WO1989003611A1 - Method controlling servomotor - Google Patents
Method controlling servomotor Download PDFInfo
- Publication number
- WO1989003611A1 WO1989003611A1 PCT/JP1988/000978 JP8800978W WO8903611A1 WO 1989003611 A1 WO1989003611 A1 WO 1989003611A1 JP 8800978 W JP8800978 W JP 8800978W WO 8903611 A1 WO8903611 A1 WO 8903611A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- servomotor
- speed
- gain
- current
- loop
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/22—Controlling the speed digitally using a reference oscillator, a speed proportional pulse rate feedback and a digital comparator
Definitions
- the present invention relates to a servomotor control method for controlling the speed and current of a servomotor by digital control, and more particularly to a servomotor control in which the gain of a current control loop is changed according to the servomotor speed.
- a servomotor control method for controlling the speed and current of a servomotor by digital control, and more particularly to a servomotor control in which the gain of a current control loop is changed according to the servomotor speed.
- Fig. 4 shows a block diagram of such a servomotor control system for digital control.
- 1 is an arithmetic unit, which outputs the difference between the speed command VCMD and the speed feedback signal fb.
- 2 is an integrator whose speed loop integration gain is k,.
- Numeral 3 is a computing unit, and numeral 4 is a speed loop proportional gain.
- Computing unit 3 outputs the current command value.
- the current command value is divided into three phases for the servo motor and sent to the R, S, and T phases, respectively.
- Each phase configuration are the same der Runode, in FIG Yes represent only R-phase, c the other phases are omitted
- 10 is an R-phase current control loop.
- 1 1 is an exerciser that outputs the difference between the R-phase feedback current Ir and the current command.
- 1 2 is an integrator, and the current loop integration gain is k ,.
- 1 3 is an operation
- 14 is a current loop proportional gain k 2 .
- the operation unit 13 outputs the difference between the output of the integrator 12 and the current loop proportional gain 14.
- Numeral 15 is a computing unit, which outputs the difference between the back electromotive voltage E (S) of the servomotor and the output of the calculator 13, and the output is the voltage output of the PWM control circuit.
- 16 is a primary delay element, R is the winding resistance of the servo motor, L is the inductance, and the output is the current of the servo motor.
- Reference numeral 18 denotes a motor, the inertia of which is J m, and is mathematically an integrator. The output becomes the speed of the servo motor, and becomes the speed feedback signal ⁇ b.
- An object of the present invention is to solve the above-mentioned problems and to provide a servomotor control method in which the gain of a current control loop is changed according to the speed of a servomotor.
- a servomotor control method characterized by controlling the integral gain and the loop proportional gain of the current control loop to increase according to the speed of the servomotor.
- FIG. 1 is a block diagram of one phase of a current control loop according to an embodiment of the present invention.
- FIG. 2 is a diagram showing an example of the function (V),
- FIG. 3 is a ⁇ -chart diagram showing the processing of software according to one embodiment of the present invention.
- Fig. 4 is a block diagram of a conventional servo motor control method of digital control. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a block diagram of one phase of a current control loop according to one embodiment of the present invention.
- the speed loop is the same as in Fig. 3, so it is omitted I have.
- 21 is Hama Minoki, which outputs the difference between the R-phase current command C md and the feedback current Ir.
- 2 2 is a current loop integration gain, and its value is 23 is a gain for correcting the current loop integration gain, and its value is 1 + ⁇ (V), which will be described later in detail.
- 24 is an integrator whose output is a voltage.
- 2 5 calculator 2 6 is a current loop proportional gain, its value if k z.
- Reference numeral 27 denotes a gain for correcting the current loop proportional gain, and its value is the same as that of the gain 23 for correcting the current loop integral gain.
- the arithmetic unit 25 outputs the difference between the output of the integrator 24 and the output of the current loop proportional gain 26.
- Reference numeral 28 denotes a computing unit, which outputs a difference between the output of the computing unit 25 and the back electromotive force E (S) of the servomotor.
- the output of the arithmetic unit 28 determines the pulse width of the PWM control circuit that controls the servomotor as a PWM output.
- Reference numeral 29 denotes a servomotor, which is mathematically a first-order lag element, R is the winding resistance of the servomotor, L is the inductance, and the output is the servomotor current.
