る測定方法及び装置であれば、 光源及び受光素子と被測定面との間の距離を一定に保ち、 かつ被測定面に対する光束の投射及び反射角度を一定に 保つことができ、 被龅定面の凹凸や傾斜の有無等、 表面 状態の如何にかかわらず常に同一の条件で測定が行なわ れ得るから、 同一物体の既知の測定値と比較することに より、 表面状態の測定、 判別が従来に比べて格段に正確 に行なわれるようになるものである。 図面の簡単な説明  With such a measuring method and apparatus according to the present invention, the distance between the light source and the light receiving element and the surface to be measured is kept constant, and the projection and reflection angles of the luminous flux on the surface to be measured are kept constant. Since the measurement can always be performed under the same conditions regardless of the surface condition, such as the presence or absence of unevenness or inclination of the surface to be measured, the surface can be compared with a known measurement value of the same object. The measurement and discrimination of the state will be performed much more accurately than in the past. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は従来の表面状態の測定装置の説明図、 第 2図 は第 1図に示した従来の測定装置による測定結果の特性 曲線を示すグラフ、 第 3図 ( a ) 及び ( b ) は第 1 図に 示した従来の測定装置の問題点を示すための説明図、 第 4図は本発明にかゝ る測定方法を実施するための装置の 要部の概要を示す説明図、 筹 5図は本発明にかゝる測定 方法の原瑪を示す説明図、 第 6図は本発明にか ^る測定 方法を実施するための装置の電気回路の一実施例を示す ブロ ック図、 第 7図は本発明にかゝ る方法による測定結 果の一例を示すグラフ、 第 8図は本発明にか ^る測定方 法を実施するための装置の一実施例を示す正面図、 第 9 図はその側面図である。 発明を実施するための最良の形餽 Fig. 1 is an explanatory diagram of a conventional measuring device for surface condition, Fig. 2 is a graph showing characteristic curves of measurement results by the conventional measuring device shown in Fig. 1, and Figs. 3 (a) and (b) are FIG. 1 is an explanatory diagram showing the problems of the conventional measuring device shown in FIG. 1, and FIG. 4 is an explanatory diagram showing an apparatus for implementing the measuring method according to the present invention. FIG. 5 is an explanatory diagram showing an outline of a main part, FIG. 5 is an explanatory diagram showing an original material of the measuring method according to the present invention, and FIG. 6 is an electric circuit of an apparatus for performing the measuring method according to the present invention. FIG. 7 is a block diagram showing one embodiment of the present invention, FIG. 7 is a graph showing an example of a measurement result by the method according to the present invention, and FIG. 8 is a diagram for implementing the measuring method according to the present invention. FIG. 9 is a front view showing an embodiment of the apparatus, and FIG. 9 is a side view thereof. Best form for carrying out the invention
以下、 第 4図ないし第 9図を参照しつ ^ 発明の詳細 を具体的に説明する。  The details of the present invention will be specifically described below with reference to FIGS. 4 to 9.
第 4図は、 本究明にか、 る測定方法を実施するための 装置の要部を示しており、 カ ップ状の筐体 3Aの内壁に光 源 1及び受光素子 2が一定の角度で固定されていること は第 1図に示した実施例のものと同様であるが、 筐体 3A のフー ドの長さを前記 Lより も £だけ短く構成してあつ て、 光源 1 の光軸と受光素子 2の光軸の交点 P、 即ち受 光素子 2における検出出力が最大になるときの光源 1 か らの投射光束 laの軸と被測定面 4aからの反射光束 l bの軸 との交点 Pがフー ド先端より更に前方に形成されるよう に構成されている。  Fig. 4 shows the main part of the apparatus for carrying out the measurement method according to the present invention.The light source 1 and the light receiving element 2 are arranged at a fixed angle on the inner wall of the cup-shaped housing 3A. The fixing is the same as that of the embodiment shown in FIG. 1, but the length of the hood of the housing 3A is configured to be shorter than the above L by £ and the optical axis of the light source 1 is set. P, the intersection of the axis of the projected light beam la from the light source 1 and the axis of the reflected light beam lb from the measured surface 4a when the detection output at the light receiving element 2 is maximized. It is configured such that P is formed further forward than the tip of the hood.
