WO1989011611A1 - Backflow preventer valve - Google Patents

Backflow preventer valve Download PDF

Info

Publication number
WO1989011611A1
WO1989011611A1 PCT/AU1989/000219 AU8900219W WO8911611A1 WO 1989011611 A1 WO1989011611 A1 WO 1989011611A1 AU 8900219 W AU8900219 W AU 8900219W WO 8911611 A1 WO8911611 A1 WO 8911611A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
piston
fluid
assembly according
Prior art date
Application number
PCT/AU1989/000219
Other languages
French (fr)
Inventor
Lloyd Joseph Dixon
Marko Victor Pregelj
Original Assignee
Valvtec Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valvtec Pty Ltd filed Critical Valvtec Pty Ltd
Publication of WO1989011611A1 publication Critical patent/WO1989011611A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/10Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves
    • E03C1/106Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves using two or more check valves
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/10Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves
    • E03C1/108Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves having an aerating valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • This invention relates to a valve assembly.
  • this invention is directed to a valve assembly suitable for use as a reduced pressure zone backflow preventer for water supply mains to prevent backflow and siphonage of water in the event of mains pressure decrease o failure and the invention will be described hereinafter in this context.
  • valve assemblies in accordance with the present invention may find use in other applications such as to prevent backflow of any fluid conveyed under pressure in a conduit.
  • the apparatus disclosed in this application comprises a pair of check valves of the vertical lift type connected in series with th mains supply and defining a reduced pressure zone therebetween.
  • a hydraulic cylinder In parallel with the mains is a hydraulic cylinder having a piston mounted therein, one side of the piston being in fluid communication with the mains upstream of the check valves and the other side of the piston being i fluid communication with the reduced pressure zone.
  • the piston is spring biased towards the mains pressure side. In use, the mains pressure drives the piston to close the fluid communication with the reduced pressure zone. In the event of a mains pressure failure, the spring drives the piston away from the end of the hydraulic cylinder, placing the cylinder in fluid communication with the reduced pressure zone.
  • a drain hole provided in the cylinder and adapted to be closed by the piston under normal mains pressure conditions and opened to the atmosphere when the mains pressure fails causes the pressure in the reduced pressure zone to drop to ambient atmospheric pressure and allows any traces of possibly contaminated water to drain from the zone.
  • Other similar backflow preventers utilizing a diaphragm in place of the piston described above are also in use. Disadvantages of the prior art backflow preventers include the large number of pipe joins required to assemble the apparatus. This increases the likelihood of leaks as well as increasing the amount of plumbing and hence the installed cost of the apparatus.
  • the prior art apparatus includes check valves of a type not inherently adapted to promote efficient flow characteristics of the apparatus.
  • check valve is of the spring biased poppet type wherein water at pressure is applied to the lower face of the valve poppet, causing the valve to lift and water to pass.
  • This type of valve necessarily involves a bend in the water flow path which causes drag and reduces efficiency.
  • a third disadvantage lies in the bulk of the apparatus.
  • the use of external check valves and a separate operating mechanism for pressure control in the reduced pressure zone results in the application of the size constraints of conventional plumbing fittings used to assemble the apparatus.