- the current loop integral gain kt and the current loop proportional gain k z are respectively captured by the other capture gains “1+ or (V)” to obtain the current loop integral gain and the current loop integral gain kt.
- the current loop proportional gain can be changed according to the rotation speed of the servo motor. Therefore, it is possible to prevent a lack of torque, an increase in speed deviation, and the like during high-speed image transfer.
- FIG. 2 shows the function or An example of (v) is shown.
- the horizontal axis shows the rotation speed of the servomotor
- the vertical axis shows the value of the function o (V).
- ⁇ (V) is zero when the speed is between 0 and va, and increases linearly as the speed V increases between va and vb. If speed vb is exceeded, the value of or (V) is clamped to a constant value arm.
- the value of arm is about 2 to 2.5
- the value of v a is about 500 rpm
- the value of v b is about 30000 rpm.
- these values are merely examples, and may vary depending on the output of the servomotor, the rated image number, and the like.
- FIG. 3 shows a schematic flow chart of the control of the current control loop as well as the force controlled by the microphone port processor and the processing of the software.
- the number following S is the step number. The symbols are as follows.
- T P WM Pulse width of P WM circuit
- [S1] Determine whether to change the current loop gain (current loop integral gain and current loop proportional gain). Usually, it is set whether or not to change with parameters. If not, go to S 3; if so, go to S 2.
- the correction function of the current loop gain is configured to increase linearly according to the speed of the servomotor, but another function that changes in a curve according to the characteristics of the servomotor is used. Can also be used.
- the current loop gain is increased in accordance with the speed of the servo motor. Insufficient torque, increase in speed deviation, etc., due to a decrease in torque can be prevented.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
A method of controlling a servomotor by controlling the speed and current of the servomotor in a digital manner. Correction values (23, 27) are so applied that the integration gain (22) and the loop proportional gain (26) of the current control loop will increase depending upon the speed of the servomotor. Since the current loop gain increases depending upon the speed of the servomotor, no oscillation takes place in the current loop when the servomotor runs at low speeds or is at halt. Furthermore, a decrease in the torque caused by the lowered current loop gain during the high-speed operation can be prevented.
Description
明 細 書 サーボモータの制御方式 技 術 分 野 Description Servo motor control method Technical field
本発明はディ ジタル制御でサーボモータの速度及び電流を 制御するサ一ボモータの制御方式に関し、 特に電流制御ルー プのゲイ ンをサ一ボモータの速度に応じて変化させるよう に したサーボモータの制御方式に関する。 背 景 技 術 The present invention relates to a servomotor control method for controlling the speed and current of a servomotor by digital control, and more particularly to a servomotor control in which the gain of a current control loop is changed according to the servomotor speed. About the method. Background technology
サ一ボモータのディ ジタル制御方式はマイ ク 口プロセ ッサ の性能の向上とコス トの低下により、 サーボモータ制御方式 と して広 く使用されている。 このよう なディ ジタル制御のサ —ボモータ制御方式のブロ ッ ク図を第 4図に示す。 図におい て、 1 は演算器であり、 速度指令 V C M D と速度帰還信号 f b との差分を出力する。 2 は積分器であり その速度ループ積 分ゲイ ンは k , である。 3 は演算器であり、 4 は速度ループ 比例ゲイ ンである。 演算器 3 によって、 電流指令値が出力さ れる。 電流指令値はサーボモータの 3相分に分割され、 それ ぞれ R相、 S相及び T相に送られる。 各相の構成は同じであ るので、 図では R相のみ表してあり、 他の相は省略してある c The digital control method for servomotors is widely used as a servomotor control method due to the improvement in performance of the microphone opening processor and the reduction in cost. Fig. 4 shows a block diagram of such a servomotor control system for digital control. In the figure, 1 is an arithmetic unit, which outputs the difference between the speed command VCMD and the speed feedback signal fb. 2 is an integrator whose speed loop integration gain is k,. Numeral 3 is a computing unit, and numeral 4 is a speed loop proportional gain. Computing unit 3 outputs the current command value. The current command value is divided into three phases for the servo motor and sent to the R, S, and T phases, respectively. Each phase configuration are the same der Runode, in FIG Yes represent only R-phase, c the other phases are omitted
1 0 は R相の電流制御ループである。 1 1 は演箕器であり、 R相帰還電流 I r と電流指令の差分を出力する。 1 2 は積分 器であり、 電流ループ積分ゲイ ンは k , である。 1 3 は演算
器であり、 1 4 は電流ループ比例ゲイ ン k 2 である。 演算器 1 3 は積分器 1 2 の出力と電流ループ比例ゲイ ン 1 4 の差分 を出力する。 1 5 は演算器であり、 サーボモータの逆起電圧 E ( S ) と演箕器 1 3の出力の差分を出力し、 その出力は P W M制御回路の電圧出力となる。 1 6 は一次遅れ要素であり、 Rはサーボモ一タの卷線抵抗、 Lはイ ンダクタ ンスであり、 その出力はサーボモータの電流となる。 10 is an R-phase current control loop. 1 1 is an exerciser that outputs the difference between the R-phase feedback current Ir and the current command. 1 2 is an integrator, and the current loop integration gain is k ,. 1 3 is an operation And 14 is a current loop proportional gain k 2 . The operation unit 13 outputs the difference between the output of the integrator 12 and the current loop proportional gain 14. Numeral 15 is a computing unit, which outputs the difference between the back electromotive voltage E (S) of the servomotor and the output of the calculator 13, and the output is the voltage output of the PWM control circuit. 16 is a primary delay element, R is the winding resistance of the servo motor, L is the inductance, and the output is the current of the servo motor.