筐体 3Aの支持輪 5 は、 第 8図及び第.9図を参照しつ 、 後述するように、 所定の回動機構を介してスタ ン ド体へ ッ ドに保持されており、 被測定体 4 は上記へッ ドの直下 に設けたスタ ン ド体べッ ドの X Y軸ク ロススライ ドテー ブル上に載置され、 X Y蚰ク ロススライ ドテーブルの 2 軸方向の移動位置決め操作により被測定体 4 の所望の測 定部位を筐体 3Aと相対向せしめ得るよう になっている。 上記スタン ド体において、 上記筐体 3 Aを取り付けたへ ッ ドとク ロススライ ドテーブルとは上下方向 ( Z軸方向) に近接、 開離可能なよう構成され、 更に必要に応じて上 記ク ロススライ ドテーブルと被測定体 4間又はク ロス'ス ライ ドテーブルとべッ ド間に回転位置決めテーブルが設 けられる。 The support wheel 5 of the housing 3A is shown in FIG. 8 and FIG. As will be described later, the object to be measured 4 is held on a stand body head via a predetermined rotating mechanism, and the object 4 to be measured is located on the XY axis of the stand body bed provided immediately below the head. It is placed on a cross slide table, and a desired measurement site of the DUT 4 can be made to face the housing 3A by moving and positioning the XY cross slide table in two axes. In the above-mentioned stand body, the head to which the above-mentioned housing 3A is attached and the cross slide table are configured so as to be able to approach and separate in the vertical direction (the Z-axis direction). A rotary positioning table is provided between the loss slide table and the measured object 4 or between the cross slide table and the bed.
而して、 本発明においでは、 測定時に上記交点 Pが被 測定面 4a上に位置するように筐体 3 Aと被測定体 4 との Z 轴方向における位置決めを行なう と共に、 筐体 3 A自体を 上記交点 Pを中心とする球面に沿って所定範囲内で移動 させるものであり、 これにより上記交点 Pを通る筐体 3 A の中心軸 Aが常に被測定面 4 a部分の法線方向を向く よう に位置決めし、 これによ つて被測定面 4 aに対して光源 1 からの光束が常に一定の入射角度で投射され、 従って被 測定面 4 aからの反射角度も常に一定となつて、 常時一定 の条件で測定がなされるように構成されるものである。 上記交点 Pを中心とする球面に沿った筐体 3 Aの移動は 望ましく は第 5図に示すように、 筐体 3Aを、 交点 Pを通 る X軸 (若しく はこれと平行な U軸) を中心に矢符 Mに 沿って面動させると共に、 交点 Pにおいて X軸と直交す る Y軸 (若し く はこれと平行な V軸) を中心に矢符 Nに 沿って回動させることによって達成される。 Thus, in the present invention, the positioning of the housing 3A and the measured object 4 in the Z 轴 direction so that the intersection point P is located on the surface 4a to be measured at the time of measurement, and the housing 3A itself Is moved within a predetermined range along a spherical surface centered at the intersection P, whereby the center axis A of the housing 3A passing through the intersection P always changes the normal direction of the surface 4a to be measured. As a result, the luminous flux from the light source 1 is always projected onto the surface 4a to be measured at a constant incident angle, so that the angle of reflection from the surface 4a to be measured is also constant, and It is designed so that measurements are always made under constant conditions. The movement of the housing 3A along the spherical surface around the intersection P is desirably performed by moving the housing 3A along the X-axis passing through the intersection P (or the U-axis parallel to this), as shown in FIG. ) Around the arrow M, and rotate along the arrow N about the Y-axis (or V-axis parallel to it) perpendicular to the X-axis at the intersection P. Achieved by:
このように測定時には、 筐体 3Aを被測定面 4aに近接、 開離させながら、 同時に矢符 M及び Nに沿つて筐体 3 Aを 面動させ、 その操作期間中常時受光素子 2 の出力を検知 し、 その最大値を検知するようにすれば、 その最大値が 得られた時点において交点 Pは被測定面 4aと一致し、 か つ筐体 3Aの中心線 Aが被測定面 4a部分の法線と合致して いることを示しているから、 その最大値を同一物体の既 知の測定値と比較することにより、 常に一定条件で表面 状態の測定、 判別がなされるものである。  In this way, at the time of measurement, the housing 3A is moved along the arrows M and N while the housing 3A is moved toward and away from the surface 4a to be measured, and the output of the light-receiving element 2 is constantly output during the operation. If the maximum value is detected, the intersection point P coincides with the surface 4a to be measured at the time when the maximum value is obtained, and the center line A of the housing 3A is located at the portion of the surface 4a to be measured. This indicates that the surface normal is measured and discriminated under constant conditions by comparing the maximum value with known measured values of the same object.