  • the present invention resides in a valve assembly including:- a valve body having a chamber; respective inlet and outlet fluid connections in said valve body and communicating with said chamber whereby said valve body may be installed in-line in a fluid supply conduit; a vent from said chamber; a displaceable pressure sensitive closure assembly supported in said chamber and having a non-return valve therein through which fluid may flow from said inlet through said chamber to said outlet, said closure assembly being biassed to an open position with respect to said vent whereby fluid may pass from the portion of said chamber downstream of said closure assembly to said vent, and said closure assembly being displaced to a closed position from said open position to close said vent upon application of a predetermined fluid pressure at said inlet.
  • valve chamber is a substantially cylindrical chamber and the closure assembly is axially moveable in the chamber between vent-open and vent-closed positions.
  • the respective inlet and outlet may take the form of end caps provided on the cylindrical chamber and provided with threading or other means of attachment to the fluid conduit.
  • the pressure sensitive closure assembly may take any form consistent with the function of opening and closing the vent.
  • at least part of the cylindrical chamber is configured as a hydraulic cylinder and the closure assembly is a piston assembly axially slidable in the chamber between vent-open and vent-closed positions.
  • the closure assembly may take the form of a diaphragm disposed in the chamber.
  • the preferred piston is preferably spring biassed to the vent-open position, the spring bias being such that the piston moves to close the vent at a lower pressure than that required to open the non-return valve. This ensures that the vent is fully closed prior to fluid flowing through the non- return valve and thereby avoiding unnecessary loss of fluid.
  • the piston assembly includes a piston having an apertured piston head and said non-return valve includes a valve member spring biassed into sealing engagement with said apertured piston head.
  • the non-return valve is disposed substantially centrally in closure assembly in order to maximise the flow efficiency of the assembly.
  • the non-return valve is preferably of the self centering type and adapted to operate axially of the preferred cylindrical chamber.
  • One suitable non-return valve comprises a spring biassed, substantially hemispherical valve member adapted to sealably engage the piston at an annular seal provided in the piston.
  • the non-return valve member may be spring biassed within the piston itself. However, it is preferred to spring bias the valve member by interposing a biassing spring between the valve member and a spring support fixed in relation to the cylindrical chamber.
  • the vent comprises an annular space about the portion of the chamber downstream of the closure member and in fluid communication with the atmosphere.
  • the closure member is preferably provided with an annular valve seat adapted to cooperate, when closure assembly is disposed in the closed position, with a complementary annular valve seat in the downstream chamber portion to define the abovementioned annular space and confine fluid flow to the transfer passage so defined from the non-return valve to the outlet.
  • the preferred annular space opens to the transfer passage and places the same in fluid communication with the atmosphere.
  • the vent is configured such that any liquid in the annular space may freely drain fro the valve assembly.
  • the valve seat is spaced about the non-return valve.
  • the complementary valve seat is disposed about the transfer passage and is disposed within a carrier slidably supported within said cylindrical chamber.
  • a second non-return valve (hereinafter a "check valve") for preventing return flow of fluid through outlet to downstream portion of said chamber between the non-return valves.
  • the check valve includes a valve member spring biassed into sealing engagement with the transfer passage.
  • the check valve may be of the same or of different type to the first non-return valve.
  • the space between the check valve and the non-return valve represents a contained zone at a reduced pressure compared to the pressure applied by the fluid entering the inlet.
  • additional fluid passages communicating with any of said inlet, said outlet, and said chamber, such as may be useful for the attachment of pressure gauges or the like, or for sample tapping or bleeding the valve assembly.
  • FIG. 1 is a sectional view of a valve assembly in accordance with the present invention.
  • FIG. 2 is a sectional view of an alternate valve assembly in accordance with the present invention.