1 7 は トルク定数 t であり、 その出力は トルクである。 1 8 はモータであり、 モータのイ ナ一シャは J mであり、 数 式的には積分器である。 その出力はサーボモータの速度とな り、 速度帰還信号 ί b となる。 17 is the torque constant t, and its output is the torque. Reference numeral 18 denotes a motor, the inertia of which is J m, and is mathematically an integrator. The output becomes the speed of the servo motor, and becomes the speed feedback signal ίb.
しかし、 ディ ジタル制御方式を用いたサーボモータの制御 方式では、 サーボモータが高速回転の状態になるとディ ジタ ル制御のソフ トウェアの処理時間が無視できずに、 処理時間 の遅れが等価的に電流ループゲイ ンを低下させる。 また、 サ —ボモータの起電力が高く なり、 電流ループゲイ ンが下がつ た状態になる。 このために、 高速回転ができず、 また トルク 不足の状態が発生する。 逆に電流ループゲイ ンを一律に上げ 過ぎると、 低速時や停止時に電流ループの発振が起きる。 発 明 の 開 示 However, in the servo motor control method using the digital control method, when the servo motor is rotating at high speed, the processing time of the digital control software cannot be ignored, and the delay in the processing time is equivalent to the current. Decrease loop gain. In addition, the electromotive force of the servomotor increases, and the current loop gain drops. As a result, high-speed rotation cannot be performed and torque is insufficient. Conversely, if the current loop gain is set too high, current loop oscillation will occur at low speeds and at stoppages. Disclosure of the invention
本発明の目的は上記問題点を解決し、 電流制御ループのゲ ィ ンをサーボモータの速度に応じて変化させるよう にしたサ ーボモータの制御方式を提供することにある。 An object of the present invention is to solve the above-mentioned problems and to provide a servomotor control method in which the gain of a current control loop is changed according to the speed of a servomotor.
本発明では上記の問題点を解決するために、
デ ィ ジタル制御でサーボモータ の速度及び電流を制御する サ一ボモータの制御方式において、 In the present invention, in order to solve the above problems, In the servo motor control method that controls the speed and current of the servo motor with digital control,
速度ループの内側に電流制御ループを有し、 Having a current control loop inside the speed loop,
該電流制御ループの積分ゲイ ン及びループ比例ゲイ ンをサ ーボモータの速度に応じて増加させるように制御することを 特徴とするサーボモータの制御方式が、 A servomotor control method characterized by controlling the integral gain and the loop proportional gain of the current control loop to increase according to the speed of the servomotor.
提供される。 Provided.
サーボモータの速度に応じて、 電流ループゲイ ンを増加さ せるので、 低速及び停止時の電流ループの発振を起こさず、 高速時の電流ループゲイ ンの低下による トルク不足等を防止 する。 図 面 の 簡 単 な 説 明 第 1 図は本発明の一実施例の電流制御ループの 1相分のブ ロ ッ ク図、 Since the current loop gain is increased in accordance with the speed of the servomotor, the current loop does not oscillate at low speed and at stop, and torque shortage due to a decrease in current loop gain at high speed is prevented. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of one phase of a current control loop according to an embodiment of the present invention.