即ち、 被測定面 4aに光束の径以上の凹凸があるとか、 傾斜部分があるとか等々、 種々の異なった状況下にあつ ても、 同一条件での測定が可能となるものであり、 同一 物体における表面粗さとか傷の有無等表面状態の比較検 計が立体面においてもできるようになる。  That is, it is possible to perform the measurement under the same condition even under various different situations, such as when the surface 4a to be measured has irregularities larger than the diameter of the light beam, an inclined portion, etc. In this way, it is possible to perform a comparative measurement of the surface condition such as the surface roughness and the presence or absence of scratches on a three-dimensional surface.
なお、 筐体 3Aのフー ドを、 光源 1及び受光素子 2 とそ れらの光軸の交点 P との距離 Lより短.く したのは、 筐体 3 Aの上記の如き回動操作時にフ一ドの先端が被測定面 4 a と衝突しないようにするためである。 The hood of the housing 3A was shorter than the distance L between the light source 1 and the light receiving element 2 and the intersection P of their optical axes. This is to prevent the tip of the hood from colliding with the surface to be measured 4a during the rotation operation of 3A as described above.
尤も、 上記の場合、 被測定面 4 a上の光束投射点 Pの部 分は、 周囲の環境光に曝されるから、 光源 1 からの測定 用の光束の波長を赤外領域のものに設定したり、 その他 の配盧を施すことが必要なことは勿論である。  However, in the above case, the portion of the luminous flux projection point P on the surface 4a to be measured is exposed to ambient environmental light, so the wavelength of the luminous flux for measurement from the light source 1 is set in the infrared region. Needless to say, it is necessary to perform other distribution.
次に、 第 6図を参照しっ ゝ、 本発明にかゝ る測定方法 を実施するための装置の電気回路の一実施例を説明すれ ば、 図中、 6 は前記光源 1及び受光素子 2 を取り付けた 筐体 3Aから成るセンサ部であり、 光源 1 は前記の赤外領' 域の波長の光束を発するもので、 更にバルス発生器 7に よって所定の周波数、 即ち商用周波数及びその高調波と は異なる例えば 270 Hz等の周波数でスィ ツチング素子 8 をオン · オフしてパルス状の光線を発するよう になって いる。  Next, with reference to FIG. 6, one embodiment of an electric circuit of an apparatus for performing the measuring method according to the present invention will be described. In the figure, 6 is the light source 1 and the light receiving element 2. A light source 1 emits a luminous flux having a wavelength in the infrared region described above, and a predetermined frequency, that is, a commercial frequency and its harmonics by a pulse generator 7. The switching element 8 is turned on and off at a frequency different from that of, for example, 270 Hz to emit a pulsed light beam.
光源 1 から発せられ、 被測定面で反射された上記パル ス状の光束を受光素子 2 により検出し、 その検出信号を バッファ回路 9を経て、 上記パルス発生器 7 によって制 御されるゲー ト画路 10を経て出力することにより、 前述 の環境光による検出波形の乱れや、 検出矩形波のオーバ ーシユー トゃアンダーシユー トを除去するようになって いる。 この結果、 本発明においては、 筐体 3 Aは光源 1 と 受光素子 2 とを所定の投射及び受光角度位置に設定し得 るものであれば足り、 環境光に対する格別の遮光体とし ての機能を有するものでな く ても差支えない。 The pulse-shaped light beam emitted from the light source 1 and reflected on the surface to be measured is detected by the light receiving element 2, and the detection signal passes through a buffer circuit 9 and is controlled by the pulse generator 7 by the pulse generator 7. The output through the path 10 removes the above-mentioned disturbance of the detected waveform due to the ambient light and the overshooting / undershooting of the detected square wave. As a result, in the present invention, the housing 3 A is It is sufficient that the light receiving element 2 and the light receiving element 2 can be set at predetermined projection and light reception angle positions, and the light receiving element 2 does not need to have a function as a special light shield for environmental light.
