WO1989007744A1 - Systeme de correction de la trajectoire d'un projectile - Google Patents

Systeme de correction de la trajectoire d'un projectile Download PDF

Info

Publication number
WO1989007744A1
WO1989007744A1 PCT/FR1989/000060 FR8900060W WO8907744A1 WO 1989007744 A1 WO1989007744 A1 WO 1989007744A1 FR 8900060 W FR8900060 W FR 8900060W WO 8907744 A1 WO8907744 A1 WO 8907744A1
Authority
WO
WIPO (PCT)
Prior art keywords
projectile
trajectory
objective
corrections
shell
Prior art date
Application number
PCT/FR1989/000060
Other languages
English (en)
Inventor
Georges Couderc
Jean-Louis Meyzonnette
Christian Pepin
Robert Pressiat
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Publication of WO1989007744A1 publication Critical patent/WO1989007744A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems
    • F41G7/301Details
    • F41G7/303Sighting or tracking devices especially provided for simultaneous observation of the target and of the missile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements

Definitions

  • the invention relates to a system for correcting the trajectory of a projectile so that it reaches a target which has been designated to it.
  • a projectile such as a shell, a rocket or a rocket
  • an objective or target such as an airplane, a helicopter or a tank.
  • a projectile such as a shell, a rocket or a rocket
  • an objective or target such as an airplane, a helicopter or a tank.
  • a high speed target such as an airplane
  • Such self-guided rockets give satisfactory results but are of a very high cost, a cost which can only be accepted to destroy even more expensive targets and which are located at relatively great distances, beyond five kilometers. Below this distance, rockets or rockets are often used which are aimed towards their objective with the help of information provided by the firing station, this information having the aim of maintaining the alignment of the firing station. target rocket regardless of its movements.
  • shells, fired by cannons or mortars which have the advantage of being relatively inexpensive, being light, having a high initial speed and being able to be fired at a high rate.
  • they have the major drawback that their trajectory, which is ballistic, can no longer be modified after their launch.
  • the hits are less frequent than with guided rockets because the target can move erratically during the course of the shell.
  • the actual trajectory of the shell may be different from the theoretical trajectory due to the variation of certain parameters such as wind speed and direction, the quality of the powder ...
  • these projectiles are equipped with "proximity rockets" which trigger the charge explosive when they pass close to the target.
  • the charge must explode at a relatively short distance, for example a few meters; however, with the vagaries of the trajectory of the projectile and the displacement of the target, the projectile often passes at a distance greater than the expected trigger value.
  • the object of the present invention is therefore to provide a system which makes it possible to modify the trajectory of a projectile, in particular of a shell, launched in the direction of a target so that it reaches the latter or passes at a distance small enough that by the explosion caused by its charge it certainly destroys the target.
  • a radio transmitter for transmitting the corrections to be applied to the projectile
  • the object of the invention is to propose a system which is better protected with respect to the interference emitted by the objective.
  • a system for correcting the trajectory of a projectile so that it reaches an objective which has been designated to it by a firing station having carried out its launching comprising:
  • - first calculation means for calculating a nominal trajectory of the projectile, as it reaches the objective, as well as its real trajectory, from the position and radial speed information of the objective and of the projectile;
  • c - second calculation means for calculating the differences between the actual trajectory of the projectile and its nominal trajectory; -.
  • the transmission and reception means for measuring the position and the radial speed of the objective and the projectile comprise an optical radar and in that the means for transmitting corrections comprise beam coding means laser emitted by optical radar.
  • the invention relates to a system for correcting the trajectory of a projectile launched so that it reaches an objective which has been designated to it by a firing station which has launched, comprising:
  • the transmission and reception means for measuring the position and the radial speed of the objective (4) and of the projectile comprise an optical radar; and in that the means for transmitting corrections comprise means for coding the laser beam emitted by the optical radar.
  • FIG. 1 is a diagram illustrating, in a vertical plane, the different trajectories to be calculated or measured
  • - Figure 2 is a diagram illustrating the deviation measurements along a vertical axis and a horizontal axis
  • - Figure 3 is a block diagram of the device on the ground of a system for correcting the trajectory of a projectile according to the invention
  • - Figure 4 is a time / frequency diagram showing the shape of the transmitted and received signals
  • - Figure 5 is a block diagram of the on-board device of the system for correcting the trajectory of a projectile according to the invention.
  • FIGS. 1 and 2 indicate the various parameters and data to be taken into account in order to understand the trajectory correction system of a projectile launched from a shooting station 1.
  • this shooting station is a tank armed with a cannon which fires a shell 2 towards an objective materialized by a helicopter 4 located at a horizontal distance Dh from the shooting station 1.
  • the parameters of the shooting were determined by ballistic means external to the object of the invention for the shell 2 to reach the helicopter 4 according to a theoretical trajectory Tt shown in the vertical plane of FIG. 1, containing the firing station 1 and the helicopter 4.
  • Tt shown in the vertical plane of FIG. 1, containing the firing station 1 and the helicopter 4.
  • the optical line of sight is materialized by the straight line 3 connecting the shooting station 1 and the helicopter 4.
  • the system of the invention first calculates at the shooting station the correction that has to be made to the actual trajectory Tr of the shell at a horizontal distance De from the helicopter 4 so that the shell 2 reaches 1 helicopter 4 or, at least, passes at a sufficiently short distance to be in the zone of action of the explosive charge triggered by a proximity rocket.
  • this correction information is sent to the shell 2 which includes means for modifying its trajectory at the distance De, that is to say at an instant te measured from an instant to fire the shell .
  • this correction is materialized in the vertical plane by an angle a between the tangent 5 to the real trajectory Tr at the instant te of the correction (distance De from the helicopter) and tangent to the final trajectory Tf which leads to impact with helicopter 4. It is clear that this angular correction a in the vertical plane is not enough because neither the helicopter 4, nor the shell 2, are in the vertical plane of FIG. 1 at the instant of correction te, plane which is that from the moment of shooting.
  • the helicopter 4 which was in the vertical plane materialized by the axis OY, is located at point A at time te while shell 2 is located at point B, the helicopter and the shell being separated by the horizontal distance De. It is therefore necessary to also make a horizontal angular correction b so as to bring the shell into the vertical plane passing through A.
  • the system is provided to code this correction information and send it to the shell.
  • the shell comprises means which enable it to receive said information and to use it in order to modify its trajectory in the direction of the helicopter.
  • the system for correcting the trajectory of a projectile in fact comprises two separate devices or equipment: one at the shooting station 1 and the other on board the shell 2 or projectile.
  • the equipment at the shooting station will be described using the block diagram of Figure 3 and the on-board equipment will be described using the block diagram in Figure 5.
  • the equipment attached to the shooting station 1 includes very schematically a whole optical radar 10 having a frequency-modulated laser transmitter and a coherent receiver, a device 11 for processing signals received in two ways, one of which corresponds to the shell and the other to the helicopter so as to measure for each of them their instantaneous distance D relative to the firing station and their instantaneous radial speed Vr, a display device 8 of the processed signals and corresponding information of distance and radial speed, a calculator 12 of the nominal and real trajectories of the shell, a calculator 13 of the deviations between the nominal and actual trajectories of the shell, a calculator 14 of the corrections a.
  • the various computers 12, 13 and 14 constitute a calculation unit 9 of the corrections to be made to the actual trajectory of the shell so that it reaches the helicopter.
  • the optical radar assembly 10 with the exception of the coding device 15, has for example been described in SPIE Proceeding Volume 783 and consists, for example, of a laser transmitter 16 which emits a coherent wave, which may be located in the infrared band.
  • a C0 2 laser can be used which has a wavelength of 10.6 microns.
  • the infrared beam is applied to a frequency modulator 17 which performs linear frequency modulation of the type illustrated by the curve 40 in FIG. 4.
  • This frequency modulated infrared signal is applied to the coding and transmission device 15, the various elements of which will be described later.
  • the device 15 does not modify the characteristics of the infrared emission beam when it is not activated, that is to say during most of the operating time of the system.
  • the modulated infrared beam passes downstream through a separation device 20 which transmits most of the emitted beam to an optical device 21 and the rest to a coherent receiver 25.
  • the received radiation corresponding to that of emission is on the other hand entirely directed towards the coherent receiver 25.
  • a scanning device 22 moves the infrared beam according to a determined law so as to explore a certain field to observe both the shell and the helicopter. This can be done, for example, in a line-to-line scan that covers a solid angle with an opening of about one to two degrees.
  • the scanning device 22 is controlled by a circuit 27 which also supplies synchronization signals SY to the modulator circuit 17, to the display device 8 and to the trajectory computer 12.
  • the devices 21 and 22 are located on a platform 28 which is oriented and controlled in azimuth and in elevation by a servomechanism 26 so as to maintain the shell and the helicopter in the solid angle of the optical scanning.
  • the servomechanism 26 receives signals from firing station 1, in particular when the shell is fired, and from the deviation calculator 13.
  • the signals from firing station 1 are intended to orient the platform slave form 28 in the direction of the helicopter or the shell so that the optical radar assembly 10 is wedged on one of these elements to be pursued.
  • the signals from the deviation calculator 13 are intended to keep the shell and the helicopter in the solid scanning angle when they tend to move away from it.
  • the output signals from the receiver 25 contain both information relating to the helicopter and other information relating to the shell. In order to separate them, these signals are applied to the processing device 11 which has two identical channels, one assigned to the signals coming from the shell and the other assigned to the signals coming from the helicopter. The separation is obtained using a mixer circuit 29 which receives, from an oscillator circuit 31, a signal having a frequency IF and from a mixer circuit 30 which receives, from an oscillator circuit 32, a signal having a frequency F2 significantly higher than FI.
  • the frequencies FI and F2 reflect the Doppler drift frequencies of the helicopter and the shell.
  • helicopter 4 has a radial speed of the order of a few tens of meters per second and which rarely exceeds 100 m / s while the radial speed of shell 2 varies between 500 m / s and 1200 m / s and the result is very different Doppler frequencies.
  • the frequencies FI and F2 on the one hand, the signals from the shell and the helicopter are separated by their separate Doppler drifts and, on the other hand, these signals can easily be transposed to frequencies allowing their treatment by two identical routes. This is how the transposed signals are applied to a spectrum analyzer 33, 34 in series with a computer 35, 36 which calculates the distance D and the radial speed Vr of the shell for a channel and of the helicopter for l other way.
  • FIG. 4 illustrates the method of calculating the distance and the radial speed, a principle which is considered to be known and which will therefore only be briefly recalled.
  • the frequency of the emitted wave 40 varies linearly as a function of time according to a sawtooth appearance, the two sides of which are symmetrical.
  • the respective information of distance D and radial speed Vr from the computers 35 and 36 are supplied, on the one hand, to the display device 8 and, on the other hand, to the trajectory computer 12.
  • the display device 8 shows on its screen an image of the shell and that of the helicopter according to an appropriate coordinate system.
  • the deviation calculator 13 performs a certain number of operations on the information provided to obtain the deviations according to these appropriate coordinates. From these differences, the computer 14 provides the corrections to be made to the trajectory of the shell so that it reaches in the final phase Tf the helicopter 4, the position and displacement parameters of which are known.
  • these corrections consist in determining the maneuvers to be carried out by the shell and they therefore depend on the type of directional organs with which the shell is equipped.
  • These directive organs can be small explosive charges placed on the periphery of the shell or even the control surfaces of a tail which deploy as soon as they exit the barrel.
  • the modifications of the trajectory can be obtained by the orientation of one or more nozzles, but also by control surfaces or even by explosive charges.
  • the projectile 14 must know its roll, that is to say its angular speed of rotation. tion, so that the correction is made in the desired direction.
  • the system includes the device 15 which comprises, on the one hand, a coding device 18 for the beam emitted and, on the other hand, a device 19 for modifying the divergence of the emitted beam, these two devices 18 and 19 being controlled respectively by control circuits 23 and 24 which receive corresponding information from the correction calculator 14.
  • the divergence device 19 aims to widen the laser beam emitted so that it illuminates the shell 2 with certainty. Such a device 19 could be eliminated in the event that means are provided to move the beam emitted and cause it to illuminate the shell during the transmission of orders.
  • the scanning device 22 can receive, from the calculation unit 9 through the scanning command 27, a scanning stop order on the one hand, and an orientation order towards the shell of somewhere else.
  • the coding device 18 can be of the all-or-nothing type, for example with total concealment by a shutter.
  • the team on board the projectile comprises, as shown in the functional diagram in FIG. 5, an optical device 50 for receiving the radiation emitted by the equipment 10 , a filter 51 adapted to the transmitted wave, 1 *
  • the computer 56 is connected to an inertial unit 57 which supplies it, on the one hand, with the reference of the vertical and, on the other hand, the roll of the shell.
  • its rear face includes a retro-reflective member, not shown, which returns the laser beam to the shooting station.
  • the operation of the shell trajectory correction system is as follows. As soon as the firing of the shell was carried out in the direction of the helicopter 4, the firing station 1 controls by the servomechanism 26 the bi-axis positioning of the platform 28 so that the optical axis of the laser beam is directed towards the helicopter 4. This allows the radar assembly 10 to detect the helicopter and to display its parameters on the display device 8. When the shell enters the solid scanning angle of the laser beam, it is detected and displayed on the display device 8 at the same time as the helicopter 4.
  • the trajectory calculator 12 which has also received from the firing station 1 the initial parameters of the shell, calculates the theoretical or nominal trajectory as well as the actual trajectory of the shell from the parameters that it measures by the corresponding processing channel (circuits 30, 34, 36).
  • the computer 13 calculates the differences between the two trajectories, which allows the computer 14 to calculate the corrections to be made to the actual trajectory of the shell in the event that the helicopter is stationary. In the case where it is not, the deviations are calculated between the real trajectory and the nominal trajectory leading to the impact, nominal trajectory which depends on the measurement of the parameters of displacement of the helicopter.
  • the corrections to be made are sent to the shell by coding the laser beam using the device 15. At the same time, the laser beam is made more divergent using devices 24 and 19 so as to illuminate the shell.
  • the correction code is detected and interpreted before being implemented in the computer 56 to control the directive members of the shell in order to direct it towards the point of impact.
  • the equipment associated with the firing station has been described with a processing device 11 having two parallel tracks. It is possible to have only one channel which would process sequentially and alternately the signals received from the shell, then those received from the helicopter. In this case, a single mixer would be used and a switch would allow the frequency signals FI and F2 to be applied sequentially to this mixer. The output signals from this mixer would then be applied to a single analyzer followed by a single calculator of parameters D and Vr. Such a solution can only be envisaged if the computer has a sufficiently high calculation speed.
  • the invention has been described in relation to a shell fired by a cannon, but it is clear that it applies to all other projectiles, in particular to a self-propelled machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne un système qui permet de corriger la trajectoire d'un projectile, notamment d'un obus, de manière qu'il atteigne un objectif qui lui a été désigné. L'invention réside dans le fait que le système comprend un radar optique (10) comportant un laser (16) émettant dans l'infrarouge qui permet, en association avec un dispositif de traitement (11), de suivre en même temps les déplacements de la cible et du projectile. Les informations fournies par le dispositif de traitement (11) permettent de calculer dans un calculateur (9) les corrections à effectuer à la trajectoire du projectile (2) dans une phase finale pour qu'elle rejoigne la cible (4). L'invention est applicable aux systèmes de conduite de tir d'obus et d'engins auto-propulsés.

Description

SYSTEME DE CORRECTION DE LA TRAJECTOIRE D'UN PROJECTIJ3
L'invention concerne un système qui permet de corriger la trajectoire d'un projectile de manière qu'il atteigne un objectif qui lui a été désigné.
Il existe de nombreux systèmes qui sont prévus pour qu'un projectile, tel qu'un obus, une roquette ou encore une fusée, atteigne un objectif ou une cible tel qu'un avion, un hélicoptère ou un char. Ces systèmes diffèrent les uns des autres selon la cible à atteindre et selon le projectile utilisé. C'est ainsi que pour une cible à grande vitesse, tel qu'un avion, on utilise de préférence une fusée auto-guidée gui, après son lancement en direction de l'objectif, se dirige elle-même vers le but en modifiant sa trajectoire initiale à l'aide des informations qui lui sont fournies par un radar de bord dont l'antenne est pointée vers la cible.
De telles fusées auto-guidées donnent des résultats satisfaisants mais sont d'un coût très élevé, coût qui ne peut être accepté que pour détruire des cibles encore plus onéreuses et qui sont situées à des distances relativement grandes, au-delà de cinq kilomètres. Au-dessous de cette distance, on utilise souvent des fusées ou roquettes qui sont dirigées vers leur objectif à l'aide d'informations fournies par le poste de tir, ces informations ayant pour but de maintenir l'aligne¬ ment poste de tir-fusée-cible quels que soient lès déplacements de cette dernière. On utilise également des obus, tirés par des canons ou des mortiers, qui ont l'avantage d'être relativement peu onéreux, d'être légers, d'avoir une grande vitesse initiale et de pouvoir être tirés à une cadence élevée. Cependant, ils présentent l'inconvénient majeur que leur trajectoire, qui est balistique, ne peut plus être modifiée après leur lancement. Il en résulte que les coups au but sont moins fréquents qu'avec des fusées guidées car la cible peut se déplacer de manière erratique pendant le trajet de l'obus. En outre, la trajectoire réelle de l'obus peut être différente de la trajectoire théorique par suite de la variation de certains paramètres tels que la vitesse et la direction du vent, la qualité de la poudre...
Pour améliorer l'efficacité au but des obus, ainsi que des fusées et des roquettes, notamment contre des cibles dites légères, c'est-à-dire relativement peu blindées, ces projectiles sont munis de "fusées de proximité" qui déclenchent la charge explosive lorsqu'ils passent à proximité de la cible. Pour être efficace, la charge doit exploser à une distance relativement faible, par exemple quelques mètres ; or, avec les aléas de trajectoire du projectile et de déplacement de la cible, le projectile passe souvent à une distance supérieure à la valeur de déclenchement prévue.
Le but de la présente invention est donc de réaliser un système qui permet de modifier la trajectoire d'un projectile, notamment d'un obus, lancé en direction d'une cible de manière qu'il atteigne cette dernière ou passe à une distance suffisamment faible pour que par l'explosion provoquée de sa charge il détruise à coup sûr la cible.
La demande de brevet français n° 2 129 948, au nom de la Demanderesse, décrit un système de guidage comportant :
- des moyens d'émission et de réception radar pour mesurer la position et la vitesse radiale de l'objectif et du projectile ;
- des moyens de calcul pour calculer une trajectoire nominale du projectile, telle qu'il atteigne l'objectif, ainsi que sa
10 trajectoire réelle, à partir des informations de position et de vitesse radiale de l'objectif et du projectile ;
- des moyens de calcul pour calculer les écarts entre la trajectoire réelle du projectile et sa trajectoire nominale ;
- des moyens de calcul pour calculer des corrections à appliquer
15 à la trajectoire réelle du projectile pour que le projectile atteigne l'objectif ; un émetteur radio pour transmettre au projectile les corrections à appliquer ;
- des moyens de réception radio et des moyens de commande
20 pour appliquer lesdites corrections, disposés à bord du système .
Ce système a pour inconvénient d'être sensible aux brouillages radio émis par l'objectif visé.
Le but de l'invention est de proposer un système qui soit mieux protégé vis-à-vis des brouillages émis par l'objectif . 25 Selon l'invention, un système de correction de la trajectoire d'un projectile pour qu'il atteigne un objectif qui lui a été désigné par un poste de tir ayant effectué son lancement, comportant :
- des moyens d'émission et de réception pour mesurer la position ,0 et la vitesse radiale de l'objectif et du projectile ;
- des premiers moyens de calcul pour calculer une trajectoire nominale du projectile, telle qu'il atteigne l'objectif, ainsi que sa trajectoire réelle, à partir des informations de position et de vitesse radiale de l'objectif et du projectile ;
,c - des deuxièmes moyens de calcul pour calculer les écarts entre la trajectoire réelle du projectile et sa trajectoire nominale ; -.
- des troisièmes moyens de calcul pour calculer des correction à appliquer à la trajectoire réelle du projectile pour que le projectile atteigne l'objectif ;
- des moyens pour transmettre au projectile les corrections à appliquer ;
- des moyens de réception et de commande pour appliquer lesdites corrections , disposés à bord du projectile ; est caractérisé en ce que les moyens d'émission et de réception pour mesurer la position et la vitesse radiale de l'objectif et du projectile, comportent un radar optique et en ce que les moyens pour transmettre des corrections comportent des moyens de codage du faisceau laser émis par le radar optique .
L'invention se rapporte à un système de correction de la trajectoire d'un projectile lancé de manière qu'il atteigne un objectif qui lui a été désigné par un poste de tir ayant effectué son lancement, comportant :
- des moyens d'émission et de réception pour mesurer la position et la vitesse radiale de l'objectif et du projectile ;
- des premiers moyens de calcul pour calculer une trajectoire nominale du projectile, telle qu'il atteigne l'objectif, ainsi que sa trajectoire réelle, à partir des informations de position et de vitesse radiale de l'objectif et du projectile *
- des deuxièmes moyens de calcul pour calculer les écarts entre la trajectoire réelle du projectile et sa trajectoire nominale ; - des troisièmes moyens de calcul pour calculer des correction à appliquer à la trajectoire réelle du projectile pour que le projectile atteigne l'objectif ;
- des moyens pour transmettre au projectile les corrections à appliquer ; ~ des moyens de réception et de commande pour appliquer lesdites corrections, disposés à bord du projectile ; caractérisé en ce que les moyens d'émission et de réception pour mesurer la position et la vitesse radiale de l'objectif (4) et du projectile, comportent un radar optique ; et en ce que les moyens pour transmettre des corrections comportent des moyens de codage du faisceau laser émis par le radar optique .
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :
- la figure 1 est un diagramme illustrant, dans un plan vertical, les différentes trajectoires à calculer ou à mesurer ;
- la figure 2 est un diagramme illustrant les mesures d'écartométrie selon un axe vertical et un axe horizontal ; - la figure 3 est un schéma fonctionnel du dispositif au sol d'un système de correction de la trajectoire d'un projectile selon l'invention ;
- la figure 4 est un diagramme temps/fréquence montrant l'allure des signaux émis et reçus ; et - la figure 5 est un schéma fonctionnel du dispositif embarqué du système de correction de la trajectoire d'un projectile selon l'invention.
Les diagrammes des figures 1 et 2 indiquent les différents paramètres et données à prendre en compte pour comprendre le système de correction de trajectoire d'un projectile lancé à partir d'un poste de tir 1. A titre d'exemple, ce poste de tir est un char armé d'un canon qui tire un obus 2 en direction d'un objectif matérialisé par un hélicoptère 4 situé à une distance horizontale Dh du poste de tir 1. Les paramètres du tir ont été déterminés par des moyens balistiques extérieurs à l'objet de l'invention pour que l'obus 2 atteigne l'hélicoptère 4 selon une trajectoire théorique Tt montrée dans le plan vertical de la figure 1, contenant le poste de tir 1 et l'hélicoptère 4. Dans ce plan vertical, la ligne de visée optique est matérialisée par la droite 3 reliant le poste de tir 1 et l'hélicoptère 4.
A cause de divers facteurs - température de la poudre, conditions aérologiques, vents ... - la trajectoire de l'obus s'écarte de sa trajectoire théorique Tt, qui est connue à chaque instant par des tables ou par calcul, pour suivre une trajectoire réelle Tr qui n'aboutit pas à l'impact avec l'hélicoptère 4 ; ceci d'autant plus que pendant la durée du trajet de l'obus - quelques secondes - l'hélicoptère 4 s'est déplacé et se trouve dans une position autre que celle qui correspond à la trajectoire théorique. Le système de l'invention calcule d'abord au poste de tir la correction qu'il y a à effectuer à la trajectoire réelle Tr de l'obus à une distance horizontale De de l'hélicoptère 4 pour que l'obus 2 atteigne l'hélicoptère 4 ou, au moins, passe à une distance suffisamment faible pour être dans la zone d'action de la charge explosive déclenchée par une fusée de proximité. Ensuite, cette information de correction est envoyée à l'obus 2 qui comporte des moyens pour modifier sa trajectoire à la distance De c'est-à-dire à un instant te mesuré à compter d'un instant to de tir de l'obus. Sur la figure 1, cette correction est matérialisée dans le plan vertical par un angle a entre la tangente 5 à la trajectoire réelle Tr à l'instant te de la correction (distance De de l'hélicoptère) et tangente à la trajectoire finale Tf qui mène à l'impact avec l'hélicoptère 4. Il est clair que cette correction angulaire a dans le plan vertical ne suffit pas car ni l'hélicoptère 4, ni l'obus 2, ne sont dans le plan vertical de la figure 1 à l'instant de correction te, plan qui est celui de l'instant du tir.
C'est ainsi que, comme le montre la figure 2, l'hélicoptère 4, qui se trouvait dans le plan vertical matérialisé par l'axe OY, est situé au point A à l'instant te tandis que l'obus 2 est situé au point B, l'hélicoptère et l'obus étant séparés par la distance horizontale De. Il y a donc lieu de faire également une correction angulaire horizontale b de manière à amener l'obus dans le plan vertical passant par A. Lorsque les corrections a et b ont été calculées, le système est prévu pour coder ces informations de correction et les envoyer à l'obus. A cet effet, l'obus comprend des moyens qui lui permettent de recevoir lesdites informations et les mettre en oeuvre afin d'infléchir sa trajectoire dans la direction de l'hélicoptère.
Le système de correction de la trajectoire d'un projectile selon l'invention comprend en fait deux dispositifs ou équipements distincts : l'un au poste de tir 1 et l'autre embarqué sur l'obus 2 ou projectile. L'équipement au poste de tir sera décrit à l'aide du schéma fonctionnel de la figure 3 et l'équipement embarqué sera décrit à l'aide du schéma fonctionnel de la figure 5. L'équipement adjoint au poste de tir 1 comprend de manière très schématique un ensemble radar optique 10 ayant un émetteur laser à modula¬ tion de fréquence et un récepteur cohérent, un dispositif de traitement 11 des signaux reçus selon deux voies dont l'une correspond à l'obus et l'autre à l'hélicoptère de manière à mesurer pour chacun d'eux leur distance instantanée D par rapport au poste de tir et leur vitesse radiale instantanée Vr, un dispositif de visualisation 8 des signaux traités et des informations correspondantes de distance et de vitesse radiale, un calculateur 12 des trajectoires nominale et réelle de l'obus, un calculateur 13 des écarts entre les trajectoires nominale et réelle de l'obus, un calculateur 14 des corrections a. et b à effectuer sur la trajectoire de l'obus en fonction de la valeur de ces écarts et un dispositif de codage et d'émission 15 des informations de correction calculées par le dispositif 14, dispositif qui est intégré au radar 10. Les différents calculateurs 12, 13 et 14 constituent un ensemble de calcul 9 des corrections à effectuer à la trajectoire réelle de l'obus pour qu'il atteigne l'hélicoptère.
L'ensemble radar optique 10, à l'exception du dispositif de codage 15, a par exemple été décrit dans le SPIE Proceeding Volume 783 et se compose, par exemple, d'un émetteur laser 16 qui émet une onde cohérente, pouvant se situer dans la bande infrarouge. On peut utiliser un laser C02 qui a une longueur d'onde de 10,6 microns. Le faisceau infrarouge est appliqué à un modulateur de fréquence 17 qui réalise une modulation linéaire de fréquence du type illustré par la courbe 40 de la figure 4. Ce signal infrarouge modulé en fréquence est appliqué au dispositif de codage et d'émission 15 dont les différents éléments seront décrits ultérieurement. Le dispositif 15 ne modifie par les caractéristiques du faisceau infrarouge d'émission lorsqu'il n'est pas activé, c'est-à-dire pendant la plus grande partie du temps de fonctionnement du système.
Le faisceau infrarouge modulé traverse en aval un dispositif de séparation 20 qui transmet la plus grande partie du faisceau émis vers un dispositif optique 21 et le reste vers un récepteur cohérent 25. Le rayonnement reçu correspondant à celui d'émission est par contre entièrement dirigé vers le récepteur cohérent 25. Un dispositif de balayage 22 réalise un déplacement du faisceau infrarouge selon une loi déterminée de manière à explorer un certain champ pour observer à la fois l'obus et l'hélicoptère. Ceci peut être produit, par exemple, selon un balayage ligne à ligne qui couvre un angle solide ayant une ouverture d'un à deux degrés environ. Le dispositif de balayage 22 est commandé par un circuit 27 qui fournit par ailleurs des signaux de synchronisation SY au circuit modulateur 17, au dispositif de visualisation 8 et au calculateur de trajectoire 12.
Les dispositifs 21 et 22 sont situés sur une plate-forme 28 qui est orientée et asservie en azimut et en site par un servomécanisme 26 de manière à maintenir l'obus et l'hélicoptère dans l'angle solide du balayage optique. A cet effet, le servomécanisme 26 reçoit des signaux en provenance du poste de tir 1, notamment au moment du tir de l'obus, et en provenance du calculateur des écarts 13. Les signaux en provenance du poste de tir 1 ont pour but d'orienter la plate-forme asservie 28 en direction de l'hélicoptère ou de l'obus afin que l'ensemble radar optique 10 se cale sur l'un de ces éléments à poursuivre. Les signaux en provenance du calculateur d'écarts 13 ont pour but de maintenir l'obus et l'hélicoptère dans l'angle solide de balayage lorsqu'ils ont tendance à s'en éloigner.
Les signaux de sortie du récepteur 25 contiennent à la fois des informations concernant l'hélicoptère et d'autres concernant l'obus. Afin de les séparer, ces signaux sont appliqués au dispositif de traitement 11 qui comporte deux voies identiques, l'une affectée aux signaux provenant de l'obus et l'autre affectée aux signaux provenant de l'hélicoptère. La séparation est obtenue à l'aide d'un circuit mélangeur 29 qui reçoit, d'un circuit oscillateur 31, un signal ayant une fréquence FI et d'un circuit mélangeur 30 qui reçoit, d'un circuit oscillateur 32, un signal ayant une fréquence F2 nettement plus élevée que FI. Les fréquences FI et F2 sont le reflet des fréquences de dérive Doppler de l'hélicoptère et de l'obus. En effet, l'hélicop¬ tère 4 a une vitesse radiale de l'ordre de quelques dizaines de mètres par seconde et qui dépasse rarement 100 m/s tandis que la vitesse radiale de l'obus 2 varie entre 500 m/s et 1200 m/s et il en résulte des fréquences doppler très différentes. En choisissant judicieusement les valeurs de fréquence FI et F2, d'une part, on sépare les signaux de l'obus et de l'hélicoptère par leurs dérives Doppler distinctes et, d'autre part, on peut transposer aisément ces signaux à des fréquences permettant leur traitement par deux voies iden¬ tiques. C'est ainsi que les signaux transposés sont appliqués à un analyseur de spectre 33, 34 en série avec un calculateur 35, 36 qui calcule la distance D et la vitesse radiale Vr de l'obus pour une voie et de l'hélicoptère pour l'autre voie.
La figure 4 illustre le mode de calcul de la distance et de la vitesse radiale, principe qui est considéré comme connu et qui ne sera donc rappelé que succinctement. Sur ce diagramme, la fréquence de l'onde émise 40 varie linéairement en fonction du temps selon une allure en dent de scie dont les deux côtés sont symétriques. L'onde reçue 41 d'un objet varie également linéairement en fréquence mais est décalée de la valeur de fréquence Doppler Fd selon la formule : Fd = 2Vr/<e dans laquelle e est la lonngueur d'onde du laser 16. La courbe en tirets 42 décalée deΔT par rapport à 41 en fonction de la distance instantanée d'éloignement D, correspond à l'onde reçue pour une fréquence doppler nulle soit Fd=0. Ce diagramme permet de déduire les relations :
D = C/4K (F" + F+) et Vr = e/2 (*"" " *"+) dans lesquelles c est la vitesse de la lumière, K la vitesse de variation de la fréquence, F+ ******* Fo - Fd et F" ≈ Fo + Fd, Fo étant l'excursion maximale de la fréquence de l'onde émise due à la modulation dans le modulateur 17.
Les informations respectives de distance D et de vitesse radiale Vr issues des calculateurs 35 et 36 sont fournies, d'une part, au dispositif de visualisation 8 et, d'autre part, au calculateur de trajectoire 12. Le dispositif de visualisation 8 fait apparaître sur son écran une image de l'obus et celle de l'hélicoptère selon un système de coor¬ données approprié. Le calculateur d'écarts 13 effectue sur les informations fournies un certain nombre d'opérations pour obtenir les écarts selon ces coordonnées appropriées. A partir de ces écarts, le calculateur 14 fournit les corrections à apporter à la trajectoire de l'obus pour qu'il atteigne dans la phase finale Tf l'hélicoptère 4 dont on connaît les paramètres de position et de déplacement.
Plus précisément, ces corrections consistent à déterminer les manoeuvres à faire effectuer par l'obus et elles dépendent donc du type d'organes directifs dont l'obus est équipé. Ces organes directifs peuvent êtres de petites charges explosives disposées sur la périphérie de l'obus ou encore les gouvernes d'un empennage qui se déploie¬ raient dès la sortie du canon. Dans le cas de projectiles auto-propulsés, les modifications de la trajectoire peuvent être obtenues par l'orientation d'une ou de plusieurs tuyères, mais aussi par des gouvernes ou encore par des charges explosives. Quels que soient les organes directifs qui sont utilisés, le projectile 14 doit connaître son roulis, c'est-à-dire sa vitesse angulaire de rota- tion, de manière que la correction s'effectue dans la direction souhaitée.
Pour transmettre à l'obus les ordres de correction de sa trajectoire, quelle que soit leur forme plus ou moins élaborée, le système comprend le dispositif 15 qui comporte, d'une part, un dispo¬ sitif de codage 18 du faisceau émis et, d'autre part, un dispositif de modification 19 de la divergence du faisceau émis, ces deux dispositifs 18 et 19 étant commandés respectivement par des circuits de commande 23 et 24 qui reçoivent des informations correspondantes du calculateur de corrections 14. Le dispositif de divergence 19 a pour but d'élargir le faisceau laser émis pour qu'il illumine l'obus 2 de manière certaine. Un tel dispo¬ sitif 19 pourrait être supprimé au cas où des moyens seraient prévus pour déplacer le faisceau émis et l'amener à illuminer l'obus pendant la transmission des ordres. Par exemple, le dispositif de balayage 22 peut recevoir, de l'ensemble de calcul 9 à travers la commande de balayage 27, un ordre d'arrêt de balayage d'une part, et un ordre d'orientation vers l'obus d'autre part. Le dispositif de codage 18 peut être du type tout ou rien, par exemple à occultation totale par un obturateur.
Pour recevoir et interpréter le code de correction transmis par le faisceau laser, l'équipe¬ ment à bord du projectile comprend, comme le montre le schéma fonctionnel de la figure 5, un dispositif optique de réception 50 du rayonnement émis par l'équipement 10, un filtre 51 adapté à l'onde émise, 1*
un détecteur-préamplificateur 52 du rayonnement filtré, un amplificateur passe-bande 53, un circuit écrêteur 54, un circuit d'interprétation 55 du code de correction et un calculateur 56 des commandes à effectuer sur les organes directifs pour obtenir la correction désirée. Pour effectuer ce calcul, le calculateur 56 est connecté à une centrale à inertie 57 qui lui fournit, d'une part, la référence de la verticale et, d'autre part, le roulis de l'obus. Pour que l'obus soit plus facilement détec¬ table par le radar laser, sa face arrière comporte un organe rétro-réflecteur, non représenté, qui renvoie le faisceau laser vers le poste de tir.
Le fonctionnement du système de correction de la trajectoire de l'obus est alors le suivant. Dès que le tir de l'obus a été réalisé en direction de l'hélicoptère 4, le poste de tir 1 commande par le servomécanisme 26 le positionnement bi-axe de la plate-forme 28 pour que l'axe optique du faisceau laser soit dirigé vers l'hélicoptère 4. Ceci permet à l'ensemble radar 10 de détecter l'hélicoptère et de visualiser ses paramètres sur le dispositif de visualisation 8. Lorsque l'obus pénètre dans l'angle solide de balayage du faisceau laser, il est détecté et visualisé sur le dispositif de visualisation 8 en même temps que l'hélicoptère 4.
C'est alors que le calculateur de trajec¬ toires 12, qui a reçu par ailleurs du poste de tir 1 les paramètres initiaux de l'obus, calcule la trajectoire théorique ou nominale ainsi que la trajectoire réelle de l'obus à partir des paramètres qu'il mesure par la voie de traitement corres¬ pondante (circuits 30, 34, 36). Le calculateur 13 calcule les écarts entre les deux trajectoires, ce qui permet au calculateur 14 de calculer les correc- tions à effectuer à la trajectoire réelle de l'obus dans le cas où l'hélicoptère serait stationnaire. Dans le cas où il ne l'est pas, les écarts sont calculés entre la trajectoire réelle et la trajec¬ toire nominale conduisant à l'impact, trajectoire nominale qui dépend de la mesure des paramètres de déplacement de l'hélicoptère. Lorsque l'obus et l'hélicoptère ne sont plus séparés que par une distance horizontale prédéterminée ou calculée De, les corrections à effectuer sont envoyées à l'obus par codage du faisceau laser à l'aide du dispositif 15. En même temps, le faisceau laser est rendu plus divergent à l'aide des dispositifs 24 et 19 de manière à illuminer l'obus. Sur l'obus, le code de correction est détecté et interprété avant d'être mis en oeuvre dans le calculateur 56 pour commander les organes directifs de l'obus afin de le diriger vers le point d'impact.
L'équipement associé au poste de tir a été décrit avec un dispositif de traitement 11 co por- tant deux voies parallèles. Il est possible de n'avoir qu'une seule voie qui traiterait séquentiel¬ lement et alternativement les signaux reçus de l'obus, puis ceux reçus de l'hélicoptère. Dans ce cas, un seul mélangeur serait utilisé et un commutateur permettrait d'appliquer séquentiellement les signaux de fréquences FI et F2 à ce mélangeur. Les signaux de sortie de ce mélangeur seraient ensuite appliqués à un seul analyseur suivi d'un seul calculateur des paramètres D et Vr. Une telle solution n'est envisageable que si le calculateur a une vitesse de calcul suffisamment élevée.
L'invention a été décrite en relation avec un obus tiré par un canon, mais il est clair qu'elle s'applique à tous autres projectiles, notamment à un engin auto-propulsé.

Claims

REVENDICATIONS
1. Système de correction de la trajectoire d'un projectile lancé pour qu'il atteigne un objectif qui lui a été désigné par un poste de tir ayant effectué son lancement, comportant :
- des moyens d'émission et de réception (10, 11) pour mesurer la position et la vitesse radiale de l'objectif (4) et du projectile (2) ; des premiers moyens de calcul ( 12) pour calculer une trajectoire nominale du projectile, telle qu'il atteigne l'objectif , ainsi que sa trajectoire réelle , à partir des
10 informations de position et de vitesse radiale de l'objectif et du projectile ;
- des deuxièmes moyens de calcul (13) pour calculer les écarts entre la trajectoire réelle du projectile et sa trajectoire nominale ;
15
- des troisièmes moyens de calcul (14) pour calculer des correction à appliquer à la trajectoire réelle du projectile pour que le projectile atteigne l'objectif ;
- des moyens (15) pour transmettre au projectile les corrections à appliquer ;
20
- des moyens de réception et de commande (50) à (57) pour appliquer lesdites corrections, disposés à bord du projectile ; caractérisé en ce que les moyens d'émission et de réception (10, 11) pour mesurer la position et la vitesse radiale de
„ l'objectif (4) et du projectile (2) , comportent un radar optique
(10, 11) ; et en ce que les moyens (15) pour transmettre des corrections comportent des moyens (18, 23) de codage du faisceau laser émis par le radar optique (10, 11) .
2. Système de correction selon la revendication 1, caractérisé en ce que le radar optique comporte un dispositif de
30 traitement (11) comportant : des moyens (29) à (32) pour 1S séparer les signaux reçus de l'objectif (4) de ceux reçus du projectile (2) ; des moyens (33) , (34) pour mesurer séparément t les fréquences de ces signaux respectifs ; et des moyens de calcul (35) , (36) pour calculer la distance D et la vitesse radiale Vr de l'objectif et du projectile, à partir des valeurs de fréquence mesurées .
3. Système de correction selon la revendication 2, caractérisé en ce que les moyens (29) , (32) pour séparer les signaux reçus de l'objectif de ceux reçus du projectile
10 comprennent deux circuits mélangeurs (29) , (30) auxquels sont appliqués respectivement deux signaux de référence ayant des fréquences (F1) , (F2) correspondant à différentes fréquences doppler à détecter.
4. Système de correction selon la revendication 2, i r caractérisé en ce que les moyens pour mesurer les fréquences des signaux reçus comprennent au moins un analyseur de spectre (33) , (34) .
5. Système de correction selon l'une quelconque des revendications précédentes 1 à 4, caractérisé en ce que les
20 moyens de calcul pour calculer : les trajectoires nominale et réelle du projectile, les écarts entre lesdites trajectoires, et les corrections à effectuer à la trajectoire réelle, forment un ensemble calculateur (9) qui fournit au moins une information angulaire de correction de la trajectoire du projectile par
25 rapport à un plan de référence.
G. Système de correction selon la revendication 1, caractérisé en ce que les moyens (15) pour transmettre au projectile les corrections à appliquer comprennent en outre un dispositif (19) (24) d'élargissement du faisceau émis de manière
,0 à préserver l'illumination du projectile lors de la transmission des corrections.
7. Système de correction selon l'une quelconque des revendications précédentes 1 à 6, caractérisé en ce que les moyens de réception de commande disposés à bord du projectile
,- (2) comprennent : un récepteur (50) à (54) des signaux codés émis par les moyens d'émission (10) , (11) ; un circuit de décodage (55) du code desdits signaux ; un calculateur (56) de commande des organes directifs du projectile ; et une centrale à inertie (57) donnant une direction de référence au calculateur.
8. Système de correction selon la revendication 7, caractérisé en ce que le projectile porte en outre un dispositif rétro -réflecteur des signaux émis par l'ensemble radar optique .
PCT/FR1989/000060 1988-02-17 1989-02-17 Systeme de correction de la trajectoire d'un projectile WO1989007744A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8801858A FR2627269B1 (fr) 1988-02-17 1988-02-17 Systeme de correction de la trajectoire d'un projectile
FR88/01858 1988-02-17

Publications (1)

Publication Number Publication Date
WO1989007744A1 true WO1989007744A1 (fr) 1989-08-24

Family

ID=9363328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000060 WO1989007744A1 (fr) 1988-02-17 1989-02-17 Systeme de correction de la trajectoire d'un projectile

Country Status (4)

Country Link
US (1) US5102065A (fr)
EP (1) EP0356503A1 (fr)
FR (1) FR2627269B1 (fr)
WO (1) WO1989007744A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767A1 (fr) * 1997-04-03 1998-10-09 Giat Ind Sa Procede de programmation en vol d'un instant de declenchement d'un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede
WO2008035338A2 (fr) * 2006-09-20 2008-03-27 Elta Systems Ltd. Procédé et système de protection active
RU2525829C1 (ru) * 2013-02-13 2014-08-20 Министерство обороны Российской Федерации Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты
FR3035205A1 (fr) * 2015-04-20 2016-10-21 Roxel France Dispositif de correction de trajectoire d'un projectile et procede de correction de trajectoire

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679654B1 (fr) * 1991-07-23 1996-02-09 Thomson Csf Systeme d'imagerie a mesure integree de l'usure de ses elements optiques travaillant en transmission, et equipement optronique d'imagerie comportant un tel systeme d'imagerie.
FR2727215B1 (fr) * 1994-11-18 1996-12-20 Thomson Csf Dispositif de veille panoramique infrarouge statique a detecteurs matriciels multiples
FR2733111B1 (fr) * 1995-04-11 1997-05-23 Thomson Csf Procede de detection a cycles d'integration et de lecture repartis pour camera a balayage, et barrette de detection correspondante
US5788180A (en) * 1996-11-26 1998-08-04 Sallee; Bradley Control system for gun and artillery projectiles
US5637826A (en) * 1996-02-07 1997-06-10 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for optimal guidance
IL117589A (en) * 1996-03-21 2001-10-31 Israel Aircraft Ind Ltd Air-to-air missile guidance system
FR2752619B1 (fr) 1996-08-23 1998-11-13 Thomson Csf Procede et dispositif de reconnaissance air-sol pour equipement optronique
US5695152A (en) * 1996-09-18 1997-12-09 Israel Aircraft Industries Ltd. System for correcting flight trajectory of a projectile
US5862496A (en) * 1996-10-01 1999-01-19 Mcdonnell Douglas Corporation Method of computing divert velocity for the ground-based interceptor using numerical partial derivatives
DE19740888C2 (de) * 1997-09-17 1999-09-02 Rheinmetall W & M Gmbh Verfahren zum autonomen Lenken eines drallstabilisierten Artilleriegeschosses und autonom gelenktes Artilleriegeschoß zur Durchführung des Verfahrens
US6722609B2 (en) 1998-02-13 2004-04-20 James M. Linick Impulse motor and apparatus to improve trajectory correctable munitions including cannon launched munitions, glide bombs, missiles, rockets and the like
US6318667B1 (en) * 1999-03-31 2001-11-20 Raymond C. Morton Stealth weapon systems
US6817569B1 (en) 1999-07-21 2004-11-16 General Dynamics Ordnance And Tactical Systems, Inc. Guidance seeker system with optically triggered diverter elements
EP1196733B1 (fr) 1999-07-21 2005-10-05 General Dynamics Ordnance and Tactical Systems, Inc. Guidage de projectile a reseau en anneau a l'aide d'elements deflecteurs a declenchement optique
US6267326B1 (en) 1999-08-09 2001-07-31 The Boeing Company Universal driver circuit for actuating both valves and ordnances
SE517023C2 (sv) * 1999-08-18 2002-04-02 Saab Ab Förfarande för styrning av en robot och ett styrsystem för styrning av en robot
US6474592B1 (en) * 2001-05-25 2002-11-05 Tadiran Spectralink Ltd. System and method for munition impact assessment
DE10147837A1 (de) * 2001-09-27 2003-04-24 Rheinmetall Landsysteme Gmbh Wurfsystem für einen Gefechtskopf mit einer Richtvorrichtung zur Neutralisierung von Minen
UA63801A (en) * 2003-07-01 2004-01-15 Serhii Oleksandrovych Shumov Portable anti-aircraft rocket complex
UA98976C2 (ru) * 2007-09-21 2012-07-10 Райнметалл Ваффе Мунитион Гмбх Способ оптического программирования снаряда и система для его осуществления
US7947937B1 (en) * 2007-10-19 2011-05-24 Langner F Richard Laser guided projectile device and method therefor
DE102010004820A1 (de) * 2010-01-15 2011-07-21 Rheinmetall Air Defence Ag Verfahren zur Flugbahnkorrektur eines insbesondere endphasengelenkten Geschosses sowie Geschoss zur Durchführung des Verfahrens
US8510041B1 (en) * 2011-05-02 2013-08-13 Google Inc. Automatic correction of trajectory data
JP2013117362A (ja) * 2011-12-05 2013-06-13 Kawasaki Heavy Ind Ltd 飛しょう体の誘導システム
EP2602638A1 (fr) * 2011-12-08 2013-06-12 Thales Nederland B.V. Procédé pour déterminer le point d'impact d'un projectile tiré sur une cible au-dessus de la surface de la mer et système de radar appliquant ledit procédé
IL236338B (en) * 2014-12-18 2018-12-31 Israel Aerospace Ind Ltd Guidance system and method
IL242320B (en) 2015-10-28 2022-02-01 Israel Aerospace Ind Ltd Projectile, and system and method for steering a projectile
US10656261B2 (en) * 2015-12-30 2020-05-19 Bowie State University Universal method for precise projectile flight prediction
US10696402B2 (en) 2018-10-31 2020-06-30 Fortem Technologies, Inc. Detachable projectile module system for operation with a flying vehicle
US10859346B2 (en) * 2018-10-31 2020-12-08 Fortem Technologies, Inc. System and method of managing a projectile module on a flying device
US11597517B2 (en) 2018-10-31 2023-03-07 Fortem Technologies, Inc. System and method of providing a cocklebur net in a projectile module
US11498679B2 (en) 2018-10-31 2022-11-15 Fortem Technologies, Inc. System and method of providing a projectile module having a net with a drawstring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567163A (en) * 1964-10-08 1971-03-02 Martin Marietta Corp Guidance system
FR2129948A1 (fr) * 1971-03-23 1972-11-03 Thomson Csf
US3796396A (en) * 1971-10-29 1974-03-12 C Crovella Method and apparatus for modulating a pyrotechnic tracer
FR2351419A1 (fr) * 1975-04-04 1977-12-09 Int Standard Electric Corp Appareil pour la mesure simultanee de la distance et de la vitesse relative
US4389647A (en) * 1980-12-22 1983-06-21 The United States Of America As Represented By The Secretary Of The Army Doppler discrimination of aircraft targets
EP0151480A2 (fr) * 1984-02-07 1985-08-14 Compagnie Industrielle des Lasers CILAS ALCATEL Dispositif laser pour guider un missile sur une cible