第 2図は関数 ( V ) の一例を示す図、 FIG. 2 is a diagram showing an example of the function (V),
第 3図は本発明の一実施例のソ フ ト ウ ェアの処理を示すフ π—チ ヤ一ト図、 FIG. 3 is a π-chart diagram showing the processing of software according to one embodiment of the present invention.
第 4図は従来のディ ジタル制御のサーボモータ制御方式の ブロ ック図である。 発明を実施するための最良の形態 以下、 本発明の一実施例を図面に基づいて説明する。 Fig. 4 is a block diagram of a conventional servo motor control method of digital control. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第 1図に本発明の一実施例の電流制御ループの 1相分のブ ロ ック図を示す。 速度ループは第 3図と同じであるので省略
してある。 図において、 2 1 は濱箕器であり、 R相の電流指 令 C m d と帰還電流 I r との差分を出力する。 2 2 は電流ル ープ積分ゲイ ンであり、 その値は である。 2 3 は電流ル 一プ積分ゲイ ンを補正するためのゲイ ンであり、 その値は 1 + α ( V ) であり、 詳細についてば後述する。 2 4 は積分器 であり、 その出力は電圧である。 FIG. 1 is a block diagram of one phase of a current control loop according to one embodiment of the present invention. The speed loop is the same as in Fig. 3, so it is omitted I have. In the figure, 21 is Hama Minoki, which outputs the difference between the R-phase current command C md and the feedback current Ir. 2 2 is a current loop integration gain, and its value is 23 is a gain for correcting the current loop integration gain, and its value is 1 + α (V), which will be described later in detail. 24 is an integrator whose output is a voltage.
2 5 は演算器、 2 6 は電流ループ比例ゲイ ンであり、 その 値ば k z である。 2 7は電流ループ比例ゲイ ンを補正するた めのゲイ ンであり、 その値は電流ループ積分ゲイ ンの補正す るためのゲイ ン 2 3 と同じである。 演算器 2 5 は積分器 2 4 の出力と電流ループ比例ゲイ ン 2 6 の出力との差分を出力す る。 2 8 は演算器であり、 演算器 2 5の出力とサーボモータ の逆起電圧 E ( S ) との差分を出力する。 演算器 2 8 の出力 は P W M出力として、 サ一ボモータを制御する P W M制御回 路のパルス幅を決める。 2 9 はサーボモータであり、 数式的 には一次遅れ要素であり、 Rはサーポモータ の巻線抵抗、 L はィ ンダクタ ンスであり、 その出力はサーボモータの電流と なる。 2 5 calculator, 2 6 is a current loop proportional gain, its value if k z. Reference numeral 27 denotes a gain for correcting the current loop proportional gain, and its value is the same as that of the gain 23 for correcting the current loop integral gain. The arithmetic unit 25 outputs the difference between the output of the integrator 24 and the output of the current loop proportional gain 26. Reference numeral 28 denotes a computing unit, which outputs a difference between the output of the computing unit 25 and the back electromotive force E (S) of the servomotor. The output of the arithmetic unit 28 determines the pulse width of the PWM control circuit that controls the servomotor as a PWM output. Reference numeral 29 denotes a servomotor, which is mathematically a first-order lag element, R is the winding resistance of the servomotor, L is the inductance, and the output is the servomotor current.
このよう に、 電流ループ積分ゲイ ン k t と電流ループ比例 ゲイ ン k z をそれぞれ、 他の捕正ゲイ ン 『 1 + or ( V ) 』 で 捕正することにより、 電流ル一ブ積分ゲイ ン及び電流ループ 比例ゲイ ンをサーボモータの回転速度に応じて変化させるこ とができる。 従って、 高速画転時の トルク不足、 速度偏差量 の増大等を防止することができる。 In this way, the current loop integral gain kt and the current loop proportional gain k z are respectively captured by the other capture gains “1+ or (V)” to obtain the current loop integral gain and the current loop integral gain kt. The current loop proportional gain can be changed according to the rotation speed of the servo motor. Therefore, it is possible to prevent a lack of torque, an increase in speed deviation, and the like during high-speed image transfer.
次に関数 α ( V ) の例について述べる。 第 2図に関数 or
( v ) の一例を示す。 図において、 横軸はサ一ボモータ の回 転速度、 縦軸は関数 o ( V ) の値を示す。 速度が 0 〜 v a の 間は α ( V ) は零であり、 速度 v a 〜 v b の間は速度 Vの増 加に伴って、 直線的に増加する。 速度 v bを越えてる と or ( V ) の値は一定値 ar mにク ラ ンプされる。 Next, an example of the function α (V) will be described. Figure 2 shows the function or An example of (v) is shown. In the figure, the horizontal axis shows the rotation speed of the servomotor, and the vertical axis shows the value of the function o (V). Α (V) is zero when the speed is between 0 and va, and increases linearly as the speed V increases between va and vb. If speed vb is exceeded, the value of or (V) is clamped to a constant value arm.
こ こで ar mの値は 2〜 2. 5程度、 v a の値は 5 0 0 r P m、 v b の値は 3 0 0 0 r p m程度である。 勿論これらの数 値は一例であって、 サーボモータの出力、 定格画転数等によ つて変化する。 Here, the value of arm is about 2 to 2.5, the value of v a is about 500 rpm, and the value of v b is about 30000 rpm. Of course, these values are merely examples, and may vary depending on the output of the servomotor, the rated image number, and the like.
電流制御ループの制御は勿論マイ ク 口プロセ ッ サによ って 制御される力 、 そのソ フ ト ウ エアの処理の概略のフ ローチ ヤ 一 ト図を第 3図に示す。 図において、 Sに続く数値はステ ツ プ番号である。 また、 各記号は以下の通りである。 FIG. 3 shows a schematic flow chart of the control of the current control loop as well as the force controlled by the microphone port processor and the processing of the software. In the figure, the number following S is the step number. The symbols are as follows.
K , : 電流ループ積分ゲイ ン (補正後) K,: Current loop integration gain (after correction)
Kz : 電流ループ比例ゲイ ン (補正後) K z : Current loop proportional gain (after correction)
k , : 電流ループ積分ゲイ ン (捕正前) k,: current loop integral gain (before calibration)
k 2 : 電流ループ比例ゲイ ン (補正前) k 2 : Current loop proportional gain (before correction)
T P WM : P WM回路のパルス幅 T P WM: Pulse width of P WM circuit
〔 S 1 〕 電流ループゲイ ン (電流ループ積分ゲイ ン及び電流 ループ比例ゲイ ン) を変化させるかどうか判断する。 通常は パラメ ータ等で変化させるかどうかを設定する。 変化させな ければ S 3 へ、 変化させる ときは S 2 へい く 。 [S1] Determine whether to change the current loop gain (current loop integral gain and current loop proportional gain). Usually, it is set whether or not to change with parameters. If not, go to S 3; if so, go to S 2.
〔 S 2 〕 サ一ボモータの速度が関数 o ( V ) をク ラ ンプする 値以下かどうか判断する。 以下であれば S 4 へ、 そうでなけ れば S 5 へい く 。
〔 S 3 〕 電流ループゲイ ンは変化させないので、 捕正前の電 流ループ積分ゲイ ン及び電流ループ比例ゲイ ンをそのまま使 用する。 [S2] Determine whether the servo motor speed is less than or equal to the value that clamps the function o (V). If so, go to S4; otherwise go to S5. [S3] Since the current loop gain is not changed, the current loop integral gain and the current loop proportional gain before calibration are used as they are.
( S 4 ) 電流ループゲイ ンを先に説明したように補正する。 (S4) Correct the current loop gain as described above.
K! = k! ( 1 + α ( V ) ) K! = k! (1 + α (V))
Κ 2 = k 2 ( 1 + ( V ) ) Κ 2 = k 2 (1 + (V))
〔 S 5 〕 電流ループゲイ ンを変化させる力 、 サーボモータの 速度が関数 ( V ) のクランプ領域に達しているので、 クラ ンプ値 『 1 + a m』 で補正する。 [S5] Since the force that changes the current loop gain and the speed of the servo motor have reached the clamp area of the function (V), the correction is made with the clamp value “1 + am”.
C S 6 ) S 3、 S 4 S 5で求められた電流ループゲイ ンで- P W M回路のパルス幅 T P W M を計算して出力する。 CS 6) S 3, S 4 Calculate and output the pulse width T PWM of the -PWM circuit using the current loop gain determined in S 5.
上記の説明では、 電流ループゲイ ンの補正関数はサ一ボモ ータの速度に応じて、 直線的に増加するように構成したが、 サーボモータの特性に応じて他の曲線状に変化する関数を使 用することもできる。 In the above description, the correction function of the current loop gain is configured to increase linearly according to the speed of the servomotor, but another function that changes in a curve according to the characteristics of the servomotor is used. Can also be used.
以上説明したように本発明では、 サーボモータ の速度に応 じて、 電流ループゲイ ンを増加させるように構成したので、 低速及び停止時の電流ループの発振を起こさず、 高速時の電 流ループゲイ ンの低下による トルク不足、 速度偏差量の増大 等を防止することができる。
As described above, in the present invention, the current loop gain is increased in accordance with the speed of the servo motor. Insufficient torque, increase in speed deviation, etc., due to a decrease in torque can be prevented.
Claims
1 . デ ィ ジタル制御でサーボモータ の速度及び電流を制御 するサーボモータの制御方式において、 1. In the servo motor control method that controls the speed and current of the servo motor by digital control,
速度ループの内側に電流制御ループを有し、 Having a current control loop inside the speed loop,
該電流制御ループの積分ゲイ ン及びループ比例ゲイ ンをサ ーボモータの速度に応じて変化させるように制御することを 特徴とするサーボモータの制御方式。 A control method of a servo motor, wherein the control gain is controlled so as to change the integral gain and the loop proportional gain of the current control loop in accordance with the speed of the servomotor.
2 . 前記積分ゲイ ン及び前記比例ゲイ ンは前記サ一ボモー タの前記速度に直線的に増加させることを特徴とする特許請 求の範囲第 1項記載のサーボモータの制御方式。
2. The servomotor control method according to claim 1, wherein said integral gain and said proportional gain are linearly increased to said speed of said servomotor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE88908367T DE3886394T2 (en) | 1987-10-14 | 1988-09-22 | METHOD FOR CONTROLLING A SERVO MOTOR. |
KR1019890701072A KR920010103B1 (en) | 1987-10-14 | 1988-09-22 | Method controlling servomotor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62/259333 | 1987-10-14 | ||
JP62259333A JP2514669B2 (en) | 1987-10-14 | 1987-10-14 | Servo motor control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989003611A1 true WO1989003611A1 (en) | 1989-04-20 |
Family
ID=17332642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1988/000978 WO1989003611A1 (en) | 1987-10-14 | 1988-09-22 | Method controlling servomotor |
Country Status (6)
Country | Link |
---|---|
US (1) | US4956593A (en) |
EP (1) | EP0347465B1 (en) |
JP (1) | JP2514669B2 (en) |
KR (1) | KR920010103B1 (en) |
DE (1) | DE3886394T2 (en) |
WO (1) | WO1989003611A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043417A (en) * | 1988-10-17 | 1991-08-27 | Michael Worsley | Low molecular weight urea-formaldehyde reaction products and process for the preparation thereof |
JPH0318694U (en) * | 1989-06-30 | 1991-02-25 | ||
US5063335A (en) * | 1990-09-11 | 1991-11-05 | Allen-Bradley Company, Inc. | Two-input control with independent proportional and integral gains for velocity error and velocity feedforward including velocity command limiting |
JP2522319Y2 (en) * | 1991-03-13 | 1997-01-16 | 矢崎総業株式会社 | connector |
JP3168231B2 (en) * | 1992-10-07 | 2001-05-21 | ファナック株式会社 | AC motor control method |
JPH06335279A (en) * | 1993-05-18 | 1994-12-02 | Fanuc Ltd | Synchronous motor current control method |
JPH086603A (en) * | 1994-04-18 | 1996-01-12 | Canon Inc | Adjusting method for servo system and its servo controller |
KR100277073B1 (en) * | 1995-07-24 | 2001-01-15 | 윤종용 | The velocity and position estimator of a magnetic head in a magnetic disk drive |
DE19734208A1 (en) * | 1997-08-07 | 1999-02-11 | Heidenhain Gmbh Dr Johannes | Method and circuit arrangement for determining optimal controller parameters for speed control |
DE19854750A1 (en) * | 1998-11-27 | 2000-05-31 | Heidenhain Gmbh Dr Johannes | Method and circuit arrangement for determining an optimal gain of the integrator of a speed controller |
TWI226147B (en) * | 2003-03-03 | 2005-01-01 | Delta Electronics Inc | Robust current loop controller applied in servo system |
JPWO2007125967A1 (en) * | 2006-04-28 | 2009-09-10 | 東芝キヤリア株式会社 | Air conditioner |
TW201230657A (en) * | 2010-10-08 | 2012-07-16 | Panasonic Corp | Current control gain adjusting method for pm motor, current control method, and control device |
JP2021125942A (en) * | 2020-02-04 | 2021-08-30 | 日本電産サンキョー株式会社 | Motor control method, motor driving device, industrial robot control method, and industrial robot |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168896U (en) * | 1982-05-01 | 1983-11-10 | 株式会社東芝 | Electric motor speed control device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE395065B (en) * | 1975-11-06 | 1977-07-25 | Asea Ab | DIGITAL CONTROL DEVICE |
JPS5996890A (en) * | 1982-11-25 | 1984-06-04 | Fanuc Ltd | Control system for servo motor |
US4733149A (en) * | 1985-05-31 | 1988-03-22 | Kollmorgen Technologies Corporation | Adaptive control system |
EP0260326B1 (en) * | 1986-03-14 | 1993-08-04 | Fanuc Ltd. | Robot controller |
-
1987
- 1987-10-14 JP JP62259333A patent/JP2514669B2/en not_active Expired - Fee Related
-
1988
- 1988-09-22 DE DE88908367T patent/DE3886394T2/en not_active Expired - Fee Related
- 1988-09-22 EP EP88908367A patent/EP0347465B1/en not_active Expired - Lifetime
- 1988-09-22 KR KR1019890701072A patent/KR920010103B1/en not_active IP Right Cessation
- 1988-09-22 WO PCT/JP1988/000978 patent/WO1989003611A1/en active IP Right Grant
- 1988-09-22 US US07/368,291 patent/US4956593A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168896U (en) * | 1982-05-01 | 1983-11-10 | 株式会社東芝 | Electric motor speed control device |
Non-Patent Citations (1)
Title |
---|
See also references of EP0347465A4 * |
Also Published As
Publication number | Publication date |
---|---|
DE3886394T2 (en) | 1994-04-07 |
EP0347465B1 (en) | 1993-12-15 |
EP0347465A1 (en) | 1989-12-27 |
EP0347465A4 (en) | 1991-05-08 |
KR890702328A (en) | 1989-12-23 |
US4956593A (en) | 1990-09-11 |
JPH01103184A (en) | 1989-04-20 |
DE3886394D1 (en) | 1994-01-27 |
JP2514669B2 (en) | 1996-07-10 |
KR920010103B1 (en) | 1992-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5003243A (en) | Control apparatus for induction machine | |
WO1989003611A1 (en) | Method controlling servomotor | |
US5410234A (en) | Motor drive control apparatus | |
JPH08182398A (en) | Driving device for permanent magnet-type synchronous motor | |
JPS63263239A (en) | Suction controller in internal combustion engine | |
JPH0199485A (en) | Controlling device for servo motor | |
JP3236449B2 (en) | Control method of AC servomotor | |
JPS63148314A (en) | Controller for semiclosed loop servo control system | |
EP0104909B1 (en) | Servomotor control method and apparatus therefor | |
US4611159A (en) | AC motor control system | |
JP3674381B2 (en) | Resolution switching device | |
JP3168231B2 (en) | AC motor control method | |
JPH0923700A (en) | Servo motor current control | |
JPH06335279A (en) | Synchronous motor current control method | |
JPS63301303A (en) | Control input designing method for variable structure control system | |
JPS5996890A (en) | Control system for servo motor | |
US6025684A (en) | Servo-motor driving method | |
EP0469347B1 (en) | Apparatus for reversibly controlling a motor | |
JP3589251B2 (en) | Speed feedback delay correction method | |
JP3676435B2 (en) | AC servo motor control method | |
KR920006163B1 (en) | Displacement control method | |
JPH04362702A (en) | Velocity control system in repetitive control | |
JP2935962B2 (en) | Speed sensorless control inverter | |
JPH0496681A (en) | Vector controller for induction motor | |
JPS6082079A (en) | Gain automatic correcting method of speed control system of motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988908367 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1988908367 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1988908367 Country of ref document: EP |