11は所定の倍率でゲー ト回路 10の出力を増幅する演算 増幅器、 12は上記増幅器 11の出力の入力端子及びリ セ ッ ト入力端子を有するビークホール ド回路で、 ホール ドキ 一を有する A Z Dコ ンバータ 13を介して、 受光素子 2で 得られた検出信号のビーク値を所望のアナログメータ、 又はディ ジタルの L C D表示器 14に表示させ、 他方、 微 分回路及びコ ンパレータ回路を有するピーク更新検知回 路 15によつて、 ビークホール ド回路 12の前記パルス発生 器 7 による周波数毎の検出ピーク値の増加速度が所定値 以上のとき、 光、 音又は振動等による報知器 16により報 知せしめ、 セ ンサ部 6 (筐体 3A ) の手動その他による被 測定面 に対する距離調整及び筐体 3Aの支持軸の傾斜角 度調整を表示器 14を見な くても行なえるようにしたもの である。  11 is an operational amplifier for amplifying the output of the gate circuit 10 at a predetermined magnification, 12 is a beak hold circuit having an input terminal and a reset input terminal for the output of the amplifier 11, and an AZD core having a hold key. The beak value of the detection signal obtained by the light receiving element 2 is displayed on the desired analog meter or digital LCD display 14 via the inverter 13, while peak update detection having a subdivision circuit and a comparator circuit is performed. When the increase rate of the peak value detected by the pulse generator 7 of the beak hold circuit 12 for each frequency by the circuit 15 is equal to or higher than a predetermined value, the beacon circuit 12 is notified by a light, sound, vibration, or the like by a notifier 16. The distance adjustment of the sensor section 6 (housing 3A) to the surface to be measured by manual or other means and the adjustment of the inclination angle of the support shaft of the housing 3A can be performed without the display unit 14. .
17は測定及びホール ドの切換操作スィ ツチで、 オ ンす るこ とによって測定し、 即ち光源 1 より被測定面 4aに投 射した光の受光素子 2 による反射光検出値が最大となる ように筐体 3Aの被測定面 4aに対する距離及び傾きを調整 した上で、 オフホール ドする こ とによ.り、 ピークホール ド画路の検出ビーク値は A / Dコ ンバータ 13にホール ド され、 図示しない遅延回路を介して入力したホール ド信 号により ビークホール ド回路 12はリ セ ッ トされ、 L C D 表示器 14は前記ホール ド したビーク値を表示し続けるこ とになる。 Reference numeral 17 denotes a switch for switching between measurement and hold, which is measured by turning on the switch, that is, in such a manner that the light reflected from the light receiving element 2 of the light projected from the light source 1 to the surface 4a to be measured is maximized. After adjusting the distance and inclination of the housing 3A with respect to the surface 4a to be measured, and then off-holding, the peak hole The detected beak value of the circuit path is held by the A / D converter 13, the beak hold circuit 12 is reset by a hold signal input via a delay circuit (not shown), and the LCD display 14 is reset. The displayed beak value will continue to be displayed.
このよう に、 本発明にかゝ る測定装置は、 光源 1 と受 光素子 2 の光軸の交点 Pを中心とする球面に沿って所定 範囲内で移動可能に支持されたセ ンサ部 6を有する筐体 3Aに対し、 その被測定面 4aに対する距離を上記交点 Pが ^'測定面上に く るように調整する操作と'、 筐体 3Aの中心 軸 Aを被測定面の法線方向と一致するようにする角度調 整操作とを、 被測定位置で相前後してそれぞれ行なうに 際して、 セ ンサ部 6 の受光素子の検出信号が最大になる ように表示器 14又は報知器 16により検知しっ ゝ行なう こ とにより、 光源及び受光素子から被測定面までの距離、 並びに被測定面における光束の入射角度及び反射角度が 常に一定した条件において測定値 (反射光の強度、 即ち 受光素子の検出出力値) が得られ、 これを同一物質につ いて既知の測定値と比較するこ とにより表面状態の測定、 判別がより正確な状態で可能となるものである。  As described above, the measuring device according to the present invention includes the sensor unit 6 movably supported within a predetermined range along a spherical surface centered on the intersection P of the optical axis of the light source 1 and the light receiving element 2. The operation of adjusting the distance to the surface 4a to be measured with respect to the housing 3A so that the intersection point P is on the measurement surface, and the center axis A of the housing 3A in the direction normal to the surface to be measured When the angle adjustment operation is performed before and after the measured position at the measured position, the display 14 or the annunciator is set so that the detection signal of the light receiving element of the sensor unit 6 is maximized. The measurement value (intensity of reflected light, that is, the reflected light intensity, ie, the distance from the light source and the light receiving element to the surface to be measured, and the angle of incidence and reflection of the luminous flux on the surface to be measured) is always constant. (Detected output value of the light-receiving element) is obtained. Measurements of the surfaces condition by comparing child with known measurement value each, in which determination is made possible in a more accurate state.
