WO1989006830A1 - Silver halide photographic material and process for its preparation - Google Patents

Silver halide photographic material and process for its preparation Download PDF

Info

Publication number
WO1989006830A1
WO1989006830A1 PCT/JP1989/000038 JP8900038W WO8906830A1 WO 1989006830 A1 WO1989006830 A1 WO 1989006830A1 JP 8900038 W JP8900038 W JP 8900038W WO 8906830 A1 WO8906830 A1 WO 8906830A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver halide
grains
emulsion
halide
Prior art date
Application number
PCT/JP1989/000038
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeharu Urabe
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63007853A external-priority patent/JPH07104569B2/en
Priority claimed from JP63007851A external-priority patent/JPH0723218B2/en
Priority claimed from JP785288A external-priority patent/JPH01183644A/en
Priority claimed from JP63194862A external-priority patent/JPH0778600B2/en
Priority claimed from JP63194861A external-priority patent/JPH0769580B2/en
Priority claimed from JP63195778A external-priority patent/JPH0782208B2/en
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to EP89908140A priority Critical patent/EP0370116B1/en
Priority to DE68924693T priority patent/DE68924693T2/en
Publication of WO1989006830A1 publication Critical patent/WO1989006830A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/14Methine and polymethine dyes with an odd number of CH groups
    • G03C1/18Methine and polymethine dyes with an odd number of CH groups with three CH groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • G03C1/047Proteins, e.g. gelatine derivatives; Hydrolysis or extraction products of proteins
    • G03C2001/0473Low molecular weight gelatine

Definitions

  • the present invention relates to a silver halide photographic material useful in the field of photography and a method for producing the same. More specifically, the microscopic halide distribution inside each silver halide mixed crystal is completely uniform, and / or the inside of the silver halide crystal also contains reduced silver generated during grain formation.
  • the present invention relates to a photographic light-sensitive material using a silver halide emulsion having silver halide grains and a method for producing the same.
  • the technology is disclosed in the issue.
  • JP-A-58-9137, JP-A-58-9573, JP-A-59-48755, JP-A-61-215540 The technique is disclosed in Japanese Patent Application Laid-Open No. 62-69261.
  • the particle surface is higher than the inside
  • the technique of the coachul emulsion having a silver iodide content is disclosed in JP-A-56-78831 and JP-A-62-19843.
  • silver halide grains are produced by reacting an aqueous silver salt solution and an aqueous halide salt solution in an aqueous colloid solution in a reaction vessel.
  • a protective jet such as gelatin and an aqueous solution of a halogen salt are placed, and while stirring, an aqueous solution of a silver salt is added thereto for a certain time, or a gelatin aqueous solution is placed in the reaction vessel.
  • a double-jet method in which an aqueous solution of a halogen salt and an aqueous solution of a silver salt are added for a certain period of time is known. Comparing the two, the double jet method gives silver halide grains with a narrower grain size distribution, and the halide composition can be freely changed as the grains grow.
  • the growth rate of silver halide grains varies greatly depending on the concentration of silver ion (halogen ion) in the reaction solution, the concentration of the silver halide solvent, the distance between grains, the grain size, and the like. ing.
  • the non-uniformity of silver ion or halogen ion concentration created by the aqueous silver salt solution and the aqueous solution of haegent salt added to the reaction vessel causes the growth rate to differ depending on each concentration, and as a result It causes unevenness in the silver halide emulsion that emerges.
  • the silver ion or halogen solution in the reaction vessel should be uniformly mixed, and the silver salt aqueous solution and the hacogen salt solution should be mixed rapidly. It is necessary.
  • the concentration of the halogen ion and the silver ion in the vicinity of the addition position of each reaction solution is determined. High portions were formed, and it was difficult to produce uniform silver halide grains.
  • a reaction vessel filled with an aqueous solution of colloid has a slit on the wall of a medium-thick cylindrical shape.
  • ⁇ empty face-to-face mixer the interior is filled with an aqueous solution of colloid.
  • the mixer is divided into two upper and lower chambers by means of a disc), and the vertical axis of the image is set vertically.
  • the aqueous solution and the silver salt aqueous solution are supplied into the mixer rotating at high speed through the supply pipe, and are rapidly mixed and reacted. (If there are upper and lower separation disks, the aqueous solution of the halogen salt is supplied to the upper and lower two chambers.
  • the aqueous silver salt solution was diluted with the aqueous colloid solution filled in each chamber and rapidly mixed and reacted near the exit slit of the mixer), and was generated by the centrifugal force generated by rotation of the mixer.
  • Silver halide grains in the reaction vessel It is a method of growing by discharging into an aqueous solution.
  • Japanese Patent Publication No. 55-10545 discloses a technique for improving the local concentration density to prevent uneven growth.
  • a halogen salt aqueous solution and a silver salt aqueous solution are introduced into a reactor filled with a colloid aqueous solution from the open lower end of a mixer filled with the colloid aqueous solution.
  • the reaction solutions are separately supplied through a supply pipe, and the reaction solutions are rapidly stirred and mixed by a lower stirring blade (turbine blade) provided in a mixer to grow silver halide.
  • a lower stirring blade turbine blade
  • There is a technique in which silver halide grains grown by an upper stirring blade provided above are discharged from the opening of the upper mixer into an aqueous solution of copper in a reaction vessel.
  • Japanese Patent Application Laid-Open No. 57-92523 similarly discloses a production method for improving the nonuniformity of the concentration.
  • a halogen salt aqueous solution and a silver salt aqueous solution are separated from the open lower end of a mixer filled with a colloid aqueous solution in a reaction vessel filled with the colloid aqueous solution.
  • the two reaction solutions are diluted with the aqueous colloid solution, and the reaction solutions are rapidly stirred and mixed by a lower stirring blade provided in the mixer, and immediately above the mixer.
  • both reaction solutions diluted with the aqueous solution of the coide are mixed with each blade of the stirring blade. Without passing through the gap between the inner wall of the mixer and the gap formed outside the tip of the blade of the agitating blade, the two reaction liquids are rapidly sheared and mixed in the gap, and the reaction is performed. Generates silver halide particles Forming method and apparatus is disclosed.
  • the manufacturing methods and equipment that have been arrested so far do not guarantee that the local concentrations of silver ions and halogens in the reaction vessel are uneven. Although it can be completely eliminated, this concentration unevenness still exists in the mixer, especially near the nozzle that supplies the silver salt aqueous solution and the halogen salt aqueous solution, the lower part of the stirring blade, and the stirring. There is a fairly large concentration distribution in the part. Furthermore, the silver halide grains supplied to the mixer together with the protective colloid pass through such a place having an uneven concentration distribution, and most importantly, the silver halide grains Growing rapidly in parts. In other words, in these production methods and devices, the concentration distribution exists in the mixer, and since the grain growth occurs rapidly in the mixer, the silver halide grows uniformly without the concentration distribution. Has not achieved its purpose.
  • a manufacturing method and apparatus are disclosed in which a mixer is provided in the middle of the process, an aqueous solution of silver salt and an aqueous solution of hagen are supplied to the mixer, and both aqueous solutions are rapidly mixed by the mixer to grow silver halide particles.
  • a protective colloid aqueous solution (containing silver halide grains) in a reaction vessel is circulated by a pump from the bottom of the reaction vessel.
  • a method of injecting a silver salt aqueous solution by a pump is disclosed.
  • JP-A Sho 53 In 47397 an aqueous solution of protective colloid (containing a silver halide emulsion) in the reaction vessel was circulated from the reaction vessel by a pump, and an aqueous solution of alkali metal halide was first added to the circulation system.
  • a production method and apparatus characterized in that silver halide grains are formed by injecting and mixing an aqueous silver salt solution into this system after injecting and diffusing until it is uniform, has been proposed. I have. Indeed, with these methods, the flow rate of the aqueous solution in the reaction vessel flowing into the circulation system and the stirring efficiency of the mixer can be independently changed, and the particles can be grown under a more uniform concentration distribution.
  • the silver halide crystals sent from the reaction vessel together with the aqueous solution of protective colloid will grow rapidly at the inlet of the aqueous silver salt solution and the aqueous halide solution. Therefore, it is theoretically impossible to eliminate the concentration distribution near the mixing portion or the injection port, as described above.In other words, it is possible to achieve the purpose of uniformly growing Haguchi silver halide without the concentration distribution. Absent.
  • a wafer port Gen halide photographic material and the photosensitive material having I 1 When to provide a method of manufacturing a wafer port Gen halide photographic material and the photosensitive material having I 1
  • the object of the present invention has been achieved by the following. That is
  • At least one silver halide emulsion layer on the support the photosensitive silver halide grains contained in the silver halide emulsion layer may contain at least two kinds of silver halides. It is composed of at least one phase, its halide distribution is completely uniform, and the surface of the particles is silver halide having a different halide composition from the interior of the grains adjacent to the surface. Silver halide photo-sensitive material.
  • a silver halide photographic light-sensitive material having at least one silver halide emulsion layer on a support
  • the photosensitive silver halide grains contained in the silver halide emulsion layer are formed.
  • nucleation and Z or crystal growth are performed in the reaction vessel.
  • a silver halide photographic light-sensitive material characterized in that the silver halide grains have silver halides having different halide compositions outside of the silver halide grains.
  • a water-soluble silver salt is placed in a mixer provided outside a reaction vessel for causing nucleation and / or crystal growth of photosensitive silver halide grains by using fine-sized silver halide grains. And an aqueous solution of a water-soluble halide are formed by mixing, and supplied into the reaction vessel immediately after the formation to form nucleation and / or crystal growth of the photosensitive silver halide grains. Forming silver halide having a different halide composition from the outside.
  • the silver halide grains of the present invention have a so-called corenosil structure, and its core portion has a completely uniform halide distribution. It is a sign.
  • the shell portion only needs to have a different halogen composition from the core portion adjacent to the shell portion, and the halide distribution of the shell portion does not need to be completely uniform.
  • the halide composition may be a single composition or a so-called mixed crystal.
  • Tabular silver iodobromide grains having a silver iodobromide phase will be described as an example of the silver halide emulsion grains having a “completely uniform halide distribution” in the present invention.
  • the term “perfectly uniform silver iodide distribution” here is completely different from the silver iodide distribution that has been treated so far, and refers to a more microscopic distribution.
  • an analytical electron microscope (Analytical Electron Microscopy) is often used as a means for measuring the distribution of silver iodide in silver iodobromide grains.
  • King M. King
  • ⁇ -let MHLorretto M. Nanotern
  • FJ Berry FJ Berry
  • the imaging magnification can be changed as appropriate depending on the particle size of the sample, but it is 20,000 to 40,000.
  • the spacing of the stripes is very fine, on the order of 100 A to less, indicating very microscopic non-uniformity.
  • Various methods can be used to show that this very fine grain pattern shows non-uniformity in the distribution of silver iodide, but more directly, this tabular grain is formed by silver halide crystals. It is clear that this striping disappears completely when annealing (eg, 250 hours, 3 hours) under conditions that allow you to move inside.
  • the annual ring-shaped stripes which indicate the uneven distribution of silver iodide in the silver bromide emulsion grains of the tabular plate described above, are referred to in the above-cited Japanese Patent Application Laid-Open No. 58-113927. This is clearly seen in the transmission electron micrographs, as well as in the transmission electron microscopy photographs in the study of King et al. Cited above. Based on these facts, to date, iodine bromide particles prepared with a constant amount of silver iodide in order to obtain a uniform silver iodide distribution have been extremely contradictory to their intended use. It has a microscopic non-uniform distribution of silver iodide, and no technology for homogenizing it has been disclosed. No production method is disclosed. The present invention discloses a core-shell emulsion having a core portion in which the microscopic silver iodide distribution is completely uniform, and a method for producing the same.
  • silver halide grains having a “completely uniform halide distribution” can be obtained by observing the transmission image of the grains using a cooled transmission electron microscope. It can be clearly distinguished from particles.
  • a microscopic line caused by the microscopic unevenness of the silver iodide becomes a line. There are at most two, preferably one, at 0.2 intervals in the orthogonal direction, and more preferably none.
  • the lines ′ that form the annual ring-shaped stripes which indicate the microscopic unevenness of silver iodide, are generated perpendicular to the direction of grain growth, and consequently these lines are concentric from the grain center. Distribute in a shape.
  • the line forming the annual ring-shaped stripe pattern indicating the unevenness of silver iodide is orthogonal to the growth direction of the tabular grains.
  • the direction parallel to ⁇ and perpendicular to them has a direction toward the center of the particle, and is distributed concentrically around the center of the particle.
  • the boundary will be observed as a line similar to that described above in the above observation method.
  • the change in the amount of silver only constitutes a single line, which can be clearly distinguished from a line composed of multiple lines derived from the microscopic unevenness of silver iodide.
  • a line derived from such a change in silver iodide content can be clearly confirmed by measuring the amount of silver iodide on both sides of the line by the above-mentioned diffraction electron microscope. Can be.
  • the line due to such a change in the silver iodide content is completely different from the line derived from the microscopic unevenness of the silver iodide referred to in the present invention, and shows a “macroscopic silver iodide distribution”. .
  • the “halogen silver halide core particles having a completely uniform halide distribution” of the present invention are mixed crystals having at least two kinds of silver halides.
  • the core particles In the transmission image of the particles obtained using the method, the core particles have at most two lines exhibiting a microscopic halide distribution at 0.2 intervals in a direction perpendicular to the lines, and preferably have one line. More preferred are silver halide core grains free of such lines. Further, it is desirable that such particles having a uniform interior make up at least 60%, preferably at least 80%, and more preferably at least 90% of the total particles.
  • conventional silver halide grains for example, which have been called silver halide grains containing uniform silver iodide, simply contain silver nitrate and a halogen of a certain composition (a certain amount of iodide) during grain growth.
  • the salt mixture was only added to the reaction vessel by the double jet method, and in such particles the macroscopic silver iodide distribution is indeed constant.
  • the microscopic silver iodide distribution is not uniform. Absent.
  • such a particle is called a particle having a “constant halogen composition” and is clearly distinguished from a “perfectly uniform” particle shown in the present invention.
  • the problem of microscopic halide composition is that silver halides such as silver chlorobromide, silver chloroiodobromide, and silver chloroiodide are used. It is all about mixed crystals.
  • the uniformity of the microscopic halide distribution of the silver halide mixed crystal can be further measured using X-ray diffraction.
  • the source is preferably a Ko line having a high intensity and a good monochromaticity over a K line.
  • the ⁇ line is a double line !?
  • a diffraction profile having a large diffraction angle from a high index plane is preferably used in order to accurately measure the diffraction angle and the line width of the profile. Therefore, in this patent, the K or line of the copper target is used to convert the diffraction profile of the (420) plane into a plane bending angle (twice the Bragg angle) of 7 mm. The measurement was performed in the area of ⁇ . -In the X-ray diffraction measurement, the accuracy of measurement was higher for the coated emulsion film than for the powder, and the measurement was also performed on the coated emulsion film in Examples described later.
  • the half width of the profile of a system without distortion due to external stress as in the state of the sample described in this patent is determined not only by the halogen composition distribution but also by other factors. This also includes the half-width due to the diffractometer optical system and the half-width due to the size of the crystallite (crystallite) of the sample. Therefore, in order to obtain the half width due to the halogen composition distribution, it is necessary to subtract the half width contribution of the former two. is there.
  • the half value width obtained by the optical meter of the folding meter can be obtained as the half value width of the diffraction profile of a single crystal having a grain size of 25 ⁇ ⁇ or more without distortion (no variation in lattice constant).
  • the number of crystals is 25 to 44 (500 mesh 350 mesh under).
  • the value of the half-A value measured by the optical meter depends on the diffraction angle.
  • the half-width of the mixed crystal emulsion particles due to the optical system and the half-width due to the size of the crystallites are the same as those of the mixed crystal emulsion particles, and the fracture profile of AgBr, AgCl, and Ag ⁇ particles is the same. It can be obtained as the half width of the file.
  • the half-width of the mixed crystal emulsion particles based on the Haguchi composition distribution alone is determined by the measured half-width of the profile of the profile of the AgBr, AgCl, and AgI particles of the same particle size as the particles of interest. It can be obtained by subtracting the half width of the folding door file.
  • the preferred half width of the profile of the X-ray diffraction profile of the silver halide emulsion grains having a uniform microscopic halogen composition according to the present invention is shown in FIG. 1 for silver chlorobromide.
  • Figure 2 shows silver bromide.
  • the uniformity of the grains of the composition is indicated by the value obtained by subtracting the half-width of pure silver chloride or pure silver bromide of the same grain size from the half-width of X-ray diffraction of each grain.
  • the particles of the present invention have a half width not more than the half width shown by the curve A, and preferably smaller than the half width shown by the curve B.
  • the halide composition of the core part and the sur part can be measured by X-ray diffraction.
  • the details of the X-ray diffraction measurement method are described in the Basic Analysis Chemistry Course 24 “X-ray analysis” (Kyoritsu Shuppan) and “Guide to X-ray diffraction” (Rigaku Denki Co., Ltd.).
  • the standard method is to use Cu as a target and obtain the diffraction curve of the (220) plane of silver halide using a Cu line as the source (tube voltage 40 V, tube current 60 mA). It is.
  • select the width of the slit (divergence slit, light receiving slit, etc.), the time constant of the device, the scanning speed of the goniometer, and the recording speed appropriately. It is necessary to confirm the measurement accuracy using standard samples such as
  • the silver halide grains used in the present invention may or may not clearly separate the beak corresponding to the core portion and the shell portion. Even in the case of an emulsion having two types of grains having different halogen compositions and having no distinct layered structure, two peaks appear in the X-ray diffraction.
  • a sample in which emulsion grains are well dispersed so as not to contact with each other is prepared and irradiated with an electron beam.
  • X-ray diffraction by electron beam excitation makes it possible to perform elemental analysis of extremely small parts.
  • the halogen composition of each grain can be determined.
  • the emulsion is the emulsion according to the present study. I can judge.
  • the distribution of the halogen composition between grains is more uniform.
  • the distribution of the halogen composition between grains for example, the distribution of silver iodide content in silver iodobromide or the distribution of silver bromide content in silver chlorobromide
  • the relative standard of the halogen content was measured. The deviation is preferably 50% or less, more preferably 35% or less, particularly preferably 20% or less.
  • the diffraction peak corresponding to the shell is weak and the seal is harsh. If the halide composition cannot be determined, measure the halide composition on the particle surface '.
  • the halide composition on the particle surface is measured by the X-ray photon spectroscopy (XPS) surface diffraction method (the measured depth is said to be about 50A).
  • XPS X-ray photon spectroscopy
  • the standard method for measuring XPS is to use Mg— as the excited X-rays, and to obtain halogen and silver (Ag) photoelectrons (usually C1-2P, This method measures the intensity of Br-3d, I-3d5 / 2 , Ag-3d5 / 2 ).
  • the amount of iodine is known.
  • a calibration curve is created for the intensity ratio of photoelectrons of iodine (I) and silver (Ag) (intensity (I) and intensity (Ag)), and the calibration curve is used to determine this. be able to.
  • XPS In silver halide emulsions, XPS must be measured after gelatin adsorbed on the surface of silver halide particles is decomposed and removed with a protease.
  • Embodiments of the silver halide grains of the present invention are as follows.
  • the core has two or more phases, it means the core adjacent to the sur part.
  • the halide composition of the seal is 5 It is desirable that there be a difference of at least 10 mol%, preferably at least 10 mol%, more preferably at least 20 mol%.
  • the pay-de species
  • the core and the shell Ru Kotodea because when silver chloride in Complex free silver chlorobromide the silver chloride content is the above difference in Koa-shell are different
  • the amount of the different halides be at least 3 mol%, preferably at least 6 mol%, more preferably at least 10 mol%.
  • the shell is AgBr and the core is AgBrCl, it means that the amount of silver chloride in the core follows the above.
  • the molar ratio of the core part to the shell part is arbitrary, but the molar ratio of the shell is preferably 50 mol% or less, more preferably 30 mol% or less, and further preferably 10 mol% or less.
  • the microscopic halide composition of the core part is completely uniform, and the microscopic halide composition of the swell part may be completely uniform or non-uniform.
  • the core may be a single phase or may be composed of two or more layers.
  • the microscopic halide composition inside the silver halide mixed crystal of the present invention is completely uniform and / or the inside of the silver halide crystal does not have reduced silver generated at the time of grain formation. The method for producing silver halide core grains will be described.
  • fine particles of silver halide prepared in advance are added to the reaction vessel to form nuclei of the particles in the reaction vessel and allow further crystal growth.
  • crystal nuclei can be grown by previously forming nuclei of grains in a reaction vessel by a conventionally known method and adding the fine silver halide.
  • More specific methods for adding fine silver halide include the following.
  • a mixer provided outside the reaction vessel for causing nucleation and Z or crystal growth, fine particles formed by mixing an aqueous solution of a water-soluble silver salt and an aqueous solution of a water-soluble halide are immediately subjected to the reaction.
  • a container By supplying it into a container, nucleation and crystal growth of silver halide core grains are performed (hereinafter referred to as method A).
  • FIG. 3 The system of such a particle forming method is shown below by taking FIG. 3 as an example.
  • the reaction vessel 1 has an aqueous solution 2 of a protective core solution. are doing.
  • the aqueous solution of the protective colloid is stirred and mixed by the propeller 3 attached to the turning shaft.
  • a silver salt aqueous solution, a halogen salt aqueous solution, and a protective ⁇ -ide aqueous solution are introduced into the mixer outside the reaction vessel with the addition systems 4, 5, and 6, respectively.
  • FIG. 4 illustrates details of the mixer 7.
  • a reaction chamber 10 is provided therein, and in the reaction chamber 10, a stirring blade 9 attached to a contra-rotating shaft 11 is provided.
  • the silver salt aqueous solution, the halogen salt aqueous solution and the protective colloid aqueous solution are added to the reaction chamber 10 through three inlets (4, 5, and the other inlet is omitted from the drawing).
  • the resulting solution containing the extremely fine particles is immediately discharged from the outlet 8 to the outside.
  • the extremely fine particles produced in the mixer are introduced into the reaction vessel, and after being introduced into the reaction vessel, the particle size is very small, so that they are easily dissolved and become silver ions and halogen ions again. Causes nucleation and / or particle growth.
  • the halide composition of the extremely fine grains should be the same as the halide composition of the target silver halide grains.
  • the ultrafine particles introduced into the reaction vessel are dispersed in the reaction vessel by stirring in the reaction vessel, and the halogen ions and silver ions having the desired halide composition are released from the individual fine particles.
  • the particles produced by the mixer are extremely fine, and the number of particles is In many cases, such a large number of grains emit silver ions and halogen ions (in the case of mixed crystal growth, the target halogen ion composition is obtained), and these grains are emitted. Since it occurs over the entire protective colloid in the reaction vessel, quite uniform particle growth can occur.
  • the fine particles formed in the mixer have a very high solubility due to the fine particle size, and when added to the reaction vessel, dissolve and become silver ions and halogen ions again to form nuclei. Alternatively, the particles are deposited on particles already present in the reaction vessel and cause particle growth.At this time, since the fine particles have high solubility, so-called Ostwald ripening is caused by the fine particles together before being added to the reaction vessel. Increase. As the size of the particles increases, the solubility decreases, the dissolution in the reaction vessel slows down, the rate of particle growth decreases significantly, and in some cases, Rather, on the contrary, it grows itself as a core.
  • a mixer is provided very close to the reaction vessel, and By shortening the residence time of the additive liquid in the mixer, the fine particles produced by the addition were immediately added to the reaction vessel to prevent the occurrence of this ripening.
  • the residence time t of the liquid added to the mixer is expressed as follows.
  • t is 10 minutes or less, preferably 5 minutes or less. Below, more preferably less than 1 minute and even more preferably less than 20 seconds. The fine particles obtained in the mixer are immediately added to the reaction vessel without increasing the particle size.
  • a closed mixer is used, so that the stirring blades of the reaction chamber can be rotated at a high number of revolutions, which is impossible with a conventional open-type reaction vessel.
  • the rotor In the open type, the rotor is rotated at high speed. If it is inverted, the liquid will be dislodged by the centrifugal force, and foaming will be a problem, making it impractical.
  • Powerful and efficient stirring and mixing can be performed, and the above-mentioned coalescence ripening can be prevented. As a result, fine particles having a very small particle size can be obtained.
  • the rotation speed of the stirring blade is lOOOr.pm or more, preferably 2000r.pm or more, and more preferably 3000rpm.
  • the protective colloid aqueous solution is added to the mixer by the following method.
  • the concentration of the protective colloid should be at least 0.2% by weight, preferably 0.5% by weight, and the flow rate should be at least 20% of the sum of the flow rates of the silver nitrate solution and the aqueous solution of the halogen salt: preferably It is at least 50%, more preferably more than 100%.
  • the concentration of the protective colloid is at least 0.2% by weight, preferably at least 0.5% by weight.
  • the concentration of the protective colloid is at least 0.2% by weight, preferably at least 0.5% by weight.
  • silver nitrate solution and protective colloid solution are mixed immediately before use because silver gelatin is formed from silver ion and gelatin, and photodecomposition and thermal decomposition produce silver colloid. It is better to do. .
  • a method in which a fine grain silver halide emulsion having fine grains prepared in advance is added to a reaction vessel to carry out nucleation and grain growth or grain growth can be used (hereinafter, referred to as "hereafter").
  • a reaction that causes nucleation and / or grain growth occurs No aqueous solution of a water-soluble silver salt or an aqueous solution of a water-soluble halide is added to the reaction container except for adjusting the p Ag of the emulsion in the reaction container. Before washing, it may be washed and Z or solidified in advance.
  • the temperature of the mixer is 40 ° C or lower, preferably 35 ° C or lower, and the temperature of the reaction vessel is 50 ° C or higher, preferably 60 ° C or higher, and more preferably 70 ° C or higher.
  • the grain formation temperature of the fine grain emulsion prepared in advance is 40 ° C or less, preferably S5 ° C or less, and the temperature of the reaction vessel to which the fine grain emulsion is added is 50 ° C or more, preferably 60 ° C or less. Above 'C, and more preferably above 70 ° C.
  • the fine particle size of the silver halide used in the present invention can be confirmed by a transmission electron microscope with the grains placed on a mesh, and the magnification is preferably 20,000 to 40,000.
  • the size of the fine particles of the present invention is 0.1 or less, preferably 0.06 or less, more preferably 0.03 / OT or less.
  • the halide composition of the core grain emulsion obtained by the present invention is as follows: Any of silver bromide, silver chlorobromide, silver chloroiodobromide and silver chloroiodide can be used. According to the present invention, the microscopic distribution of halide is uniform, that is, A "uniform" silver halide mixed crystal grain is obtained.
  • the method of the present invention is very effective also in producing core particles composed of pure silver bromide and pure silver chloride.
  • the local distribution of silver ions and halogen ions in the reaction vessel is unavoidable, and the silver halide grains in the reaction vessel are inevitable. Passing through the non-uniform part will result in a different environment from other homogeneous parts, which will cause non-uniform growth, of course.For example, in the high concentration part of silver ion, reduced silver Alternatively, capri silver is produced. Therefore, in silver bromide and silver chloride, there is certainly no non-uniform distribution of halide, but the other non-uniformity described above occurs. This problem can be completely solved by the method of the present invention. Accordingly, the core grains obtained by the method of the present invention include silver halide having a single composition. Further, it is preferable that such reduced silver has no distribution even between core grains. .
  • silver halide solvent examples include water-soluble bromide, water-soluble chloride, thiocyanate, ammonia, thioether, and thiourea.
  • thiocyanates U.S. Pat. Nos. 2,222,264;
  • the obtained completely uniform silver halide emulsion grains are not particularly limited, but are preferably at least 0.3, more preferably at least 0.8, particularly preferably at least 1.4.
  • the shape of the silver halide grains according to the present invention may have a regular crystal form (normal crystal grains) such as a hexahedron, an octahedron, a dodecahedron, a tetrahedron, a 24-hedahedron, and a 48-hedahedron. It may be irregular or crystalline, such as spherical or potato-shaped, and particles of various shapes having one or more twin planes, especially two or three parallel twin planes Hexagonal tabular grains and triangular tabular twin grains may be used.
  • a squeeze is formed following the formation of the core described above, and the method A and the method B can be applied to the method of manufacturing the squeeze.
  • the details are as already described.
  • a particle formation method known hitherto can be used. That is, a silver salt water solution and a haegent water solution are added to a reaction vessel having an aqueous solution containing a core silver halide particle and a protection core under efficient stirring. As a specific method, see Chemie et Phisique by P. Glafkides.
  • Photographique (Paul Montel, 1967) ⁇ G, F, Duff in Photographic Emulsion Chemistr (The Focal Press, 1966) V, shi- Ze ikmari eta 1 Making and Coating Photographic Emulsion (The Focal Press, 1964) and the like. That is, any method such as an acidic method, a neutral method, and an ammonia method may be used, and the method of reacting a soluble silver salt with a soluble halide salt includes a one-sided mixing method, a double-mixing method, and a combination thereof. Either may be used.
  • a method in which a seal is formed under an excess of silver ion a so-called reverse mixing method.
  • a method of maintaining a constant pAg in a liquid phase in which silver halide is formed that is, a so-called controlled double jet method can be used.
  • cadmium salt, zinc salt, lead salt, thallium salt, iridium salt or its complex salt, rhodium salt or its complex salt, iron Salts or iron complex salts may coexist.
  • the addition rate of silver nitrate or an aqueous halide halide solution is changed according to the grain growth rate. And rapid growth in a range not exceeding the critical supersaturation by using a method of changing the concentration of the aqueous solution as described in US Pat. No. 4,242,445, JP-A-55-158124, etc. It is preferable to let them do so. These methods are preferably used because renucleation does not occur and each core silver halide particle is uniformly coated.
  • the shape of the core portion and the entire shape with the shell may be the same or different, specifically, the core portion has a cubic shape,
  • the shape of the particles with a seal may be cubic or octahedral.
  • the core part may be octahedral, and the particles with a sur may have a cubic or octahedral shape.
  • the core is a well-defined regular particle, the particle with a shell may be slightly deformed or irregularly shaped. It is not just a double structure, but a triple structure or a multilayer structure as disclosed in JP-A-60-222844, and the surface of a core-shell double structure particle differs. It can be used to thinly apply silver halide having a composition.
  • the structure inside the particle not only the above-described wrapping structure but also a particle having a so-called bonded structure can be produced. Examples of these are disclosed in JP-A-59-133540, JP-A-58-108526, EP 199290 A2, JP-B-58-24772, JP-A-59-16254 and the like.
  • the crystal to be bonded can be formed by bonding to the edge, corner, or face of the host crystal with a different composition from that of the host crystal. Such a bonded crystal can be formed even if the host crystal is uniform in terms of the haegen composition or has a core-shell structure.
  • silver salt compounds such as silver rodan and silver carbonate
  • a non-silver salt compound such as PbO may be used as long as it can form a junction structure.
  • silver iodobromide grains having these structures for example, in a core-shell type grain, even if the core part has a high silver iodide content and the shell part has a low silver iodide content, conversely, The grains may have a low silver iodide content in the core and a high shell.
  • grains having a junction structure may be grains having a high silver iodide content in the host crystal and relatively low silver iodide content in the junction crystal, or vice versa. .
  • a boundary portion having a different halogen composition in a grain having such a structure may be a clear boundary or an unclear boundary formed by a mixed crystal due to a difference in composition. It may be one with continuous structural changes.
  • the silver halide emulsion used in the present invention may be prepared by subjecting the grains to a rounding treatment as disclosed in EP-0096727 B1, EP-0064412 B1, etc., or DE-2306447 C2, JP-A-60-221320. Surface modifications as disclosed may be made.
  • the silver halide emulsion used in the present invention is preferably a surface latent image type, but an internal latent image type emulsion may be used by selecting a developing solution or development conditions as disclosed in JP-A-59-133542. be able to. Also, a shallow internal latent image type emulsion covered with a thin shell can be used according to the purpose.
  • the present invention it is extremely important to perform chemical sensitization represented by reduction sensitization, sulfur sensitization, and gold sensitization.
  • chemical sensitization is performed depends on the composition, structure, and shape of the emulsion grains, and the emulsion is used. It depends on the intended use.
  • a chemical sensitization nucleus is embedded in the inside of a grain, when it is embedded at a shallow position from the grain surface, or when a chemical sensitizer is formed on the surface.
  • the surface latent image type emulsion is more effective than the internal latent image type emulsion.
  • the emulsion of the present invention is generally spectrally sensitive.
  • -Methine dyes are generally used as the spectral sensitizing dyes used in the present invention. These include cyanine dyes, merocyanine dyes, complex cyanine dyes, complex melocyanine dyes, and holopolar cyanine dyes. And hemicyanine dyes, styryl dyes, and hemioxanol dyes. Any of nuclei usually used in cyanine dyes as basic heterocyclic nuclei can be applied to these dyes.
  • a nucleus in which an alicyclic hydrocarbon ring is fused to the nucleus; and a nucleus in which an aromatic hydrocarbon ring is fused to these nuclei that is, an indolenin nucleus, a benzwearnine nucleus, an indole nucleus, a benzoxadol nucleus, A naphthoxadr nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a benzoselenazole nucleus, a benzimidazole nucleus, a quinoline nucleus, and the
  • Merocyanine dyes or complex merocyanine dyes include pyrazolin-15-one nuclei and thiohi Dantoin nucleus, 2-thioxazolidin-1,2,4-dione nucleus, thiazolidin-1,2,4-56-membered heterocyclic nucleus such as dione nucleus, rhodanine nucleus, and thiobarbituric acid nucleus Can be applied.
  • the amount of the sensitizing dye added during the preparation of a silver halide emulsion cannot be unambiguously stated depending on the type of additive, the amount of silver halide, etc., but is almost equal to the amount added by a conventional method.
  • the amount can be used.
  • the amount of preferred correct sensitizing dye is per mol of silver halide 0,001 100 mmol, is rather to favored is et 0.01; a 10 1 c
  • the sensitizing dye is added after or before chemical ripening.
  • the sensitizing dye is most preferably added to the silver halide grains of the present invention during chemical ripening or before chemical ripening (for example, during grain formation or physical ripening).
  • a dye that does not itself have a spectral effect or a substance that does not substantially absorb visible light and that exhibits supersensitization may be included in the emulsion.
  • amino still compounds substituted with a nitrogen heterocyclic group for example, US Patent No.
  • Silver halide emulsions are usually chemically sensitized. Chemical sensitization For example, H. Frieser ed., D'Darn Dragel-Dell. Photographieschen. Protesse Mitt-Sinorebenorenoro 0 * Niden Die Grund 1 agen der
  • Pho tographis en enificate mit Silber alogeniden
  • the method described in Mitsushi Ferraglus Gesersakto ⁇ 968) pp. 675-734 can be used.
  • the photographic emulsion used in the present invention contains various compounds for the purpose of preventing the capri during the manufacturing process, storage or photographic processing of the photographic material and stabilizing the photographic performance.
  • azoles such as benzothiazolium salts, nitroindazoles, triazoles, benzotriazoles, benzimidazoles (especially nitro- or halogen-substituted); Compounds such as mercaptothiazoles, mercaptobenzothiazoles, mercaptobenzimidazoles, mercaptothiadiazoles, mercaptotetrazols (especially 11-phenyl-15-mercaptototrazol) , Melcapto pyrimidines; water-soluble compounds such as galboxyl and sulfone groups The above-mentioned heterocyclic mercapto compounds having a functional group; thioketo compounds such as oxazolinthione; azandenes such as tetrazindene (especially 4-
  • the timing of adding these anti-Capri agents or stabilizers is usually performed after chemical sensitization, but can be more preferably selected during chemical ripening or before chemical ripening. That is, during the silver halide emulsion grain formation process, even during the addition of the silver salt solution or during the period from the addition to the start of chemical ripening, during chemical ripening (preferably 50% from the start during the chemical ripening time). Or more preferably within 20% of the time).
  • the emulsion of the present invention can be used for a photographic light-sensitive material having an arbitrary layer constitution irrespective of whether the emulsion layer has one layer or two or more layers. .
  • the silver halide multilayer color photographic light-sensitive material using the emulsion of the present invention has a multilayer structure in which a binder for separately recording blue, green and red light and an emulsion layer having silver halide grains are superposed.
  • Each emulsion layer is composed of at least a high-sensitivity layer and a low-sensitivity layer.
  • Particularly practical layer constitutions include the following.
  • B is the blue-sensitive layer
  • G is the green-sensitive layer
  • R is the red-sensitive layer
  • 'H is the highest-sensitive layer
  • M is the medium-sensitive layer
  • L is the low-sensitive layer
  • S is the support
  • non-photosensitive layers such as layers, filter layers, intermediate layers, anti-halation layers and undercoat layers
  • preferred layer configurations are (1), (2) and (4).
  • CL is a layer effect imparting layer, and the others are as described above. Further, the high-sensitivity layer and the low-sensitivity layer having the same color sensitivity may be arranged in reverse.
  • the silver halide emulsion of the present invention can be applied to light-sensitive light-sensitive materials as described above.
  • the light-sensitive material may have one or more emulsion layers, for example, X-ray light-sensitive material, black-and-white photographing. It can also be applied to photosensitive forestry materials, photosensitive materials for plate making, photographic paper, etc.
  • Gelatin hardeners include, for example, active halogen compounds (2,4-dichloro-16-hydroxy-1,3,5-triazine and its sodium salt) and active bur compounds (1,2,3-triazine and sodium salts thereof).
  • 3 Bis vinylsulfuryl 2- 1-fluoro-nor, 1,2-bis (vinylinolesulfonyl amide) ethane or vinyl-based poly (vinylsulfone) with vinylsulfonyl group are preferred because hydrophilic colloids such as gelatin cure quickly and provide stable photographic properties.
  • N Carnomoylpyridinium salt (1—Morpholinocarbonyl 3-pyridino) Methansulfonate, etc.
  • Haloa midinium salt (1—1—1-chloropipermethylene) (Pyrrolidine 2-naphthalene sulfonate) also has a fast curing rate and is excellent.
  • the photographic light-sensitive material using the silver halide photographic emulsion of the present invention is usually subjected to a washing treatment or a stabilization treatment after development, bleach-fixing or fixing.
  • a multi-stage countercurrent stabilization treatment as described in JP-A-57-8543 may be mentioned as a typical example instead of the washing step.
  • Fig. 1 and Fig. 2 show the uniformity of silver halide grains.
  • the vertical axis represents the half-width of the X-ray profile, and the horizontal axis represents the Haguchi composition of the silver halide grains.
  • FIG. 3 schematically shows the method of the present invention.
  • FIG. 4 is a detailed view of the mixer according to the present invention.
  • FIG. 5 is a transmission electron micrograph showing the crystal structure of conventional tabular silver halide grains in which the distribution of silver iodobromide phases is not completely uniform. The magnification was 37,000. It is twice.
  • Fine grain emulsion 1 One AlOOO g (silver nitrate containing 100 g of silver) was continuously added to the reaction vessel over 100 minutes. Thereafter, the emulsion was cooled to 35, washed with water by a conventional flocculation method, and adjusted to PH 6.2 and pAg 8.8 by adding 70 g of gelatin. The obtained core emulsion grains were octahedral silver iodobromide emulsions having an average projected area of 1.2 ⁇ ⁇ 2> (equivalent content of 25 mol%).
  • the obtained fine particles were confirmed by a direct transmission electron microscope at a magnification of 20,000 times to be 0.01.
  • the fine particles generated by the mixer were continuously introduced into a reaction vessel maintained at 75 ° C.
  • the obtained silver bromide octahedral nuclei (25 mol% of silver iodide) were 0.4 ⁇ .
  • a 1 M silver nitrate aqueous solution 600, a solution containing 0.75 M bromide rim, 0.25 potassium iodide and 2 wt% gelatin 800 were mixed in a triple jet with a mixer.
  • the formed fine particles were continuously added to the reaction vessel at a size of. At this time, the mixer was kept at 20'C.
  • the emulsion was washed with water in the same manner as in Emulsion 1-1B and adjusted to the same pH and pAg.
  • the obtained core emulsion grains were octahedral silver iodobromide emulsions having an average projected area circle equivalent diameter of 1.2 ⁇ (silver iodide content: 25 mol%).
  • Emulsion 1-1 To examine the microscopic distribution of iodine in B, 1 — C, and 1 — D, the X-ray diffraction of the (420) plane was measured using the Kor line described earlier, and the size was the same. X-ray diffraction measurement of the pure silver bromide emulsion was also performed. Table 1 shows the results.
  • a core of pure AgBr was formed on the core-emulsion obtained in Example 11 at 60 ° C. and at a pAg of 9.0 by double jet.
  • Table 2 shows the details of the seal formation.
  • Stabilizer 4 Hydroxy 6—Methyl—1,3,3a, 7—Tetrazaindene
  • the development processing used here was performed at 38 ° C under the following conditions.
  • composition of the processing solution used in each step is as follows.
  • Ammonia bromide 1 600 g Ammonia water (28%). 25. Ethylenediaminetetraacetic acid sodium salt 130 g Glacial acetic acid 14 Add water and fixer 1
  • the emulsion of the present invention has higher sensitivity than the comparative emulsion.
  • Silver chlorobromide fine grain emulsion 3 A (L 2.3 M bromide power with 0.05 M sodium chloride, 2.3 M% gelatin solution containing 1.3 M with 1.3 M silver nitrate aqueous solution by double-jet method while stirring it to 1.3 £. A bromide power of 0.72 M and an aqueous solution of a halogen salt containing 1.0 M of sodium chloride were each added over 600 minutes over a period of 25 minutes while the gelatin solution in the reaction vessel was kept at 35 ° C. Thereafter, the emulsion was washed by a conventional flocculation method, 30 g of gelatin was added, and after dissolution, the pH was adjusted to 6.5. The obtained silver chlorobromide fine particles (silver chloride amount: 40%) The average particle size was 0.09 ⁇ .
  • a 3.0% by weight gelatin solution containing 0.065 M potassium bromide and 0.3 M sodium chloride was stirred into 1.2 pounds of 1% N—N′-dimethylimidazoline.
  • 2 Add 5 thione solutions and add 50 cc of 0.3 M silver nitrate solution and 50 cc of 0.18 M potassium bromide and 0.8 M sodium chloride in a reaction vessel kept at 75 ° C. 50 cc of a halogen salt aqueous solution was added by the double jet method over 3 minutes.
  • nucleation was performed by obtaining silver chlorobromide particles having a silver chloride concentration of 0.2 mol and a mol ratio of 40 mol%. Subsequently, a double jet of 800 cc of an aqueous solution containing 150 g of silver nitrate and 63 g of lithium bromide and 43 g of sodium chloride in 75 minutes at 75 ° C for 100 minutes. At the same time. Thereafter, the emulsion was cooled to 35'C, washed with water by a conventional flocculation method, and adjusted to pH 6.2 and Pg to 8. by adding 70 g of gelatin. These grains were cubic silver chlorobromide grains having a silver chloride content of L1 of 40 mol%.
  • Silver chlorobromide cubic grain emulsion 3 — C 0.5% by weight aqueous gelatin solution containing 0,065 M potassium bromide and 0.3 M sodium chloride 1% N—N'—dimethylimidazoline 1 2 —Thion solution was added at 4.5 / ⁇ , and Fine Emulsion 3-A was added to the reaction vessel by pump at 75'C. The addition rate was such that a fine grain emulsion corresponding to 5 g in terms of the amount of silver nitrate was added over 10 minutes.
  • the fine grain emulsion 3-A was added to the reaction vessel by pump.
  • the fine grain emulsion was added over a period of 100 minutes so that the addition rate was 150 g in terms of the amount of silver nitrate.
  • 20 g of sodium chloride was previously dissolved in the fine grain emulsion.
  • the emulsion was washed with water in the same manner as in Emulsion 11B, and adjusted to pH 6.5 and pAg 7.8 with 40.
  • the obtained grains were silver chlorobromide cubic grains having a silver chloride content of 1.1 ⁇ of 40 mol%. '
  • the seed crystal growth was transferred to a powerful and efficient mixer located near the reaction vessel as shown in Fig. 1 for 150 g for 100 minutes.
  • Aqueous solution containing 800 cc of silver nitrate and 63 g of bromide rim and 43 g of sodium chloride 800 cc of an aqueous solution containing 10 g of low molecular weight gelatin (average molecular weight of 20,000) 800 cc was added in triple jut.
  • the ultrafine particles (average size 0.02) produced in the reaction by stirring in the mixer were immediately and continuously introduced into the reaction vessel from the mixer. During this time, the temperature of the mixer was kept at 25'C, and the temperature of the reaction vessel was kept at 75 ° C.
  • Emulsion 1-B was washed with water in the same manner as Emulsion 1-B, and adjusted to pH 6.5 and pAg 7.8.
  • This grain has a silver chloride content of 1.1 and 40 mol% It was silver chlorobromide cubic grains.
  • Emulsion 3 — B, 3 — C, 3 — D was coated on a film base support at 3 g silver / ir, and the above K line was examined to examine the microscopic distribution of halide.
  • the (420) plane was used to measure X-ray diffraction. At that time, X-ray diffraction of pure silver chloride and pure silver bromide of the same size was also performed. Table 4 shows the results.
  • Emulsion grains 3 — C and 3 — D of the present invention are comparative emulsions 3 — The half width is much smaller than that of B, and it is close to that of silver bromide (silver chloride).
  • the core emulsion obtained in Example 13 was kept in a reaction vessel at 60 ° C., and a 1M silver nitrate aqueous solution and a 1M aqueous bromide aqueous solution were added with a double jet while stirring, and a silver bromide shell was added.
  • Table 5 shows the details of shell formation.
  • the emulsion of the present invention has higher sensitivity than the comparative emulsion.
  • the silver halide photographic light-sensitive material having the silver halide emulsion of the present invention thus obtained is characterized in that the silver halide silver halide grains contained in the emulsion have a completely uniform halide distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

A photographic material prepared by using a silver halide emulsion containing silver halide grains wherein a halide distribution is microscopically completely uniform and/or which comprise a core part not containing reduced silver formed upon formation of the grains and a shell part different from the core part in a halide composition, and a process for its preparation are disclosed. This material has excellent properties with respect to sensitivity, gradation, graininess, sharpness, resolving power, covering power, preservability, latent image stability and pressure effect.

Description

明 細 書  Specification
ハ αゲン化銀写真感光材料及びその製造方法 〔技術分野〕  C. α-silver photographic light-sensitive material and method for producing the same [Technical field]
本発明は写真の分野において有用であるハロゲン化銀写真材 料及びその製造方法に関する。 さ らに詳し く は各々のハロゲン 化銀混晶の内部の微視的なハラィ ド分布が完全に均一であり、 及び/又はハ口ゲン化銀結晶の内部が粒子形成時に生ずる還元 銀をもたないハロゲン化銀粒子を舍有するハロゲン化銀乳剤を 用いた写真感光材料及びその製造方法に閔する。  The present invention relates to a silver halide photographic material useful in the field of photography and a method for producing the same. More specifically, the microscopic halide distribution inside each silver halide mixed crystal is completely uniform, and / or the inside of the silver halide crystal also contains reduced silver generated during grain formation. The present invention relates to a photographic light-sensitive material using a silver halide emulsion having silver halide grains and a method for producing the same.
〔背景技術〕  (Background technology)
近年、 ハロゲン化銀写真感光材料に対する性能向上の要請は ますます厳し く なつてきており、 特に粒状性、 鮮鋭度の劣化を 最小限におさえた高感度化及び現像速度の.上昇が望まれている。 これらの要請を満たすべく ハロゲン化銀粒子の内部と表面層の ハライ ド組成を変えた謂るコアシェル型乳剤の開発が行なわれ てきた。 ヨウ臭化銀乳剤においては粒子内部 (コア) をヨウ化 銀舍有の高いヨウ臭化銀とし、 表面 (シェル) をそれより ヨウ 化銀含量の少ないヨウ臭化銀あるいは純臭化銀とすることが開 示されている。 これらについては、 特開昭 57— 15432 号、 特開 昭 60— 14331 号、 特開昭 60— 138538号、 特開昭 60— 147727号、 特開昭 61— 245151号、 特開昭 61— 14363 号にその技術が開示さ れている。 また粒子表面を塩化銀、 塩臭化銀にするコアシュル 乳剤については、 特開昭 58— 9137号、 特開昭 58— 9573号、 特開 昭 59— 48755 号、 特開昭 61— 215540号、. 特開昭 62— 69261 号に その技術が開示されている。 また粒子表面をその内部より高ョ ゥ化銀含量にしたコアシュル乳剤については特開昭 56 - 78831 号、 特開昭 62— 19843 号にその技術が開示されている。 In recent years, there has been an increasing demand for improved performance of silver halide photographic light-sensitive materials.In particular, it has been desired to increase the sensitivity and increase the developing speed while minimizing deterioration of graininess and sharpness. I have. In order to satisfy these demands, a so-called core-shell type emulsion in which the halide composition of the inside and the surface layer of silver halide grains is changed has been developed. In the silver iodobromide emulsion, the inside of the grain (core) is silver iodobromide, which has a high silver iodide content, and the surface (shell) is silver iodobromide or pure silver bromide, which has a lower silver iodide content. It has been disclosed. These are described in JP-A-57-15432, JP-A-60-14331, JP-A-60-138538, JP-A-60-147727, JP-A-61-245151 and JP-A-61-14363. The technology is disclosed in the issue. Also, with respect to the Coaschul emulsion having silver chloride or silver chlorobromide on the grain surface, JP-A-58-9137, JP-A-58-9573, JP-A-59-48755, JP-A-61-215540, The technique is disclosed in Japanese Patent Application Laid-Open No. 62-69261. In addition, the particle surface is higher than the inside The technique of the coachul emulsion having a silver iodide content is disclosed in JP-A-56-78831 and JP-A-62-19843.
これらのコアシヱル乳剤において、 光吸収の増加及びコァと シェルの層状構造の形成による潜像形成効率の上昇、 現像速度 の向上などが達咸されるものであるが、 一方これらの粒子には 下記のような粒子内のハラィ ドの微視的な不均一分布が存在し ており、 露光によって発生した電子の勳きを妨げ、 潜像形成効 率の低下をもたらしていることが判明し、 これを改善すること が必要であった。  In these core shell emulsions, an increase in light absorption, an increase in the efficiency of latent image formation due to the formation of a layer structure of the core and the shell, and an improvement in the development speed have been achieved. It has been found that such a microscopic uneven distribution of halide in particles exists, which hinders the movement of electrons generated by exposure and lowers the efficiency of latent image formation. It needed to be improved.
一般的にハロゲン化銀粒子は、 反応容器の中のコ ロイ ド水溶 液において、 銀塩水溶液とハロゲン塩水溶液とを反応させるこ とにより製造される。 反応容器中にゼラチンのような保護コ 口 ィ ド及びハロゲン塩水溶液を入れ、 攪拌しながら、 これに銀塩 水溶液をある時間添加するシングルジェ ッ ト法や、 反応容器中 にゼラチン水溶液を入れ、 ハロゲン塩水溶液と銀塩水溶液とを それぞれある時間添加するダブルジヱ ッ ト法が知られている。 両者を比較すると、 ダブルジエ ツ ト法の方が粒子径分布の狭い ハロゲン化銀粒子が得られ、 さらに粒子の成長に伴って、 その ハライ ド組成を自由に変えることができる。  Generally, silver halide grains are produced by reacting an aqueous silver salt solution and an aqueous halide salt solution in an aqueous colloid solution in a reaction vessel. In a reaction vessel, a protective jet such as gelatin and an aqueous solution of a halogen salt are placed, and while stirring, an aqueous solution of a silver salt is added thereto for a certain time, or a gelatin aqueous solution is placed in the reaction vessel. A double-jet method in which an aqueous solution of a halogen salt and an aqueous solution of a silver salt are added for a certain period of time is known. Comparing the two, the double jet method gives silver halide grains with a narrower grain size distribution, and the halide composition can be freely changed as the grains grow.
また、 ハロゲン化銀粒子の成長速度は、 反応溶液中の銀ィ ォ ン (ハロゲンイ オ ン) 濃度、 ハロゲン化銀溶剤の濃度、 粒子間 距離、 粒子サイ ズなどにより大き く変化することが知られてい る。 特に反応容器に添加される銀塩水溶液とハ口ゲン塩水溶液 によってつく り出される銀イオンあるいはハロゲンイオン濃度 の不均一は、 各々の濃度により成長速度が異なり、 結果として 出き上るハロゲン化銀乳剤に不均一に生ぜしめる。 この為には、 反応容器中の銀ィ ォンあるいはハロゲンィ ォン濃度を均一にす ベく、 コ ロイ ド水溶液中に供給する銀塩水溶液とハコゲン塩水 溶液とを迅速に均一混合して反応させることが必要である。 従 来のハロゲン塩水溶液と銀塩水溶液とを反応容器中のコ ロイ ド 水溶液の表面に添加する方法では、 各々の反応液の添加位置近 傍において、 ハロゲンイ オ ン及び銀イ オ ンの濃度の高い部分が 生じ、 均一なハロゲン化銀粒子を製造することは困難であった。 この局部的な濃度のかたよりを改良する方法として、 米国特許 第 3415650 号、 英国特許第 1323464 号、 米国特許第 3692283 号 に開示された技術等が知られている。 これらの方法は、 コ 口-ィ ド水溶液により.満たされた反応容器に中太状円筒の壁にス リ ッ トを有する Φ空の面転する混合器 (内部はコ ロイ ド水溶液で満 たされており、 より好ま し く は混合器がディ スク によ って上下 2室に分割されている) を、 その画転軸が鉛直となるように設 け、 その上下の開放端からハロゲン塩水溶液と銀塩水溶液とを 供給管を通じて高速回転している混合器内に供給し急速に混合 して反応せしめ (上下の分離ディ スクがある場合は、 上下 2室 に供給されたハロゲン塩水溶液と銀塩水溶液は各々各室に満た されたコ ロイ ド水溶液によって稀釈され、 混合器の出口ス リ ッ ト付近で急速に混合して反応せしめ) 、 混合器の回転により生 ずる遠心力で生成した,ハロゲン化銀粒子を反応容器中のコ 口ィ ド水溶液に排出せしめ成長させる方法である。 It is also known that the growth rate of silver halide grains varies greatly depending on the concentration of silver ion (halogen ion) in the reaction solution, the concentration of the silver halide solvent, the distance between grains, the grain size, and the like. ing. In particular, the non-uniformity of silver ion or halogen ion concentration created by the aqueous silver salt solution and the aqueous solution of haegent salt added to the reaction vessel causes the growth rate to differ depending on each concentration, and as a result It causes unevenness in the silver halide emulsion that emerges. For this purpose, the silver ion or halogen solution in the reaction vessel should be uniformly mixed, and the silver salt aqueous solution and the hacogen salt solution should be mixed rapidly. It is necessary. In the conventional method of adding an aqueous solution of a halogen salt and an aqueous solution of a silver salt to the surface of an aqueous solution of a colloid in a reaction vessel, the concentration of the halogen ion and the silver ion in the vicinity of the addition position of each reaction solution is determined. High portions were formed, and it was difficult to produce uniform silver halide grains. As a method of improving the local density, techniques disclosed in U.S. Pat. No. 3,415,650, British Patent No. 1323464, and U.S. Pat. No. 3,692,283 are known. In these methods, a reaction vessel filled with an aqueous solution of colloid has a slit on the wall of a medium-thick cylindrical shape. Φ empty face-to-face mixer (the interior is filled with an aqueous solution of colloid). More preferably, the mixer is divided into two upper and lower chambers by means of a disc), and the vertical axis of the image is set vertically. The aqueous solution and the silver salt aqueous solution are supplied into the mixer rotating at high speed through the supply pipe, and are rapidly mixed and reacted. (If there are upper and lower separation disks, the aqueous solution of the halogen salt is supplied to the upper and lower two chambers. The aqueous silver salt solution was diluted with the aqueous colloid solution filled in each chamber and rapidly mixed and reacted near the exit slit of the mixer), and was generated by the centrifugal force generated by rotation of the mixer. , Silver halide grains in the reaction vessel It is a method of growing by discharging into an aqueous solution.
一方、 特公昭 55— 10545 号に、 局部的な濃度のかたよりを改 良して不均一な成長を防ごう とする技術が開示されている。 こ の方法は、 コ ロイ ド水溶液が満たされている反応器中に、 その 内部にコ ロイ ド水溶液が満たされた混合器のその開放された下 端部から、 ハロゲン塩水溶液と銀塩水溶液とを供給管を通じて、 別々に供給し、 該反応液を、 混合器に設けられた下部攪拌翼 (タービン羽根) によって両反応液を急激に攪拌混合せしめハ ロゲン化銀を成長させ、 ただちに前記攪拌翼の上方に設けられ た上部攪拌翼により成長したハロゲン化銀粒子を、 上方の混合 器の開口部から反応容器中のコ 口ィ ド水溶液に排出せしめる技 ί'ΐϊ ある。 On the other hand, Japanese Patent Publication No. 55-10545 discloses a technique for improving the local concentration density to prevent uneven growth. This According to the method, a halogen salt aqueous solution and a silver salt aqueous solution are introduced into a reactor filled with a colloid aqueous solution from the open lower end of a mixer filled with the colloid aqueous solution. The reaction solutions are separately supplied through a supply pipe, and the reaction solutions are rapidly stirred and mixed by a lower stirring blade (turbine blade) provided in a mixer to grow silver halide. There is a technique in which silver halide grains grown by an upper stirring blade provided above are discharged from the opening of the upper mixer into an aqueous solution of copper in a reaction vessel.
特開昭 57— 92523 号にば、 同様にこの濃度の不均一を改良し よう とする製造法が開示されている。 この方法では、 コ ロイ ド 水溶液が満たされている反応容器内にその内部にコ ロイ ド水溶 液が満たされた混合器に、 その開放された下端部からハロゲン 塩水溶液と銀塩水溶液とを別々に供給し、 該両反応液を前記コ ロイ ド水溶液により稀釈し該反応液を、 混合器に設けられた下 部攪拌翼によつて両反応液を急激に攪拌混合せしめ、 ただちに 該混合器上方の開放部から成長したハロゲン化銀粒子を反応容 器中のコ 口ィ ド水溶液に排出せしめる製造法ないし装置におい て前記コ口ィ ド水溶液で稀釈された両反応液を前記攪拌翼の各 翼間の間隙を通すことなく前記混合器の内側壁と前記攪拌翼の 翼片先端側外方に形成された間隙部に通し、 該間隙部において 該両反応液を急激に剪断混合して反応、 ハ口ゲン化銀粒子を生 成せしめる製造法及び装置が開示されている。  Japanese Patent Application Laid-Open No. 57-92523 similarly discloses a production method for improving the nonuniformity of the concentration. According to this method, a halogen salt aqueous solution and a silver salt aqueous solution are separated from the open lower end of a mixer filled with a colloid aqueous solution in a reaction vessel filled with the colloid aqueous solution. The two reaction solutions are diluted with the aqueous colloid solution, and the reaction solutions are rapidly stirred and mixed by a lower stirring blade provided in the mixer, and immediately above the mixer. In a manufacturing method or an apparatus for discharging silver halide grains grown from the open part of the reaction vessel into the aqueous solution of the coide, both reaction solutions diluted with the aqueous solution of the coide are mixed with each blade of the stirring blade. Without passing through the gap between the inner wall of the mixer and the gap formed outside the tip of the blade of the agitating blade, the two reaction liquids are rapidly sheared and mixed in the gap, and the reaction is performed. Generates silver halide particles Forming method and apparatus is disclosed.
しかしながら、 これまで逮べてきた製造法及び装置では、 確 かに反応容器中の銀イ オン及びハロゲンの局部的な濃度の不均 一は完全に解消することはできるが、 混合器内においては依然 としてこの濃度の不均一は存在し、 特に銀塩水溶液及びハロゲ ン塩水溶液を供給するノ ズルの近傍及び攪拌翼の下部及び攪拌 部分においてかなり大きな濃度分布が存在する。 さ らに保護コ ロイ ドと共に混合器に供給されたハロゲン化銀粒子は、 このよ うな不均一な濃度分布をもった場所を通過し、 特に大切なこと は、 ハロゲン化銀粒子は、 これらの部分において急速に成長す る。 つまり これらの製造法及び装置においては、 濃度分布は混 合器内に存在し、 粒子成長はその混合器内で急速に起る為、 濃 度分布のない状態でハロゲン化銀を均一に成長せしめるという 目的は達し得ていない。 However, the manufacturing methods and equipment that have been arrested so far do not guarantee that the local concentrations of silver ions and halogens in the reaction vessel are uneven. Although it can be completely eliminated, this concentration unevenness still exists in the mixer, especially near the nozzle that supplies the silver salt aqueous solution and the halogen salt aqueous solution, the lower part of the stirring blade, and the stirring. There is a fairly large concentration distribution in the part. Furthermore, the silver halide grains supplied to the mixer together with the protective colloid pass through such a place having an uneven concentration distribution, and most importantly, the silver halide grains Growing rapidly in parts. In other words, in these production methods and devices, the concentration distribution exists in the mixer, and since the grain growth occurs rapidly in the mixer, the silver halide grows uniformly without the concentration distribution. Has not achieved its purpose.
さ らにより完全な混合によるこれらの銀イ オ ン、 ノヽロゲンィ オ ンの濃度の不均一分布を解消すべく 、 反応容器と混合器をそ れぞれ独立せしめ、 混合器に銀塩水溶液とハロゲン塩水溶液を 供給し急速混合してハロゲン化銀粒子を成長せしめる試みがな されてきた。 例えば特開昭 53— 37414 号及び特公昭 48— 21045 号には、 反応容器の底からポンプにより反応容器内の保護コロ ィ ド水溶液 (ハロゲン化銀粒子を舍む) を循環し、 この循環系 の途中に混合器を設け、 この混合器に銀塩水溶液及びハ σゲン 水溶液を供給し、 該混合器で急速に該両水溶液を混合しハロゲ ン化銀粒子を成長せしめる製造法及び装置が開示されている。 また米国特許第 3897935 号には、 反応容器の底からポンプによ り反応容器内の保護コ ロイ ド水溶液 (ハロゲン化銀粒子を舍む) を循環し、 この循環系の途中にハロゲン塩水溶液及び銀塩水溶 液をポンプにより注入する方法が開示されている。 特開昭 53— 47397 号には、 反応容器からポンプにより反応容器内の保護コ ロイ ド水溶液 (ハロゲン化銀乳剤を舍む) を循環させ、 その循 璟系にまずノ、口ゲン化アル力 リ金属塩水溶液を注入しそれが均 一になるまで拡散させしかる後に、 この系に銀塩水溶液を注入 し混合して、 ハロゲン化銀粒子を彤成することを特徴とする製 造法及び装置が蘭示されている。 これ等の方法では確かに、 循 環系に流す反応容器内の水溶液の流量と混合器の攪拌効率を独 立に変化させることができ、 より濃度分布が均一な条件で粒子 成長を行う ことができるであろうカ 、 結局、 保護コ ロイ ド水溶 液と共に反応容器から送られてきたハロゲン化銀結晶は銀塩水 溶液、 ハロゲン塩水溶液の注入口で急速成長を起す。 従って前 に述べたと同様に混合部あるいは注入口付近の濃度分布を無く することは原理的に不可能であり、 つまり濃度分布のない状態 でハ口ゲン化銀を均一に成長せしめる目的は達し得ない。 In order to eliminate the non-uniform distribution of silver ion and nodrogen ion concentrations due to more thorough mixing, the reaction vessel and the mixer were separated from each other, and the silver salt aqueous solution and the halogen were added to the mixer. Attempts have been made to grow silver halide grains by supplying an aqueous salt solution and mixing rapidly. For example, in JP-A-53-37414 and JP-B-48-21045, an aqueous protective chloride solution (containing silver halide particles) in a reaction vessel is circulated from the bottom of the reaction vessel by a pump, and the circulation system is used. A manufacturing method and apparatus are disclosed in which a mixer is provided in the middle of the process, an aqueous solution of silver salt and an aqueous solution of hagen are supplied to the mixer, and both aqueous solutions are rapidly mixed by the mixer to grow silver halide particles. Have been. U.S. Pat. No. 3,897,935 discloses that a protective colloid aqueous solution (containing silver halide grains) in a reaction vessel is circulated by a pump from the bottom of the reaction vessel. A method of injecting a silver salt aqueous solution by a pump is disclosed. JP-A Sho 53 In 47397, an aqueous solution of protective colloid (containing a silver halide emulsion) in the reaction vessel was circulated from the reaction vessel by a pump, and an aqueous solution of alkali metal halide was first added to the circulation system. A production method and apparatus characterized in that silver halide grains are formed by injecting and mixing an aqueous silver salt solution into this system after injecting and diffusing until it is uniform, has been proposed. I have. Indeed, with these methods, the flow rate of the aqueous solution in the reaction vessel flowing into the circulation system and the stirring efficiency of the mixer can be independently changed, and the particles can be grown under a more uniform concentration distribution. In the end, the silver halide crystals sent from the reaction vessel together with the aqueous solution of protective colloid will grow rapidly at the inlet of the aqueous silver salt solution and the aqueous halide solution. Therefore, it is theoretically impossible to eliminate the concentration distribution near the mixing portion or the injection port, as described above.In other words, it is possible to achieve the purpose of uniformly growing Haguchi silver halide without the concentration distribution. Absent.
本発明の目的は、 粒子袠面 ( シ ル) と粒子内部 (コア) 力 異なつたハラィ ド組成を有する請るコアシヱル乳剤粒子におい て、 粒子内部 (コア) の微視的なハライ ド分布を完全に均一に し、 及び/又は粒子内の還元銀を均一にすることにより、 カブ が低く、 感度が高く、 かつ粒状性、 シャープネス、 カバ一リ ングパワーが改良され、 また優れた保存性、 圧力性を有するハ 口ゲン化銀写真感光材料及び該感光材料の製造方法を提供する と ί1 It is an object of the present invention to completely disperse the microscopic halide distribution inside the grain (core) in the core shell emulsion grains having different halide compositions. Uniformity and / or uniformity of reduced silver in the grains, resulting in low fog, high sensitivity, improved granularity, sharpness, and covering power, and excellent storage stability and pressure When to provide a method of manufacturing a wafer port Gen halide photographic material and the photosensitive material having I 1
〔発明の開示〕  [Disclosure of the Invention]
本発明の目的は下記によって達成された。 即ち  The object of the present invention has been achieved by the following. That is
(1) 支持体上に少なく とも 1層のハロゲン化銀乳剤層を有する ハ口ゲン化銀写真感光材料において、 該ハ口ゲン化銀乳剤層 に舍有される感光性ハロゲン化銀粒子が、 該粒子の内部が少 な く とも 2種のハロゲン化銀を舍有する少な く とも 1 つの相 から成り、 そのハラィ ド分布が完全に均一であり、 かつ該粒 子の表面が該表面に隣接する粒子の内部とハライ ド組成が異 なるハロゲン化銀であることを特徴とするハロゲン化銀写真 感光材料。 (1) At least one silver halide emulsion layer on the support In a silver halide photographic light-sensitive material, the photosensitive silver halide grains contained in the silver halide emulsion layer may contain at least two kinds of silver halides. It is composed of at least one phase, its halide distribution is completely uniform, and the surface of the particles is silver halide having a different halide composition from the interior of the grains adjacent to the surface. Silver halide photo-sensitive material.
(2) 支持体上に少な く とも 1 層のハロゲン化銀乳剤層を有する ハ口ゲン化銀写真感光材料において、 該ハ口ゲン化銀乳剤層 に舍有される感光性ハロゲン化銀粒子が、 該粒子の核形成及 び/又は結晶成長を起させる反応容器中に予め調製した微細 なサイ ズのハロゲン化銀を添加するこ とによ り該反応容器中 で核形成及び Z又は結晶成長させたハロゲン化銀粒子の外側 にそれとはハライ ド組成の異なるハロゲン化銀を有する粒子 であるこ とを特徴とするハロゲン化銀写真感光材料。  (2) In a silver halide photographic light-sensitive material having at least one silver halide emulsion layer on a support, the photosensitive silver halide grains contained in the silver halide emulsion layer are formed. By adding a previously prepared fine-sized silver halide to a reaction vessel for causing nucleation and / or crystal growth of the grains, nucleation and Z or crystal growth are performed in the reaction vessel. A silver halide photographic light-sensitive material, characterized in that the silver halide grains have silver halides having different halide compositions outside of the silver halide grains.
(3) 微細なサイ ズのハ口ゲン化銀を感光性ハ口ゲン化銀粒子の 核形成及び/又は結晶成長を起させる反応容器の外に設けら れた混合器において、 水溶性銀塩の水溶液と水溶性ハライ ド の水溶液を混合して形成し、 かつ形成後ただちに該反応容器 中に供給することにより感光性ハロゲン化銀粒子の核形成及 び/又は結晶成長させ、 さ らにその外側にそれとはハライ ド 組成の異なるハロゲン化銀を形成するこ とを特徴とする上記 (3) A water-soluble silver salt is placed in a mixer provided outside a reaction vessel for causing nucleation and / or crystal growth of photosensitive silver halide grains by using fine-sized silver halide grains. And an aqueous solution of a water-soluble halide are formed by mixing, and supplied into the reaction vessel immediately after the formation to form nucleation and / or crystal growth of the photosensitive silver halide grains. Forming silver halide having a different halide composition from the outside.
(2)に記載のハ口ゲン化銀写真感光材料の製造方法。 The method for producing a silver halide photographic light-sensitive material according to (2).
本発明のハロゲン化銀粒子は云わゆるコアノシ ル構造を有 し、 そのコア部が完全に均一なハライ ド分布を有することが特 徴である。 The silver halide grains of the present invention have a so-called corenosil structure, and its core portion has a completely uniform halide distribution. It is a sign.
シェル部は、 シ ル部に隣接するコア部とハロゲン組成が異 なっておればよ く、 シェル部のハラィ ド分布は完全に均一であ る必要はない。 また、 そのハラィ ド組成は単一組成でもいわゆ る混晶であってもよい。  The shell portion only needs to have a different halogen composition from the core portion adjacent to the shell portion, and the halide distribution of the shell portion does not need to be completely uniform. The halide composition may be a single composition or a so-called mixed crystal.
本発明でいう 「ハライ ド分布が完全に均一」 なハロゲン化銀 乳剤粒子の一例として、 ここでョゥ臭化銀相をもつ平板状ヨウ 臭化銀粒子について説明する。  Tabular silver iodobromide grains having a silver iodobromide phase will be described as an example of the silver halide emulsion grains having a “completely uniform halide distribution” in the present invention.
ここに言う 「完全に均一なヨウ化銀分布」 とは、 これまで取 り扱われてきたヨウ化銀分布とは全く異なり、 より微視的な分 布を言う。 従来、 ヨウ臭化銀粒子におけるヨウ化銀分布を測定 する手段として、 分折電子顕微鏡 (Analytical Electron Microscopy) がよ く用いられる。 例えばキング(M . K i ng) -、 π レ ツ ト (M.H.Lorretto マタ一ナノヽ ン(T . J . Ma ternaghan) 及び ベリ一(F.J. Berry) による 「分折電子顕微鏡(analytical electron microscopy)によるョ一 ド分布の研究 (ザ イ ンべス ティ ゲーシヨ ン ォブ アイ オダイ ドディ ス ト リ ビューショ ン ノヾィ アナリ ティ カル エ レク ト ロ ン マイ ク ロスコ ピー) 」 プローグレス イ ン べィ シッ ク プリ ンシプルズ ォブ ィ メ 一ジング システムズ、 イ ンタ一ナショ ナル コ ングレス ォブフォ トグラ フ ィ ッ ク サイ エンス ケルン(Κδΐη)、 1986に おいて、 ョゥ臭化銀平扳拔粒子におけるョゥ化銀の含有量の ト ボグラフ ィ一の結果が記載されている。 この研究において用い た電子線照射用プローブのサイ ズは 50 Αであるが、 実際には電 子の弾性散乱によって電子線が広がってしまい、 サ ンプルの表 面に照射される電子線のスポ ッ トの径は約 300 人位になってし まう。 従ってこの方法ではそれより こまかなヨウ化銀分布を測 定することはできない。 特開昭 58— 113927にも同じ手法を用い てヨウ化銀分布が測定されているが、 用いた電子線スポ ッ 卜 の サイ ズは 0. 2 であった。 The term “perfectly uniform silver iodide distribution” here is completely different from the silver iodide distribution that has been treated so far, and refers to a more microscopic distribution. Conventionally, an analytical electron microscope (Analytical Electron Microscopy) is often used as a means for measuring the distribution of silver iodide in silver iodobromide grains. For example, King (M. King), π-let (MHLorretto M. Nanotern (T. J. Maternaghan) and F. Berry (FJ Berry), "analytical electron microscopy. Research on the distribution of singularities (investigations, observations, distributions, analysis, electronics, microscopy), “Progress, Invasive, and Principles” In Imaging Systems, International Congress of the Science of Cologne (Κδΐη), 1986, the content of silver iodide in flat silver bromide particles was measured. The size of the electron beam irradiation probe used in this study is 50 mm, but the electron beam is actually scattered due to elastic scattering of electrons. Has spread, and the sample table The diameter of the spot of the electron beam irradiated on the surface is about 300 people. Therefore, this method cannot measure the finer silver iodide distribution. The same method was used to measure the silver iodide distribution in JP-A-58-113927, but the size of the electron beam spot used was 0.2.
従ってこれらの測定法によっては、 より微視的な(100 Aォ一 ダ一かそれ以下の場所的変化) ョゥ化銀分布を明らかにする こ とは不可能である。 この微視的なヨウ化銀の分布は、 たとえば、 ハ ミ ル ト ン(J . F . Ham i 1 ton)、 フ ォ トグラフ ィ ッ ク サイ エ ンス ア ン ド エ ンジニア リ ング 11巻、 1967 P . P57 や塩沢猛公、 日本写真学会 35巻、 4号 1972 P . P213 に記載の低温での透 過型電子顕微鏡を用いた直接的な方法により観察するこ とがで きる。 すなわち、 乳剤粒子がプリ ン トアウ ト しないよう'安全光 下で取り出したハロゲン化銀粒子を電子顕微鏡観察用のメ ッ シ ュにのせ、 電子線による損傷 (プリ ン トァゥ ト等) を防ぐよう に液体窒素あるいは液体へリ ウムで試料を冷却した状態で透過 法により観察を行う。  Therefore, it is not possible to clarify the more microscopic (100 A order or less spatial change) silver iodide distribution by these methods. This microscopic distribution of silver iodide is described, for example, in Hamilton (JF Hamilton), Photographic Science and Engineering, Vol. 11, 1967. It can be observed by a direct method using a low-temperature transmission electron microscope described in P. P57, Takeshi Shiozawa, The Photographic Society of Japan, Vol. 35, No. 4, 1972, P. P213. That is, the silver halide grains taken out under safe light are placed on a mesh for electron microscopic observation so that the emulsion grains do not print out so as to prevent damage by electron beams (such as printouts). Observe by the transmission method with the sample cooled with liquid nitrogen or liquid helium.
こ こで電子顕微鏡の加速電圧は、 高い程、 鮮明な透過像が得 られるが、 粒子厚さ 0. 25 までは 200K vo l t、 それ以上の粒子!: さに対しては、 lOOOKvo l t が良い。 加速電圧が高い程、 照射電 子線による粒子の損傷が大き く なるので液体窒素より液体ヘリ ゥムで試料を冷却した方が望ま しい。  Here, the higher the accelerating voltage of the electron microscope, the sharper the transmission image can be obtained, but up to a particle thickness of 0.25, particles of 200 K volt and more! : For that, lOOOKvo l t is good. The higher the accelerating voltage, the greater the damage of the particles by the irradiation electron beam. Therefore, it is desirable to cool the sample with a liquid helium rather than liquid nitrogen.
撮影倍率は試料となる粒子サイ ズによって、 適宜変更し得る が、 2万倍から 4万倍である。  The imaging magnification can be changed as appropriate depending on the particle size of the sample, but it is 20,000 to 40,000.
このよう に してヨウ臭化銀平板状粒子の透過型電子顕微鏡写 真を撮影するとョゥ臭化銀栢の部分に非常にこまかな年輪状の 縞模様が観察される。 この一例を第 5図に示す。 こ こで示した 平板状粒子は、 臭化銀平板粒子をコア一とし、 さらにヨウ化銀 1 0モル%のヨウ臭化銀のシ ヱルをコア一の外側に形成したもの であり、 その構造はこの透過型電子顕微鏡写真で明確に知るこ とができる。 すなわち、 コア一部は臭化銀であり、 当然均一で あるから、 均一なフラ ッ トな像が得られるのみであるが、 一方、 ヨウ臭化銀相には、 非常にこまかな年輪状の縞模様が明確に確 認できる。 この縞模様の間隔は非常にこまかく 100 Aのオーダ 一からそれ以下であり非常に微視的な不均一性を示しているこ とが解る。 この非常にこまかな缟模様がョゥ化銀分布の不均一 性を示すことは種々の方法で明らかにできるが、 より直接的に はこの平板状粒子をョ一 ドィォンがハ口ゲン化銀結晶内を移動 できる条件でァニール(an ne a l i n g) してやると (例えば 250 て、 3時間) 、 この縞模様が全く消失してしまう ことから、 明らか に結論できる。 Thus, transmission electron micrographs of silver iodobromide tabular grains were obtained. When photographing Shin, a very detailed annual ring-shaped stripe pattern is observed in the area of Ginkgo Bromide. An example of this is shown in FIG. The tabular grains shown here consist of silver bromide tabular grains as the core and a silver iodobromide shell of 10 mol% silver iodide formed outside the core. Can be clearly seen in this transmission electron micrograph. In other words, a part of the core is silver bromide, which is of course uniform, so that only a uniform flat image can be obtained.On the other hand, the silver iodobromide phase has a very fine annual ring shape. Stripes can be clearly seen. It can be seen that the spacing of the stripes is very fine, on the order of 100 A to less, indicating very microscopic non-uniformity. Various methods can be used to show that this very fine grain pattern shows non-uniformity in the distribution of silver iodide, but more directly, this tabular grain is formed by silver halide crystals. It is clear that this striping disappears completely when annealing (eg, 250 hours, 3 hours) under conditions that allow you to move inside.
ここに述べてきた平板找ョゥ臭化銀乳剤粒子のョゥ化銀分布 の不均一性を示す年輪状の縞模様は先に引用した、 特開昭 58— 1 13927に添付されている透過型電子顕微鏡写真にも明確に観察 されるしまた同様に先に引用したキング等の研究における透過 型電子顕徽鏡写真にもはっきり と示されている。 これ等の事実- から、 これまで、 均一なヨウ化銀分布を得るべく一定のヨウ化 銀舍量で調製されたヨウ臭化錕粒子は、 その製造の意図とは全 く反して、 非常に微視的なヨウ化銀の不均一分布を持っており、 これまでそれを均一化する技術も開示されておらず、 またその 製造法も開示されてはいない。 本発明はこの微視的なョゥ化銀 分布が完全に均一なコア部をもつコア シュル乳剤とその製造 . 法を開示する ものである。 The annual ring-shaped stripes, which indicate the uneven distribution of silver iodide in the silver bromide emulsion grains of the tabular plate described above, are referred to in the above-cited Japanese Patent Application Laid-Open No. 58-113927. This is clearly seen in the transmission electron micrographs, as well as in the transmission electron microscopy photographs in the study of King et al. Cited above. Based on these facts, to date, iodine bromide particles prepared with a constant amount of silver iodide in order to obtain a uniform silver iodide distribution have been extremely contradictory to their intended use. It has a microscopic non-uniform distribution of silver iodide, and no technology for homogenizing it has been disclosed. No production method is disclosed. The present invention discloses a core-shell emulsion having a core portion in which the microscopic silver iodide distribution is completely uniform, and a method for producing the same.
これまで述べてきたように 「完全に均一なハラ イ ド分布」 を もつハロゲン化銀粒子は、 冷却型透過型電子顕微鏡を用いて、 粒子の透過像を観察することにより、 従来のハロゲン化銀粒子 と明確に区別することができる。 すなわち本発明のハロゲン化 銀粒子の内部には、.例えば上記ョゥ臭化銀の例で言えば、 ョゥ 化銀の微視的な不均一に起因する微視的な線が、 線に直交する 方向で 0 . 2 間隔に多く とも 2本、 好ま し く は 1 本存在し、 よ り好ま し く は存在しない。 このヨウ化銀の微視的不均一を示す、 年輪状の縞模様を構成する線 'は、 粒子成長の方向に直交する形 で発生し、 結果的にこれら'の線は粒子の中心から同心円状に分 布する。 例えば第 5図に示した平板状粒子の場合、 ヨウ化銀の 不均一を示す、 年輪状の縞模様を構成する線は、 平板粒子の成 長方向に直交する為、 結果として粒子のエ ツヂに平行であり、 かつ、 それらに直交する方向は粒子の中心に向く 方向を持って おり、 粒子の中心のまわりに同心円状に分布する。  As described above, silver halide grains having a “completely uniform halide distribution” can be obtained by observing the transmission image of the grains using a cooled transmission electron microscope. It can be clearly distinguished from particles. In other words, inside the silver halide grains of the present invention, for example, in the case of the above silver iodobromide, a microscopic line caused by the microscopic unevenness of the silver iodide becomes a line. There are at most two, preferably one, at 0.2 intervals in the orthogonal direction, and more preferably none. The lines ′ that form the annual ring-shaped stripes, which indicate the microscopic unevenness of silver iodide, are generated perpendicular to the direction of grain growth, and consequently these lines are concentric from the grain center. Distribute in a shape. For example, in the case of the tabular grains shown in Fig. 5, the line forming the annual ring-shaped stripe pattern indicating the unevenness of silver iodide is orthogonal to the growth direction of the tabular grains. The direction parallel to ヂ and perpendicular to them has a direction toward the center of the particle, and is distributed concentrically around the center of the particle.
勿論、 粒子成長中に急激にョゥ化銀含量を変化せしめれば、 その境界線は上記の観察法で、 上に述べたと同様の線と して観 察されるが、 このようなヨウ化銀舍量の変化は単一の線を構成 するのみで、 ヨウ化銀の微視的不均一に由来する複数の線から 構成されるものとは明確に区別できる。 さ らにこのようなヨウ 化銀含量の変化に由来する線は、 この線の両側のヨウ化銀舍量 を先に述べた分折電子顕微鏡で測定すれば明らかに確認するこ とができる。 このようなヨウ化銀含量の変化による線は本発明 で言う、 ョゥ化銀の微視的不均一に由来する線とは全く異なり、 「巨視的なヨウ化銀分布」 を示すものである。 Of course, if the silver iodide content is changed rapidly during grain growth, the boundary will be observed as a line similar to that described above in the above observation method. The change in the amount of silver only constitutes a single line, which can be clearly distinguished from a line composed of multiple lines derived from the microscopic unevenness of silver iodide. Furthermore, a line derived from such a change in silver iodide content can be clearly confirmed by measuring the amount of silver iodide on both sides of the line by the above-mentioned diffraction electron microscope. Can be. The line due to such a change in the silver iodide content is completely different from the line derived from the microscopic unevenness of the silver iodide referred to in the present invention, and shows a “macroscopic silver iodide distribution”. .
また、 粒子の成長中にョゥ化銀舍量を実質的に連続的に変化 させた場合は、 ヨウ化銀含量の急激な変化がない為、 上記の巨 視的なヨウ化銀舍量の変化を示す線は観察されず、 従ってもし、 そこに 0 . 1 間隔に少なく とも 3本以上の線が存在すれば、 そ れは微視的なョゥ化銀含量の不均一があるという ことになる。  In addition, when the amount of silver iodide is changed substantially continuously during the growth of grains, there is no sharp change in the silver iodide content. No line of change is observed, so if there are at least three lines at 0.1 intervals, there is a microscopic unevenness in the silver iodide content. become.
かく して本発明の、 「ハライ ド分布が完全に均一なハ口ゲン 化銀コア粒子」 は、 少な く とも 2種のハロゲン化銀を舍有する 混晶であり、 冷却型透過型電子顕微鏡を用いて得た粒子の透過 像において、 線と直交する方向で 0 . 2 間隔に微視的なハライ ド分布を示す線を多く とも 2本有するコア粒子であり、 好ま し く は 1本有する、 より好ましく はそのような線が存在しないハ ロゲン化銀コア粒子である。 さらにそのような均一な内部を有 する粒子が全粒子の少な く とも 60 %、 好ま し く は少なく とも 80 %、 より好まし く は少な く とも 90 %を占めることが望ましい。  Thus, the “halogen silver halide core particles having a completely uniform halide distribution” of the present invention are mixed crystals having at least two kinds of silver halides. In the transmission image of the particles obtained using the method, the core particles have at most two lines exhibiting a microscopic halide distribution at 0.2 intervals in a direction perpendicular to the lines, and preferably have one line. More preferred are silver halide core grains free of such lines. Further, it is desirable that such particles having a uniform interior make up at least 60%, preferably at least 80%, and more preferably at least 90% of the total particles.
これまで、 例えば均一なョゥ化銀を含むハロゲン化銀粒子と 呼ばれてきた従来のハロゲン化銀粒子は、 単に粒子成長の際、 硝酸銀と一定の組成 (一定のヨウ化物舍量) のハロゲン塩混合 物をダブルジェ ッ ト法で反応容器に添加したにすぎず、 そのよ うな粒子においては巨視的なョゥ化銀分布は確かに一定である 力 微視的なヨウ化銀分布は均一ではない。 本発明においては、 そのような粒子を 「一定のハロゲン組成」 をもつ粒子と呼び 「完全に均一」 な本発明に示す粒子とは明確に区別する。 上記ではヨウ臭化銀ハロゲン化銀コァ粒子を例にとって説明 してあるが、 微視的なハライ ド組成の問題は塩臭化銀、 塩ヨウ 臭化銀、 塩ヨウ化銀等のハロゲン化銀混晶について全てに通ず る ものである。 Until now, conventional silver halide grains, for example, which have been called silver halide grains containing uniform silver iodide, simply contain silver nitrate and a halogen of a certain composition (a certain amount of iodide) during grain growth. The salt mixture was only added to the reaction vessel by the double jet method, and in such particles the macroscopic silver iodide distribution is indeed constant.The microscopic silver iodide distribution is not uniform. Absent. In the present invention, such a particle is called a particle having a “constant halogen composition” and is clearly distinguished from a “perfectly uniform” particle shown in the present invention. Although the above description has been made taking silver iodobromide silver halide grains as an example, the problem of microscopic halide composition is that silver halides such as silver chlorobromide, silver chloroiodobromide, and silver chloroiodide are used. It is all about mixed crystals.
ハ口ゲン化銀混晶の微視的なハラィ ド分布の均一性はさ らに X線回折を利用して測定することができる。  The uniformity of the microscopic halide distribution of the silver halide mixed crystal can be further measured using X-ray diffraction.
X線回折計 (ディ フラク トメータ一) を用いてハロゲン組成 を決定するのは当該業者には周知のことである。 この原理を簡 単に述べる と以下の通りである。 X線回折において Bragg 角を 測定するこ とで次の Bragg の式より格子定数 a が決定でき る。  It is well known to those skilled in the art to determine the halogen composition using an X-ray diffractometer (diffractometer). The principle is briefly described as follows. By measuring the Bragg angle in X-ray diffraction, the lattice constant a can be determined from the following Bragg equation.
2 d hki sin Θ hki = λ λ : X線の波長  2 d hki sin Θ hki = λ λ: X-ray wavelength
Θ hki : (hk £ ) 面からの Bragg 角 d hk t = a ― d hki : (hk £ ) 面の面間隔 Θ hki: Bragg angle from (hk £) plane d hk t = a ― d hk i: spacing between (hk £) planes
• h 2 + k 2 + £ 2 a : 格子定数 ところで、 T, H.ジエームス(James) 著の 「ザ ' セオ リ ー ' ォブ ' ザ ' フォ トグラフ ィ ック ' プロセス」 (The Theory of the Photographic Process) 第 4版 マク ミ ラ ン社、 ニューヨーク ( Macmi l lan Co Ltd. New York) の第一章に沃臭化銀、 塩臭化 銀、 沃塩化銀についてハロゲン組成に対する格子定数 a の関係 が示されている。 このよ う に格子定数 (ハロゲン組成) が異な ると、 回折ピーク位置が異なる。 従って、 ハロゲン組成分布の 均一性のすぐれたハロゲン化銀粒子は、 格子定数のばらつきが 少な く 、 面折プロフ ァ イ ルの半値幅は狭く なる。 この面折プロ ファ イ ルの測定において、 線源は強度の大き く単色性のよい K o 線が K 線より好んで用いられる。 なお、 Κ 線は二重線 なので!? achinger の方法を用いて単一のプロファ ィルを得て半 値幅を求めることが可能である。 • h 2 + k 2 + £ 2 a: lattice constant By the way, T, H. James, “The Theory of the Process” by The James, “The Theory of the Process” (Photographic Process) 4th edition Macmillan Co., New York (Chapters 1) Relationship of lattice constant a to silver composition for silver iodobromide, silver chlorobromide and silver iodochloride It is shown. Thus, when the lattice constant (halogen composition) is different, the diffraction peak position is different. Therefore, silver halide grains having excellent uniformity of the halogen composition distribution have a small variation in lattice constant, and the half width of the profile is narrow. In the measurement of the folding profile, the source is preferably a Ko line having a high intensity and a good monochromaticity over a K line. Note that the Κ line is a double line !? Using the achinger method to obtain a single profile It is possible to determine the price range.
試料にば、 乳剤よりゼラチンを除去した粉末粒子を用いるか あるいは、 ジャーナル ォブ フ ォ ト グラフ ィ ッ ク サイ ェン (Journal of Photographic Science) の 1976年度 24巻 1 ぺ一 ジの C.フ ァ ーネル(G. C. Farnell) , R . J .ジエ ンキ ンス (R . J . Jenkins)および L.R.ソルマ ン(L.R. Solraan) による方法に従つ て、 50%グリ セリ ン溶液に 20分簡浸漬して乾膜中のゼラチンに より粒子表面にかかっていた圧力を除去した、 塗布された乳剤 膜を使用できる。 面折プロフアイ ルの角度を正確に求めるには 回折角既知の Si粉末あるいは NaCl粉末をサンプルに混合させる 方法が用いられる。 さらに回折角および画折プロフ ァ イ ルの線 幅を精度よ く測定するには高指数面からの回折角の大きい回折 プロフアイ ルを用いることがよいことが知られてい-る。 従って 本特許においては銅タ一ゲッ トの K or 線で(420) 面の回折プロ フ ァ イ ルを面折角(Braggの角の 2倍) 7Γ 力、ら? Γ の領域にお いて測定した。 - なお、 X線回折測定は、 粉末より も塗布された乳剤膜の方が 測定精度が良く、 後述する実施例においても、 塗布された乳剤 膜で測定した。  For the sample, use powdered particles obtained by removing gelatin from the emulsion, or use C.Fa in the Journal of Photographic Science, Vol. 24, 1976, 1976, page 24 of the Journal of Photographic Science. Immersion in 50% glycerin solution for 20 minutes according to GC Farnell, R. J. Jenkins and LR Solraan A coated emulsion film can be used in which the pressure applied to the grain surface is removed by the gelatin inside. In order to accurately determine the angle of the bent profile, a method of mixing Si powder or NaCl powder with a known diffraction angle with the sample is used. Further, it is known that a diffraction profile having a large diffraction angle from a high index plane is preferably used in order to accurately measure the diffraction angle and the line width of the profile. Therefore, in this patent, the K or line of the copper target is used to convert the diffraction profile of the (420) plane into a plane bending angle (twice the Bragg angle) of 7 mm. The measurement was performed in the area of Γ. -In the X-ray diffraction measurement, the accuracy of measurement was higher for the coated emulsion film than for the powder, and the measurement was also performed on the coated emulsion film in Examples described later.
ところで、 本特許記述の試料の彤態のように外的な応力によ る歪みがない系の画折プロフ ァ イ ルの半値幅は、 ハロゲン組成 分布のみで決定されるのでばなく、 それ以外に回折計の光学系 による半値幅と試料の結晶子 (ク リ スタ リ ッ ト) の大きさによ る半値幅も含んでいる。 従ってハロゲン組成分布に起因する半 値幅を得るには、 前二者による半値幅の寄与を差し引 く必要が ある。 面折計の光学計による半値幅は歪みのかかっていない (格子定数のばらつきのない) 25 ^π以上の粒度の単結晶の回折 プロファ ィ ルの半値幅として得る ことができる。 このよう な試By the way, the half width of the profile of a system without distortion due to external stress as in the state of the sample described in this patent is determined not only by the halogen composition distribution but also by other factors. This also includes the half-width due to the diffractometer optical system and the half-width due to the size of the crystallite (crystallite) of the sample. Therefore, in order to obtain the half width due to the halogen composition distribution, it is necessary to subtract the half width contribution of the former two. is there. The half value width obtained by the optical meter of the folding meter can be obtained as the half value width of the diffraction profile of a single crystal having a grain size of 25 ^ π or more without distortion (no variation in lattice constant). Such a trial
.≤定結結 x  .≤ tied x
料としては線数晶晶 25〜44 (500メ ッ シユオ ン 350メ ッ シュア ンダ― ) g子子の ί  The number of crystals is 25 to 44 (500 mesh 350 mesh under).
の —石英を 80波角一のの0 てでァニールしたものを使用するごとが理学 長般大大  The use of annealed quartz with an 80-wave angle is the science of general university
電機株式会社によるにきき X  Niki by Electric Corporation X
ί 線回折の手引改訂再版二章八節に記述さ れている。 S i粒子や S i Aささ単。 結晶ウェファ一等でも用いるこ とが可  て い る It is described in the revised Handbook of X-Ray Diffraction, Ch. 2, Sec. S i particle or S i A simple. Can be used for crystal wafers, etc.
9ク: ).こ }ί  9:).
能である。 光学計による半Aよ値 O 幅は回折角依存性があるので、 数  Noh. The value of the half-A value measured by the optical meter depends on the diffraction angle.
}る  }
点の回折プロフ ァ イ ルについて半も半値幅を求める必要がある。  It is necessary to find the half width at half point for the diffraction profile of the point.
 value
必要に応じて外揷内揷を行ない、 測定している系の回折角につ いての光学系による半値幅が得られる。 一方、 結晶子の大きさ による半値幅は次式で記述される。 Perform the outer and inner steps as necessary to obtain the half value width by the optical system for the diffraction angle of the system being measured. On the other hand, the half width according to the crystallite size is described by the following equation.
Κ λ 180  Κ λ 180
D c o s 6 π '  D c os 6 π '
測定された回折プロファ ィルの半値幅からこのようにして求 めた光学系による半値幅と結晶子の大きさによる半値幅を差し 引 く と、 ハロゲン組成分布による半値幅が得られる。 今測定し たい混晶粒子の光学系による半値幅と結晶子の大きさによる半 値幅は、 この着目している粒子と同一の結晶子の大きさを有す るハロゲン組成分布均一 (格子定数一定) のハロゲン化銀粒子 の回折プロファ イ ルの半値幅と等価である。 一般に、 外的な応 力による歪みが存在しない場合、 格子欠陥のない粒子ではこの 粒子の大きさ (辺長、 等体積球相当径等) は結晶子の大きさと 一致する。 このことはディ フ ラク トメ一ターではな く写真法で あるが回折線幅より求めた AgBrの結晶子の大きさと粒子の大き さが一致することがプリ ティ ッ シュ ジャーナル ォブ ァプ ライ ド フ ィ ジ ッ クス (British Journal of Applied Physics) の 1965年 16卷 323ページで F.W.ウ イ レッ ツ(F.W.Killets) によ つて報告されている。 この報告では写真法により、 半値幅では な く プロフ ア イ ルの標準偏差を用いてシヱ ラー定数として 1.44 を選んでいる。 我々 の測定系では、 ディ フラク ト メ ータ一を用 いている力く、 Si単結晶を用いて求めた光学系による半値幅を差 し引いた半値幅より求めた結晶子の大きさと粒子の大きさがバ ラ ンス ト ダブル ジヱ ッ トで調製された AgBr粒子において良 好に一致することを見出している。 - すなわち、 混晶乳剤粒子の光学系による半値幅と結晶子の大 きさによる半値幅は、 混晶乳剤粒子と同一粒子サイ ズの AgBr粒 子、 AgCl粒子、 Ag Ι·粒子の面折プロフ ァ イ ルの半値幅として得 る ことができる。 Subtracting the half-width by the optical system and the half-width by the crystallite size obtained in this way from the measured half-width of the diffraction profile gives the half-width by the halogen composition distribution. The half-width of the mixed crystal grain to be measured now is the half-width due to the optical system and the half-width due to the crystallite size. The halogen composition distribution with the same crystallite size as the particle of interest is uniform (with constant lattice constant). ) Is equivalent to the half width of the diffraction profile of the silver halide grain. In general, in the absence of external stress, particles without lattice defects The size of the particle (side length, equivalent volume sphere equivalent diameter, etc.) matches the size of the crystallite. This is not a defractometer but a photographic method.However, the size of AgBr crystallites and the size of particles obtained from the diffraction line width agree with each other. It was reported by FW Killets in the British Journal of Applied Physics, Volume 16 of 1965, page 323. In this report, the photographer selected 1.44 as the Schiller constant using the profile standard deviation instead of the half width. In our measurement system, the size of the crystallite and the particle size obtained from the half-width obtained by subtracting the half-width obtained by the optical system obtained using a Si single crystal were subtracted from the force using a diffractometer. It has been found that the size is in good agreement with AgBr particles prepared by balanced double jet. -In other words, the half-width of the mixed crystal emulsion particles due to the optical system and the half-width due to the size of the crystallites are the same as those of the mixed crystal emulsion particles, and the fracture profile of AgBr, AgCl, and AgΙ particles is the same. It can be obtained as the half width of the file.
混晶乳剤粒子のハ口ゲン組成分布のみによる半値幅は測定さ れた面折プロフア イ ルの半値幅より着目している粒子と同一粒 子サイ ズの AgBr粒子、 AgCl粒子、 Ag I粒子の面折プ口ファ イ ル の半値幅を差し引 く ことによって得られる。  The half-width of the mixed crystal emulsion particles based on the Haguchi composition distribution alone is determined by the measured half-width of the profile of the profile of the AgBr, AgCl, and AgI particles of the same particle size as the particles of interest. It can be obtained by subtracting the half width of the folding door file.
本発明による微視的なハロゲン組成が均一であるハ口ゲン化 銀乳剤粒子の前記の方法による X線画折のプロフア イ ルの好ま しい半値幅を、 塩臭化銀については第 1図に、 ョゥ臭化銀につ いては第 2図に示した。 第 1図及び第 2図において各ハ πゲン 組成の粒子の均一性は、 各粒子の X線回折の半値幅から、 同一 粒子サイ ズの純塩化銀あるいは純臭化銀の半値幅を差し引いた 値で示される。 本発明の粒子は、 曲線 Aで示される半値幅以下、 好ま し く は曲線 Bで示される半値幅より小さい半値幅を有する ものである。 コア部分及びシュル部分のハライ ド組成は、 X線 回折法によって測定できる。 The preferred half width of the profile of the X-ray diffraction profile of the silver halide emulsion grains having a uniform microscopic halogen composition according to the present invention is shown in FIG. 1 for silver chlorobromide. Figure 2 shows silver bromide. In Fig. 1 and Fig. 2, The uniformity of the grains of the composition is indicated by the value obtained by subtracting the half-width of pure silver chloride or pure silver bromide of the same grain size from the half-width of X-ray diffraction of each grain. The particles of the present invention have a half width not more than the half width shown by the curve A, and preferably smaller than the half width shown by the curve B. The halide composition of the core part and the sur part can be measured by X-ray diffraction.
X線回折法をハコゲン化銀粒子に応用した例は H .ヒルシュの 文献ジヤーナノレ ' ォブ ' フォ トグラフ ィ ック * サイ エ ンス第 10 巻(1962)の 129 頁以降などに述べられている。 ハロゲン組成に よって格子定数が決まるとブラ ッグの条件(2 d s i n 5 = n A ) を満たした面折角度に面折のピークが生ずる。  An example of the application of X-ray diffraction to silver halogen particles is described in H. Hirsch's literature, Jiannano 'Ob' Photographic * Science, Volume 10, (1962), pages 129 et seq. When the lattice constant is determined by the halogen composition, a peak of the fold occurs at a fold angle that satisfies the Bragg condition (2 d sin 5 = n A).
X線回折の測定法に関しては基礎分析化学講座 24 「 X線分析」 (共立出版) や 「 X線回折の手引」 (理学電機株式会社) など に詳し く 記載されている。 標準的な測定法はタ一ゲッ ト として C uを使い、 Cuの 線を線源として (管電圧 40 Κ V、 管電流 60 m A) ハロゲン化銀の(220) 面の回折曲線を求める方法である。 測定機の分解能を高めるために、 スリ ッ ト (発散スリ ッ ト、 受 光ス リ ッ トなど) の幅、 装置の時定数、 ゴニオメ 一ターの走査 速度、 記録速度を適切に選びシ リ コ ンなどの標準試料を用一いて 測定精度を確認する必要がある。  The details of the X-ray diffraction measurement method are described in the Basic Analysis Chemistry Course 24 “X-ray analysis” (Kyoritsu Shuppan) and “Guide to X-ray diffraction” (Rigaku Denki Co., Ltd.). The standard method is to use Cu as a target and obtain the diffraction curve of the (220) plane of silver halide using a Cu line as the source (tube voltage 40 V, tube current 60 mA). It is. To increase the resolution of the measuring instrument, select the width of the slit (divergence slit, light receiving slit, etc.), the time constant of the device, the scanning speed of the goniometer, and the recording speed appropriately. It is necessary to confirm the measurement accuracy using standard samples such as
Cuの K 線を用いてハロゲン化銀の(220 ) 面の回折強度対回 折角度のカーブを得たときコア一部とシェル部に相当する回折 ピークが明確に分離した状態で検出される場合と互いに重なり 合って明確な 2つのピークに分離しない場合がある。  When the diffraction intensity versus diffraction angle curve of the (220) plane of silver halide is obtained using the K K line of Cu, when the diffraction peaks corresponding to a part of the core and the shell part are detected in a clearly separated state May overlap with each other and not separate into two distinct peaks.
2 つの回折成分から成り立つている回折曲線を分解する手法 はよ く知られており、 たとえば実験物理学講座 11格子欠陥 (共 立出版) などに解説されている。 A method for decomposing a diffraction curve consisting of two diffraction components Is well known and is described, for example, in Experimental Physics Course 11 Lattice Defects (Kyoritsu Shuppan).
曲線カーブをガウス閬数あるいはローレンッ関数などの関数 と仮定して D u Pon t 社製のカーブアナライザーなどを用いて解 圻するのも有用である。  It is also useful to assume a curve curve as a function such as a Gaussian number or a Lorentz function and use a curve analyzer manufactured by DuPont to solve the curve.
本発明に用いられるハ口ゲン化銀粒子は上記のコァ部とシェ ル部に相当するビークの分離が明確であってもなくてもよい。 互いに明確な層状構造を持たないハロゲン組成の異なる 2種 の粒子が共存している乳剤の場合でも前記 X線面折では 2本の ピークが現われる。  The silver halide grains used in the present invention may or may not clearly separate the beak corresponding to the core portion and the shell portion. Even in the case of an emulsion having two types of grains having different halogen compositions and having no distinct layered structure, two peaks appear in the X-ray diffraction.
このような乳剤では、 本発明で得られるすぐれた写真性能を 示すことはできない。  Such emulsions cannot exhibit the excellent photographic performance obtained in the present invention.
ハロゲン化銀乳剤が本発明'に係る乳剤であるか又は前記?)如 き明確な層状構造を持たない, 2種のハロゲン化銀粒子の共存す る乳荊であるかを判断する為には、 X線回折法の他に、 E P M A法(El ec tron - Probe M i cro Ana l yzer法) を用 ゝる こと こよ り可能となる。  Is the silver halide emulsion the emulsion according to the present invention 'or the above-mentioned? In addition to X-ray diffraction, the EPMA method (Electron-Probe) must be used to determine whether the silver halide grains have no distinct layered structure and coexist with two types of silver halide grains. This is possible by using the Micro Analyzer method.
この方法ば乳剤粒子を互いに接触しないように良く分散した サンプルを作成し電子ビームを照射する。 電子線励起による X 線分折により極微小な部分の元素分圻が行なえる。  According to this method, a sample in which emulsion grains are well dispersed so as not to contact with each other is prepared and irradiated with an electron beam. X-ray diffraction by electron beam excitation makes it possible to perform elemental analysis of extremely small parts.
この方法により、 各粒子から放射される銀及びハロゲンの特 性 X線強度を求めるこ とにより、 愠々の粒子のハロゲン組成が 決定できる。  By determining the characteristic X-ray intensity of silver and halogen emitted from each grain by this method, the halogen composition of each grain can be determined.
少なく とも 50個の粒子について E P M A法によりハロゲン組 成を確認すれば、 その乳剤が本究明に係る乳剤であるか否かは 判断できる。 When the halogen composition of at least 50 grains is confirmed by the EPMA method, it is determined whether the emulsion is the emulsion according to the present study. I can judge.
本発明の乳剤は、 粒子間のハロゲン組成分布、 特に粒子のコ ァ部における粒子間ハロゲン組成分布がより均一になっている ことが好ま しい。 E P MA法により粒子間のハロゲン組成の分 布 (例えばヨウ臭化銀におけるヨウ化銀舍量、 あるいは塩臭化 銀における臭化銀含量の分布) を測定した時、 そのハロゲン舍 量の相対標準偏差が 50%以下、 さ らに 35%以下、 特に 20%以下 であることが好ましい。  In the emulsion of the present invention, it is preferable that the distribution of the halogen composition between grains, particularly the distribution of the halogen composition between grains in the core portion of the grains, is more uniform. When the distribution of the halogen composition between grains (for example, the distribution of silver iodide content in silver iodobromide or the distribution of silver bromide content in silver chlorobromide) was measured by the EPMA method, the relative standard of the halogen content was measured. The deviation is preferably 50% or less, more preferably 35% or less, particularly preferably 20% or less.
コア部とシェル部に相当する回折ピークの重なりがはなはだ しい場合あるいは粒子に占める シ ュ ル部の比率が非常に小さ く 、 シ ュ ル部に相当する回折ピークが弱く てシ ヱ ル部のハラィ ド組 成が決定できない場合には、 粒子表面のハライ ド組成を測定す る'。  When the overlap between the diffraction peaks corresponding to the core and the shell is very large, or the ratio of the shell to the particles is very small, the diffraction peak corresponding to the shell is weak and the seal is harsh. If the halide composition cannot be determined, measure the halide composition on the particle surface '.
粒子表面のハライ ド組成は X P S (X-ray Pho toe 1 ec tr on Spectroscopy) 表面分折法により測定される (測定される深さ は約 50A程度と言われている) 。  The halide composition on the particle surface is measured by the X-ray photon spectroscopy (XPS) surface diffraction method (the measured depth is said to be about 50A).
ハ口ゲン化銀粒子表面付近のハ口ゲン舍量の分折に使用され る X P S法の原理に関しては、 相原惇一らの 「電子の分光」 共立ライ ブラ リ 一 16、 共立 B版発行、 昭和 53年) を参考にす ることができる。  Regarding the principle of the XPS method used for the analysis of the amount of Haguchigen particles near the surface of Haguchigenide grains, Junichi Aihara et al., “Electron Spectroscopy,” Kyoritsu Library, 16, Kyoritsu B version, (Showa 53).
X P Sの標準的な測定法は、 励起 X線として Mg— を使用 し、 適当な試料形態としたハロゲン化銀粒子から放出されるハ πゲンと銀(Ag)の光電子 (通常は C1一 2P、 Br— 3d、 I — 3d5/2 、 Ag— 3d5/2)の強度を観測する方法である。 The standard method for measuring XPS is to use Mg— as the excited X-rays, and to obtain halogen and silver (Ag) photoelectrons (usually C1-2P, This method measures the intensity of Br-3d, I-3d5 / 2 , Ag-3d5 / 2 ).
例えばヨウ素の舍量を求めるには、 ヨウ素の舍量が既知であ る数種類の標準試料を用いてョゥ素(I ) と銀(Ag)の光電子の強 度比 (強度(I ) ノ強度(Ag) ) の検量線を作成し、 こ の検量線か ら求めることができる。 ハロゲン化銀乳剤ではハロゲン化銀粒 子表面に吸着したゼラチンを蛋白質分解酵素などで分解、 除去 した後に X P Sの測定を行なわなければならない。 For example, to determine the amount of iodine, the amount of iodine is known. Using several standard samples, a calibration curve is created for the intensity ratio of photoelectrons of iodine (I) and silver (Ag) (intensity (I) and intensity (Ag)), and the calibration curve is used to determine this. be able to. In silver halide emulsions, XPS must be measured after gelatin adsorbed on the surface of silver halide particles is decomposed and removed with a protease.
本発明のハロゲン化銀粒子の態様は下記の通りである。  Embodiments of the silver halide grains of the present invention are as follows.
① コア部 (二相以上のコアがある場合にはシュル部に隣接す るコア部をいう ) とシヱル部のハラィ ド組成は、 同一のハラ ィ ドで構成されている場合は、 両者で 5 モル%以上、 好まし く は 10モル%、 より好ま しく は 20モル%以上の差があること が望ましい。 例えば塩化銀を舍む塩臭化銀の場合はその塩化 銀含量がコァ部とシェル部で上記の差があるという ことであ ' る ό またコア部とシェル部でハライ ド種が異なる場合はその 異なったハライ ドの舍量が 3 モル%以上、 好まし く は 6 モル %以上、 より好ま し く は 10モル%以上であることが望ましい。 例えばシヱルが AgBrでコァが AgBrC lであるときはコアの塩化 銀舍量が上記に従う ことを意味する。 ① If the core has two or more phases, it means the core adjacent to the sur part. The halide composition of the seal is 5 It is desirable that there be a difference of at least 10 mol%, preferably at least 10 mol%, more preferably at least 20 mol%. For example, if the pay-de species ό The core and the shell Ru Kotodea 'because when silver chloride in Complex free silver chlorobromide the silver chloride content is the above difference in Koa-shell are different It is desirable that the amount of the different halides be at least 3 mol%, preferably at least 6 mol%, more preferably at least 10 mol%. For example, when the shell is AgBr and the core is AgBrCl, it means that the amount of silver chloride in the core follows the above.
② コ ア部とシヱル部のモル比は任意であるが、 シェルのモル 比は好ましく は 50モル%以下、 より好ま し く は 30モル%以下、 さらに好まし く は 10モル%以下である。  (2) The molar ratio of the core part to the shell part is arbitrary, but the molar ratio of the shell is preferably 50 mol% or less, more preferably 30 mol% or less, and further preferably 10 mol% or less.
③ コア部の微視的ハライ ド組成は完全に均一であること、 シ ュル部の微視的ハラィ ド組成は完全に均一であってもよいし 不均一であってもよい。  ③ The microscopic halide composition of the core part is completely uniform, and the microscopic halide composition of the swell part may be completely uniform or non-uniform.
④ コア部は一つの相であってもよいし二相以上の多層で構成 されてもよい。 次に本発明のハ口ゲン化銀混晶の内部の微視的なハラィ ド組 成が完全に均一であり及び/又はハロゲン化銀結晶の内部が粒 子形成時に生ずる還元銀をもたないハロゲン化銀コア粒子の製 造法について述べる。 コ ア The core may be a single phase or may be composed of two or more layers. Secondly, the microscopic halide composition inside the silver halide mixed crystal of the present invention is completely uniform and / or the inside of the silver halide crystal does not have reduced silver generated at the time of grain formation. The method for producing silver halide core grains will be described.
該粒子の核形成及びノ又は結晶成長を起させる反応容器中に 予め調製した微細なサイ ズのハロゲン化銀を添加する こ とによ り該反応容器中でハロゲン化錕コァ粒子の核形成及び 又は結 晶成長を行なう。  By adding silver halide of a fine size prepared in advance to a reaction vessel which causes nucleation and crystal growth of the grains or crystal growth, nucleation and formation of the halogenated core grains in the reaction vessel. Alternatively, crystal growth is performed.
本発明においては、 予め調製した微細なサイ ズのハロゲン化 銀を該反応容器中に添加するこ とにより、 該反応容器において 粒子の核を形成し、 さ らに結晶成長させる ことができる。  In the present invention, fine particles of silver halide prepared in advance are added to the reaction vessel to form nuclei of the particles in the reaction vessel and allow further crystal growth.
また、 予め反応容器中において従来公知の方法により粒子の 核を形成させておき、 上記微細なハロゲン化銀を添加す.る こ と により結晶の成長を行なう こともできる。  Alternatively, crystal nuclei can be grown by previously forming nuclei of grains in a reaction vessel by a conventionally known method and adding the fine silver halide.
微細なハロゲン化銀を添加するより具体的な方法としては、 以下のものがある。  More specific methods for adding fine silver halide include the following.
(1) 反応容器外の混合器からハ口ゲン化銀微粒子を供給する方 法  (1) Method of supplying silver halide particles from a mixer outside the reaction vessel
,核形成及び Z又は結晶成長を起させる反応容器の外に設けら れた混合器において、 水溶性銀塩の水溶液及び水溶性ハラ イ ド の水溶液を混合して形成された微粒子をただちに該反応容器中 に供給することにより、 ハロゲン化銀コア粒子の核形成及びノ 又は結晶成長を行う (以下 A法と呼ぶ) 。  In a mixer provided outside the reaction vessel for causing nucleation and Z or crystal growth, fine particles formed by mixing an aqueous solution of a water-soluble silver salt and an aqueous solution of a water-soluble halide are immediately subjected to the reaction. By supplying it into a container, nucleation and crystal growth of silver halide core grains are performed (hereinafter referred to as method A).
かかる粒子形成法のシステムを第 3図を例にして以下に示す。 第 3図では、 まず反応容器 1 は保護コ 口ィ ド水溶液 2を舍有 している。 保護コ ロイ ド水溶液は、 面転シャフ トにとりつけら れたプロペラ 3 によって攪拌混合される。 反応容器外の混合器 了 に銀塩水溶液、 ハロゲン塩水溶液、 及び保護コ πィ ド水溶液 を各々添加系、 4、 5及び 6 にて導入する。 (この際、 保護コ ロイ ド水溶液は、 ハロゲン塩水溶液及び Z又は銀塩水溶液にま ぜて添加してもよい。 ) 混合器内でこれらの溶液を急速かつ強 力に混合して、 ただちに系 8 によつて反応容器 1 に導入する。 第 4図に混合器 7 の詳細を図示する。 この混合器 Ί はその中に 反応室 10が設けられ、 その反応室 10の中に面転シャフ ト 11にと りつけられた攛拌翼 9が設けられている。 銀塩水溶液、 ハロゲ ン塩水溶液及び保護コ ロイ ド水溶液は三つの導入-口 ( 4、 5 、 もう一つの導入口は図面から省赂した。 ) から反応室 10に添加 さ-れる。 回転シャフ トを高速で回転する (l O O O r . p . m 以上、 好 ましく は 2000r . p . m 以上、 より好まし く は 3000r . p . m 以上) こ とにより、 急速かつ強力に混合し生成した極く微細な粒子を舍 む溶液は、 ただちに外部への排出口 8から排出される。 かく し て混合器で反 、して生成した極く微細な粒子は反応容器に導入 された後、 その粒子サイズが微細である為、 容易に溶解し再び 銀イ オンとハロゲンィォンとなり、 均一な核形成及び/又は粒 子成長を起せしめる。 この極く微細な粒子のハライ ド組成は目 的とするハロゲン化銀粒子のハライ ド組成と同一にしておく。 反応容器内 導入された極微粒子は、 反応容器内の攪拌によつ て、 反応容器内にばらまかれ、 かつ個々の微細粒子から、 目的 のハライ ド組成のハロゲンイオンと銀イ オンが放出される。 こ こで混合器で 生した粒子は極く微細であり、 その粒子数は非 常に多く、 そのような非常に多数の粒子から、 各々銀イ オ ン及 びハロゲンイ オ ン (混晶成長の場合、 目的のハロゲンイ オ ン組 成になっている。 ) が放出され、 かつそれが反応容器中の保護 コ ロイ ド全体に亘つて起る為、 全く均一な粒子成長を起すこ と ができる。 大切なことは銀イ オ ン及びハロゲンイ オ ンは、 水溶 液としては、 p A g 調節用以外は決して反応容器に添加しないこ と及び反応容器内の保護コ 口ィ ド溶液を混合器に循環しないこ とである。 こ こにおいて従来の方法とは全く 異なり、 この方法 がハロゲン化銀粒子の均一成長において驚く べき効果を挙げる こ とができ る。 The system of such a particle forming method is shown below by taking FIG. 3 as an example. In Fig. 3, first, the reaction vessel 1 has an aqueous solution 2 of a protective core solution. are doing. The aqueous solution of the protective colloid is stirred and mixed by the propeller 3 attached to the turning shaft. A silver salt aqueous solution, a halogen salt aqueous solution, and a protective π-ide aqueous solution are introduced into the mixer outside the reaction vessel with the addition systems 4, 5, and 6, respectively. (At this time, the aqueous solution of the protective colloid may be added to the aqueous solution of the halogen salt and the aqueous solution of Z or silver salt.) These solutions are rapidly and vigorously mixed in the mixer, and the system is immediately Introduce into Reaction Vessel 1 by 8. FIG. 4 illustrates details of the mixer 7. In the mixer 反 応, a reaction chamber 10 is provided therein, and in the reaction chamber 10, a stirring blade 9 attached to a contra-rotating shaft 11 is provided. The silver salt aqueous solution, the halogen salt aqueous solution and the protective colloid aqueous solution are added to the reaction chamber 10 through three inlets (4, 5, and the other inlet is omitted from the drawing). Rapid and powerful mixing by rotating the rotary shaft at high speed (l OOO r.p.m or more, preferably 2000 r.p.m or more, more preferably 3000 r.p.m or more) The resulting solution containing the extremely fine particles is immediately discharged from the outlet 8 to the outside. Thus, the extremely fine particles produced in the mixer are introduced into the reaction vessel, and after being introduced into the reaction vessel, the particle size is very small, so that they are easily dissolved and become silver ions and halogen ions again. Causes nucleation and / or particle growth. The halide composition of the extremely fine grains should be the same as the halide composition of the target silver halide grains. The ultrafine particles introduced into the reaction vessel are dispersed in the reaction vessel by stirring in the reaction vessel, and the halogen ions and silver ions having the desired halide composition are released from the individual fine particles. . Here, the particles produced by the mixer are extremely fine, and the number of particles is In many cases, such a large number of grains emit silver ions and halogen ions (in the case of mixed crystal growth, the target halogen ion composition is obtained), and these grains are emitted. Since it occurs over the entire protective colloid in the reaction vessel, quite uniform particle growth can occur. It is important that silver ion and halogen ion should not be added to the reaction vessel as an aqueous solution except for pAg adjustment, and the protective solution in the reaction vessel should be circulated to the mixer. Don't do it. Here, completely different from the conventional method, this method has a surprising effect on the uniform growth of silver halide grains.
混合器で形成された微粒子は、 その溶解度が粒子サイ ズが微 細である故非常に高く、 反応容器に添加される と溶解し、 再び 銀ィ ォ ン及びハロゲンィ オンとなり、 核を形成するかあるいは 反応容器に既にある粒子に沈積し粒子成長を起すがその際、 微 粒子はその溶解度が高い故に反応容器へ添加する前に微粒子同 志でいわゆるォス トワル ド熟成を起してその粒子サイ ズが増大 してしまう。 微粒子のサイ ズが大き く なつてしま う と、 それだ け溶解度が低下し、 反応容器中での溶解が遅く なり、 粒子成長 の速度が著し く低下し、 ある場合には最早溶解するこ とな く 、 逆にそれ自身が核となって成長を起してしまう。  The fine particles formed in the mixer have a very high solubility due to the fine particle size, and when added to the reaction vessel, dissolve and become silver ions and halogen ions again to form nuclei. Alternatively, the particles are deposited on particles already present in the reaction vessel and cause particle growth.At this time, since the fine particles have high solubility, so-called Ostwald ripening is caused by the fine particles together before being added to the reaction vessel. Increase. As the size of the particles increases, the solubility decreases, the dissolution in the reaction vessel slows down, the rate of particle growth decreases significantly, and in some cases, Rather, on the contrary, it grows itself as a core.
本発明においては以下三つの技術によってこの問題を解決し た。  In the present invention, this problem has been solved by the following three techniques.
① 混合器で微粒子を形成した後、 ただちにそれを反応容器 に添加する。  ① Immediately after the fine particles are formed in the mixer, add them to the reaction vessel.
本発明においては反応容器のご く近く に混合器を設けかつ混 合器内の添加液の滞留時間を短かく することにより、 徒って生 成した微粒子をただちに反応容器に添加することにより このォ ス トワル ド熟成が起らないようにした。 具体的には混合器に添 加された液の滞留時間 t は下記であらわされる。 In the present invention, a mixer is provided very close to the reaction vessel, and By shortening the residence time of the additive liquid in the mixer, the fine particles produced by the addition were immediately added to the reaction vessel to prevent the occurrence of this ripening. Specifically, the residence time t of the liquid added to the mixer is expressed as follows.
V V : 混合器の反応室の体積 (m  V V: Volume of reaction chamber of mixer (m
t = a : 硝酸銀溶液の添加量 ( Zmin)  t = a: Addition amount of silver nitrate solution (Zmin)
a + b + c b : ハロゲン塩溶液の添加量 ( Zmin) c : 保護コ ロイ ド溶液の 加量 (ffigノ min) 本発明の製造法においては t は 10分以下、 好まし く は 5分以 下、 より好まし く は 1分以下、 さ らに好まし く は 20秒以下であ る。 かく して混合器で得られた微粒子はその粒子サイ ズが増大 するこ とな く、 ただちに反応容器に添加される。  a + b + cb: Addition amount of halide salt solution (Zmin) c: Addition amount of protective colloid solution (ffig min) In the production method of the present invention, t is 10 minutes or less, preferably 5 minutes or less. Below, more preferably less than 1 minute and even more preferably less than 20 seconds. The fine particles obtained in the mixer are immediately added to the reaction vessel without increasing the particle size.
② 混合器で強力かつ効率のよい攪拌を行なう。  ② Perform strong and efficient stirring in the mixer.
ジエ ームス(T. H. James) ザ セオ リ ー ォブ ザ フ ォ トグ ラフ ィ ッ ク プロセス p.p.93には、 「ォス ト ワル ド熟成と並 んでもう一つの形態は凝集(coalescence) である。 コア レ ツセ ンス熟成ではその前には遠く離れていた結晶が直接、 接触、 ゆ 着してより大きな結晶が生成するので粒子サイ ズが突然変化す る。 ォス ト ワルド熟成とコア レ ツセンス熟成の両方とも沈積の 終了後のみでなく、 沈積中にも起る。 」 こ こに逑ベられている コアレツセンス熟成は特に粒子サイ ズが非常に小さいときに起 り易く、 特に攪拌が不充分である場合起り易い。 極端な場合は、 粗大な塊状の粒子を作ることすらある。 本発明においては第 4 図に示すよう に密閉型の混合器を用いている為、 反応室の攪拌 翼を高い面転数で回転させることができ従来のような開放型の 反応容器ではできなかった (開放型では、 高回転で回転翼を回 転させる と遠心力で液がふり とばされ、 発泡の問題もからんで、 実用できない。 ) 強力かつ効率のよい攪拌混合を行う こ とがで き上記のコア レ ツ セ ンス熟成を防止でき、 結果と して非常に粒 子サイ ズの小さい微粒子を得る こ とができ る。 本発明において は攪拌翼の回転数は lOOOr.p.m 以上、 好ま し く は 2000r.p.m 以 上、 より好ま し く は 3000r.p.m 以上である。 TH James The Theory of the Photographic Process pp93 states, "Along with Ostwald ripening, another form is coalescence. Coalescence. In the ripening process, the crystal size changes suddenly because the crystal that was far away is directly in contact with and adheres to the crystal, causing a sudden change in the particle size. It occurs not only after the sedimentation is completed, but also during the sedimentation. ”Coalescence maturation, which occurs here, tends to occur especially when the particle size is very small, especially when the stirring is insufficient. easy. In extreme cases, it can even produce coarse, massive particles. In the present invention, as shown in FIG. 4, a closed mixer is used, so that the stirring blades of the reaction chamber can be rotated at a high number of revolutions, which is impossible with a conventional open-type reaction vessel. (In the open type, the rotor is rotated at high speed. If it is inverted, the liquid will be dislodged by the centrifugal force, and foaming will be a problem, making it impractical. ) Powerful and efficient stirring and mixing can be performed, and the above-mentioned coalescence ripening can be prevented. As a result, fine particles having a very small particle size can be obtained. In the present invention, the rotation speed of the stirring blade is lOOOr.pm or more, preferably 2000r.pm or more, and more preferably 3000rpm.
③ 保護コ ロイ ド水溶液の混合器への注入  ③ Inject protection colloid solution into mixer
前述のコア レ ツセ ンス熟成はハロゲン化銀微粒子の保護コ 口 ィ ドによって顕著に防ぐこ とができ る。 本発明においては保護 コ ロイ ド水溶液の混合器への添加は下記の方法による。  The aforementioned coalescence ripening can be remarkably prevented by the protection cohesion of the silver halide fine grains. In the present invention, the protective colloid aqueous solution is added to the mixer by the following method.
③ 保護コ ロイ ド水溶液を単独で混合器に注入する。  ③ Inject the protective colloid solution into the mixer alone.
保護コ ロイ ドの濃度は 0,2 重量%以上、 好ま し く は 0.5 重 量%がよ く 、 流量は、 硝酸銀溶液とハロゲン塩水溶液の流量 の和の少な く とも 20% : 好ま し く は少な く とも 50%、 より好 ま し く は 100 %以上である。  The concentration of the protective colloid should be at least 0.2% by weight, preferably 0.5% by weight, and the flow rate should be at least 20% of the sum of the flow rates of the silver nitrate solution and the aqueous solution of the halogen salt: preferably It is at least 50%, more preferably more than 100%.
® ハロゲン塩水溶液に保護コ ロイ ドを舍有せしめる。  ® Make protective colloids available in an aqueous solution of halogen salt.
保護コ ロイ ドの濃度は、 0.2 重量%以上好ま し く は 0.5 重 量%以上である。  The concentration of the protective colloid is at least 0.2% by weight, preferably at least 0.5% by weight.
© 硝酸銀水溶液に保護コ ロイ ドを舍有せしめる。  © Add protective colloid to silver nitrate solution.
保護コ ロイ ドの濃度は 0.2 重量%以上、 好ま し く は 0.5 重 量%以上である。 ゼラチンを用いる場合、 銀イ オ ンとゼラチ ンでゼラチ ン銀を作り、 光分解及び熱分解して銀コ ロイ ドを 生成する為、 硝酸銀溶液と保護コ ロイ ド埒液は使用直前に混 合する方がよい。 .  The concentration of the protective colloid is at least 0.2% by weight, preferably at least 0.5% by weight. When using gelatin, silver nitrate solution and protective colloid solution are mixed immediately before use because silver gelatin is formed from silver ion and gelatin, and photodecomposition and thermal decomposition produce silver colloid. It is better to do. .
また、 上記の ®〜©の方法は、 各々単独で用いてもよいしそ れぞれ組み合せてもよ く、 また、 同時に三つを用いてもよい。 (2) 予め調製したハロゲン化銀微粒子乳剤を添加する方法 Further, the above methods (1) to (3) may be used alone or separately. These may be combined, or three may be used at the same time. (2) Method of adding a previously prepared silver halide fine grain emulsion
本発明においてはあらかじめ調製した微細なサイ ズの粒子を 有する微粒子ハロゲン化銀乳剤を反応容器に添加して核形成及 びノ又は粒子成長を行う方法を用いることもできる (以下、 In the present invention, a method in which a fine grain silver halide emulsion having fine grains prepared in advance is added to a reaction vessel to carry out nucleation and grain growth or grain growth can be used (hereinafter, referred to as "hereafter").
「 B法 j という ) 。 この際、 あらかじめ調製された乳剤の粒子 サイ ズが小さい方が良いことは前記と同様である。 本方法にお いても、 核形成及び/又は粒子成長が起る反応容器には、 反応 容器内の乳剤の p Ag 調節用以外は反応容器に水溶性銀塩の水溶 液及び水溶性ハライ ドの水溶液を全く添加しない。 この予め調 製された乳剤は反応容器に添加するに先立ち、 予め水洗及び Z 又は固化しておいてもよい。 In this case, the smaller the grain size of the previously prepared emulsion, the better is the same as described above. Also in this method, a reaction that causes nucleation and / or grain growth occurs No aqueous solution of a water-soluble silver salt or an aqueous solution of a water-soluble halide is added to the reaction container except for adjusting the p Ag of the emulsion in the reaction container. Before washing, it may be washed and Z or solidified in advance.
A法における混合器の温度は 40 'C以下好ま しく は 35 以下、 反応容器の温度は、 50 °C以上、 好まし く は 60て以上、 さらに好 ま しく は 70 'C以上である。  In method A, the temperature of the mixer is 40 ° C or lower, preferably 35 ° C or lower, and the temperature of the reaction vessel is 50 ° C or higher, preferably 60 ° C or higher, and more preferably 70 ° C or higher.
B法においてはあらかじめ調製する微粒子乳剤の粒子形成温 度は 40 'C以下、 好ま しく は S5 °C以下であり、 微粒子乳剤を添加 する反応容器の温度は 50 'C以上、 好まし く は 60 'C以上、 さらに 好まし く ば 70 °C以上である。  In Method B, the grain formation temperature of the fine grain emulsion prepared in advance is 40 ° C or less, preferably S5 ° C or less, and the temperature of the reaction vessel to which the fine grain emulsion is added is 50 ° C or more, preferably 60 ° C or less. Above 'C, and more preferably above 70 ° C.
本発明において用いられる微細なサイ ズのハロゲン化銀の粒 子サイ ズは粒子をメ ッ シュにのせそのまま透過型電子顕微鏡に よって確認でき、 倍率は 2万倍から 4万倍がよい。 本発明の微 粒子のサイ ズは 0 . 1 以下、 好ま し く は 0 . 06 以下、 より好ま しく は 0 . 03 /OT以下である。  The fine particle size of the silver halide used in the present invention can be confirmed by a transmission electron microscope with the grains placed on a mesh, and the magnification is preferably 20,000 to 40,000. The size of the fine particles of the present invention is 0.1 or less, preferably 0.06 or less, more preferably 0.03 / OT or less.
本発明によって得られるコア粒子乳剤のハライ ド組成は、 ョ ゥ臭化銀、 塩臭化銀、 塩ヨウ臭化銀、 塩ヨウ化銀のいずれでも よ く 、 本発明によればハライ ドの微視的な分布が均一な、 すな わち 「完全に均一」 なハロゲン化銀混晶粒子が得られる。 The halide composition of the core grain emulsion obtained by the present invention is as follows: Any of silver bromide, silver chlorobromide, silver chloroiodobromide and silver chloroiodide can be used. According to the present invention, the microscopic distribution of halide is uniform, that is, A "uniform" silver halide mixed crystal grain is obtained.
さ らに本発明の方法は、 純臭化銀、 純塩化銀から成るコア粒 子の製造においても、 非常に有効である。 従来の製造方法によ れば、 反応容器内の銀イ オ ン及びハロゲンイ オ ンの局所的な分 布の存在が不可避であり、 反応容器内のハロゲン化銀粒子は、 そのような局所的な不均一部分を通過する ことで他の均一部分 とは異なった環境におかれる こととなり、 それによつて成長の 不均一性を生ずることは勿論、 例えば、 銀イ オ ンの高濃度部分 では還元銀あるいはカプリ銀が生成されてしまう。 従って臭化 銀、 塩化銀においては、 確かにハライ ドの不均一分布はあり得 ないが前に述べた別の不均一性を生じてしまう。 この問題点は、 本発明の方法によれば、 完全に解決できる。 従って本発明の方 法によって得られるコア粒子には単一組成のハロゲン化銀も舍 まれる。 また、 かかる還元銀はコア粒子間においても分布がな いことが好ま しい。.  Further, the method of the present invention is very effective also in producing core particles composed of pure silver bromide and pure silver chloride. According to the conventional manufacturing method, the local distribution of silver ions and halogen ions in the reaction vessel is unavoidable, and the silver halide grains in the reaction vessel are inevitable. Passing through the non-uniform part will result in a different environment from other homogeneous parts, which will cause non-uniform growth, of course.For example, in the high concentration part of silver ion, reduced silver Alternatively, capri silver is produced. Therefore, in silver bromide and silver chloride, there is certainly no non-uniform distribution of halide, but the other non-uniformity described above occurs. This problem can be completely solved by the method of the present invention. Accordingly, the core grains obtained by the method of the present invention include silver halide having a single composition. Further, it is preferable that such reduced silver has no distribution even between core grains. .
本方法においては、 ハロゲン化銀溶剤を反応容器に添加して 使用すれば、 さ らに高い微粒子の溶解速度及びさ らに高い反応 容器内の粒子の成長速度を得ることができる。  In the present method, when a silver halide solvent is added to a reaction vessel and used, a higher dissolution rate of fine particles and a higher growth rate of grains in the reaction vessel can be obtained.
ハロゲン化銀溶剤としては、 水溶性臭化物、 水溶性塩化物、 チォシア ン酸塩、 ア ンモニア、 チォエーテル、 チォ尿素類など を挙げることができる。  Examples of the silver halide solvent include water-soluble bromide, water-soluble chloride, thiocyanate, ammonia, thioether, and thiourea.
例えばチォシア ン酸塩 (米国特許第 2 , 222 , 264 号、 同  For example, thiocyanates (U.S. Pat. Nos. 2,222,264;
2 , 448 , 53 号、 同 3 , 320 , 069 .号など) 、 ア ンモニア、 チォエー テル化合物 (例えば米国特許第 3, 271, 157 号、 同 3, 574, 628 号、 同 3, 704, 130 号、 同 4, 297, 439 号、 同 4, 276, 347 号など) 、 チ オ ン化合物 (例えば特開昭 53— 144319号、 同 53— 82408 号、 同 55 -77737 号など) 、 ァ ミ ン化合物 (例えば特開昭 54— 1007Π 号など) チォ尿素誘導体 (例えば特開昭 55— 2982号) 、 イ ミダ ゾ一ル類 (例えば特開昭 54— 100717号) 、 置換メ ルカプ トテ ト ラゾ一ル (例えば特開昭 57— 202531号) などを挙げることがで き る。 . Nos. 2, 448, 53, 3, 320, 069, etc.), ammonia, Ter compounds (for example, U.S. Pat. Nos. 3,271,157, 3,574,628, 3,704,130, 4,297,439, 4,276,347, etc.); Compounds (for example, JP-A-53-144319, JP-A-53-82408, JP-A-55-77737), amine compounds (for example, JP-A-54-1007Π), and thiourea derivatives (for example, JP-A-55-1007Π). No. 2982), imidazoles (for example, JP-A-54-100717), and substituted mecaptotetrasol (for example, JP-A-57-202531). .
得られた完全に均一なハロゲン化銀乳剤粒子に特に制限はな いが、 0.3 以上であることが好まし く、 さ らに 0.8 以上、 特に 1.4 以上であることが好ましい。 本発明によるハロゲン 化銀粒子の形は六面体、 八面体、 十二面体、 十四面体、 二十四 面体、 四十八面体のような規則的な結晶形 (正常晶粒子) を有 するものでもよ く また球状、 じやがいも状などの不規則な結晶 形のものでもよ く、 さらに双晶面を 1枚以上もつ種々の形体の 粒子、 なかでも平行な双晶面を 2枚あるいは 3枚有する六角形 平板粒子及び三角形平板状双晶粒子であつてもよい。  The obtained completely uniform silver halide emulsion grains are not particularly limited, but are preferably at least 0.3, more preferably at least 0.8, particularly preferably at least 1.4. The shape of the silver halide grains according to the present invention may have a regular crystal form (normal crystal grains) such as a hexahedron, an octahedron, a dodecahedron, a tetrahedron, a 24-hedahedron, and a 48-hedahedron. It may be irregular or crystalline, such as spherical or potato-shaped, and particles of various shapes having one or more twin planes, especially two or three parallel twin planes Hexagonal tabular grains and triangular tabular twin grains may be used.
次に本発明のシ ヱ ルの形成法について述べる。 これまで述べ てきたコァ形成にひき続きシ ュルを形成するが、 その製造法は 前記の A法、 B法が適用できる。 詳細には、 既に述べてきた通 りである。 また本発明のシェル形成にはこれまで知られた粒子 形成法を用いることができる。 すなわち、 コアハロゲン化銀粒 子及び保護コ αィ ドを舍む水溶液を有する反応容器に効率のよ い攪拌のもとに銀塩水溶剤及びハ口ゲン水溶剤を添加する。 具体的方法としては、 P. Glafkides著 Chemie et Phisique Photographique (Paul Montel 社刊、 1967年) ヽ G,F, Duff in 著 Photographic Emulsion Chemistr (The Focal Press 刊、 1966年) V,し- Ze ikmari e t a 1 著 Making and Coating Photographic Emulsion ( The Focal Press 刊、 1964年) など に記載された方法を用いて調製するこ とができる。 すなわち、 酸性法、 中性法、 ア ンモニア法等のいずれでもよ く、 また可溶 性銀塩と可溶性ハロゲン塩を反応させる形式と しては片側混合 法、 同時混合法、 それらの組合せなどのいずれを用いてもよい。 Next, a method for forming the seal of the present invention will be described. A squeeze is formed following the formation of the core described above, and the method A and the method B can be applied to the method of manufacturing the squeeze. The details are as already described. For the shell formation of the present invention, a particle formation method known hitherto can be used. That is, a silver salt water solution and a haegent water solution are added to a reaction vessel having an aqueous solution containing a core silver halide particle and a protection core under efficient stirring. As a specific method, see Chemie et Phisique by P. Glafkides. Photographique (Paul Montel, 1967) ヽ G, F, Duff in Photographic Emulsion Chemistr (The Focal Press, 1966) V, shi- Ze ikmari eta 1 Making and Coating Photographic Emulsion (The Focal Press, 1964) and the like. That is, any method such as an acidic method, a neutral method, and an ammonia method may be used, and the method of reacting a soluble silver salt with a soluble halide salt includes a one-sided mixing method, a double-mixing method, and a combination thereof. Either may be used.
シヱルを銀イ オ ン過剰の下において形成させる方法 (いわゆ る逆混合法) を用いるこ ともできる。 同時混合法の一つの形式 と してハロゲン化銀の生成される液相中の pAg を一定に保つ方 法、 すなわちいわゆるコ ン ト ロールド · ダブルジエ ツ ト法を用 いる こ ともできる。  It is also possible to use a method in which a seal is formed under an excess of silver ion (a so-called reverse mixing method). As one type of the double jet method, a method of maintaining a constant pAg in a liquid phase in which silver halide is formed, that is, a so-called controlled double jet method can be used.
本発明のコアシ ル乳剤粒子の形成又は物理熟成の過程にお いて、 カ ド ミ ウム塩、 亜鉛塩、 鉛塩、 タ リ ウム塩、 イ リ ジウム 塩又はその錯塩、 ロジウム塩又はその錯塩、 鉄塩又は鉄錯塩な どを共存させてもよい。  In the course of the formation or physical ripening of the coresil emulsion grains of the present invention, cadmium salt, zinc salt, lead salt, thallium salt, iridium salt or its complex salt, rhodium salt or its complex salt, iron Salts or iron complex salts may coexist.
また、 英国特許第 1,535, 016 号、 特公昭 48— 36890 号、 同 52 - 1636 号等に記載されているよう に、 硝酸銀やハロゲン化ァ ルカ リ水溶液の添加速度を粒子成長速度に応じて変化させる方 法や、 米国特許第 4, 242, 445 号、 特開昭 55— 158124号等に記載 されているように水溶液濃度を変化させる方法を用いて臨界過 飽和度を越えない範囲において早く成長させる こ とが好ま しい。 これらの方法は、 再核発生を起こさず、 各コアハロゲン化銀粒 子が均一に被覆されてい く ため、 好ま し く用いられる。 本発明のコァ一シヱル型粒子においてはコァ部の形状とシェ ルの付いた全体の形状が同一のこともあれば異なることもある, 具体的にはコァ部が立方体の形状をしていて、 シ ル付き粒子 の形状が立方体のこともあれば八面体のこともある。 逆にコァ 部が八面体で、 シュル付き粒子が立方体あるいは八面体の形状 をしていることもある。 またコア部は明確なレギュラー粒子で あるのにシェル付き粒子はやや形状がく ずれていたり、 不定形 状であることもある。 また単なる二重構造でなく、 特開昭 60— 222844に.開示されているような三重構造にしたりそれ以上の多 層構造にすることや、 コア一シェルの二重構造の粒子の表面に 異なる組成を有するハ口ゲン化銀を薄く つけたりすることがで さる。 Also, as described in British Patent Nos. 1,535,016, JP-B-48-36890, and JP-B-52-1636, the addition rate of silver nitrate or an aqueous halide halide solution is changed according to the grain growth rate. And rapid growth in a range not exceeding the critical supersaturation by using a method of changing the concentration of the aqueous solution as described in US Pat. No. 4,242,445, JP-A-55-158124, etc. It is preferable to let them do so. These methods are preferably used because renucleation does not occur and each core silver halide particle is uniformly coated. In the core-shaped particles of the present invention, the shape of the core portion and the entire shape with the shell may be the same or different, specifically, the core portion has a cubic shape, The shape of the particles with a seal may be cubic or octahedral. Conversely, the core part may be octahedral, and the particles with a sur may have a cubic or octahedral shape. In addition, although the core is a well-defined regular particle, the particle with a shell may be slightly deformed or irregularly shaped. It is not just a double structure, but a triple structure or a multilayer structure as disclosed in JP-A-60-222844, and the surface of a core-shell double structure particle differs. It can be used to thinly apply silver halide having a composition.
粒子の内部に構造を持たせるには上述のような包み込'む構造 だけでなく、 いわゆる接合構造を有する粒子をつく ることがで きる。 これらの例は特開昭 59— 133540、 特開昭 58— 108526、 E P 199290 A 2 . 特公昭 58— 24772 、 特開昭 59— 16254 などに 開示されている。 接合する結晶はホス ト となる結晶と異なる組 成をもってホス ト結晶のエッジやコーナー部、 あるいは面部に 接合して生成させることができる。 このような接合結晶はホス ト結晶がハ口ゲン組成に関して均一であつてもあるいはコア一 シェル型の構造を有するものであっても形成させることができ 接合構造の場合にはハ πゲン化銀同志の組み合せは当然可能 であるが、 ロダン銀、 炭酸銀などの岩塩構造でない銀塩化合物 をハロゲン化銀と組み合せ接合構造をとることができる。 また P b O のよう な非銀塩化合物も接合構造が可能であれば用いても よい。 In order to give the structure inside the particle, not only the above-described wrapping structure but also a particle having a so-called bonded structure can be produced. Examples of these are disclosed in JP-A-59-133540, JP-A-58-108526, EP 199290 A2, JP-B-58-24772, JP-A-59-16254 and the like. The crystal to be bonded can be formed by bonding to the edge, corner, or face of the host crystal with a different composition from that of the host crystal. Such a bonded crystal can be formed even if the host crystal is uniform in terms of the haegen composition or has a core-shell structure. Combinations of competitors are of course possible, but silver salt compounds, such as silver rodan and silver carbonate, that do not have a rock salt structure can be combined with silver halide to form a bonded structure. Also A non-silver salt compound such as PbO may be used as long as it can form a junction structure.
これらの構造を有する沃臭化銀粒子の場合、 たとえばコア一 シェル型の粒子においてコア部が沃化銀含有量が高く 、 シ ェ ル 部が沃化銀含有量が低く ても、 また逆にコア部の沃化銀含有量 が低く、 シェル部が高い粒子であってもよい。 同様に接合構造 を有する粒子についてもホス ト結晶の沃化銀含有率が高く 、 接 合結晶の沃化銀含有率が相対的に低い粒子であつても、 その逆 の粒子であってもよい。  In the case of silver iodobromide grains having these structures, for example, in a core-shell type grain, even if the core part has a high silver iodide content and the shell part has a low silver iodide content, conversely, The grains may have a low silver iodide content in the core and a high shell. Similarly, grains having a junction structure may be grains having a high silver iodide content in the host crystal and relatively low silver iodide content in the junction crystal, or vice versa. .
また、 これらの構造を有する粒子のハロゲン組成の異なる境 界部分は、 明確な境界であっても、 組成差により混晶を形成し て不明確な境界であってもよ く 、 また積極的に連続的な構造変 化をつけたものでも良い。  In addition, a boundary portion having a different halogen composition in a grain having such a structure may be a clear boundary or an unclear boundary formed by a mixed crystal due to a difference in composition. It may be one with continuous structural changes.
本発明に用いるハロゲン化銀乳剤は E P— 0096727 B l、 E P - 0064412 B 1などに開示されているような粒子に丸みをもたら す処理、 あるいは D E— 2306447 C2、 特開昭 60— 221320に開示 されているような表面の改質を行ってもよい。  The silver halide emulsion used in the present invention may be prepared by subjecting the grains to a rounding treatment as disclosed in EP-0096727 B1, EP-0064412 B1, etc., or DE-2306447 C2, JP-A-60-221320. Surface modifications as disclosed may be made.
本発明に用いるハロゲン化銀乳剤は表面潜像型が好ま しいが、 特開昭 59— 133542に開示されているよう に現像液あるいは現像 の条件を選ぶこ とにより内部潜像型の乳剤も用いるこ とができ る。 またうすいシェルをかぶせる浅内部潜像型乳剤も目的に応 じて用いる こ とができる。  The silver halide emulsion used in the present invention is preferably a surface latent image type, but an internal latent image type emulsion may be used by selecting a developing solution or development conditions as disclosed in JP-A-59-133542. be able to. Also, a shallow internal latent image type emulsion covered with a thin shell can be used according to the purpose.
本発明において還元増感、 硫黄増感、 金増感に代表される化 学増感を施こすこ とが極めて重要である。 化学増感を施こす場 所は乳剤粒子の組成 · 構造 · 形状によって、 またその乳剤が用 いられる使用用途とによって異なる。 粒子の内部に化学増感核 をうめ込む場合、 粒子表面から浅い位置にうめ込む場合、 ある いは表面に化学增感梭を作る場合がある。 本発明の効果などの 場合にも有効であるが、 特に好ま しいのは表面近傍に化学增感 核を作った場合である。 つまり内部潜像型より は表面潜像型乳 剤でより有効である。 In the present invention, it is extremely important to perform chemical sensitization represented by reduction sensitization, sulfur sensitization, and gold sensitization. Where chemical sensitization is performed depends on the composition, structure, and shape of the emulsion grains, and the emulsion is used. It depends on the intended use. When a chemical sensitization nucleus is embedded in the inside of a grain, when it is embedded at a shallow position from the grain surface, or when a chemical sensitizer is formed on the surface. Although effective in the case of the effects of the present invention, etc., it is particularly preferable to form a chemical nucleus near the surface. In other words, the surface latent image type emulsion is more effective than the internal latent image type emulsion.
本発明の乳剤は通常、 分光增感される。 - 本発明に用いられる分光増感色素としては通常メ チ ン色素が 用いられるが、 これにはシァニン色素、 メ ロシア二ン色素、 複 合シァニン色素、 複合メ ロ シアニン色素、 ホロポ一ラーシァニ ン色素、 へミ シァニン色素、 スチリル色素およびへミオキソノ ール色素が包含される。 これらの色素類には、 塩基性異節環核 としてシァニ ン色素類に通常利用される核のいずれをも適用で きる。 すなわち、 ピロ リ ン核、 ォキサゾリ ン核、 チアゾリ ン核、 ピロール梭、 ォキサゾール核、 チアゾール核、 セレナゾ一ル核、 ィ ミダゾ一ル核、 テ ト ラゾ一ル核、 ビリ ジ ン核など ; これらの 核に脂環式炭化水素環が融合した核 ; 及びこれらの核に芳香族 炭化水素環が融合した核、 即ち、 イ ン ドレニン核、 ベンズイ ン ド レニン核、 イ ン ドール核、 ベンズォキサ ドール核、 ナフ トォ キサ ド一ル核、 ベンゾチアゾール核、 ナフ トチアゾ一ル核、 ベ ンゾセレナゾ一ル核、 ベンズィ ミダゾ一ル核、 キノ リ ン核など が適用できる。 これらの核は炭素原子上に置換されていてもよ い。  The emulsion of the present invention is generally spectrally sensitive. -Methine dyes are generally used as the spectral sensitizing dyes used in the present invention. These include cyanine dyes, merocyanine dyes, complex cyanine dyes, complex melocyanine dyes, and holopolar cyanine dyes. And hemicyanine dyes, styryl dyes, and hemioxanol dyes. Any of nuclei usually used in cyanine dyes as basic heterocyclic nuclei can be applied to these dyes. That is, pyrroline nucleus, oxazoline nucleus, thiazoline nucleus, pyrrole sodium, oxazole nucleus, thiazole nucleus, selenazole nucleus, imidazole nucleus, tetrazole nucleus, viridin nucleus, etc .; A nucleus in which an alicyclic hydrocarbon ring is fused to the nucleus; and a nucleus in which an aromatic hydrocarbon ring is fused to these nuclei, that is, an indolenin nucleus, a benzindrenine nucleus, an indole nucleus, a benzoxadol nucleus, A naphthoxadr nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a benzoselenazole nucleus, a benzimidazole nucleus, a quinoline nucleus, and the like can be applied. These nuclei may be substituted on carbon atoms.
メ ロシア二ン色素または複合メ ロシア二ン色素にはケ トメチ レ ン構造を有する核として、 ピラゾリ ン一 5—オン核、 チォヒ ダン ト イ ン核、 2 —チォォキサゾリ ジン一 2 , 4 —ジオ ン核、 チ ァゾリ ジ ン一 2 , 4 —ジオ ン核、 ローダニ ン核、 チォバルビッ一 ル酸核などの 5 6員異節環核を適用するこ とができ る。 Merocyanine dyes or complex merocyanine dyes include pyrazolin-15-one nuclei and thiohi Dantoin nucleus, 2-thioxazolidin-1,2,4-dione nucleus, thiazolidin-1,2,4-56-membered heterocyclic nucleus such as dione nucleus, rhodanine nucleus, and thiobarbituric acid nucleus Can be applied.
ハロゲン化銀乳剤調製中に添加される增感色素の量は、 添加 剤の種類やハロゲン化銀量などによって一義的に述べる こ とは できないが、 従来の方法にて添加される量とほぼ同等量用いる こ とができる。  The amount of the sensitizing dye added during the preparation of a silver halide emulsion cannot be unambiguously stated depending on the type of additive, the amount of silver halide, etc., but is almost equal to the amount added by a conventional method. The amount can be used.
すなわち、 好ま しい増感色素の添加量はハロゲン化銀 1 モル あたり 0,001 100mmol であり、 さ らに好ま し く は 0.01〜; 10 1である c That is, the amount of preferred correct sensitizing dye is per mol of silver halide 0,001 100 mmol, is rather to favored is et 0.01; a 10 1 c
増感色素は化学熟成後、 または化学熟成前に添加される。 本 発明のハロゲン化銀粒子に対しては最も好ま し く は増感色素は 化学熟成中又は化学熟成以前 (例えば粒子形成時、 物理熟成時) に添加される。  The sensitizing dye is added after or before chemical ripening. The sensitizing dye is most preferably added to the silver halide grains of the present invention during chemical ripening or before chemical ripening (for example, during grain formation or physical ripening).
増感色素とともに、 それ自身分光增愍作用をもたない色素あ るいは可視光を実質的に吸収しない物質であって、 強色増感を 示す物質を乳剤中に舍んでもよい。 例えば、 舍窒素異節環基で 置換されたア ミノ スチル化合物 (たとえば米国特許第  Along with the sensitizing dye, a dye that does not itself have a spectral effect or a substance that does not substantially absorb visible light and that exhibits supersensitization may be included in the emulsion. For example, amino still compounds substituted with a nitrogen heterocyclic group (for example, US Patent No.
2,933,390 号、 同 3, 635, 721 号に記載のもの) 、 芳香族有機酸 ホルムアルデヒ ド縮合物 (たとえば米国特許第 3, 743, 510 号に 記載のもの) 、 カ ド ミ ウム塩、 ァザイ ンデン化合物などを舍ん でもよい。 米国特許第 3, 615, 613 号、 同 3, 615, 641 号、 同 2,933,390 and 3,635,721), aromatic organic acid formaldehyde condensate (for example, described in US Pat. No. 3,743,510), cadmium salt, azaindene compound It may be a house. U.S. Patent Nos. 3,615,613, 3,615,641,
3,617,295 号、 同 3, 635, 721 号に記載の組合せは特に有用であ る。 The combinations described in 3,617,295 and 3,635,721 are particularly useful.
ハロゲン化銀乳剤は、 通常は化学増感される。 化学増感のた めにば、 例えば H.フリ ーゼル (H. Frieser) 編、 ディ ー ' ダル ン ドラ—ゲル . デル . フ ォ トグラフ イ シェ ン . プロツエセ · ミ ッ ト · シノレべノレノヽ ロ 0*二デン Die Grund 1 agen der Silver halide emulsions are usually chemically sensitized. Chemical sensitization For example, H. Frieser ed., D'Darn Dragel-Dell. Photographieschen. Protesse Mitt-Sinorebenorenoro 0 * Niden Die Grund 1 agen der
Pho tographis en Prozesse mit Silber alogeniden) 、了 力 丁 ミ ツ シェ フェルラグスゲゼルシャク ト ί968) 675 〜734 頁 に記載の方法を用いることができる。  Pho tographis en Prozesse mit Silber alogeniden), and the method described in Mitsushi Ferraglus Gesersakto ί968) pp. 675-734 can be used.
すなわち、 活性ゼラチンや銀'と反応し得る硫黄を舍む化合物 That is, sulfur-containing compounds that can react with active gelatin and silver '
(例えば、 チォ硫酸塩、 チォ尿素類、 メ ルカプ ト化合物類、 π(E.g., thiosulfates, thioureas, mercapto compounds, π
—ダニン類) を用いる硫黄増感法 ; 還元性物質 (例えば、 第一 すず塩、 ァ ミ ン類、 ヒ ドラジン誘導体、 ホルムァ ミ ジンスルフ—Danins) with sulfur sensitizers; reducing substances (eg, stannous salts, amines, hydrazine derivatives, formamide sulphate)
A ン酸、 シラ ン化合物) を用いる還元增感法 ; 貴金属化合物A-acidic acid, silane compound); noble metal compound
(例えば、 金鐯塩のほか、 Pt、 Ir、 Pdなどの周期律表 I族の錯 塩) を用いる貴金属增感法などを単独または組合'せて用いるこ とができる。 (For example, besides gold salts, complex salts of Group I of the periodic table such as Pt, Ir, and Pd) can be used alone or in combination with a noble metal sensitization method.
本発明に用いられる写真乳剤には、 感光材料の製造工程、 保 存中あるいは写真処理中のカ プリを防止し、 あるいば写真性能 を安定化させる目的で、 種々の化合物を舍有させることができ る。 すなわち、 ァゾール類たとえばベ ンゾチアゾリ ゥム塩、 二 トロイ ンダゾール類、 ト リアゾ一ル類、 ベンゾ ト リ ァゾール類、 ベンズイ ミダゾール類 (特にニ ト ロ一またはハロゲン置換体) ; へテ σ環メ ルカプ ト化合物類たとえばメ ルカプ トチアゾール類、 メ ルカプ トベンゾチアゾール類、 メ ルカプ トベンズィ ミダゾ一 ル類、 メ ルカプトチアジアゾール類、 メ ルカプ トテ ト ラゾ一ル 類 (特に 1 一フエニル一 5 —メルカプ トテ トラゾール) 、 メ ル カプ ト ピリ ミ ジン類 ; ガルボキシル基ゃスルホン基などの水溶 性基を有する上記のへテロ環メ ルカプ ト化合物類 ; チオケ ト化 合物たとえばォキサゾリ ンチオ ン ; ァザィ ンデ ン類たとえばテ ト ラァザイ ンデン類 (特に 4 — ヒ ドロキシ置換 ( 1 , 3 , 3a, 7) テ ト ラ ァザィ ンデ ン類) ; ベンゼ ンチォスルホ ン酸類 ; ベ ンゼ ンスルフ ィ ン酸 ; などのようなカプリ防止剤または安定剤と し て知られた多 く の化合物を加えることができる。 The photographic emulsion used in the present invention contains various compounds for the purpose of preventing the capri during the manufacturing process, storage or photographic processing of the photographic material and stabilizing the photographic performance. Can be done. That is, azoles such as benzothiazolium salts, nitroindazoles, triazoles, benzotriazoles, benzimidazoles (especially nitro- or halogen-substituted); Compounds such as mercaptothiazoles, mercaptobenzothiazoles, mercaptobenzimidazoles, mercaptothiadiazoles, mercaptotetrazols (especially 11-phenyl-15-mercaptototrazol) , Melcapto pyrimidines; water-soluble compounds such as galboxyl and sulfone groups The above-mentioned heterocyclic mercapto compounds having a functional group; thioketo compounds such as oxazolinthione; azandenes such as tetrazindene (especially 4-hydroxysubstituted (1,3,3a, Many compounds known as anti-capri agents or stabilizers can be added, such as 7-tetrazandene); benzenesulfonates; benzenesulfinate; and the like.
これらカプリ防止剤または安定剤の添加時期は通常、 化学増 感を施した後に行なわれるが、 より好ま し く は化学熟成の途中 又は化学熟成の開始以前の時期の中から選ぶこ とができる。 す なわちハ ロゲン化銀乳剤粒子形成過程において、 銀塩溶液の添 加中でも、 添加後から化学熟成開始までの間でも、 化学熟成の 途中 (化学熟成時間中、 好ま し く は開始から 50%までの時間! ¾ . に、 より好ま し く は 20%までの時間内) でもよい。  The timing of adding these anti-Capri agents or stabilizers is usually performed after chemical sensitization, but can be more preferably selected during chemical ripening or before chemical ripening. That is, during the silver halide emulsion grain formation process, even during the addition of the silver salt solution or during the period from the addition to the start of chemical ripening, during chemical ripening (preferably 50% from the start during the chemical ripening time). Or more preferably within 20% of the time).
本発明の乳剤は乳剤層が 1 層または 2層以上を問わず任意の 層構成の写真感光材料に用いる こ とができる。 .  The emulsion of the present invention can be used for a photographic light-sensitive material having an arbitrary layer constitution irrespective of whether the emulsion layer has one layer or two or more layers. .
本発明の乳剤を用いたハ ロゲン化銀多層カ ラー写真感光材料 は青色、 緑色および赤色光を別々に記録するためのバイ ンダ一 及びハロゲン化銀粒子を舍有する乳剤層を重ね合わせた多層構 造を有し、 各乳剤層は少な く とも高感度層及び低感度層の二層 から成る。 特に実用的な層構成としては下記のものが挙げられ る。  The silver halide multilayer color photographic light-sensitive material using the emulsion of the present invention has a multilayer structure in which a binder for separately recording blue, green and red light and an emulsion layer having silver halide grains are superposed. Each emulsion layer is composed of at least a high-sensitivity layer and a low-sensitivity layer. Particularly practical layer constitutions include the following.
(1) B H /B L / G H / G L / R H / R L / S  (1) B H / B L / G H / G L / R H / R L / S
(2) B H /B M/ B L / G H / G M/ G L / R H / R M/  (2) BH / BM / BL / GH / GM / GL / RH / RM /
R L / S  R L / S
の層構成や米国特許第 4, 184, 876 号に記載の (3) B H/B L /G H/R HXG L/R L S Described in U.S. Pat.No. 4,184,876. (3) BH / BL / GH / R HXG L / RLS
R D - 22534 、 特開昭 59— Π7551号、 同 59— 177552号などに 記載の  RD-22534, JP-A-59-Π7551, and JP-A-59-177552.
(4) B H G H/R H/B L /G L /R L / S  (4) B H G H / R H / B L / G L / R L / S
の層構成である。 This is a layer configuration.
ここに、 Bは青色感性層、 Gは緑色感性層、 Rは赤色感性層 を、' また Hは最高感度層、 Mば中間度層、 Lは低感度層、 Sは 支持体を表わし、 保護層、 フ ィルタ一層、 中間層、 ハレーショ ン防止層、 下引層等の非感光性層の記録は省赂してある。  Where B is the blue-sensitive layer, G is the green-sensitive layer, R is the red-sensitive layer, 'H is the highest-sensitive layer, M is the medium-sensitive layer, L is the low-sensitive layer, and S is the support, and The recording of non-photosensitive layers such as layers, filter layers, intermediate layers, anti-halation layers and undercoat layers is omitted.
このう ち好ましい層構成は (1)、 (2)又は (4)である。  Of these, preferred layer configurations are (1), (2) and (4).
また、 特開昭 61— 34541 号に記載の  In addition, Japanese Patent Application Laid-Open No. 61-34141 describes
(5) B H/B L/ C L /G H/G L /R H/R L / S  (5) B H / B L / C L / G H / G L / R H / R L / S
(6) B H/B L / G H/G L / C L/R H/R L / S  (6) B H / B L / G H / G L / C L / R H / R L / S
などの層構成も好ましい。 Is also preferable.
ここで、 C Lは重層効果付与層で、 他は前記の通りである。 又、 同一感色性の高感度層と低感度層が逆転して配置してい てもよい。  Here, CL is a layer effect imparting layer, and the others are as described above. Further, the high-sensitivity layer and the low-sensitivity layer having the same color sensitivity may be arranged in reverse.
本発明のハロゲン化銀乳剤は前記の如く 力ラー感光材料に適 用することができるが、 乳剤層が 1層および多層を問わずそれ 以外の感光材料、 たとえば X—レイ用感光材料、 黒白撮影用感 光林料、 製版用感光材料、 印画紙等にも適用することが出来る。  The silver halide emulsion of the present invention can be applied to light-sensitive light-sensitive materials as described above. However, the light-sensitive material may have one or more emulsion layers, for example, X-ray light-sensitive material, black-and-white photographing. It can also be applied to photosensitive forestry materials, photosensitive materials for plate making, photographic paper, etc.
本発明のハロゲン化銀乳剤の種々の添加剤、 たとえばバイ ン ダー、 化学増感剤、 分光増感剤、 安定剤、 ゼラチン硬化剤、 界 面活性剤、 帯電防止剤、 ポリ マーラテッ クス、 マツ ト剤、 カ ラ 一カプラー、 紫外線吸収剤、 退色防止剤、 染料及びこれらの乳 剤を用いた感光材料の支持体、 塗布方法、 露光方法、 現像処理 方法等については特に制限はな く 、 たとえばリ サーチ ' ディ ス ク ロージャ一 Π 6 巻、 アイ テム 17643 ( R D— 17643)、 同 187 巻、 アイ テム 18716 ( R D— 18716)及び同 225巻、 アイ テム 22534 ( R D— 22534)の記載を参考にする こ とができる。 Various additives of the silver halide emulsion of the present invention, such as binders, chemical sensitizers, spectral sensitizers, stabilizers, gelatin hardeners, surfactants, antistatic agents, polymer latex, matte Agents, color couplers, UV absorbers, anti-fading agents, dyes and their milks There are no particular restrictions on the support, coating method, exposure method, development processing method, etc. of the photosensitive material using the agent. For example, Research 'Disclosure, Vol. 6, Item 17643 (RD-17643), The descriptions in Vol. 187, Item 18716 (RD-18716) and Vol. 225, Item 22534 (RD-22534) can be referred to.
これら リ サーチ * ディ スク 口一ジャーの記載を以下のー覽表 に示した。 添加剤種類 RD 17643 RD 18716 RD22534 The descriptions of these research * discs are shown in the table below. Additive type RD 17643 RD 18716 RD22534
1 化学增感剤 23頁 648 頁右欄 24頁1 Chemical sensitizer page 23 page 648 right column page 24
2 感度上昇剤 同上 2 Sensitivity enhancer Same as above
3 分光増感剤、 23〜 24頁 648 頁右欄〜 24〜28頁 強色増感剤 6.49 頁右欄  3 Spectral sensitizer, page 23-24, right column, page 648-page 24-28 Supersensitizer, right column, page 6.49
4 増 白 剤 24頁  4 Brightener page 24
5 かぶり防止剤 24〜25頁 649 頁右欄〜 24頁、 31頁 および安定剤  5 Antifoggant page 24-25 page 649 right column-page 24, page 31 and stabilizer
6 光 吸 収 剤、 25〜26頁 649 頁右欄  6 Light absorber, pages 25-26, page 649, right column
フ ィ ルター染料、 650 頁左欄  Filter dye, page 650, left column
紫外線吸収剤  UV absorber
7 スティ ン防止剤 25頁右欄 650 頁左〜右欄  7 Stain inhibitor 25 pages right column 650 pages left to right column
8 色素画像安定剤 25頁 32頁 8 Dye image stabilizer page 25 page 32
9 硬 膜 剤 26頁 651 頁左欄 28頁9 Hardener Page 26 Page 651 Left column Page 28
10 バイ ンダー 26頁 同上 10 binder page 26 Same as above
11 可塑剤、 潤滑剤 27頁 650 頁右欄  11 Plasticizers and lubricants Page 27 Page 650 Right column
12 塗 布 助 剤、 26〜27頁 同上  12 Coating aids, pp. 26-27
表面活性剤  Surfactant
13 スタチ ッ ク 27頁 同上  13 Static page 27 Same as above
防 止 剤  Inhibitor
14 カ ラ一力フ フ一 25頁 649 頁 31頁 ゼラチン硬化剤としては例えば、 活性ハ口ゲン化合物(2 , 4— ジク ロル一 6 —ヒ ドロキシ一 1 , 3 , 5 ― ト リ アジン及びそのナ ト リ ウム塩など) および活性ビュル化合物(1 , 3— ビス ビニルスル 永ニル一 2 —フ。 ロ ノ ^ノ ール、 1 , 2 —ビス (ビニノレスルホ二ルァ セ 卜ア ミ ド) ェタ ンあるいはビニルスルホニル基を惻鎮に有す るビニル系ポリ マーなど) は、 ゼラチンなど親水性コ ロイ ドを 早く硬化させ安定な写真特性を与えるので好ま しい。 N —カル ノ モイルピリ ジニゥム塩類 ( 1 —モルホ リ ノ カルボ二ルー 3 ― ピリ ジニォ) メ タ ンスルホナー トなど) ゃハロア ミ ジニゥム塩 類 ( 1 一 ( 1 —ク ロ 口 一 1 —ピリ ジノ メ チレン) ピロ リ ジユウ ム 2 —ナフタ レンスルホナ一トなど) も硬化速度が早く優れて いる。 14 Characters Page 25 Page 649 Page 31 Gelatin hardeners include, for example, active halogen compounds (2,4-dichloro-16-hydroxy-1,3,5-triazine and its sodium salt) and active bur compounds (1,2,3-triazine and sodium salts thereof). 3—Bis vinylsulfuryl 2- 1-fluoro-nor, 1,2-bis (vinylinolesulfonyl amide) ethane or vinyl-based poly (vinylsulfone) with vinylsulfonyl group Are preferred because hydrophilic colloids such as gelatin cure quickly and provide stable photographic properties. N—Carnomoylpyridinium salt (1—Morpholinocarbonyl 3-pyridino) Methansulfonate, etc. ゃ Haloa midinium salt (1—1—1-chloropipermethylene) (Pyrrolidine 2-naphthalene sulfonate) also has a fast curing rate and is excellent.
本発明のハ口ゲン化銀写真乳剤を用いた力ラ一写真感光材料 は、 R D . No.17643 の 28〜29頁、 および同 No.18716 の 651 左欄 〜右欄に記載された通常の方法によつて現像処理することがで きる。  No. 17643, pages 28 to 29, and No. 18716, 651 left column to right column described in RD. No. 17643. It can be developed according to the method.
本発明のハ口ゲン化銀写真乳剤を用いた力ラ一写真感光材料 は、 現像、 漂白定着もしく は定着処理の後に通常水洗処理又は 安定化処理を施す。一  The photographic light-sensitive material using the silver halide photographic emulsion of the present invention is usually subjected to a washing treatment or a stabilization treatment after development, bleach-fixing or fixing. One
水洗工程は 2槽以上の槽を向流水洗にし、 節水するのが一般 的である。 安定化処理としては水洗工程のかわりに特開昭 57— 8543号記載のような多段向流安定化処理が代表例として挙げら れる。  In the water washing process, two or more tanks are generally countercurrently washed to save water. As a stabilization treatment, a multi-stage countercurrent stabilization treatment as described in JP-A-57-8543 may be mentioned as a typical example instead of the washing step.
〔図面の簡単な説明〕  [Brief description of drawings]
第 1図及び第 2図はハロゲン化銀粒子の均一性を表わす X線 回折であり、 そのたて軸は X線面折プロフ ァ イ ルの半値巾を表 わし、 横軸はハ口ゲン化銀粒子のハ口ゲン組成を表わす。 Fig. 1 and Fig. 2 show the uniformity of silver halide grains. The vertical axis represents the half-width of the X-ray profile, and the horizontal axis represents the Haguchi composition of the silver halide grains.
第 3図は本発明の方法を模式的に表わしたものである。  FIG. 3 schematically shows the method of the present invention.
1 : &fc、容 s  1: & fc, content s
2 .· 保護コ ロイ ド水溶液  2.Aqueous protective colloid solution
3 : プロペラ  3: Propeller
: ハロゲン塩水溶液添加系  : Halogen salt aqueous solution addition system
5 : 銀塩水溶液添加系  5: Silver salt aqueous solution added system
6 : 保護コ ロイ ド添加系  6: Protective colloid addition system
7 : 混合器  7: Mixer
第 4図は本発明における混合器の詳細図である。  FIG. 4 is a detailed view of the mixer according to the present invention.
4 , 5., 6 , 7 は第 1図と各々同義である。  4, 5, 6, and 7 are the same as those in FIG.
8 : 反応容器への導入系  8: Introduction system to reaction vessel
9 : 攪拌翼  9: stirring blade
10 : 反応室  10: Reaction chamber
第 5図は沃臭化銀相のョゥ ド分布が完全に均一ではない従来 型の平板状ハロゲン化銀粒子の結晶構造を示す透過型電子顕微 鏡写真であり、 その倍率は、 37, 000倍である。  FIG. 5 is a transmission electron micrograph showing the crystal structure of conventional tabular silver halide grains in which the distribution of silver iodobromide phases is not completely uniform. The magnification was 37,000. It is twice.
〔発明を実施するための最良の形態〕  [Best mode for carrying out the invention]
以下に実施例を挙げて本発明をさ らに説明する。  Hereinafter, the present invention will be further described with reference to examples.
実施例一 1 Example 1 1
ヨウ臭化銀微粒子乳剤 1 一 A  Silver iodobromide fine grain emulsion 1 A
0.126 Mの臭化カ リ ウムを舍有する 2.0 重量%のゼラチン溶 液 2.6 £に、 それを攪拌しながら、 ダブルジェ ッ ト法で 1.2 M の硝酸銀溶液と、 0.9 Mの臭化カ リ ウム と 0.3 Mの ヨ ウ化カ リ ゥムを舍むハ口ゲン塩水溶液を各 1200 を 15分間かけて添加し た。 この間ゼラチン溶液は 35てに保たれた。 この後乳剤を、 常 法のフロキユレ一ショ ン法で洗浄しゼラチン 30 gを加え、 溶解 した後 PH6.5 、 PAg8.6に調整した。 得られたヨ ウ臭化銀微粒子 (ヨウ化銀舍量 25%) は平均粒子サイ ズは 0.05^であった。 ョゥ臭化銀八面体コァ乳剤 1 一 B <本発明 > A 2.6% 2.0% by weight gelatin solution containing 0.126 M potassium bromide was stirred by a double jet method with a 1.2 M silver nitrate solution, 0.9 M potassium bromide and 0.3 M with stirring. M iodide A 1200 ml aqueous solution of Haguchigen salt was added over 15 minutes. During this time the gelatin solution was kept at 35. Thereafter, the emulsion was washed by a conventional flocculation method, added with 30 g of gelatin, dissolved, and adjusted to PH 6.5 and P Ag 8.6. The resulting silver iodobromide fine particles (silver iodide content 25%) had an average particle size of 0.05 ^. Silver bromide octahedral core emulsion 1 B <The present invention>
0.05 Mの臭化力リ ゥムを舍有する 1.5 重量%のゼラチン溶液 1.2 £ にそれを攪拌しながら 0.5 % 3,6 —ジチアオクタ ン一 1,8 —ジオールを 60 添加し 75'Cに保った反応容器に、 ヨウ臭 化銀微粒子乳剤 1 一 A 100 g (硝酸銀で 10 gに相当する銀を舍 む) に水を 270 添加して溶解した乳剤を 10分間で添加して、 核形成を行った。 得られたヨウ臭化銀八面体核粒子は 0.4 ^で めった o .  1.5% by weight of a 1.5% gelatin solution having a bromide rim of 0.05M was added to 1.2 pounds of the solution while stirring, and 60% of 0.5% 3,6-dithiaoctane-1,8-diol was added thereto and kept at 75'C. Nucleation was performed by adding an emulsion prepared by adding 270 water to 100 g of silver iodobromide fine grain emulsion (containing silver equivalent to 10 g of silver nitrate) in a reaction vessel over 10 minutes. Was. The obtained silver iodobromide octahedral core particles were 0.4 ^.
ひき続き微粒子乳剤 1 一 AlOOO g (硝酸銀で 100 gに相当す る銀を舍む) 100 分間かけて反応容器に連続的に添加した。 こ の後、 乳剤を 35てに冷却し、 常法のフロキユレ一シヨ ン法によ り水洗し、 ゼラチン 70 gを加えて PH6.2 、 pAg8.8に調整した。 得られたコア乳剤粒子は平均投影面積円栢当径 1.2 ^の八面体 ヨウ臭化銀乳剤であった (ヨウ化含有率 25モル%) 。  Fine grain emulsion 1 One AlOOO g (silver nitrate containing 100 g of silver) was continuously added to the reaction vessel over 100 minutes. Thereafter, the emulsion was cooled to 35, washed with water by a conventional flocculation method, and adjusted to PH 6.2 and pAg 8.8 by adding 70 g of gelatin. The obtained core emulsion grains were octahedral silver iodobromide emulsions having an average projected area of 1.2 ^ <2> (equivalent content of 25 mol%).
ョゥ臭化銀八面体コア乳剤 1 一 Cぐ本発明>  Silver bromide octahedral core emulsion 1
0.05Mの臭化力 リ ウムを舍有する 1.5 重量%のゼラチン溶液 1.2 にそれを攪拌しながら 0.5 % 3,6 —ジチアオクタ ン一 1,8 —ジオールを 20 添加し、 反応容器を 75'Cに保った。 反応 容器のそばに設けられた混合器に 0.59 Mの硝酸銀水溶液 100 及び 0.44 Mの臭化力 リ ウムと 0.148 Mのヨ ウ化カ リ ウムを含む ハロゲン塩水溶液 100 及び 2重量%のゼラチ ン水溶液 300 m£ を 5分間かけて ト リ プルジュ ッ ト法で添加した。 混合器の温度 は 20てで攪拌翼の回転数は 6000r.p .m であった。 得られた微粒 子は直接法透過型電子顕微鏡で 2万倍の倍率で確認したところ 0.01 であった。 混合器で生成した微粒子は連続的に 75°Cに保 たれた反応容器に導入された。 得られたョゥ臭化銀八面体核粒 子 (ヨウ化銀舍有 25モル%) は 0.4· であった。 ひき続き 75て において混合器に 1 M硝酸銀水溶液 600 と 0.75M臭化力 リ ゥ ムと 0.25ヨ ウ化カ リ ウムを舍む溶液 と 2重量%ゼラチ ン 800 を ト リ プルジヱ ッ トで混合器に添加した。 形成された微 粒子は のサィ ズで連続的に反応容器に添加された。 この とき混合器 20'Cに保たれた。 乳剤 1 一 B と同様に水洗し同じ PH, pAg に調節した。 得られたコア乳剤粒子は平均投影面積円相当 径が 1.2 ^の八面体ヨウ臭化銀乳剤であった (ヨウ化銀含有率 25モル% ) 。 To a 1.5% by weight gelatin solution containing 0.05M of bromide having a concentration of 0.05M was added, while stirring, 20% of 0.5% 3,6-dithiaoctane-1,8-diol was added, and the reaction vessel was brought to 75'C. Kept. Mixer located beside reaction vessel contains 0.59 M silver nitrate aqueous solution 100 and 0.44 M lithium bromide and 0.148 M potassium iodide 100 ml of an aqueous solution of a halogen salt and 300 ml of a 2% by weight aqueous solution of gelatin were added by a triple-jet method over 5 minutes. The temperature of the mixer was 20 and the rotation speed of the stirring blade was 6000 rpm. The obtained fine particles were confirmed by a direct transmission electron microscope at a magnification of 20,000 times to be 0.01. The fine particles generated by the mixer were continuously introduced into a reaction vessel maintained at 75 ° C. The obtained silver bromide octahedral nuclei (25 mol% of silver iodide) were 0.4 ·. Subsequently, at 75, a 1 M silver nitrate aqueous solution 600, a solution containing 0.75 M bromide rim, 0.25 potassium iodide and 2 wt% gelatin 800 were mixed in a triple jet with a mixer. Was added. The formed fine particles were continuously added to the reaction vessel at a size of. At this time, the mixer was kept at 20'C. The emulsion was washed with water in the same manner as in Emulsion 1-1B and adjusted to the same pH and pAg. The obtained core emulsion grains were octahedral silver iodobromide emulsions having an average projected area circle equivalent diameter of 1.2 ^ (silver iodide content: 25 mol%).
ョゥ臭化銀八面体コァ乳剤 1 一 D <比較乳剤 >  Silver bromide octahedral core emulsion 1 D <Comparative emulsion>
0.06 Mの臭化カ リ ゥムを舍有する 3.0 重量%のゼラチン溶液 1.2 に、 それを攪拌しながら、 0.5 % 3.6—ジチアオク タ ン — 1, 8 —ジオール溶液 50 を添加し、 75'Cに保った反応容器に 0.3 M硝酸銀溶液を 50ccと 0.063 Mのヨ ウ化カ リ ウムと 0.19 M の臭化力 リ ゥムを舍むハ口ゲン塩水溶液を 50ccをダブルジェ ッ ト法により、 3分間かけて添加した。 これにより、 投影面積円 相当径 0.4 のヨウ化銀舍量 25モル%のヨウ臭化銀粒子を得る こ とにより核形成を行った。 続いて同様に 75 °Cにおいて、 1 M 硝酸銀水溶液 600 と 0.75M臭化カ リ ウムと 0.25Mヨウ化カ リ ゥ ムを舍む溶液 600)ώをダブルジュ ッ トで反応容器に添加し同 様に水洗し?し剤 1 一 Β と同じ pH.pAgに調節した。 得られたコァ 乳剤粒子は平均投影面積円相当径が 1.2 の八面体ョゥ臭化銀 乳剤であった (ヨウ化銀含有率 25モル% ) 。 To a 3.0% by weight gelatin solution 1.2 containing 0.06 M bromide, 0.5% 3.6-dithiaoctane-1,8-diol solution 50 was added while stirring, and the mixture was heated to 75'C. 50cc of 0.3M silver nitrate solution, 50cc of 0.063M potassium iodide and 0.19M bromide solution of haguchigen salt solution in a maintained reaction vessel for 3 minutes by double jet method And added. As a result, nucleation was performed by obtaining silver iodide bromide grains having a projected area circle equivalent diameter of 0.4 and a silver iodide concentration of 25 mol%. Subsequently, similarly at 75 ° C, a 1 M silver nitrate aqueous solution 600, 0.75 M potassium bromide and 0.25 M calcium iodide were added. 溶液 Add the solution 600) containing the solution to the reaction vessel in a double-jet and wash it in the same way? The pH was adjusted to the same value as p. The obtained core emulsion grains were octahedral silver bromide emulsions having an average projected area circle equivalent diameter of 1.2 (silver iodide content: 25 mol%).
乳剤 1 一 B、 1 — C、 1 — Dの微視的なョウ ド分布を調べる 為、 前に述べた Kor線を用いて(420) 面の X線回折を測定した その際同一サイ ズの純臭化銀乳剤の X線画折測定も行った。 結 果を表一 1 に示す。  Emulsion 1-1 To examine the microscopic distribution of iodine in B, 1 — C, and 1 — D, the X-ray diffraction of the (420) plane was measured using the Kor line described earlier, and the size was the same. X-ray diffraction measurement of the pure silver bromide emulsion was also performed. Table 1 shows the results.
表— 1  table 1
乳剤  Emulsion
半値巾 1 一 B 1 一 C 1 一 D  Half width 1 1 B 1 1 C 1 1 D
A 半値巾 0. 14。 0. 13° 0. 22°  A Half width: 0.14. 0.13 ° 0.22 °
B 純 AgBrの半値巾 0. 08° 0. 08° 0. 08°  B Half width of pure AgBr 0.08 ° 0.08 ° 0.08 °
( A - B ) 0. 06。 0. 05° 0. 14。 表一 1 の ( A— B ) の値がョウ ドの不均一分布を示しており 本発明の乳剤粒子 1 一 B、 1 - Cば比較乳剤 1 一 Dに比べ半値 巾が小さ く、 l/z 以下であることが解る。 (A-B) 0.06. 0. 05 ° 0.14. Table one 1 (A- B) emulsion grains 1 first value are present invention indicates a non-uniform distribution of ® c de of B, 1 - C if half width as compared with Comparative Emulsion 1 one D is rather small, l It turns out that it is / z or less.
実施例一 2 Example 1 2
実施例一 1で得られたコア—乳剤に 60°Cで、 pAg9.0において ダブルジュ ッ トで純 AgBrのシヱルを形成した。 シヱル形成の内 容を表— 2に示す。  A core of pure AgBr was formed on the core-emulsion obtained in Example 11 at 60 ° C. and at a pAg of 9.0 by double jet. Table 2 shows the details of the seal formation.
表— 1 乳剤名 2-A 2-B 2-C 2-D 2-B 2-F コア乳荊 1-B (本発明) 1-C (本発明) 1 - D (比較) Table 1 Emulsion name 2-A 2-B 2-C 2-D 2-B 2-F Core milk 1-B (invention) 1-C (invention) 1-D (comparison)
C/S 比 (モル%) 3/2 9/1 3/2 9/1 3/2 19/1 得られた乳剤 2 — A〜 2 — Fをチォ硫酸ソ一ダと塩化金酸力 リ ゥ ム及びチォシア ン酸カ リ ゥ ムで最適に化学増感し、 下記の 化合物を加え下塗層を有する ト リ ァセチルセルロース フ ィ ルム 支持体上に塗布した。 C / S ratio (mol%) 3/2 9/1 3/2 9/1 3/2 19/1 The obtained emulsions 2 — A to 2 — F were optimally chemically sensitized with sodium thiosulfate and chloroauric acid or potassium thiocyanate, and the following compounds were added to form an undercoat layer. Triacetyl cellulose film was coated on a support.
(Ϊ) 乳剤層  (Ϊ) Emulsion layer
。 乳剤… 第 2表に示す乳剤  . Emulsion ... Emulsion shown in Table 2
。 カプラー  . Coupler
Π 1 1し 5 0 Π 1 1 then 5 0
1 '"CS 1 '"CS
Figure imgf000045_0001
ト リ ク レジルフ ォ ス フ ュー ト
Figure imgf000045_0001
Tri-Crystal Fute
i曽感色素 5 — ク ロ ロ ー 5' —フエ二ルー 4 ーェチルー 3  i sosensen 5-black 5 '-feneru 4-echiru 3
3' - ( 3 —スルホプロ ピル) ォキサカ ルボシ ァニ ンナ ト リ ウ ム  3 '-(3—Sulfopropyl) oxacarrubinannaminium
安定剤 4 — ヒ ドロキ シ一 6 —メ チル— 1,3, 3a, 7—テ ト ラザィ ンデ ン  Stabilizer 4—Hydroxy 6—Methyl—1,3,3a, 7—Tetrazaindene
44 - 塗布助剤 ドデシルベンゼ ンスルホ ン酸ナ ト リ ゥ ム 44-Coating aid sodium dodecylbenzenesulfonate
(2) (2)
2,4 — ジク ロ 口 一 6 — ヒ ド ロ キ シ一 s — ト リ ア ジ ンナ ト リ ウ ム塩 。 ゼラチン 2,4—Dichloro mouth 6—Hydroxy s—Triazine . gelatin
これらの試料にセンシ トメ ト リ一用露光を与え、 次のカラ一 現像処理を行った。  These samples were subjected to sensitometric exposure and subjected to the following color development processing.
処理済の試料を緑色フィルターで濃度測定した。 得られた写 真性能の結果を第 3表に示した。  The density of the treated sample was measured with a green filter. Table 3 shows the obtained photo performance results.
ここで用いた現像処理は下記の条件で 38°Cで行つた。  The development processing used here was performed at 38 ° C under the following conditions.
1. 力 ラー現像 2分 45秒  1. Power color development 2 minutes 45 seconds
2. 漂 白 -- 6分 30杪  2. Bleaching-6 minutes 30 min
3. 水 洗 ― 3分 15秒  3. Rinse-3 minutes 15 seconds
4. 定 着 6分 30秒  4. Fixed arrival 6 minutes 30 seconds
5. 水 洗 3分 15秒  5. Rinse for 3 minutes 15 seconds
6. 安 定 --… 3分 15秒  6. Stable --- 3 minutes 15 seconds
各工程に用いた処理液組成は下記のものである。  The composition of the processing solution used in each step is as follows.
カ ラー現像液 Color developer
二 ト リ 口三酢酸ナ ト リ ウ ム 1.0 g 亜硫酸ナ ト リ ウム 4.0 g 炭酸ナ十 リ ウム 30.0 g 臭化力 リ 1.4 g ヒ ドロキシルァ ミ ン硫酸塩 2.4 g 4 一 ( N—ェチル一 N— i5 ヒ ドロ キ シェチル  Sodium triacetate 1.0 g Sodium sulfite 4.0 g Sodium carbonate 30.0 g Bromide 1.4 g Hydroxylamin sulfate 2.4 g 4 1 (N-ethyl-N- i5 Hydroki Shechill
ァ ミ ノ ) 一 2 —メ チル一ァニリ ン硫酸塩 4.5 g 水を加えて 1 ϋ  Amino) 1-2-methyl aniline sulfate 4.5 g Add water and add 1 ϋ
15 漂白液 ,  15 Bleach,
臭化ァンモニゥ ム . 160 0 g ア ンモニア水 (28%) . 25. エチ レ ンジァ ミ ン一四酢酸ナ ト リ ウ ム塩 130 g 氷酢酸 14 水を加えて 1 定着液 Ammonia bromide. 1 600 g Ammonia water (28%). 25. Ethylenediaminetetraacetic acid sodium salt 130 g Glacial acetic acid 14 Add water and fixer 1
テ ト ラ ポ リ リ ン酸ナ ト リ ウ ム 2.0 g 亜硫酸ナ ト リ ウ ム 4.0 g チォ硫酸ア ンモニゥ ム (70% ) 175.0 g 重亜硫酸ナ ト リ ウ ム 4.6 g 水を加えて 1 £ 安定液  Sodium tetratetraphosphate 2.0 g Sodium sulfite 4.0 g Ammonium thiosulfate (70%) 175.0 g Sodium bisulfite 4.6 g Stable at 1 £ with water Liquid
ホルマ リ ン 8.0 id 水を加えて 1  Formalin 8.0 id with water 1
表一 3  Table 1 3
Figure imgf000047_0001
Figure imgf000047_0001
表一 3 の結果から解るように本発明の乳剤は比較乳剤に比 ベ感度が高い。  As can be seen from the results shown in Table 13, the emulsion of the present invention has higher sensitivity than the comparative emulsion.
実施例一 3 Example 1 3
塩臭化銀微粒子乳剤 3 — A (L 01 Mの臭化力 リ ゥムと 0.05 Mの塩化ナ ト リ ウムを舍有する 2.3 重量%のゼラチン溶液 1.3 £にそれを攪拌しながらダブル ジ ッ ト法で 1.2 Mの硝酸銀水溶液と.0.72 Mの臭化力 リ ゥムと 1.0 Mの塩化ナ ト リ ウムを舍むハロゲン塩水溶液を各々 600 を 25分かけて添加した。 この間反応容器内のゼラチン溶液は 35 てに保たれた。 この後乳剤を、 常法のフロキユ レーショ ン法で 洗淨し、 ゼラチン 30 gを加え、 溶解した後 pHを 6.5 に諷節した ¾ 得られた塩臭化銀微粒子 (塩化銀舍量 40%) は平均粒子サイ ズ は 0.09^であった。 Silver chlorobromide fine grain emulsion 3 — A (L 2.3 M bromide power with 0.05 M sodium chloride, 2.3 M% gelatin solution containing 1.3 M with 1.3 M silver nitrate aqueous solution by double-jet method while stirring it to 1.3 £. A bromide power of 0.72 M and an aqueous solution of a halogen salt containing 1.0 M of sodium chloride were each added over 600 minutes over a period of 25 minutes while the gelatin solution in the reaction vessel was kept at 35 ° C. Thereafter, the emulsion was washed by a conventional flocculation method, 30 g of gelatin was added, and after dissolution, the pH was adjusted to 6.5. The obtained silver chlorobromide fine particles (silver chloride amount: 40%) The average particle size was 0.09 ^.
塩臭化銀立方体粒子乳剤 3 - B (比較乳剤)  Silver chlorobromide cubic grain emulsion 3-B (Comparative emulsion)
0.065 Mの臭化カ リ ウムと 0.3 Mの塩化ナ ト リ ウムを舍有す る 3.0 重量%のゼラチ ン溶液 1.2 £にそれを攪拌しながら、 1 % N— N'—ジメ チルイ ミダゾリ ン一 2 —チオン溶液を 5 加 え 75°Cに保つた反応容器に 0.3 M硝酸銀溶液を 50ccと 0.18Mの 臭化カ リ ウムと 0.8 Mの塩化ナ ト リ ウムを舍むハロゲン塩水溶 液 50 ccをダブルジエ ツ ト法により 3分間かけて添加した。  A 3.0% by weight gelatin solution containing 0.065 M potassium bromide and 0.3 M sodium chloride was stirred into 1.2 pounds of 1% N—N′-dimethylimidazoline. 2 — Add 5 thione solutions and add 50 cc of 0.3 M silver nitrate solution and 50 cc of 0.18 M potassium bromide and 0.8 M sodium chloride in a reaction vessel kept at 75 ° C. 50 cc of a halogen salt aqueous solution Was added by the double jet method over 3 minutes.
これにより 0.2 の塩化銀舍量 40モル%の塩臭化銀粒子を得 ることにより核彤成を行った。 続いて同様に 75 °Cにおいて 100 分間で 150 gの硝酸銀を舍む水溶液 800 ccと 63 gの臭化力 リ ウ ムと 43 gの塩化ナ ト リ ゥムを舍む水溶液 800 ccをダブルジエ ツ トで同時'に添加した。 この後、 乳剤を 35 'Cに冷却し常法のフロ キユレーショ ン法により水洗し、 ゼラチン 70 gを加えて pH6. 2 、 P g了.8に調整した。 この粒子は L1 の塩化銀舍量 40モル %の塩臭化銀立方体粒子であった。  Thus, nucleation was performed by obtaining silver chlorobromide particles having a silver chloride concentration of 0.2 mol and a mol ratio of 40 mol%. Subsequently, a double jet of 800 cc of an aqueous solution containing 150 g of silver nitrate and 63 g of lithium bromide and 43 g of sodium chloride in 75 minutes at 75 ° C for 100 minutes. At the same time. Thereafter, the emulsion was cooled to 35'C, washed with water by a conventional flocculation method, and adjusted to pH 6.2 and Pg to 8. by adding 70 g of gelatin. These grains were cubic silver chlorobromide grains having a silver chloride content of L1 of 40 mol%.
塩臭化銀立方体粒子乳剤 3 — C (本発明) 0,065 Mの臭化カ リ ウム と 0.3 Mの塩化ナ ト リ ウムを舍有す る 0.5 重量%のゼラチ ン水溶液 1.0 £ にそれを攪拌しながら 1 % N— N' —ジメ チルイ ミダゾリ ン一 2 —チオ ン溶液を 4.5 /^添 加し、 75 'Cで微粒子乳剤 3 — Aをボ ンプで反応容器に添加した。 添加速度は硝酸銀量に換算して 5 g に相当する微粒子乳剤を 10 分間かけて添加した。 Silver chlorobromide cubic grain emulsion 3 — C (this invention) 0.5% by weight aqueous gelatin solution containing 0,065 M potassium bromide and 0.3 M sodium chloride 1% N—N'—dimethylimidazoline 1 2 —Thion solution was added at 4.5 / ^, and Fine Emulsion 3-A was added to the reaction vessel by pump at 75'C. The addition rate was such that a fine grain emulsion corresponding to 5 g in terms of the amount of silver nitrate was added over 10 minutes.
その後ひき続き 75てにおいて微粒子乳剤 3 — Aをポ ンプで反 応容器に添加した。 添加速度は硝酸銀量に換算して 150 gにな るよう に微粒子乳剤を 100 分間かけて添加した。 その際塩化ナ ト リ ウム 20 gをあらかじめ微粒子乳剤に溶解した。 この後、 乳 剤を乳剤 1 一 B と同様に水洗し 40てで pH6.5 、 pAg7.8に調整し た。 得られた粒子は 1.1 ^の塩化銀舍量が 40モル%の塩臭化銀 立方体粒子であった。 '  Then, at 75, the fine grain emulsion 3-A was added to the reaction vessel by pump. The fine grain emulsion was added over a period of 100 minutes so that the addition rate was 150 g in terms of the amount of silver nitrate. At that time, 20 g of sodium chloride was previously dissolved in the fine grain emulsion. Thereafter, the emulsion was washed with water in the same manner as in Emulsion 11B, and adjusted to pH 6.5 and pAg 7.8 with 40. The obtained grains were silver chlorobromide cubic grains having a silver chloride content of 1.1 ^ of 40 mol%. '
塩臭化銀八面体粒子乳剤 3 — D <本発明 >  Silver chlorobromide octahedral grain emulsion 3 — D <The present invention>
乳剤 1 一 Cと同様に核形成を行った後、 この種晶の成長を第 1 図に示すように、 反応容器のそばに設けられた強力かつ効率 のよい混合器に、 100分間で 150 gの硝酸銀を舍む水溶液 800 ccと 63 g の臭化力 リ ゥムと 43 g の塩化ナ ト リ ゥムを舍む水溶液 800 ccと 10重量%の低分子量ゼラチン (平均分子量 2万) 水溶 液 800ccを ト リ プルジュ ッ トで添加した。 混合器で攪拌され反 応して生成した極微粒子 (平均サイ ズ 0.02 ) は、 混合器から ただちに反応容器に連続的に導入された。 この間混合器の温 度は 25'Cに保たれ、 反応容器の温度は 75てに保たれた。  After nucleation in the same manner as for emulsion 11C, the seed crystal growth was transferred to a powerful and efficient mixer located near the reaction vessel as shown in Fig. 1 for 150 g for 100 minutes. Aqueous solution containing 800 cc of silver nitrate and 63 g of bromide rim and 43 g of sodium chloride 800 cc of an aqueous solution containing 10 g of low molecular weight gelatin (average molecular weight of 20,000) 800 cc was added in triple jut. The ultrafine particles (average size 0.02) produced in the reaction by stirring in the mixer were immediately and continuously introduced into the reaction vessel from the mixer. During this time, the temperature of the mixer was kept at 25'C, and the temperature of the reaction vessel was kept at 75 ° C.
この後乳剤を乳剤 1 — B と同様に水洗し 40てにおいて PH6.5 、 pAg7.8に調整した。 この粒子は 1.1 の塩化銀含量 40モル%の 塩臭化銀立方体粒子であつた。 Thereafter, the emulsion was washed with water in the same manner as Emulsion 1-B, and adjusted to pH 6.5 and pAg 7.8. This grain has a silver chloride content of 1.1 and 40 mol% It was silver chlorobromide cubic grains.
乳剤 3 — B、 3 — C、 3 — Dを 3 g銀/ ir こなるようフ ィ ル ムベース支持体に塗布し、 ハライ ドの微視的分布を調べる為、 前に述べた Kな 線を用いて(420) 面の X線回折を測定した。 そ の際同一サイ ズの純塩化銀及び純臭化銀の X線面折も行った。 結果を表一 4 に示す。  Emulsion 3 — B, 3 — C, 3 — D was coated on a film base support at 3 g silver / ir, and the above K line was examined to examine the microscopic distribution of halide. The (420) plane was used to measure X-ray diffraction. At that time, X-ray diffraction of pure silver chloride and pure silver bromide of the same size was also performed. Table 4 shows the results.
表一 4  Table 1 4
Figure imgf000050_0001
Figure imgf000050_0001
表一 4の (A— B ) の値がハラィ ド (塩化銀、 臭化銀) の微 視的不均一を示しており、 本発明の乳剤粒子 3 — C、 3 — Dは 比較乳剤 3 — Bに比べ半値巾が非常に小さ く ほぼ臭化銀 (塩化 銀) のそれに近い。  The value of (A-B) in Table 1 indicates the microscopic nonuniformity of halides (silver chloride, silver bromide). Emulsion grains 3 — C and 3 — D of the present invention are comparative emulsions 3 — The half width is much smaller than that of B, and it is close to that of silver bromide (silver chloride).
実施例一 4 Example 1 4
実施例一 3で得られたコァ—乳剤を 60 'Cで反応容器に保持し 攪拌しながら 1 M硝酸銀水溶液と 1 M臭化力 リ ゥム水溶液をダ ブルジエ ツ トで添加し臭化銀シェルを形成した。 シェル形成の 内容を表一 5 に示す。 表— 5 The core emulsion obtained in Example 13 was kept in a reaction vessel at 60 ° C., and a 1M silver nitrate aqueous solution and a 1M aqueous bromide aqueous solution were added with a double jet while stirring, and a silver bromide shell was added. Was formed. Table 5 shows the details of shell formation. Table 5
Figure imgf000051_0001
得られた乳剤 4 — A〜 4 — Fをチォ硫酸ソーダと塩化金酸力 リ ウム及びチオ シア ン酸カ リ ウムで最適に化学増感し、 実施例 一 2で述べたと同様に塗布サンプルを作製した。 実施例— 2 と 同様のセ ンシ トメ ト リ 一を行って得られた結果を表 6 に示す。 表一 6
Figure imgf000051_0001
The resulting emulsions 4 — A to 4 — F were optimally chemically sensitized with sodium thiosulfate and potassium chloroaurate and potassium thiocyanate. Coated samples were prepared in the same manner as described in Example 12. Produced. Table 6 shows the results obtained by performing the same sensitometry as in Example-2. Table 1 6
Figure imgf000051_0002
表一 6 の結果から解るように本発明の乳剤は比較乳剤に比べ 感度が高い。
Figure imgf000051_0002
As can be seen from the results in Table 1, the emulsion of the present invention has higher sensitivity than the comparative emulsion.
〔産業上の利用可能性〕  [Industrial applicability]
かく して得られた本発明のハ ロゲン化銀乳剤を舍有するハロ ゲン化銀写真感光材料は、 該乳剤に舍有されるハ πゲン化銀コ ァ粒子が完全に均一なハライ ド分布を有し、 感度、 階調、 粒状 性、 シャープネス、 解像力、 力バリ ングパワー、 保存性、 潜像 安定性及び圧力性において優れた特性をもつことができる。 The silver halide photographic light-sensitive material having the silver halide emulsion of the present invention thus obtained is characterized in that the silver halide silver halide grains contained in the emulsion have a completely uniform halide distribution. Has, sensitivity, gradation, granular It has excellent properties in terms of image quality, sharpness, resolution, force balling power, storage stability, latent image stability and pressure characteristics.

Claims

請 求 の 範 囲 The scope of the claims
1 ) 支持体上に少な く とも 1層のハロゲン化銀乳剤層を有す るハロゲン化銀写真感光材料において、 該ハ口ゲン化銀乳剤層 に舍有される感光性ハロゲン化銀粒子が、 該粒子の内部が少な く とも 2種のハロゲン化銀を舍有する少な く とも 1 つの相から 成り、 そのハラィ ド分布が完全に均一であり、 かつ該粒子の表 面が該表面に隣接する粒子の内部とハラィ ド組成が異なるハロ ゲン化銀であるこ とを特徴とするハロゲン化銀写真感光材料。 1) In a silver halide photographic light-sensitive material having at least one silver halide emulsion layer on a support, the photosensitive silver halide grains contained in the silver halide emulsion layer are: A grain whose interior is composed of at least one phase having at least two kinds of silver halides, and whose halide distribution is completely uniform, and whose surface is adjacent to the surface; A silver halide photographic light-sensitive material characterized in that it is a silver halide having a different halide composition from the interior of the silver halide photographic material.
2) 支持体上に少な く とも 1層のハコゲン化銀乳剤層を有する ハロゲン化銀写真感光材料において、 該ハロゲン化銀乳剤層に 含有される感光性ハロゲン化銀粒子が、 該粒子の核形成及び 又は結晶成長を起させる反応容器中に予め.調製した微細なサイ ズのハロゲン化銀を添加する こ とにより該反応容器中で核形成 及びノ又は結晶成長させたハ口ゲン化銀粒子の外側にそれとは ハライ ド組成の異なるハロゲン化銀を有する粒子であるこ とを 特徴とするハロゲン化銀写真感光材料。 2) In a silver halide photographic material having at least one silver halide emulsion layer on a support, photosensitive silver halide grains contained in the silver halide emulsion layer form nuclei of the grains. And / or by adding a previously prepared fine-sized silver halide to a reaction vessel in which crystal growth is caused, the nucleation and the growth of silver halide grains formed in the reaction vessel. A silver halide photographic light-sensitive material characterized by comprising grains having silver halides having different halide compositions on the outside.
3) 微細なサイ ズのハロゲン化銀を、 感光性ハロゲン化銀粒子 の核形成及びノ又は結晶成長を起させる反応容器の外に設けら れた混合器において、 水溶性銀塩の水溶液と水溶性ハライ ドの 水溶液を混合して形成し、 かつ形成後ただちに該反応容器中に 供給するこ とにより該感光性ハ口ゲン化銀粒子を核形成及び 又は結晶成長させ、 さ らにその外側にそれとはハ イ ド組成の 異なるハロゲン化銀を形成することを特徴とする請求の範囲第 2項に記載のハ口ゲン化銀写真感光材料の製造方法。  3) A small-sized silver halide is mixed with an aqueous solution of a water-soluble silver salt in a mixer provided outside a reaction vessel that causes nucleation and growth of photosensitive silver halide grains or crystal growth. The photosensitive silver halide grains are nucleated and / or crystal-grown by forming an aqueous solution of a photosensitive halide by mixing and supplying the mixture to the reaction vessel immediately after the formation. 3. The method for producing a silver halide photographic light-sensitive material according to claim 2, wherein silver halide having a different halide composition is formed.
PCT/JP1989/000038 1988-01-18 1989-01-18 Silver halide photographic material and process for its preparation WO1989006830A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP89908140A EP0370116B1 (en) 1988-01-18 1989-01-18 Silver halide photographic material and process for its preparation
DE68924693T DE68924693T2 (en) 1988-01-18 1989-01-18 SILVER HALIDE PHOTOGRAPHIC MATERIAL AND METHOD FOR PRODUCING THE SAME.

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP63/7852 1988-01-18
JP63/7851 1988-01-18
JP63007853A JPH07104569B2 (en) 1988-01-18 1988-01-18 Silver halide photographic emulsion
JP63007851A JPH0723218B2 (en) 1988-01-18 1988-01-18 Method for producing silver halide grains
JP785288A JPH01183644A (en) 1988-01-18 1988-01-18 Silver halide photographic emulsion
JP63/7853 1988-01-18
JP63194862A JPH0778600B2 (en) 1988-08-04 1988-08-04 Silver halide photographic emulsion
JP63194861A JPH0769580B2 (en) 1988-08-04 1988-08-04 Silver halide photographic emulsion
JP63/194862 1988-08-04
JP63/194861 1988-08-04
JP63195778A JPH0782208B2 (en) 1988-08-05 1988-08-05 Method for producing silver halide
JP63/195778 1988-08-05

Publications (1)

Publication Number Publication Date
WO1989006830A1 true WO1989006830A1 (en) 1989-07-27

Family

ID=27548083

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1989/000038 WO1989006830A1 (en) 1988-01-18 1989-01-18 Silver halide photographic material and process for its preparation
PCT/JP1989/000039 WO1989006831A1 (en) 1988-01-18 1989-01-18 Silver halide photographic material and process for its preparation

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000039 WO1989006831A1 (en) 1988-01-18 1989-01-18 Silver halide photographic material and process for its preparation

Country Status (3)

Country Link
EP (2) EP0407576A1 (en)
DE (1) DE68924693T2 (en)
WO (2) WO1989006830A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164719A (en) * 1988-12-19 1990-06-25 Fuji Photo Film Co Ltd Formation of silver halide particle
JP2700677B2 (en) * 1988-12-22 1998-01-21 富士写真フイルム株式会社 Control method and apparatus for silver halide grain formation
JP2704456B2 (en) * 1990-08-28 1998-01-26 富士写真フイルム株式会社 Method for producing silver halide emulsion
DE69126840T2 (en) * 1990-10-03 1998-03-05 Konishiroku Photo Ind Process for the preparation of photographic silver halide emulsions
US5173398A (en) * 1990-10-31 1992-12-22 Konica Corporation Silver halide color photographic light-sensitive material
JP2936105B2 (en) * 1991-06-06 1999-08-23 コニカ株式会社 Method for producing silver halide emulsion and silver halide photographic material
US5320938A (en) * 1992-01-27 1994-06-14 Eastman Kodak Company High chloride tabular grain emulsions and processes for their preparation
US5491058A (en) 1994-08-09 1996-02-13 Eastman Kodak Company Film for duplicating silver images in radiographic films
EP0843209B1 (en) * 1996-11-13 2001-09-05 Eastman Kodak Company Silver halide emulsion manufacturing method
JP2002323727A (en) 2001-02-26 2002-11-08 Fuji Photo Film Co Ltd Silver halide emulsion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113927A (en) * 1981-11-12 1983-07-07 イ−ストマン・コダツク・カンパニ− High aspect ratio flat particulate iodo- silver bromide emulsion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1472745B2 (en) * 1965-03-09 1973-03-15 Agfa-Gevaert Ag, 5090 Leverkusen PROCESS FOR THE PRODUCTION OF DISPERSIONS OF LIGHT SENSITIVE SILVER SALT
JPS4921657B1 (en) * 1970-09-24 1974-06-03
BE794188A (en) * 1972-01-26 1973-07-18 Agfa Gevaert Nv IMPROVED PHOTOGRAPHIC SILVER HALOGENIDE EMULSIONS
JPS5782831A (en) * 1980-11-11 1982-05-24 Konishiroku Photo Ind Co Ltd Photographic silver halide emulsion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113927A (en) * 1981-11-12 1983-07-07 イ−ストマン・コダツク・カンパニ− High aspect ratio flat particulate iodo- silver bromide emulsion
JPS58113928A (en) * 1981-11-12 1983-07-07 イ−ストマン・コダツク・カンパニ− Preparation of high aspect ratio flat particulate iodo-silver bromide emulsion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0370116A4 *

Also Published As

Publication number Publication date
EP0370116A4 (en) 1990-09-26
DE68924693D1 (en) 1995-12-07
EP0407576A4 (en) 1990-08-09
EP0370116B1 (en) 1995-11-02
EP0370116A1 (en) 1990-05-30
DE68924693T2 (en) 1996-06-13
WO1989006831A1 (en) 1989-07-27
EP0407576A1 (en) 1991-01-16

Similar Documents

Publication Publication Date Title
US4668614A (en) Silver halide photographic light sensitive materials
JPS63163451A (en) Photosensitive silver halide emulsion and color photosensitive material prepared therefrom
US4835095A (en) Photosensitive tabular core/shell silver halide emulsion
WO1989006830A1 (en) Silver halide photographic material and process for its preparation
JP2534118B2 (en) Silver halide photographic light-sensitive material and method for producing the same
JPH10123641A (en) Silver halide photographic material
JPH0268538A (en) Production of silver halide emulsion
US5155017A (en) Silver halide photographic material
JP2587284B2 (en) Silver halide photographic light-sensitive material and method for producing the same
JPH02234151A (en) Silver halide photographic sensitive material
JP2587287B2 (en) Silver halide photographic light-sensitive material and method for producing the same
JP2587282B2 (en) Silver halide photographic material
JPS61215540A (en) Silver halide photographic sensitive material
JP2534121B2 (en) Silver halide photographic material
JPH0582922B2 (en)
JP2704686B2 (en) Silver halide photographic material and method for producing the same
JP2640271B2 (en) Direct positive photographic material
JP2587284C (en)
JP2587288B2 (en) Silver halide photographic light-sensitive material and method for producing the same
JP2587287C (en)
JP2587282C (en)
JPH03198040A (en) Production of silver halide photographic emulsion
JP2587288C (en)
JPH01183644A (en) Silver halide photographic emulsion
JPH05241263A (en) Silver halide photographic sensitive material and its processing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989908140

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989908140

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989908140

Country of ref document: EP