  • a valve assembly having a substantially cylindrical housing 10.
  • the housing 10 is provided with an inlet end cap 1, sealed to the housing by an O-ring 11 and provided with an attachment port 8 for connecting a fluid supply line (not shown) .
  • a piston 2 Slidably mounted within a cylindrical portion of the housing 10 is a piston 2, which is sealed to the bore of the housing 10 by the action of ⁇ -profile seal 12.
  • a piston ring 22 of low friction polymeric material may be provided to reduce piston wear.
  • Centrally located in the piston 2 and sealing a passage therethrough is a non-return valve cone 7 adapted to seal to the piston 2 via U-section seal 14.
  • the cone 7 is urged into sealing engagement with the seal 14 by the action of the spring 4, which has its free end supported on a spider 23.
  • the spider 23 is itself supported in the cylindrical bore of an insert piece 6, the full function of which will hereinafter become apparent.
  • the piston 2 in provided with an annular seal 13 and seal retainer 20 on the downstream face of the piston 2.
  • the insert piece 6 is mounted in the bore of the body 10 and is sealed to the body 10 by O-ring 11.
  • the insert piece 6 is located against a step 27 in the bore of the housing 10.
  • the insert piece 6 has an annular sleeve integral therewith which extends upstream and is adapted to seal against the annular seal 13 of the piston 2 when the piston 2 is advanced towards the insert 6.
  • the insert piece 6 is retained against the step 27 by an outlet end cap 9 sealed to the housing 10 via an O-ring.
  • a seal is made between the end cap 9 and the insert 6 by the action of an O-ring 15.
  • the annular sleeve of the insert piece 6 defines an inner chamber and an outer annular chamber 19.
  • the outer annular chamber is vented to the atmosphere at 24 and contains spring 5 adapted to urge the piston 2 away from the insert 6.
  • the downstream end of the insert 6 is provided with a central bore fitted with a check valve cone 3 retained against a seal 16 by a spring 17 supported on a spider 23.
  • the spider 23 is mounted in the outlet end cap 9.
  • the seal 16 is retained in the insert 6 by seal retainer 21.
  • the outlet end cap is also provided with a threaded outlet for attachment to a delivery line to be supplied with fluid.
  • the volume between the valve cones 3 and 7 is provided with fluid access to annular measurement space 18 formed between the housing wall 10 and an extension sleeve of the outlet end cap 9.
  • This annular measurement space 18 may be tapped to provide a convenient attachment point for a pressure gauge for monitoring the reduced pressure zone of the valve assembly.
  • tappings at 25 and 26 are convenient pressure measurement points for measuring the pressure at the inlet and the outlet of the valve assembly respectively.
  • Each of these ancillary outlets may be plugged if not in use or alternatively the outlets may be provided with valves such as ball valves. In use and while the fluid pressure is at its normal level the piston 2 is forced along the bore of the housing 10 until the seal 13 contacts the annular edge of the insert 6.
  • valve cone 7 will, if pressure is sufficient, permit the flow of fluid past, which fluid then passes the valve cone 3 and hence to the outlet.
  • the action of the valve cone 7 causes the space between the cones 7 and 3 to always be at less than the supply pressure under normal operating circumstances.
  • valve cones 3 and 7 prevent any such backflow. A small amount of contaminant may get past the cone 3. However, as the pressure is removed from the upstream face of the piston 2 the spring 5 urges the piston 2 away from the insert 6, opening the transfer passage to the annular space 19 and permitting the drainage of any fluid between the cones 3 and 7 to drain via the discharge opening 24.
  • the embodiments illustrated have the advantage over the prior art of being a unitary valve assembly with only two joins to the water mains.
  • the present assemblies also exhibit lower losses compared with comparable prior art apparatus. For example, a prior art preventer was measured to have a pressure drop across the valve of 110 kPa at a flow rate of 40 1/min. whereas the present valve assembly tests at a drop of 50 kPa at 40 1/min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Check Valves (AREA)