第 7図は、 本発明にか ゝ る測定方法による測定結果の 一例を示す特性曲線図で、 S K D材の放電加工面 (加工 面粗さ // m R max ) を測定したものであり、 縦軸に検出 出力 ( V ) を等間隔目盛で、 横軸に面粗さ ( rn R m ax) を対数目盛で目盛ったもので、 ほぼ反比例の関係となつ ている。 FIG. 7 is a characteristic curve diagram showing an example of the measurement results obtained by the measurement method according to the present invention. Surface roughness // m R max), with the vertical axis representing the detection output (V) on an equally spaced scale and the horizontal axis representing the surface roughness (rnR max) on a logarithmic scale Therefore, the relationship is almost inversely proportional.
'そしてこの特性曲.線からも、 本発明の測定方法によれ ば、 鏡面に研磨加工された物質の表面に発生したサブミ クロンオーダ以上の大きさのクラ ックその他の傷の検知 が可能なことが明らかであり、 本発明を一般的に簡易な 測定方法として適用する範囲においては、 触針式面粗さ 計で、 1 mの面粗さを持つものと、 2 mの面粗さを 持つものとに有意な差を見出すことができるものとして 使用することができる。  From this characteristic curve, it is possible to detect cracks and other scratches on the surface of a substance polished to a mirror surface with a size of submicron order or more, according to the measurement method of the present invention. In the range where the present invention is generally applied as a simple measuring method, a stylus type surface roughness meter having a surface roughness of 1 m and a surface roughness of 2 m It can be used as one that can find a significant difference from the one.
又、 本発明の測定方法によれば、 例えば歯科材料の義 歯のような複雑な形状のものにおいて、 各測定位置での 光沢の有無や異色状態の有無等を判別することができた, 第 8図及び第 9図は、 本発明にかゝ る測定方法を実施 する機械装置の一実施例の概略構成を示す正面図と側面 図で、 21は装置全体を支持するべッ ドであり、 22は Y軸 方向に移動可能なよう支持されたサ ドルである。 23は上 記サ ドル 22にその移動方向と直角方向 ( X軸方向) に滑 動可能なように支承されたテーブルである。 24はサ ドル 22の Y軸方向の駆動装置を示し、 又 25.はテーブル 23の X 軸方向の駆動装置である。 26はテーブル 23の上面に設け られたスィ ーベルであり、 このスィ ーベル 26には被測定 体 4が載置固定され、 スィ一ベル 26の中心を通りテープ ル 23に鉛直に交わる Z轴のまわり (例えば W軸) に回転 可能なようになされ、 駆動装置 37によって画動せしめら れるようになっている。 3 は前記センサ部の筐体であり、 27はこの筐体 3 の前記支持軸 5 を支持するへッ ドである c 28は前記筐体 3を支持軸 5 の蚰芯の回りに回転位置決め する装置、 29は前記のへッ ド 27を支持するへッ ド台であ り、 アーム 30上に移動可能なように保持されている。 こ のアーム 30は、 筐体 3 の上記交点 Pを通る U蚰 (前記 X 蚰に平行) を中心としてヘッ ド台 29が回動するような円 軌道の一部を形成し、 その円弧外周又は内周に例えば歯 形 (図では省略) を刻設して扇形ギヤとなし、 前記へッ ド台に設けた小ギヤ又はウ ォームと嚙み合わせ、 同様に へッ ド台 29に設けた駆動装置 31により前記小ギヤ又はゥ オームを回転させるこ とにより、 へッ ド台 29をアーム 30 の円弧軌道に沿って U轴を中心と して回動させるように なっている。 Further, according to the measurement method of the present invention, it was possible to determine the presence or absence of gloss, the presence or absence of a different color state, and the like at each measurement position in a complex shape such as a denture of a dental material. 8 and 9 are a front view and a side view showing a schematic configuration of one embodiment of a mechanical device for performing the measuring method according to the present invention, wherein 21 is a bed for supporting the entire device, Reference numeral 22 denotes a saddle supported so as to be movable in the Y-axis direction. Reference numeral 23 denotes a table supported by the saddle 22 so as to be slidable in a direction (X-axis direction) perpendicular to the moving direction. 24 indicates a drive unit for the saddle 22 in the Y-axis direction, and 25. An axial drive. Reference numeral 26 denotes a swivel provided on the upper surface of the table 23. The swivel 26 has the object 4 to be measured mounted thereon. The swivel 26 passes through the center of the swivel 26 and vertically intersects the table 23 around Z 23. (For example, the W axis), and can be moved by a driving device 37. Reference numeral 3 denotes a housing of the sensor unit, 27 denotes a head for supporting the support shaft 5 of the housing 3 c 28 rotationally positions the housing 3 around the shaft of the support shaft 5 The device 29 is a head table for supporting the head 27 and is movably held on the arm 30. The arm 30 forms a part of a circular orbit such that the head table 29 rotates about a U-junction (parallel to the X-junction) passing through the intersection P of the housing 3, For example, a tooth shape (omitted in the figure) is engraved on the inner periphery to form a sector gear, which engages with the small gear or worm provided on the head table, and a drive provided on the head table 29 similarly. By rotating the small gear or micro-ohm by the device 31, the head table 29 is rotated about the U 轴 along the arc trajectory of the arm 30.