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898340A (en) * 1982-01-15 1990-02-06 Raytheon Company Apparatus and method for controlling a cannon-launched projectile
DE3441921A1 (de) * 1984-11-16 1986-05-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Leitstrahl- und nachfuehreinrichtung
US4750688A (en) * 1985-10-31 1988-06-14 British Aerospace Plc Line of sight missile guidance
EP0222570B1 (fr) * 1985-10-31 1993-06-30 British Aerospace Public Limited Company Systèmes de guidage de missile
DE3675926D1 (de) * 1986-01-30 1991-01-10 Oerlikon Buehrle Ag Vorrichtung zum lenken eines flugkoerpers.
GB2186760B (en) * 1986-02-14 1990-01-04 Philips Electronic Associated Information transmission system
US4925129A (en) * 1986-04-26 1990-05-15 British Aerospace Public Limited Company Missile defence system
US4696441A (en) * 1986-05-06 1987-09-29 The United States Of America As Represented By The Secretary Of The Army Missile referenced beamrider
US4732349A (en) * 1986-10-08 1988-03-22 Hughes Aircraft Company Beamrider guidance system
FR2627268B1 (fr) * 1988-02-12 1993-05-14 Thomson Brandt Armements Systeme de guidage de vecteur par faisceau laser et impulseurs pyrotechniques, et vecteur guide par un tel systeme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567163A (en) * 1964-10-08 1971-03-02 Martin Marietta Corp Guidance system
FR2129948A1 (fr) * 1971-03-23 1972-11-03 Thomson Csf
US3796396A (en) * 1971-10-29 1974-03-12 C Crovella Method and apparatus for modulating a pyrotechnic tracer
FR2351419A1 (fr) * 1975-04-04 1977-12-09 Int Standard Electric Corp Appareil pour la mesure simultanee de la distance et de la vitesse relative
US4389647A (en) * 1980-12-22 1983-06-21 The United States Of America As Represented By The Secretary Of The Army Doppler discrimination of aircraft targets
EP0151480A2 (fr) * 1984-02-07 1985-08-14 Compagnie Industrielle des Lasers CILAS ALCATEL Dispositif laser pour guider un missile sur une cible

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTZ Nachrichtentechnische Zeitschrift, vol. 30, no. 3, 1977 U. Raudonat et al.: "Mehrzielf{higes FM-CW-Radar zur eindeutigen Messung von Entfernung und Geschwindigkeit" pages 255-260, *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767A1 (fr) * 1997-04-03 1998-10-09 Giat Ind Sa Procede de programmation en vol d'un instant de declenchement d'un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede
EP0887613A2 (fr) * 1997-04-03 1998-12-30 Giat Industries Procédé de programmation en vol d'un instant de déclenchement d'un élément de projectile, conduite de tir et fusée mettant en oeuvre un tel procédé
EP0887613A3 (fr) * 1997-04-03 1999-01-20 Giat Industries Procédé de programmation en vol d'un instant de déclenchement d'un élément de projectile, conduite de tir et fusée mettant en oeuvre un tel procédé
US6216595B1 (en) 1997-04-03 2001-04-17 Giat Industries Process for the in-flight programming of a trigger time for a projectile element
WO2008035338A2 (fr) * 2006-09-20 2008-03-27 Elta Systems Ltd. Procédé et système de protection active
WO2008035338A3 (fr) * 2006-09-20 2008-05-22 Elta Systems Ltd Procédé et système de protection active
RU2525829C1 (ru) * 2013-02-13 2014-08-20 Министерство обороны Российской Федерации Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты
FR3035205A1 (fr) * 2015-04-20 2016-10-21 Roxel France Dispositif de correction de trajectoire d'un projectile et procede de correction de trajectoire
WO2016169760A1 (fr) * 2015-04-20 2016-10-27 Roxel France Dispositif de correction de trajectoire d'un projectile et procede de correction de trajectoire

Also Published As

Publication number Publication date
FR2627269B1 (fr) 1993-05-14
EP0356503A1 (fr) 1990-03-07
FR2627269A1 (fr) 1989-08-18
US5102065A (en) 1992-04-07

Similar Documents

Publication Publication Date Title
WO1989007744A1 (fr) Systeme de correction de la trajectoire d&#39;un projectile
US6738012B1 (en) Protecting commercial airliners from man portable missiles
DK2802838T3 (en) ANTI ROCKET SYSTEM
US20200062392A1 (en) Low-altitude unmanned aerial vehicle surveillance system
US8115665B2 (en) Method and system for extending operational electronic range of a vehicle
US20200064443A1 (en) Method of identifying and neutralizing low-altitude unmanned aerial vehicle
EP1719969B1 (fr) Procédé de commande d&#39;une munition ou sous-munition, systèm d&#39;attaque, munition et désignateur mettant en oeuvre un tel procédé
FR2607585A1 (fr) Mine a tir indirect d&#39;attaque de vehicule blinde
FR2890760A1 (fr) Systeme et procede de guidage.
GB2289815A (en) Projectile guidance
US5355767A (en) Radio emission locator employing cannon launched transceiver
CA2372855C (fr) Procede et dispositif de guidage electromagnetique, appliques notamment a la poursuite de cibles
EP2600097B1 (fr) Procédé de contrôle du déclenchement d&#39;une charge militaire, dispositif de contrôle et fusée de projectile mettant en oeuvre un tel procédé
US20230400282A1 (en) Countermeasure system having a confirmation device and method thereof
EP0809084B1 (fr) Dispositif de détermination de l&#39;orientation en roulis d&#39;un engin volant, notamment d&#39;une munition
RU2367893C2 (ru) Способ повышения живучести беспилотных летательных аппаратов, преодолевающих зоны радиотехнического противодействия и активного поражения (варианты)
EP1257778B1 (fr) Dispositif de protection d&#39;une zone de terrain contre les menaces ennemies
EP0624805A1 (fr) Procédé d&#39;amélioration du pointage d&#39;une arme par obus précurseurs et obus correspondant
EP2639596B1 (fr) Objet volant guidé sur faisceaux électro-magnétiques
FR3005359A1 (fr) Procede et dispositif de protection des aeronefs basse altitude vis-a-vis des missiles sol/air
EP2515066A1 (fr) Dispositif de guidage différentiel par imagerie active laser
Maltese et al. Countering MANPADS: study of new concepts and applications
EP4390298A1 (fr) Procédé et dispositif de détermination d&#39;impact de tir
EP4248164A1 (fr) Système de guidage d&#39;une munition
FR2660064A1 (fr) Procede de guidage pour projectiles et dispositifs pour la mise en óoeuvre du procede.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989902791

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989902791

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989902791

Country of ref document: EP