Abstract

A valve assembly is provided having a valve body (10), an inlet end cap (1) and an outlet end cap (9). The interior of the valve body (10) is provided with a piston (2) and seat (6) which divide the interior of the valve body (10) into an upstream chamber and a downstream chamber. The downstream chamber is provided with a check valve (3) and seal (16) permitting flow in a downstream direction only. The piston (2) is provided with an axial passage therethrough, which passage is provided with a non-return valve (7) permitting only downstream flow. In use, normal water pressure maintains the piston (2) in sealing contact with the seat (6) against the force of the spring (5). The spring loading of the non-return valve (7) maintains a reduced pressure in the reduced pressure zone between the check valve (3) and the non-return valve (7). In the event of the mains pressure falling below a specified level, the check valve (3) and the non-return valve (7) close to prevent back flow or siphonage. The piston (2) is urged away from the seat (6) by the spring (5), causing the reduced pressure zone to be opened to ambient pressure. Any possibly contaminated water which may have passed the check valve (3) on failure of the mains pressure may drain from the reduced pressure zone via the annular space (19) and drain aperture (24).

Description

BACKFLOW PREVEOTER VALVE
This invention relates to a valve assembly. In particular this invention is directed to a valve assembly suitable for use as a reduced pressure zone backflow preventer for water supply mains to prevent backflow and siphonage of water in the event of mains pressure decrease o failure and the invention will be described hereinafter in this context. However it is envisaged that valve assemblies in accordance with the present invention may find use in other applications such as to prevent backflow of any fluid conveyed under pressure in a conduit.
Many municipal authorities now specify that certain businesses such as medical and veterinary services and hairdressers must fit backflow preventers to avoid the possibility of contamination of the mains by backflow in the event of mains pressure failure. The standards applied to such apparatus specify that for moderate hazard applications a backflow preventer having two independent check valves be installed, and that the space between the check valves be drainable. The industry standard backflow preventer achieve this specification by the use of a reduced pressure zone between the check valves which vents to the atmosphere upon mains pressure failure.
One such backflow preventer is that described in Australian Patent Application No. 82433/87. The apparatus disclosed in this application comprises a pair of check valves of the vertical lift type connected in series with th mains supply and defining a reduced pressure zone therebetween. In parallel with the mains is a hydraulic cylinder having a piston mounted therein, one side of the piston being in fluid communication with the mains upstream of the check valves and the other side of the piston being i fluid communication with the reduced pressure zone. The piston is spring biased towards the mains pressure side. In use, the mains pressure drives the piston to close the fluid communication with the reduced pressure zone. In the event of a mains pressure failure, the spring drives the piston away from the end of the hydraulic cylinder, placing the cylinder in fluid communication with the reduced pressure zone. A drain hole provided in the cylinder and adapted to be closed by the piston under normal mains pressure conditions and opened to the atmosphere when the mains pressure fails causes the pressure in the reduced pressure zone to drop to ambient atmospheric pressure and allows any traces of possibly contaminated water to drain from the zone. Other similar backflow preventers utilizing a diaphragm in place of the piston described above are also in use. Disadvantages of the prior art backflow preventers include the large number of pipe joins required to assemble the apparatus. This increases the likelihood of leaks as well as increasing the amount of plumbing and hence the installed cost of the apparatus. In addition, the prior art apparatus includes check valves of a type not inherently adapted to promote efficient flow characteristics of the apparatus. The usual type of check valve is of the spring biased poppet type wherein water at pressure is applied to the lower face of the valve poppet, causing the valve to lift and water to pass. This type of valve necessarily involves a bend in the water flow path which causes drag and reduces efficiency. s
A third disadvantage lies in the bulk of the apparatus. The use of external check valves and a separate operating mechanism for pressure control in the reduced pressure zone results in the application of the size constraints of conventional plumbing fittings used to assemble the apparatus.