一方、 32はアーム 30を支持して滑動台 33に画動可能な ように支承された回転台であり、 この回転台 32の回転中 心 ( V軸) は Y蚰と平行で、 その延長線が前記光源 1 と 上記 2の光軸の交点 Pを通るように構成され、 アーム 30 全体はこの V軸の回りに回動するようになっている。 34 は面転台 32の駆動装置であり、 35は、 滑動台 33を、 X及 び γ軸を舍む水平面に対して直角に交わる鉛直軸 ( z ) 方向に滑動可能なように支持するコ ラムであり、 36は前 記滑動台 33を Z軸方向に移動せしめるための駆動装置で ある。 On the other hand, reference numeral 32 denotes a turntable which supports the arm 30 so as to be movable on the slide table 33. The center of rotation (V-axis) of the turntable 32 is parallel to Y, and is an extension line thereof. Is the light source 1 and The arm 30 is configured to pass through the intersection point P of the above two optical axes, and the entire arm 30 rotates around the V axis. Numeral 34 is a drive unit for the surface turning table 32, and numeral 35 is a core supporting the slide table 33 so as to be slidable in a vertical axis (z) direction perpendicular to a horizontal plane containing the X and γ axes. Reference numeral 36 denotes a driving device for moving the slide table 33 in the Z-axis direction.
また、 28は筐体 3をその中心軸 A (即ち、 上記光源及 び受光素子の両光軸のなす角度の 2等分線) の回りに回 転させる装置であり、· 被測定体 4 の表面が例えばその研 磨方向に起因して光の反射特性に異方性が生じているよ うな場合に、 筐体 3をその中心軸 Aの回りに面転させ、 受光素子が最大の光量を得るように位置決めするもので ある。  Reference numeral 28 denotes a device for rotating the housing 3 around its central axis A (that is, the bisector of the angle formed by the optical axes of the light source and the light receiving element). In the case where the surface has anisotropic light reflection characteristics due to, for example, its polishing direction, the housing 3 is turned around its center axis A, and the light receiving element generates the maximum amount of light. It is positioned so that it can be obtained.
而して、 測定に際しては、 被測定体 4をスィ ーベル 26 上の所定の位置に位置決めして取り付け、 躯動装置 24 , 25及び 37を手動又は数値制御装置により驱動して被測定 体 4の 測定部位を通常原点位置にある筐体 3及びへッ ド 27の直下に位置せしめ、 次いで駆動装置 36の手動又は 数値制御装置による Z軸方向移動によって筐体 3 の被測 定面 4aに対する距離調整と、 駆動装置 31及び 34の手動又 は数値制御装置による U軸及び V軸躯動の傾斜角度調整 と、 画転装置 28による筐体 3 のその中心蚰の回りの回転 位置決めとを、 前記ピーク検知回路 15の検知による報知 を監視しつ 、行なう ものである。 Thus, at the time of measurement, the DUT 4 is positioned and attached to a predetermined position on the swivel 26, and the driving devices 24, 25, and 37 are manually or manually operated by a numerical control device to be measured. The measurement part is usually positioned directly below the housing 3 and the head 27 at the origin position, and then the distance of the housing 3 to the measured surface 4a by moving the driving device 36 manually or in the Z-axis direction by a numerical controller. Adjustment and adjustment of tilt angle of U-axis and V-axis movement by manual or numerical control of drives 31 and 34 And the rotation of the housing 3 around its center line by the image transfer device 28 is performed while monitoring the notification by the detection of the peak detection circuit 15.
なお、 筐体 3 の上記 U軸及び V軸を中心とする回動機 構としては、 例えば特開昭 48— 2287号公報、 同 48— 2383 号公報に記載の軸の回転ゃリ ンク機構を利用したもの、 その他公知の構成を利用し得ること当然である。  As the rotating mechanism of the casing 3 around the U axis and the V axis, for example, a shaft rotating link mechanism described in JP-A-48-2287 and JP-A-48-2383 is used. Of course, other known configurations can be used.
