WO1989004378A1 - Radiant heat vaporizing method and apparatus - Google Patents

Radiant heat vaporizing method and apparatus Download PDF

Info

Publication number
WO1989004378A1
WO1989004378A1 PCT/US1987/002791 US8702791W WO8904378A1 WO 1989004378 A1 WO1989004378 A1 WO 1989004378A1 US 8702791 W US8702791 W US 8702791W WO 8904378 A1 WO8904378 A1 WO 8904378A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealed vessel
molten
magnesium
sealed
further including
Prior art date
Application number
PCT/US1987/002791
Other languages
French (fr)
Inventor
Richard N. Haigh
Original Assignee
Haigh Richard N
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haigh Richard N filed Critical Haigh Richard N
Priority to AU10804/88A priority Critical patent/AU1080488A/en
Priority to PCT/US1987/002791 priority patent/WO1989004378A1/en
Publication of WO1989004378A1 publication Critical patent/WO1989004378A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0081Treating and handling under pressure

Definitions

  • This invention deals generally with metallurgy and more specifically with treating molten metals with a vapor additive.
  • SUBSTITUTE SHEET partially enclosing the magnesium in a perforated container thereby slowing the rate of contact with the iron and reducing the violence of the reaction.
  • Another method uses alloys of magnesium with other materials as the additive for the iron. These alloys have ⁇ higher melting and boiling temperatures arid therefore the reactions are less troublesome.
  • the magnesium alloy additive processes are also unsatisfactor , first because the alloys themselves are expensive, but also because they result in the addition of other materials to the iron.
  • Another method of adding magnesium to iron which has been described in prior art is that of first converting the magnesium to vapor and then injecting that vapor into the molten iron.
  • Several patents such as U.S. patents 3,619,173; 1,931,144 and 3,367,646 have used vapor injection into molten iron, but each has independently heated the magnesium, probably to better control the rate of supply to the iron.
  • U.S. patent 3,619,173 by Parlee et al in fact, even arranges cooling of the magnesium container to better control the process.
  • the present invention overcomes the basic drawbacks of adding magnesium vapor to iron by severing the umbilical cord of an independent heat source for the magnesium.
  • the present invention permits the addition of magnesium within the restraints of the time and geometry of the production, systems which are presently in use.
  • the apparatus of the present invention permits accurate control, not only of the amount of magnesium added to the iron, but also of the rate of the addition of magnesium.
  • control features permit very high yield of the magnesium into the iron and thereby significantly reduce the cost of magnesium. Moreover, the ability to accurately control the addition permits automation of the process for the first time.
  • SUBSTITUTESHEET Vapor is supplied to the iron by a bubble pipe protruding below the magnesium vessel and into the molten iron, and the rate of vapor flow is controlled by the vapor pressure of the magnesium which is, in turn, controlled by the heat input to the magnesium.
  • Measurement of the magnesium being added is accomplished by the readout of a load cell in teh vessel suspension system.
  • the load cell which is a standard device for use in conjunction with cable systems, furnishes a continuous reading of the weight it is supporting, and therefore shows how much magnesium has been dispensed from the vessel.
  • the present invention furnishes, for the first time, a practical and economical system for adding magnesium to molten iron in a controllable and continuously measured manner.
  • FIG. 1 is a cross section side view of the apparatus of the preferred embodiment of the invention.
  • FIG. 2 is a simplified representation of the apparatus of the invention in the process of injecting magnesium into iron.
  • FIG. 1 depicts the apparatus of the preferred embodiment of the invention in which magnesium vapor injector 10.is shown suspended by cables 12 and lift holes 13 above ladle 14 containing molten iron 16.
  • Vapor injector 10 consists' essentially of magnesium vessel 18, containing molten magnesium 20 with magnesium vapor atmosphere 22 above the molten magnesium, and vapor pipe 24 extending from vapor atmosphere 22 into ladle 14 and below the surface of molten iron 16.
  • Vessel 18 is highly insulated with insulation 28 and 29 which is located all around vessel 18 except for vessel bottom 30.
  • Cover 32 is sealed onto vessel top 34 by conventional nut and bolt fasteners 36 to make vessel 18 pressure tight except for path A down through vapor pipe 24.
  • Vapor pipe 24 is constructed as a reentrant structure to assure that molten magnesium 20 will not leak from vessel 18 even if vapor pipe 24 should break.
  • Vapor pipe 24 which is subject, at least at its lower end 26, to the high temperature of molten iron is typically constructed of refractory material to withstand the extreme temperature. However, since such material is understood to be somewhat fragile, the attachment of vapor pipe 24 to vessel 18 is specifically designed for safety and ease of replacement.