It is thus an object of the present invention to provide a backflow preventer which substantially overcomes the deficiencies of the prior art. It is a further object of the present invention to provide a unitary reduced pressure zone backflow preventer.
Accordingly, in one aspect, the present invention resides in a valve assembly including:- a valve body having a chamber; respective inlet and outlet fluid connections in said valve body and communicating with said chamber whereby said valve body may be installed in-line in a fluid supply conduit; a vent from said chamber; a displaceable pressure sensitive closure assembly supported in said chamber and having a non-return valve therein through which fluid may flow from said inlet through said chamber to said outlet, said closure assembly being biassed to an open position with respect to said vent whereby fluid may pass from the portion of said chamber downstream of said closure assembly to said vent, and said closure assembly being displaced to a closed position from said open position to close said vent upon application of a predetermined fluid pressure at said inlet. Preferably, the valve chamber is a substantially cylindrical chamber and the closure assembly is axially moveable in the chamber between vent-open and vent-closed positions. The respective inlet and outlet may take the form of end caps provided on the cylindrical chamber and provided with threading or other means of attachment to the fluid conduit.
The pressure sensitive closure assembly may take any form consistent with the function of opening and closing the vent. Preferably, at least part of the cylindrical chamber is configured as a hydraulic cylinder and the closure assembly is a piston assembly axially slidable in the chamber between vent-open and vent-closed positions. Alternatively, the closure assembly may take the form of a diaphragm disposed in the chamber. The preferred piston is preferably spring biassed to the vent-open position, the spring bias being such that the piston moves to close the vent at a lower pressure than that required to open the non-return valve. This ensures that the vent is fully closed prior to fluid flowing through the non- return valve and thereby avoiding unnecessary loss of fluid. Preferably, the piston assembly includes a piston having an apertured piston head and said non-return valve includes a valve member spring biassed into sealing engagement with said apertured piston head. Preferably, the non-return valve is disposed substantially centrally in closure assembly in order to maximise the flow efficiency of the assembly. The non-return valve is preferably of the self centering type and adapted to operate axially of the preferred cylindrical chamber. One suitable non-return valve comprises a spring biassed, substantially hemispherical valve member adapted to sealably engage the piston at an annular seal provided in the piston. The non-return valve member may be spring biassed within the piston itself. However, it is preferred to spring bias the valve member by interposing a biassing spring between the valve member and a spring support fixed in relation to the cylindrical chamber.
Preferably, the vent comprises an annular space about the portion of the chamber downstream of the closure member and in fluid communication with the atmosphere. The closure member is preferably provided with an annular valve seat adapted to cooperate, when closure assembly is disposed in the closed position, with a complementary annular valve seat in the downstream chamber portion to define the abovementioned annular space and confine fluid flow to the transfer passage so defined from the non-return valve to the outlet. When the closure member is in its open position, the preferred annular space opens to the transfer passage and places the same in fluid communication with the atmosphere. Preferably, the vent is configured such that any liquid in the annular space may freely drain fro the valve assembly. In one preferred embodiment the valve seat is spaced about the non-return valve.
Preferably, the complementary valve seat is disposed about the transfer passage and is disposed within a carrier slidably supported within said cylindrical chamber.
Preferably, there is provided in the transfer passage a second non-return valve (hereinafter a "check valve") for preventing return flow of fluid through outlet to downstream portion of said chamber between the non-return valves.
Preferably, the check valve includes a valve member spring biassed into sealing engagement with the transfer passage. The check valve may be of the same or of different type to the first non-return valve. The space between the check valve and the non-return valve represents a contained zone at a reduced pressure compared to the pressure applied by the fluid entering the inlet.
Preferably, there are provided additional fluid passages communicating with any of said inlet, said outlet, and said chamber, such as may be useful for the attachment of pressure gauges or the like, or for sample tapping or bleeding the valve assembly.
The invention will be further described with reference to the accompanying drawings illustrating a preferred embodiment thereof.
The invention will now be described with reference to preferred embodiments that are illustrated in the accompanying drawing in which:
FIG. 1 is a sectional view of a valve assembly in accordance with the present invention, and
FIG. 2 is a sectional view of an alternate valve assembly in accordance with the present invention.
In the figures, there is provided a valve assembly having a substantially cylindrical housing 10. The housing 10 is provided with an inlet end cap 1, sealed to the housing by an O-ring 11 and provided with an attachment port 8 for connecting a fluid supply line (not shown) .
Slidably mounted within a cylindrical portion of the housing 10 is a piston 2, which is sealed to the bore of the housing 10 by the action of ϋ-profile seal 12. A piston ring 22 of low friction polymeric material may be provided to reduce piston wear. Centrally located in the piston 2 and sealing a passage therethrough is a non-return valve cone 7 adapted to seal to the piston 2 via U-section seal 14. The cone 7 is urged into sealing engagement with the seal 14 by the action of the spring 4, which has its free end supported on a spider 23. The spider 23 is itself supported in the cylindrical bore of an insert piece 6, the full function of which will hereinafter become apparent. The piston 2 in provided with an annular seal 13 and seal retainer 20 on the downstream face of the piston 2. The insert piece 6 is mounted in the bore of the body 10 and is sealed to the body 10 by O-ring 11. The insert piece 6 is located against a step 27 in the bore of the housing 10. The insert piece 6 has an annular sleeve integral therewith which extends upstream and is adapted to seal against the annular seal 13 of the piston 2 when the piston 2 is advanced towards the insert 6. The insert piece 6 is retained against the step 27 by an outlet end cap 9 sealed to the housing 10 via an O-ring. A seal is made between the end cap 9 and the insert 6 by the action of an O-ring 15. The annular sleeve of the insert piece 6 defines an inner chamber and an outer annular chamber 19. The outer annular chamber is vented to the atmosphere at 24 and contains spring 5 adapted to urge the piston 2 away from the insert 6.
The downstream end of the insert 6 is provided with a central bore fitted with a check valve cone 3 retained against a seal 16 by a spring 17 supported on a spider 23. The spider 23 is mounted in the outlet end cap 9. The seal 16 is retained in the insert 6 by seal retainer 21. The outlet end cap is also provided with a threaded outlet for attachment to a delivery line to be supplied with fluid.
The volume between the valve cones 3 and 7 is provided with fluid access to annular measurement space 18 formed between the housing wall 10 and an extension sleeve of the outlet end cap 9. This annular measurement space 18 may be tapped to provide a convenient attachment point for a pressure gauge for monitoring the reduced pressure zone of the valve assembly. Similarly, tappings at 25 and 26 are convenient pressure measurement points for measuring the pressure at the inlet and the outlet of the valve assembly respectively. Each of these ancillary outlets may be plugged if not in use or alternatively the outlets may be provided with valves such as ball valves. In use and while the fluid pressure is at its normal level the piston 2 is forced along the bore of the housing 10 until the seal 13 contacts the annular edge of the insert 6. The valve cone 7 will, if pressure is sufficient, permit the flow of fluid past, which fluid then passes the valve cone 3 and hence to the outlet. The action of the valve cone 7 causes the space between the cones 7 and 3 to always be at less than the supply pressure under normal operating circumstances.
In the event of a failure of the supply pressure where backflow or siphonage may occur, the valve cones 3 and 7 prevent any such backflow. A small amount of contaminant may get past the cone 3. However, as the pressure is removed from the upstream face of the piston 2 the spring 5 urges the piston 2 away from the insert 6, opening the transfer passage to the annular space 19 and permitting the drainage of any fluid between the cones 3 and 7 to drain via the discharge opening 24.
The embodiments illustrated have the advantage over the prior art of being a unitary valve assembly with only two joins to the water mains. The present assemblies also exhibit lower losses compared with comparable prior art apparatus. For example, a prior art preventer was measured to have a pressure drop across the valve of 110 kPa at a flow rate of 40 1/min. whereas the present valve assembly tests at a drop of 50 kPa at 40 1/min.
Whilst the above has been described with reference to a preferred embodiment it will be clear that the many modifications and variations as would occur to a man skilled in the art are within the broad scope and ambit of the invention as defined in the appended claims.

Claims

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-
1. A valve assembly including:- a valve body having a chamber; respective inlet and outlet fluid connections in said valve body and communicating with said chamber whereby said valve body may be installed in-line in a fluid supply conduit; a vent from said chamber; a displaceable pressure sensitive closure assembly supported in said chamber and having a non-return valve therein through which fluid may flow from said inlet through said chamber to said outlet, said closure assembly being biassed to an open position with respect to said vent whereb fluid may pass from the portion of said chamber downstream o said closure assembly to said vent, and said closure assembly being displaced to a closed position from said open position to close said vent upon application of a predetermined fluid pressure at said inlet.
2. A valve assembly according to claim 1, wherein there is provided a check valve for preventing return flow of fluid through said outlet to said downstream portion of said chamber.
3. A valve assembly according to claim 1 or claim 2, wherein said non-return valve is disposed substantially centrally in said closure assembly and wherein there is provided a valve seat spaced about said non-return valve and adapted to cooperate, when said closure assembly is disposed in said closed position, with a complementary valve seat in said downstream chamber portion to confine fluid flow from said non-return valve to said outlet.
4. A valve assembly according to claim 3, wherein said vent drain communicates with the chamber part disposed about said valve seat.
5. A valve assembly according to claim 4, wherein said valve chamber is a cylindrical chamber and said closure assembly is a piston assembly axially slidable in said chamber between said open and closed positions.
6. A valve assembly according to claim 5, wherein said piston is spring biassed to said open position.
7. A valve assembly according to claim 5 or claim 6, wherein said complementary valve seat is disposed about a transfer passage which communicates sealably with said outlet and which is disposed within a carrier slidably supported within said cylindrical chamber.
8. A valve assembly according to any one of claims 5 to 7, wherein said piston assembly includes a piston having an apertured piston head and said non-return valve includes a valve member spring biassed into sealing engagement with said apertured piston head.
9. A valve assembly according to claim 7 or claim 8, wherein said check valve includes a valve member spring biassed into sealing engagement with said passage.
10. A valve assembly according to any one of the preceding claims, wherein said valve chamber is a cylindrical chamber and said closure assembly is axially moveable in said chamber between said open and closed positions.
11. A valve assembly according to any one of the preceding claims, wherein there are provided additional fluid passages communicating with any of said inlet, said outlet, and said chamber .
12. A valve assembly substantially as hereinbefore describe with reference to the accompanying drawings.
PCT/AU1989/000219 1988-05-18 1989-05-18 Backflow preventer valve WO1989011611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPI829288 1988-05-18
AUPI8292 1988-05-18

Publications (1)

Publication Number Publication Date
WO1989011611A1 true WO1989011611A1 (en) 1989-11-30

Family

ID=3773094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1989/000219 WO1989011611A1 (en) 1988-05-18 1989-05-18 Backflow preventer valve

Country Status (1)

Country Link
WO (1) WO1989011611A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709527A1 (en) * 1994-10-31 1996-05-01 Juergen Baelz Controls Gmbh Backflow prevention device
FR2795800A1 (en) * 1999-06-29 2001-01-05 Kane Kougyou Co Ltd FLOW INVERSION PREVENTION APPARATUS
WO2005012656A1 (en) * 2003-07-28 2005-02-10 Alfred Kärcher Gmbh & Co. Kg Backflow preventer
WO2012126287A1 (en) * 2011-03-22 2012-09-27 Li Feiyu Backflow prevention device connected between bathroom facility and drinking water system
CN106149813A (en) * 2016-08-25 2016-11-23 无锡市东北塘永丰橡塑厂 Water tube hose under a kind of platform basin odor-resistant anti-clogging
US11982358B2 (en) 2021-10-22 2024-05-14 Hamilton Sundstrand Corporation Inline pneumatic valve with internal bushing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083723A (en) * 1959-11-04 1963-04-02 Paul J Duchin Vacuum breaker
US3171423A (en) * 1961-07-24 1965-03-02 Watts Regulator Co Combination anti-siphon valve and backflow preventer
DE2157363A1 (en) * 1971-11-19 1973-05-24 Guenter Preuss PIPE BREAKER FOR LIQUID LINES
US3818929A (en) * 1973-04-23 1974-06-25 H Braukmann Reduced pressure backflow preventer valve
DE2414893A1 (en) * 1974-03-28 1975-10-02 Braukmann Armaturen Non-return and anti-syphoning valve - in which return flow is prevented by pressure increase in outlet line
DE2418822A1 (en) * 1974-04-19 1975-11-06 Braukmann Armaturen Domestic pipe non-return flow device - has pressure from seat of drain valve biassing flexible membrane during reverse flow
DE2424978A1 (en) * 1974-05-22 1975-12-04 Braukmann Armaturen Domestic water pipe supply disconnector - has fixed and movable non return valves and branch pipe for back pressure induced flow
US4013089A (en) * 1975-09-17 1977-03-22 Braukmann Armaturen Ag Back flow preventer valve
US4013088A (en) * 1975-05-19 1977-03-22 Braukmann Armaturen Ag Valve structure
AU6525086A (en) * 1985-10-21 1987-05-05 Zvi Weingarten Backflow preventer apparatus for fluid flow lines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083723A (en) * 1959-11-04 1963-04-02 Paul J Duchin Vacuum breaker
US3171423A (en) * 1961-07-24 1965-03-02 Watts Regulator Co Combination anti-siphon valve and backflow preventer
DE2157363A1 (en) * 1971-11-19 1973-05-24 Guenter Preuss PIPE BREAKER FOR LIQUID LINES
US3818929A (en) * 1973-04-23 1974-06-25 H Braukmann Reduced pressure backflow preventer valve
DE2414893A1 (en) * 1974-03-28 1975-10-02 Braukmann Armaturen Non-return and anti-syphoning valve - in which return flow is prevented by pressure increase in outlet line
DE2418822A1 (en) * 1974-04-19 1975-11-06 Braukmann Armaturen Domestic pipe non-return flow device - has pressure from seat of drain valve biassing flexible membrane during reverse flow
DE2424978A1 (en) * 1974-05-22 1975-12-04 Braukmann Armaturen Domestic water pipe supply disconnector - has fixed and movable non return valves and branch pipe for back pressure induced flow
US4013088A (en) * 1975-05-19 1977-03-22 Braukmann Armaturen Ag Valve structure
US4013089A (en) * 1975-09-17 1977-03-22 Braukmann Armaturen Ag Back flow preventer valve
AU6525086A (en) * 1985-10-21 1987-05-05 Zvi Weingarten Backflow preventer apparatus for fluid flow lines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709527A1 (en) * 1994-10-31 1996-05-01 Juergen Baelz Controls Gmbh Backflow prevention device
FR2795800A1 (en) * 1999-06-29 2001-01-05 Kane Kougyou Co Ltd FLOW INVERSION PREVENTION APPARATUS
WO2005012656A1 (en) * 2003-07-28 2005-02-10 Alfred Kärcher Gmbh & Co. Kg Backflow preventer
WO2012126287A1 (en) * 2011-03-22 2012-09-27 Li Feiyu Backflow prevention device connected between bathroom facility and drinking water system
CN106149813A (en) * 2016-08-25 2016-11-23 无锡市东北塘永丰橡塑厂 Water tube hose under a kind of platform basin odor-resistant anti-clogging
CN106149813B (en) * 2016-08-25 2018-07-10 无锡市东北塘永丰橡塑厂 Water tube hose under a kind of platform basin odor-resistant anti-clogging
US11982358B2 (en) 2021-10-22 2024-05-14 Hamilton Sundstrand Corporation Inline pneumatic valve with internal bushing

Similar Documents

Publication Publication Date Title
US4489746A (en) Backflow preventer apparatus
US3138174A (en) Automatic excess fluid flow valve
US5566704A (en) Backflow preventer and test cock assembly
US3283772A (en) Backflow prevention device with improved pressure sensing means
GB2102918A (en) Relief valve
US4276897A (en) Backflow prevention apparatus
GB2040406A (en) Flow-indicating check valves
US2720887A (en) Pressure reducing valve with over pressure relief
CA1213189A (en) Automatic reservoir bleed valve
JPS6333638A (en) Test apparatus for non-flow type pilot valve and testing method thereof
US4456028A (en) Relief gate valve
US4452272A (en) Check valve
US4190071A (en) Backflow prevention devices
US4622994A (en) Fluid handling device
US4364408A (en) Backflow prevention apparatus
WO1989011611A1 (en) Backflow preventer valve
US4109714A (en) Shutdown system for high pressure well
US4877052A (en) Check valve
US3746047A (en) High or low pressure cutoff control valve
US4638831A (en) Valve arrangement for unloading liquid flow at a non-return valve
US5655748A (en) Metering valve
US3982561A (en) Combination surge relief and back flow prevention valve
US4523607A (en) Backflow preventer apparatus
US3951164A (en) Anti-siphon and backflow prevention valve
US7389791B2 (en) Backflow preventer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642