以上のように、 本発明によれば、 光源及び受光素子と 被測定面との間の距離を所定の一定値に保持すると共に、 被測定面における光束の投射角度を被測定面に対して常 に一定となるように調整した状態 測定を行なうから、 常に一定の条件で受光素子の検出出力値である測定値が 得られ、 同一物質の既知の測定値と比較することにより、 表面状態の測定、 判別が従来に比べて格段に正確に行な われ得るものである。 、  As described above, according to the present invention, the distance between the light source and the light receiving element and the surface to be measured is maintained at a predetermined constant value, and the projection angle of the luminous flux on the surface to be measured is always constant with respect to the surface to be measured. Since the measurement is performed so that it is constant, the measured value that is the detection output value of the light-receiving element is always obtained under constant conditions, and the surface condition is measured by comparing with the known measured value of the same substance. Discrimination can be made much more accurately than in the past. ,
又、 本発明によれば、 前述の如く ピークホール ド回路 と組み合わせているため、 表示器における表示以下の出 力で動作することがな く 、 測定者は被測定位置でのセ ン サ部を有する筐体に対する 3次元の移動を最小限にする とができる I  Further, according to the present invention, since the sensor is combined with the peak hold circuit as described above, it does not operate with an output less than the display on the display, and the measurer does not need to operate the sensor at the position to be measured. I can minimize three-dimensional movement with respect to the housing
なお、 本発明は叙上の実施例に限 '定されるものでな く 本発明の目的の範囲内において上記の.說明から当業者が 容易に想到し得るすべての変更実施例を包摂するもので あって、 本発明の範囲は、 添付の請求の範面の記載に基 づいてのみ判断されなければならない。 上の利用可能性 It should be noted that the present invention is not limited to the above-described embodiments, and within the scope of the present invention, those skilled in the art will appreciate from the above description. It is intended to cover all readily conceivable modifications, and the scope of the invention should be determined only by reference to the appended claims. Availability on
本発明にかゝる表面状態の測定方法及び装置は、 例え ば研磨加工された様々な物体の表面の凹凸状況、 表面粗 さ、 傷の有無、 表面の酸化の程度、 污れゃ変色の程度の 確認や判別等を行なう場合に最も好適に且つ広く利用で さる。 .  The method and apparatus for measuring the surface state according to the present invention include, for example, the unevenness of the surface of various polished objects, surface roughness, presence or absence of scratches, the degree of oxidation of the surface, and the degree of discoloration. It is most suitable and widely used for checking and discriminating. .

Claims

雲青: ¾ の 範 囲 Cloud blue: Range of ¾
1 ) 光源から被測定面に光束を投射しその反射光束を 上記光源に対して一定位置に配置した受光素子により検 出して表面状態を測定する方法において、 1) A method in which a light beam is projected from a light source onto a surface to be measured, and the reflected light beam is detected by a light receiving element arranged at a fixed position with respect to the light source to measure a surface state.
上記光束として赤外領域の光線を所定の周期でパルス 状にオ ン · オフして成る光束を用いると共に、  As the light beam, a light beam obtained by turning on and off a light beam in the infrared region in a pulsed manner at a predetermined cycle is used.
相互に一定位置に配置された上記光源と受光素子の両 光軸の交点に被測定面が合致するよう上記光源及び受光 素子と被測定面間の距離を調整しっ ゝ、 かつ上記光源及 び受光素子を上記交点を中心とする球面に沿って所定の 範囲内で移動させつ ゝ上記受光素子による反射光束の検 出信号のピークホールドを行ない、 得られた検出信号の 最大値を、 表面状態に関する既知の信号値と比較するこ とを特徴とする表面状態の測定方法。  Adjust the distance between the light source and the light receiving element and the surface to be measured so that the surface to be measured coincides with the intersection of the two optical axes of the light source and the light receiving element arranged at a fixed position with respect to each other; and Move the light receiving element within a predetermined range along the spherical surface centered on the intersection. ゝ Hold the peak of the detection signal of the reflected light beam by the light receiving element, and determine the maximum value of the obtained detection signal as the surface condition. A method for measuring a surface condition, comprising comparing with a known signal value for a surface.