  • SUBSTITUTE SHEET Reentrant tube 38 is constructed as an integral part of vessel 18, and since it is subjected only to the lower temperature of molten magnesium need not be refractory material. Vapor pipe 24 and reentrant tube 38 are attached only at lip 40 thus permitting vapor pipe 24 to freely expand in length as it is heated. Even the single junction at lip 40 is constructed by the use of conventional fasteners 42 and clamp 44 so that vapor pipe 24 can be easily replaced if such replacement is needed. Once clamp 44 is removed, vapor pipe 24 can be removed simply by moving it straight upward.
  • vessel skirt 46 Another safety feature of injector 10 is vessel skirt 46. Skirt 46 functions to shield the surroundings from any splashing or bubbling which may occur during the injection of magnesium vapor into the molten iron.
  • Pipe 48 is connectable to an inert gas source. Such gas can be used to flush out the air from vessel 18, so that when magnesium is melted the oxidation of the magnesium is greatly diminished.
  • Pipe 50 is used to connect pressure transducer 52 to vapor space 22 so that the vapor pressure within vessel 18 may be continuously monitored, and the rate of vapor injection can therefore be determined and controlled.
  • SUBSTITUTE SHEic The preferred embodiment of the present invention which is pictured in FIG. 1 can be used in a simple and straightforward manner to inject magnesium* into molten iron during the typical methods now in use for production of ductile iron castings.
  • vessel 18 is charged with magnesium by removing insulation cover 29 and vessel cover 32, placing solid magnesium in vessel 18, and resealing cover 32 and recovering it with insulation 29. Since, typically, chunk magnesium takes three times the volume of liquid magnesium, an initial full vessel will yield about a one third liquid fill, and in typical vessel sizes this should be enough for injecting several pouring ladles.
  • injector 10 With injector 10 sealed and insulated it is flushed with inert gas from container 64 and then, as shown in FIG. 2, it is lifted by conventional hoist 60.
  • Load cell 62 is used to continuously monitor the total weight of injector 10.
  • injector 10 While it is certainly possible to melt the magnesium by simply placing injector 10 on top of ladle 14 full of molten iron, in a high production system it is more likely that injector 10 would first be placed upon a preheat station so that its magnesium would be melted and vapor pipe 24 brought to temperature while another injector is actually working in the production system.
  • the preheat station can be either a furnace designed specifically for that purpose or a large container of molten iron from which, in the typical installation, pouring ladles are filled with molten iron.
  • inj,ector 10 is left in place above a radiant heat source operating at about 1600 degrees C. and is heated until the magnesium liquifies and approaches boiling at approximately 1000 degrees C.
  • the temperature to which bottom 30 of the injector 10 is subjected can be controlled quite simply by the distance bottom 30 is suspended above molten iron 16 and by the length of vapor pipe 24 which is immersed in molten iron 16.
  • the temperature control mechanism is simply a matter of lifting or lowering injector 10 with hoist 60.
  • a second control factor is the size of the opening in the top of the preheat station. If the molten iron container has a cover over it, at least some opening is required in that cover. However, if time of preheat is not critical, an opening only a little larger than vapor pipe 24 usually will eventually transmit enough heat to vessel 18, by both radiation and conduction along vapor pipe 24, to melt the magnesium.
  • injector 10 can be moved to a location above pouring ladle 14, and to maintain production, another injector can be loaded with magnesium, flushed with inert gas and placed on the preheat station.
  • Controller 66 to which the weight and composition of the iron in ladle 14 has been communicated, and which is also interconnected with and receives information from load cell 62, controls the hoists mechanism (not shown) to vary the height of injector 10 above ladle 14, thereby automatically controlling the rate of magnesium vapor flow into ladle 14. Moreover, controller 66 can control the total amount of magnesium being injected into the iron.
  • controller 66 is also receiving information from pressure transducer 52, it is even able to correct for the effect of the lift acting on injector 10 because of the vapor pressure acting downward upon the molten iron through vapor pipe 24.
  • Another advantage is the ability to furnish the required magnesium to a typical pouring ladle in a short enough time, approximately three minutes, so that the existing production processes need not be changed.
  • the present invention makes possible a totally portable magnesium injection system which is safe and which requires a minimum of maintenance.
  • SUBSTITUTE SHEET For example, more than one vapor pipe 24 could be used to increase the vapor injection rate.
  • the iron to be treated can be held in a covered furnace rather than an open vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

An apparatus and method for injecting magnesium into molten iron. The magnesium is melted and vaporized in an enclosed container (10) located above and heated by the molten iron located in ladle (14). The magnesium vapor is then pumped into the molten iron, by its own vapor pressure, through a pipe (24) inserted into the molten iron, from which it bubbles through and reacts with the iron. A load cell (62) from which the magnesium container is hung is used to measure the weight loss of magnesium and thereby control the amount of magnesium added to the iron.

Description

RADIANT HEAT VAPORIZING METHOD AND APPARATUS
SUMMARY OF THE INVENTION
This invention deals generally with metallurgy and more specifically with treating molten metals with a vapor additive.
The addition of alloying materials to molten metal is common in many processes in the art of metallurgy, and is particularly vital in the production of ductile iron. Magnesium is added during the production of ductile iron, both to help form the required final alloy and to neutralize sulfur content in the iron. However, magnesium is a particularly troublesome metal to add to molten iron because its melting point is much lower than the temperature at which the molten iron is maintained.
Since magnesium melts at approximately 650 degrees C, and boils at approximately 1100 degrees C. , when it is added without precautions in solid form to molten iron which is typically maintained at 1600 degrees C, a violent reaction occurs. Such an occurrence is typical when any low melting point material is added to a liquid maintained at a temperature much greater than the additive's melting and boiling temperatures.
In industry, several methods are used to overcome this inherent problem of adding magnesium to iron. Perhaps the most common is that of limiting the access of the molten iron to the solid magnesium. This is done by
SUBSTITUTE SHEET partially enclosing the magnesium in a perforated container thereby slowing the rate of contact with the iron and reducing the violence of the reaction.
Another method uses alloys of magnesium with other materials as the additive for the iron. These alloys have^ higher melting and boiling temperatures arid therefore the reactions are less troublesome.
Both of these commonly used approaches have severe disadvantages which lead to increased costs of production. The special containers not only are expensive to construct, but they also have severe maintenance problems. Regardless of the specific construction, such equipment is continually exposed to the destructive temperatures of molten iron, so that continual maintenance and replacement are required.
The magnesium alloy additive processes are also unsatisfactor , first because the alloys themselves are expensive, but also because they result in the addition of other materials to the iron.
Moreover, all the commonly used processes depend upon predicting the rate of absorption of the solid additive by the molten iron and the degree of absorption is a function of the reaction rate. This task is made extremely difficult by the fact that the rate of reaction varies with the sizes of the pieces of additive which themselves vary as the reaction progresses.
SUBSTITUTE SH In actual practice, this means that a highly skilled operator must weigh the amount of magnesium being added based on the. weight of a molten iron in a vessel and its sulfur content as reported to him, and also make judgments on the weight of magnesium added. Furthermore, in the production environment, this must be done in a limited time to prevent the iron from cooling down too far. The success of the typical process depends greatly on the expertise of the operator, and even the best systems show a very low yield for the ratio of magnesium going into the iron compared to the total amount used.
Another method of adding magnesium to iron which has been described in prior art is that of first converting the magnesium to vapor and then injecting that vapor into the molten iron. Several patents such as U.S. patents 3,619,173; 1,931,144 and 3,367,646 have used vapor injection into molten iron, but each has independently heated the magnesium, probably to better control the rate of supply to the iron. U.S. patent 3,619,173 by Parlee et al, in fact, even arranges cooling of the magnesium container to better control the process.
Such methods are not in common use, and it would appear that is because the equipment proposed is very complex and expensive. Furthermore, the independent heating sources force the prior systems to be relatively fixed in place and require that the product iron be transported to the vapor or the vapor piped to the iron.
SUBSTITUTESHEET Either solution requires specialized equipment which has apparently hindered the use of vapor injection of iron in the industry.
The present invention overcomes the basic drawbacks of adding magnesium vapor to iron by severing the umbilical cord of an independent heat source for the magnesium. By using the existing heat of the molten iron, the present invention permits the addition of magnesium within the restraints of the time and geometry of the production, systems which are presently in use.
Moreover, the apparatus of the present invention permits accurate control, not only of the amount of magnesium added to the iron, but also of the rate of the addition of magnesium.
These control features permit very high yield of the magnesium into the iron and thereby significantly reduce the cost of magnesium. Moreover, the ability to accurately control the addition permits automation of the process for the first time.
These benefits are accomplished by suspending a simple vessel holding molten magnesium over the ladle containing molten iron, and having it heated by radiation from the molten iron below. The distance between the magnesium vessel and the iron surface determines the heat input, and it can be easily varied by the cable suspension system by which the magnesium vessel is hung.
SUBSTITUTESHEET Vapor is supplied to the iron by a bubble pipe protruding below the magnesium vessel and into the molten iron, and the rate of vapor flow is controlled by the vapor pressure of the magnesium which is, in turn, controlled by the heat input to the magnesium. Once an iron ladle is treated, the magnesium vessel is easily transported by its crane to another ladle, where its rate of vapor flow is independently adjusted for the weight of iron in the new ladle.
Measurement of the magnesium being added is accomplished by the readout of a load cell in teh vessel suspension system. The load cell, which is a standard device for use in conjunction with cable systems, furnishes a continuous reading of the weight it is supporting, and therefore shows how much magnesium has been dispensed from the vessel.
The present invention furnishes, for the first time, a practical and economical system for adding magnesium to molten iron in a controllable and continuously measured manner.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross section side view of the apparatus of the preferred embodiment of the invention.
FIG. 2 is a simplified representation of the apparatus of the invention in the process of injecting magnesium into iron.
SUBSTITUTE SHEET DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 depicts the apparatus of the preferred embodiment of the invention in which magnesium vapor injector 10.is shown suspended by cables 12 and lift holes 13 above ladle 14 containing molten iron 16.
Vapor injector 10 consists' essentially of magnesium vessel 18, containing molten magnesium 20 with magnesium vapor atmosphere 22 above the molten magnesium, and vapor pipe 24 extending from vapor atmosphere 22 into ladle 14 and below the surface of molten iron 16.
Vessel 18 is highly insulated with insulation 28 and 29 which is located all around vessel 18 except for vessel bottom 30. Cover 32 is sealed onto vessel top 34 by conventional nut and bolt fasteners 36 to make vessel 18 pressure tight except for path A down through vapor pipe 24.
Vapor pipe 24 is constructed as a reentrant structure to assure that molten magnesium 20 will not leak from vessel 18 even if vapor pipe 24 should break. Vapor pipe 24 which is subject, at least at its lower end 26, to the high temperature of molten iron is typically constructed of refractory material to withstand the extreme temperature. However, since such material is understood to be somewhat fragile, the attachment of vapor pipe 24 to vessel 18 is specifically designed for safety and ease of replacement.
SUBSTITUTE SHEET Reentrant tube 38 is constructed as an integral part of vessel 18, and since it is subjected only to the lower temperature of molten magnesium need not be refractory material. Vapor pipe 24 and reentrant tube 38 are attached only at lip 40 thus permitting vapor pipe 24 to freely expand in length as it is heated. Even the single junction at lip 40 is constructed by the use of conventional fasteners 42 and clamp 44 so that vapor pipe 24 can be easily replaced if such replacement is needed. Once clamp 44 is removed, vapor pipe 24 can be removed simply by moving it straight upward.
Another safety feature of injector 10 is vessel skirt 46. Skirt 46 functions to shield the surroundings from any splashing or bubbling which may occur during the injection of magnesium vapor into the molten iron.
Two penetrations of vessel 18 are constructed to enter near its top well away from the region which is in contact with molten magnesium. Pipe 48 is connectable to an inert gas source. Such gas can be used to flush out the air from vessel 18, so that when magnesium is melted the oxidation of the magnesium is greatly diminished.
Pipe 50 is used to connect pressure transducer 52 to vapor space 22 so that the vapor pressure within vessel 18 may be continuously monitored, and the rate of vapor injection can therefore be determined and controlled.
SUBSTITUTE SHEic . The preferred embodiment of the present invention which is pictured in FIG. 1 can be used in a simple and straightforward manner to inject magnesium* into molten iron during the typical methods now in use for production of ductile iron castings.
To initiate the production, vessel 18 is charged with magnesium by removing insulation cover 29 and vessel cover 32, placing solid magnesium in vessel 18, and resealing cover 32 and recovering it with insulation 29. Since, typically, chunk magnesium takes three times the volume of liquid magnesium,, an initial full vessel will yield about a one third liquid fill, and in typical vessel sizes this should be enough for injecting several pouring ladles.
With injector 10 sealed and insulated it is flushed with inert gas from container 64 and then, as shown in FIG. 2, it is lifted by conventional hoist 60. Load cell 62 is used to continuously monitor the total weight of injector 10.
While it is certainly possible to melt the magnesium by simply placing injector 10 on top of ladle 14 full of molten iron, in a high production system it is more likely that injector 10 would first be placed upon a preheat station so that its magnesium would be melted and vapor pipe 24 brought to temperature while another injector is actually working in the production system.
SUBSTITUTE SH-S*- The preheat station can be either a furnace designed specifically for that purpose or a large container of molten iron from which, in the typical installation, pouring ladles are filled with molten iron.
In either case inj,ector 10 is left in place above a radiant heat source operating at about 1600 degrees C. and is heated until the magnesium liquifies and approaches boiling at approximately 1000 degrees C. The temperature to which bottom 30 of the injector 10 is subjected can be controlled quite simply by the distance bottom 30 is suspended above molten iron 16 and by the length of vapor pipe 24 which is immersed in molten iron 16. The temperature control mechanism is simply a matter of lifting or lowering injector 10 with hoist 60.
A second control factor is the size of the opening in the top of the preheat station. If the molten iron container has a cover over it, at least some opening is required in that cover. However, if time of preheat is not critical, an opening only a little larger than vapor pipe 24 usually will eventually transmit enough heat to vessel 18, by both radiation and conduction along vapor pipe 24, to melt the magnesium.
Once the magnesium is melted, injector 10 can be moved to a location above pouring ladle 14, and to maintain production, another injector can be loaded with magnesium, flushed with inert gas and placed on the preheat station.
SUBSTITUTE SHEET As injector 10 is lowered closer to ladle 14, and vapor pipe 24 is immersed below the molten iron surface, the heat applied to injector 10 increases, thereby* causing more boiling and a higher magnesium vapor pressure within injector 10. This vapor pressure is measured by pressure transducer 52 and its information is transmitted to controller 66.
Controller 66, to which the weight and composition of the iron in ladle 14 has been communicated, and which is also interconnected with and receives information from load cell 62, controls the hoists mechanism (not shown) to vary the height of injector 10 above ladle 14, thereby automatically controlling the rate of magnesium vapor flow into ladle 14. Moreover, controller 66 can control the total amount of magnesium being injected into the iron.
This is done either by controlling the length of time for which known rates of vapor flow enter the iron, or, even more accurately, by interpreting the information from load cell 62 to determine the actual weight of magnesium which has been removed from injector 10 by vapor flow. Since controller 66 is also receiving information from pressure transducer 52, it is even able to correct for the effect of the lift acting on injector 10 because of the vapor pressure acting downward upon the molten iron through vapor pipe 24.
SUBSTITUTE SHEET Although such a correction may seem inconsequential, its need can be better understood when it is appreciated that the' weight of magnesium added to the iron is approximately 1.5 pounds for 1000 pounds of iron. With a typical ladle holding. about 3000 pounds of iron, . that means that less than 5 pounds of magnesium is needed. With the quite considerable weight involved in the equipment, accurate weight measurement is a necessity for proper injection.
It is this high accuracy which gives the injector of the present invention one of its dramatic advantage over the prior art methods. Another advantage is the ability to furnish the required magnesium to a typical pouring ladle in a short enough time, approximately three minutes, so that the existing production processes need not be changed.
But most important, the present invention makes possible a totally portable magnesium injection system which is safe and which requires a minimum of maintenance.
It is to be understood that the form of this invention as shown is merely a preferred embodiment. Various changes may be made in the function and arrangement of parts; equivalent means may be substituted for those illustrated and described; and certain features may be used independently from others without departing from the spirit and scope of the invention as defined in the following claims.
SUBSTITUTE SHEET For example, more than one vapor pipe 24 could be used to increase the vapor injection rate.
Moreover, the iron to be treated can be held in a covered furnace rather than an open vessel.
. What is claimed as new and for which Letters Patent of the United Stated are desired to be secured is:
SUBSTITUTE SHEET

Claims

1. An apparatus -for injecting a first material of lower melting point into a second material of higher melting point while the second material is in the molten state comprising: a sealed vessel containing a first material of lower melting point the sealed vessel being located above a surface of a molten second material of higher melting point, at least one surface of the sealed vessel being exposed to heat from the surface of the molten second material; a passageway attached to the sealed vessel, one end of the passageway being immersed in the molten second material and the other end of the passageway terminating in the sealed vessel at a location which is above the surface of the first material when it is in the liquid state; and a loading means in the sealed vessel which permits loading the first material into the sealed vessel but prevents gas and vapor from leaving the sealed vessel through the loading means.
2. The apparatus of claim 1 further including heat insulation on surfaces of the sealed container other than the surface exposed to heat from the surface of the molten second material.
SUBSTITUTE SHEET
3. The apparatus of claim 1 further including a support means to locate the sealed vessel above the surface of the molten second material, the support means including means for varying the elevation of the sealed vessel above the surface of the molten second material. .
4. The apparatus of claim 1 further including a support means to locate the sealed vessel above the surface of the molten second material, the support means including transport means for moving the sealed vessel from one location to another.
5. The apparatus of claim 1 further including a pressure transducer means interconnected with the sealed vessel and reading the gas pressure within the sealed vessel.
6. The apparatus of claim 1 further including a gas entry means attached to the sealed vessel to furnish a gas atmosphere within the sealed vessel.
7. The apparatus of claim 1 further including a protective shield extending below the sealed vessel to reduce splashing of the molten material.
SUBSTITUTE SHEET
8. The apparatus of claim 1 wherein the passageway attached to the sealed vessel comprises a pipe passing through the bottom of the sealed vessel, the pipe extending to a height within the sealed vessel sufficient to be above the first material when it is in the liquid state.
9. The apparatus of claim 1 wherein the passageway is removeably attached to the sealed vessel.
10. The apparatus of claim 1 wherein the passageway is attached to the sealed vessel at the upper end of a reentrant attachment to the bottom surface of the sealed vessel with the reentrant attachment extending to a height within the sealed vessel sufficient to be above the first material when it is in the liquid state.
11. The apparatus of claim 1 further including a weighing means for measuring the weight of the sealed vessel.
SUBSTITUTE SHEET
12. The apparatus of claim 1 further including a controller means interconnected with a pressure transducer which measures the gas pressure within the sealed vessel and with a support means which varies the elevation of the sealed vessel above the surface of the molten second material, the controller means functioning to control the support means so that the elevation of the sealed vessel is varied to control the gas pressure within the sealed container.-■
13. The apparatus of claim 1 further including a controller means interconnected with a weighing means which measures the weight of the sealed vessel and with a support means which varies the elevation of the sealed vessel, the controller means functioning to control the support means so that the passageway attached to the sealed vessel is lifted out from the molten second material when a prescribed weight reduction has been measured in the sealed vessel.
14. The apparatus of claim 13 further including a pressure transducer which measures the gas pressure within the sealed vessel, the pressure transducer being interconnected with the controller means, and the controller means functioning to correct the weight measurement for the effect of gas pressure.
SUBSTITUTE SH sa*2t__lT
15. A method of injecting a first material of lower melting point into a second material of higher melting point while the second material .is in the molten state -comprising: holding a first material of lower melting point in a sealed container supported above the surface of the molten second material of higher melting point so that the heat from the molten second material melts and vaporizes the first material; arid interconnecting the sealed container with the molten second material so that vapor produced from the first material is transported to a location below the surface of the molten second material and rises through the molten second material.
16. The method of claim 15 further including varying the elevation of the sealed container above the surface of the molten second material to vary the rate of vapor generation in the sealed container.
SUBSTITUTE SHEET
PCT/US1987/002791 1987-11-10 1987-11-10 Radiant heat vaporizing method and apparatus WO1989004378A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU10804/88A AU1080488A (en) 1987-11-10 1987-11-10 Radiant heat vaporizing method and apparatus
PCT/US1987/002791 WO1989004378A1 (en) 1987-11-10 1987-11-10 Radiant heat vaporizing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1987/002791 WO1989004378A1 (en) 1987-11-10 1987-11-10 Radiant heat vaporizing method and apparatus

Publications (1)

Publication Number Publication Date
WO1989004378A1 true WO1989004378A1 (en) 1989-05-18

Family

ID=22202631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1987/002791 WO1989004378A1 (en) 1987-11-10 1987-11-10 Radiant heat vaporizing method and apparatus

Country Status (2)

Country Link
AU (1) AU1080488A (en)
WO (1) WO1989004378A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1931144A (en) * 1930-10-10 1933-10-17 Du Pont Treatment of metals
US2678266A (en) * 1951-11-08 1954-05-11 Zifferer Lothar Robert Introduction of magnesium into molten iron
US3367646A (en) * 1965-02-23 1968-02-06 Dow Chemical Co Apparatus for injecting metal vapors into a molten metal
US3619173A (en) * 1969-02-18 1971-11-09 Kaiser Ind Inc Method for the controlled addition of volatile treating materials
US3880411A (en) * 1973-08-24 1975-04-29 Natalya Alexandrovna Voronova Device for treatment of molten cast iron in vessels
US4312668A (en) * 1978-11-14 1982-01-26 The International Meehanite Metal Company Limited Apparatus for the treatment of molten metal
US4324587A (en) * 1979-04-18 1982-04-13 Elin-Union Ag Process for maintaining magnesium-containing cast iron melts in a castable state
US4415362A (en) * 1981-12-15 1983-11-15 Asea Ab Nodular iron making and/or storing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1931144A (en) * 1930-10-10 1933-10-17 Du Pont Treatment of metals
US2678266A (en) * 1951-11-08 1954-05-11 Zifferer Lothar Robert Introduction of magnesium into molten iron
US3367646A (en) * 1965-02-23 1968-02-06 Dow Chemical Co Apparatus for injecting metal vapors into a molten metal
US3619173A (en) * 1969-02-18 1971-11-09 Kaiser Ind Inc Method for the controlled addition of volatile treating materials
US3880411A (en) * 1973-08-24 1975-04-29 Natalya Alexandrovna Voronova Device for treatment of molten cast iron in vessels
US4312668A (en) * 1978-11-14 1982-01-26 The International Meehanite Metal Company Limited Apparatus for the treatment of molten metal
US4324587A (en) * 1979-04-18 1982-04-13 Elin-Union Ag Process for maintaining magnesium-containing cast iron melts in a castable state
US4415362A (en) * 1981-12-15 1983-11-15 Asea Ab Nodular iron making and/or storing

Also Published As

Publication number Publication date
AU1080488A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
KR101368078B1 (en) Equipment for measurement and control of load material or scrap feeding into a furnace and relative method
EP0697577A1 (en) Vacuum melting - pressure pouring induction furnace
US4713826A (en) Method and apparatus for holding or increasing the temperature in a metal melt
EP0300907B1 (en) Process and lance for the production of a bath of molten metal or alloys
JPS61252484A (en) Device and method for heat-insulating molten metal
Pehlke et al. Mass transfer of hydrogen between liquid aluminum and bubbles of argon gas
US5539768A (en) Electric arc furnace electrode consumption analyzer
EP0429978A1 (en) Method of and apparatus for continuously discharging molten metal and slag
US4705664A (en) Radiant heat vaporizing injector
US4756880A (en) Radiant heat vaporizing injector
WO1989004378A1 (en) Radiant heat vaporizing method and apparatus
CA1189722A (en) Device for measuring the bath temperature in a fused salt electrolytic cell used for the production of aluminum
GB1475713A (en) Method of and means for tapping metallic melts
US4806156A (en) Process for the production of a bath of molten metal or alloys
US20200363131A1 (en) Sealed tilt pour electric induction furnaces for reactive alloys and metals
KR100653556B1 (en) Method and device for controlling and/or maintaining the temperature of a melt, preferably of a steel melt during continuous casting
EP4082689A1 (en) Molten material treatment apparatus and method
US3615085A (en) Apparatus for treating metallic melts
US3916978A (en) Process for making metal ingots
US3778250A (en) Method for treating metallic melts
US4202401A (en) Apparatus for electroslag casting of heavy ingots
EP0795037B1 (en) Equipment for treatment in molten cast iron baths with reaction materials having a low or high production of gas
EP0334915A1 (en) Process for heating molten steel contained in a ladle
US3934863A (en) Apparatus for refining molten metal and molten metal refining process
US4632174A (en) Double boiler furnace for vertical ascending pipe casting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642