2 ) 赤外領域の光線を所定の周期でパルス状にォン · オフ して成る光束を被測定面に向けて投射する光源と、 被測定面からの反射光束を受光する受光素子と、 上記光源及び受光素子を両者の光軸が所定の角度で交 差するよう固定して成る筐体と、 2) A light source for projecting a light beam formed by turning on and off a light beam in the infrared region in a pulsed manner at a predetermined cycle toward the surface to be measured, a light receiving element for receiving a light beam reflected from the surface to be measured, A housing comprising a light source and a light receiving element fixed so that their optical axes cross at a predetermined angle;
上記筐体を被測定面に対して近接、 開離せしめる躯動 8 機構と、 Driving motion that moves the above housing close to and away from the surface to be measured 8 mechanisms and
上記筐体を上記光源及び受光素子の両光軸の交点を通 る水平な U軸を中心に回動させる第 1 の面動機構と、 上記筐体を上記交点において上記 U軸と直角に交差す る水平な V軸を中心に回動させる第 2の画動機構と、 上記筐体自体を、 上記光源及び受光素子の両光軸のな す角度の 2等分線を軸として回転させる機構と、  A first planar motion mechanism for rotating the housing around a horizontal U-axis passing through the intersection of the optical axes of the light source and the light receiving element; and intersecting the housing at right angles to the U-axis at the intersection. And a mechanism for rotating the housing itself about the bisector of the angle formed by the optical axes of the light source and the light receiving element. When,
上記光源の上記所定の周期でのォン · オフ動作と、 上 記受光素子からの検出信号を通過させるゲー ト回路の動 作を同期させて制御するパルス発生器と、  A pulse generator that controls the on / off operation of the light source in the predetermined cycle in synchronization with the operation of the gate circuit that passes the detection signal from the light receiving element;
上記ゲー ト回路を通過した受光素子の検岀信号のピー ク値を保持するビークホールド回路と、  A beak hold circuit for holding a peak value of a detection signal of the light receiving element that has passed through the gate circuit,
上記ビークホール ド回路のホール ド値を表示する表示 器と、  An indicator for displaying the hold value of the beak hold circuit,
上記ビークホールド回路にホ一ルドされるビーク値の 更新速度が所定値以上のとき所望の報知器を作動させる ビーク更新検知画路と、  A beak update detection circuit that activates a desired alarm when an update speed of a beak value held by the beak hold circuit is equal to or higher than a predetermined value;
を設けたことを特徴とする表面状態の測定装置。  A surface state measuring device characterized by comprising:
PCT/JP1989/000732 1988-07-21 1989-07-21 Method and apparatus for measuring the surface condition WO1990001142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18326088A JPH0232206A (en) 1988-07-21 1988-07-21 Method and device for measuring surface state
JP63/183260 1988-07-21

Publications (1)

Publication Number Publication Date
WO1990001142A1 true WO1990001142A1 (en) 1990-02-08

Family

ID=16132554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000732 WO1990001142A1 (en) 1988-07-21 1989-07-21 Method and apparatus for measuring the surface condition

Country Status (2)

Country Link
JP (1) JPH0232206A (en)
WO (1) WO1990001142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3774660B2 (en) * 2001-12-07 2006-05-17 株式会社 日立インダストリイズ Movable light irradiation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886557U (en) * 1981-12-08 1983-06-11 川崎製鉄株式会社 Object edge flaw detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886557U (en) * 1981-12-08 1983-06-11 川崎製鉄株式会社 Object edge flaw detection device

Also Published As

Publication number Publication date
JPH0232206A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
US4761072A (en) Electro-optical sensors for manual control
US4733969A (en) Laser probe for determining distance
US3761186A (en) Apparatus for optically inspecting the condition of a surface having known variations in the condition
US4798469A (en) Noncontact gage system utilizing reflected light
IL40443A (en) Method and apparatus for determining the properties of jewellery stones
JPS59501540A (en) automatic welding system
JPS6435203A (en) Method and apparatus for measuring deformation of test piece for material tester
US4502785A (en) Surface profiling technique
US3567320A (en) Non-contact optical measuring probe
US4981353A (en) Position locating apparatus for an underwater moving body
WO1990001142A1 (en) Method and apparatus for measuring the surface condition
US3632215A (en) Apparatus for determining the position coordinates of a point relative to a reference point
US4192995A (en) Photometric testing apparatus using shaped diffuser and light beam having a spatially ill-defined energy distribution
JPH08122021A (en) Size measuring instrument
JPH08136224A (en) Dimension measuring instrument
JPH09505883A (en) Equipment for measuring the dimensions of large objects
JPH09189545A (en) Distance measuring device
SU934219A2 (en) Device for quality control of machined holes of articles
JPS63169506A (en) Optical measuring instrument
JPS61132803A (en) Position detector
JPH0961120A (en) Dimension measuring instrument
SU1702178A1 (en) Device for measuring roughness of polished surface
JPS58223013A (en) Apparatus for measuring surface shape of body
JPS61129510A (en) Multidimensional sensor
JPH0791925A (en) Device for measuring thickness

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE