WO1988009926A1 - Receiving aerial for nmr imaging apparatus - Google Patents

Receiving aerial for nmr imaging apparatus Download PDF

Info

Publication number
WO1988009926A1
WO1988009926A1 PCT/FR1987/000197 FR8700197W WO8809926A1 WO 1988009926 A1 WO1988009926 A1 WO 1988009926A1 FR 8700197 W FR8700197 W FR 8700197W WO 8809926 A1 WO8809926 A1 WO 8809926A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
loop
antenna according
antenna
impedance
Prior art date
Application number
PCT/FR1987/000197
Other languages
French (fr)
Inventor
Hervé Jacob
Jean Bossaert
Original Assignee
Thomson-Cgr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR8601722A priority Critical patent/FR2594232B1/en
Application filed by Thomson-Cgr filed Critical Thomson-Cgr
Priority to PCT/FR1987/000197 priority patent/WO1988009926A1/en
Publication of WO1988009926A1 publication Critical patent/WO1988009926A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3621NMR receivers or demodulators, e.g. preamplifiers, means for frequency modulation of the MR signal using a digital down converter, means for analog to digital conversion [ADC] or for filtering or processing of the MR signal such as bandpass filtering, resampling, decimation or interpolation

Definitions

  • the present invention relates to a receiving antenna for nuclear magnetic resonance (NMR) imaging apparatus. It finds more particularly its application in the medical field where imaging by NMR proves to be valuable as an aid to diagnosis. It can nevertheless find its application in other fields.
  • NMR nuclear magnetic resonance
  • An NMR imaging device essentially comprises means for subjecting a body to be examined to a constant and intense magnetic field BQ. Then, subject to this influence, the body receives a radio frequency excitation from a transmitting antenna to cause a resonance of the oscillation of the magnetic moments of its particles. As soon as this radio frequency excitation ceases, the resonance signal emitted by the body is measured when the magnetic moments of the particles tend to realign with the field B Q.
  • so-called surface antennas are sometimes used.
  • the so-called surface antennas are antennas placed on the surface of the body. Their advantage compared to the antennas integral with the device is essentially that they can be placed in the immediate vicinity of the emitting particles.
  • the transmitting antennas conventionally attached to the device are, for their part, much more distant.
  • the use of these surface antennas results in a significant improvement in the signal-to-noise ratio of the detected signal.
  • a surface antenna mainly consists of a conductor forming a current loop.
  • the inductive impedance of this antenna circuit is tuned to the resonant frequency by means of a capacitor.
  • the sensitivity of the antenna directly depends on the overvoltage coefficient of the resonant circuit thus produced.
  • the two radiating elements 1 and 2 are connected to the core 3 and to the braid of a coaxial cable 5.
  • the latter is supplied by a signal source V.
  • a first part is limited to the antenna element 1, while the other part comprises the antenna element 2 and the braid> of the cable 5.
  • the figure 1b is a known symmetrization device.
  • the supply of doublet 1-2 is carried out by means of a magnetic coupling 6, the middle point 7 of the secondary of which is connected to the braid of the cable 5.
  • the object of the present invention is to remedy this disadvantage by proposing balanced antennas. -For this symmetrization an original solution, without additional magnetic coupling, is proposed which at the same time performs the antenna impedance adaptation. In fact, coupling 6, which must now be dispensed with, has another characteristic: that of adapting the impedance of the antenna 1-2 to the characteristic impedance of the coaxial cable 5.
  • the subject of the invention is a reception antenna for nuclear magnetic resonance imaging apparatus comprising means for ensuring its symmetrization for the reception of the resonance signal and a circuit for ensuring the transformation of its impedance for the transmission of this resonance signal charac ⁇ terized in that the symmetrization means comprise an inductive loop tuned in frequency by a distributed capacitance comprising at least one capacitance arranged symmetrically in the loop, and a circuit for receiving the signal induced in the loop, connected to the terminals of one of the capacities, this reception circuit comprising a section of a high frequency line of which a mass conductor participates in the inductive loop and of which a core, which serves to conduct the received signal, is connected by a part to the rest of the loop and secondly to the impedance transformation circuit.
  • FIG. 3a and 3b a block diagram and a particular example of embodiment of an antenna according to the invention.
  • FIG. 2 shows a nuclear magnetic resonance imaging device.
  • This device essentially comprises first means 8 for submitting a body 9 supported by a plateau 10 at an intense magnetic field B Q.
  • the body 9 also receives a radio frequency excitation produced by generator means 11 and transmitted, for example, by a four-conductor antenna such as the conductor 12.
  • the ap ⁇ similar also includes coils 13, called gradient, also connected to the generator means 11 to particularize regions of the space where sections are to be imaged.
  • a surface antenna 14 provided with the improvement of the invention.
  • This surface antenna is symmetrical and adapted. It is connected by a line 28 to processing circuits 15 connected to means 16 for viewing or memorizing for viewing or memorizing the images of the sections.
  • the generator means 11 and the processing circuits 15 are controlled by a sequencer 17.
  • FIG. 3a schematically shows the antenna 1 provided with a symmetrization device.
  • the antenna 14 comprises a current loop formed by two conductive strands 18 and 19 curved and symmetrical. These two strands are joined together, at their ends by two capacitors C, and C 2 . Capacities C, and C 2 are calculated to cause with the strands 18 and 19 a large overvoltage for a signal at the resonant frequency.
  • the syme ⁇ trization is obtained here by connecting a reception circuit 20 to the terminals of one of the two capacitors.
  • FIG. 3 b the assembly conforms to that of FIG. 3 a and the connection of a preferr reception circuit is shown in more detail.
  • the antenna has symmetry with respect to a plane XOZ where Z is collinear with B Q and where X is perpendicular to the plane of the antenna. This symmetry results in a partition of the loop into four half-strands denoted 21 to
  • the half-strands 22 and 23 on the one hand and 21 and 24 on the other hand are of equal length and have the same shape.
  • the half-strands 22 and 23 are connected together at one of their ends, and at capacities C, and C ? respectively at their other ends.
  • the half-strands 21 and 24 are also connected together at one of their ends and respectively at capacities C, and C 2 at their other ends.
  • the sections of the conductors of the half-strands are the same. They can for example be hollow conductors. In the invention, the half-strand 21 however forms with a conductor which is parallel to it, a section T of high frequency line.
  • This section T is longer than a normal half-strand: the half-strand 24 is electrically connected to it at a certain location to determine the half-strand 21, and to constitute with it strand 18.
  • the symmetrization is obtained by connecting the hot spot of the line at the end 40 of the half-strand 22 (connected to the capacitor C,) on the one hand, and to an adaptation-amplification circuit 25 on the other hand.
  • the half-strands 22, 23 and 24 are formed from elements of coaxial cables, the useless cores of which are left in the air.
  • the section T can be formed from an identical coaxial cable.
  • the hot spot of the high frequency line is formed by the core of the section T. It is connected by a connection 41 to the half-strand 22.
  • the circuit 25 is placed in the immediate vicinity of the antenna (a few centimeters). It essentially comprises a field effect transistor (FET) 26.
  • the transistor 26 is supplied by a supply 27, decoupled, and of known type, the potential (Vcc) of which is transported by the core of a coaxial connecting cable 28.
  • the circuit 25 further comprises a bias resistor 29 and a decoupling capacity 30 mounted as a common transmitter.
  • the section T is made from a coaxial cable element with a characteristic impedance of 50 Ohms. At a resonance frequency of 20 MHz, the wavelength of this resonance signal is approximately 15 meters.
  • the section T behaves like a capacitive impedance of value C.
  • the amplifier-adapter circuit 25 also has an equivalent alternative circuit composed of a resistor R "in parallel with a capacitor.
  • the end 31 of the section T connected to the circuit 25 is collinear with the axis Z. Also no common mode current can no longer flow in the core of the section T due to the electrical and mechanical symmetry of the device.
  • the loop 14 is installed on an insulating sheet of a flexible and resistant material; the section of line T can be produced therein in the form of a microstrip. This facilitates placement on the body.
  • the circuit 25 is placed directly downstream of the antenna, on the same sheet.
  • the cable 28 connects this circuit, placed on the body in the tunnel of the NMR apparatus, to circuit 15.

Abstract

The quality of the signal received is improved by making the aerial symmetrical. To this effect, the aerial has two branches (18-19) symmetrical in relation to the same plane (XOZ). These branches are connected by their ends to aerial tuning capacitors (C1-C2). The received signal is tapped (41) by a high frequency line (T) incorporated in one of the branches at the connection of one tuning capacitor (C1). The other end (31) of this high-frequency line arranged on the plane of symmetry is connected to an amplifying/impedance transforming circuit (25) of high input impedance.

Description

4, 4,
ANTENNE DE RECEPTION POUR APPAREIL-D'IMAGERIE PAR RESONANCE MAGNETIQUE NUCLEAIRERECEIVING ANTENNA FOR NUCLEAR MAGNETIC RESONANCE IMAGING APPARATUS
La présente invention a pour objet une antenne de réception pour appareil d'imagerie par résonance magnétique nucléaire (RMN). Elle trouve plus particulièrement son application dans le domaine médical où l'imagerie par RMN s'avère précieσse comme aide au diagnostic. Elle peut trouver néanmoins son application dans d'autres domaines.The present invention relates to a receiving antenna for nuclear magnetic resonance (NMR) imaging apparatus. It finds more particularly its application in the medical field where imaging by NMR proves to be valuable as an aid to diagnosis. It can nevertheless find its application in other fields.
Un appareil d'imagerie par RMN comporte essentiellement des moyens pour soumettre un corps à examiner à un champ magnétique constant et intense BQ. Puis, soumis à cette influence, le corps reçoit d'une antenne d'émission une excitation radiofréquence pour provoquer une résonance de l'oscillation des moments magnétiques de ses particules. Dès que cette excitation radiofréquence cesse, on mesure le signal de résonance émis en retour par le corps quand les moments magnétiques des particules tendent à se réaligner avec le champ BQ. Pour recevoir le signal émis on utilise quelquefois des antennes dites de surface. Les antennes dites de surface sont des antennes posées à la surface du corps. Leur intérêt par rapport aux antennes solidaires de l'appareil est essentiellement qu'elles peuvent être placées à proximité immédiate des particules éméttrices. Les antennes d'émission classiquement agrippées à l'appareil en sont, elles, nettement plus éloignées. De l'usage de ces antennes de surface résulte une amélioration sensible du rapport signal sur bruit du signal détecté. Une antenne de surface se compose princi¬ palement d'un conducteur formant une boucle de courant. L'impé¬ dance selfique de ce circuit d'antenne est accordée à la fréquence de résonance au moyen d'une capacité. La sensibilité de l'antenne dépend directement du coefficient de surtension du circuit ré¬ sonnant ainsi réalisé. Dans la conception des circuits d'antenne on vise à minimiser les pertes en agissant d'une part sur les formes et dimensions du circuit et en agissant d'autre part sur le choix des composants, de haute qualité, qui les composent.An NMR imaging device essentially comprises means for subjecting a body to be examined to a constant and intense magnetic field BQ. Then, subject to this influence, the body receives a radio frequency excitation from a transmitting antenna to cause a resonance of the oscillation of the magnetic moments of its particles. As soon as this radio frequency excitation ceases, the resonance signal emitted by the body is measured when the magnetic moments of the particles tend to realign with the field B Q. To receive the signal emitted, so-called surface antennas are sometimes used. The so-called surface antennas are antennas placed on the surface of the body. Their advantage compared to the antennas integral with the device is essentially that they can be placed in the immediate vicinity of the emitting particles. The transmitting antennas conventionally attached to the device are, for their part, much more distant. The use of these surface antennas results in a significant improvement in the signal-to-noise ratio of the detected signal. A surface antenna mainly consists of a conductor forming a current loop. The inductive impedance of this antenna circuit is tuned to the resonant frequency by means of a capacitor. The sensitivity of the antenna directly depends on the overvoltage coefficient of the resonant circuit thus produced. In the design of antenna circuits, we aim to minimize losses by acting on the one hand on the shapes and dimensions of the circuit and acting on the other hand on the choice of components, high quality, which compose them.
Mais d'autres conditions doivent aussi être remplies en particulier pour minimiser les bruits. Par exemple il est connu de répartir les capacités d'accord le long du circuit : en agissant ainsi on réduit la détection de champs électriques. Les impédances des selfs et capacités constituant l'antenne en sont alors diminuées, ce qui a pour effet de réduire les tensions à leurs extrémités et le champ électrique qui en résulte. Autrement dit, on ne capte pas le signal de perte diélectrique qui apparaît dans le corps. Par ailleurs pour assurer la meilleure réception du signal de résonance, ce signal est conduit par une ligne adaptée jusqu'à un circuit de traitement du signal. La ligne adaptée est en général une ligne coaxiaie d'impédance caractéristique 50 Ohms. Un autre facteur intervient directement dans la qualité du signal reçu : il concerne la syme¬ trisation de l'antenne. Les figures la et lb montrent respectivement des antennes non symétriques et symétriques. Dans la figure la deux éléments rayonnants 1 et 2 sont raccordés à l'âme 3 et à la tresse d'un câble coaxial 5. Celui-ci est alimenté par une source de signal V. Lors de l'émission, ou de la réception, il y a un déséquilibre entre les parties rayonnantes : une première partie est limitée à l'élément d'antenne 1, alors que l'autre partie comporte l'élément d'antenne 2 et la tresse > du câble 5. Sur la figure lb est représenté un dispositif connu de symetrisation. L'alimentation du doublet 1-2 est effectuée au moyen d'un couplage magnétique 6 dont le point milieu 7 du secondaire est relié à la tresse du câble 5. En symétrisant ainsi l'alimentation, on évite tout courant de gaine dans le câble coaxial. De cette façon l'antenne devient insensible aux perturbations radio- éléctriques extérieures. Malheureusement cette symetrisation par transformateur n'est pas applicable à l'imagerie par RMN pour laquelle la présence du couplage magnétique 6 est rédhibitoire. Il en résulte qu'en RMN la symetrisation est négligée.But other conditions must also be met in particular to minimize noise. For example, it is known to distribute the tuning capacities along the circuit: by doing so, the detection of electric fields is reduced. The impedances of the inductors and capacitors constituting the antenna are then reduced, which has the effect of reducing the voltages at their ends and the resulting electric field. In other words, we do not pick up the dielectric loss signal that appears in the body. Furthermore, to ensure the best reception of the resonance signal, this signal is led by a suitable line to a signal processing circuit. The adapted line is generally a coaxial line of characteristic impedance 50 Ohms. Another factor is directly involved in the quality of the signal received: it concerns the antenna synchronization. Figures la and lb show non-symmetrical and symmetrical antennas respectively. In the figure, the two radiating elements 1 and 2 are connected to the core 3 and to the braid of a coaxial cable 5. The latter is supplied by a signal source V. During transmission or reception , there is an imbalance between the radiating parts: a first part is limited to the antenna element 1, while the other part comprises the antenna element 2 and the braid> of the cable 5. In the figure 1b is a known symmetrization device. The supply of doublet 1-2 is carried out by means of a magnetic coupling 6, the middle point 7 of the secondary of which is connected to the braid of the cable 5. By thus balancing the supply, any sheath current in the cable is avoided coaxial. In this way the antenna becomes insensitive to external radioelectric disturbances. Unfortunately, this transformer symmetrization is not applicable to NMR imaging for which the presence of the magnetic coupling 6 is unacceptable. It follows that in NMR symmetrization is neglected.
La présente invention a pour objet de remédier à cet in¬ convénient en proposant des antennes symétrisées. -Pour cette symetrisation une solution originale, sans couplage magnétique ad¬ ditionnel, est proposée qui réalise en même temps l'adaptation d'impédance d'antenne. En effet le couplage 6, dont on doit main¬ tenant se passer, a une autre caractéristique : celle d'adapter l'impédance de l'antenne 1-2 à l'impédance caractéristique du câble coaxial 5.The object of the present invention is to remedy this disadvantage by proposing balanced antennas. -For this symmetrization an original solution, without additional magnetic coupling, is proposed which at the same time performs the antenna impedance adaptation. In fact, coupling 6, which must now be dispensed with, has another characteristic: that of adapting the impedance of the antenna 1-2 to the characteristic impedance of the coaxial cable 5.
L'invention a pour objet une antenne de réception pour appa¬ reil d'imagerie par résonance magnétique nucléaire comportant des moyens pour assurer sa symetrisation pour la réception du signal de résonance et un circuit pour assurer la transformation de son impédance pour la transmission de ce signal de résonance carac¬ térisée en ce que les moyens de symetrisation comportent une boucle selfique accordée en fréquence par une capacité répartie comportant au moins une capacité disposée symétriquement dans la boucle, et un circuit de réception du signal induit dans la boucle, branché aux bornes de l'une des capacités, ce circuit de réception comportant un tronçon d'une ligne haute fréquence dont un con¬ ducteur de masse participe à la boucle selfique et dont une âme, qui sert à conduire le signal reçu, est reliée d'une part au reste de la boucle et d'autre part au circuit de tranformation d'impédance.The subject of the invention is a reception antenna for nuclear magnetic resonance imaging apparatus comprising means for ensuring its symmetrization for the reception of the resonance signal and a circuit for ensuring the transformation of its impedance for the transmission of this resonance signal charac¬ terized in that the symmetrization means comprise an inductive loop tuned in frequency by a distributed capacitance comprising at least one capacitance arranged symmetrically in the loop, and a circuit for receiving the signal induced in the loop, connected to the terminals of one of the capacities, this reception circuit comprising a section of a high frequency line of which a mass conductor participates in the inductive loop and of which a core, which serves to conduct the received signal, is connected by a part to the rest of the loop and secondly to the impedance transformation circuit.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles ci ne sont données qu'à titre indicatif et nullement limitatif de l'in¬ vention. Sur les figures les mêmes repères désignent les mêmes éléments. Elles montrent :The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These are given for information only and in no way limit the invention. In the figures, the same references designate the same elements. They show :
- Figure la et lb des éléments d'antenne de l'état de la technique déjà décrit ci-dessus ;- Figure la and lb of the antenna elements of the prior art already described above;
- Figure 2 : un appareil d'imagerie par RMN comportant une antenne selon l'invention ;- Figure 2: an NMR imaging device comprising an antenna according to the invention;
-Figure 3a et 3b un schéma de principe et un exemple particulier de réalisation d'une antenne selon l'invention.-Figure 3a and 3b a block diagram and a particular example of embodiment of an antenna according to the invention.
La figure 2 montre un appareil d'imagerie par résonance magnétique nucléaire. Cet appareil comporte essentiellement des premiers moyens 8 pour soumettre un corps 9 supporté par un plateau 10 à un champ magnétique intense BQ. Dans cette situation le corps 9 reçoit en outre une excitation radio réquence produite par des moyens générateur 11 et transmise, par exemple, par une antenne à quatre conducteurs tels que le conducteur 12. Comme la réponse radiofréquence du signal est une réponse en volume l'ap¬ pareil comporte de plus des bobines 13, dites de gradient, reliées également aux moyens générateur 11 pour particulariser des régions de l'espace où des coupes sont à imager. Pour la réception, à l'aplomb de ces coupes, est placée sur le corps 9 une antenne de surface 14 munie du perfectionnement de l'invention. Cette antenne de surface est symétrisée et adaptée. Elle est reliée par une ligne 28 à des circuits de traitement 15 reliés à des moyens 16 de visua¬ lisation ou de mémorisation pour visualiser ou mémoriser les images des coupes. Les moyens générateur 11 et les circuits de traitement 15 sont pilotés par un séquenceur 17.Figure 2 shows a nuclear magnetic resonance imaging device. This device essentially comprises first means 8 for submitting a body 9 supported by a plateau 10 at an intense magnetic field B Q. In this situation the body 9 also receives a radio frequency excitation produced by generator means 11 and transmitted, for example, by a four-conductor antenna such as the conductor 12. As the radio frequency response of the signal is a volume response the ap¬ similar also includes coils 13, called gradient, also connected to the generator means 11 to particularize regions of the space where sections are to be imaged. For reception, perpendicular to these sections, is placed on the body 9 a surface antenna 14 provided with the improvement of the invention. This surface antenna is symmetrical and adapted. It is connected by a line 28 to processing circuits 15 connected to means 16 for viewing or memorizing for viewing or memorizing the images of the sections. The generator means 11 and the processing circuits 15 are controlled by a sequencer 17.
La figure 3a montre schématiquement l'antenne 1 munie d'un dispositif de symetrisation. L'antenne 14 comporte une boucle de courant formée de deux brins conducteurs 18 et 19 courbes et symétriques. Ces deux brins sont réunis entre eux, à leurs ex- trémités par deux capacités C, et C2. Les capacités C, et C2 sont calculées pour provoquer avec les brins 18 et 19 une grande surtension pour un signal à la fréquence de résonance. La syme¬ trisation est obtenue ici en raccordant un circuit de réception 20 aux bornes de l'une des deux capacités. Dans une réalisation particulière, figure 3 b, le montage est conforme à celui de la figure 3 a et la connexion d'un circuit de réception preferré est montrée plus en détail. L'antenne présente une symétrie par rapport à un plan XOZ où Z est colinéaire à BQ et où X est perpendiculaire au plan de l'antenne. De cette symétrie il résulte une partition de la boucle en quatre demi-brins notés 21 àFIG. 3a schematically shows the antenna 1 provided with a symmetrization device. The antenna 14 comprises a current loop formed by two conductive strands 18 and 19 curved and symmetrical. These two strands are joined together, at their ends by two capacitors C, and C 2 . Capacities C, and C 2 are calculated to cause with the strands 18 and 19 a large overvoltage for a signal at the resonant frequency. The syme¬ trization is obtained here by connecting a reception circuit 20 to the terminals of one of the two capacitors. In a particular embodiment, FIG. 3 b, the assembly conforms to that of FIG. 3 a and the connection of a preferr reception circuit is shown in more detail. The antenna has symmetry with respect to a plane XOZ where Z is collinear with B Q and where X is perpendicular to the plane of the antenna. This symmetry results in a partition of the loop into four half-strands denoted 21 to
24. Les demi-brins 22 et 23 d'une part et 21 et 24 d'autre part sont d'égale longueur et possèdent la même forme. Les demi-brins 22 et 23 sont raccordés ensemble à une de leurs extrémités, et à des capacités C, et C? respectivement à leurs autres extrémité. Les demi-brins 21 et 24 sont aussi reliés ensemble à une de leurs extrémités et respectivement aux capacités C , et C2 à leurs autres extrémités. Les sections des conducteurs des demi-brins sont les mêmes. ILs peuvent par exemple être des conducteurs creux. Dans l'invention le demi-brin 21 forme cependant avec un conducteur qui lui est parallèle, un tronçon T de ligne haute fréquence. Ce tronçon T est plus long qu'un demi-brin normal : le demi-brin 24 lui est relié électriquement à un certain endroit pour déterminer le demi-brin 21, et pour constituer avec lui de brin 18. La symetrisation est obtenue en raccordant le point chaud de la ligne à l'extrémité 40 du demi-brin 22 (connectée à la capacité C , ) d'une part, et à un circuit d'adaptation-amplification 25 d'autre part. D'une manière préférée les demi-brins 22,23 et 24 sont constitués à partir d' éléments de câbles coaxiaux dont les âmes, inutiles, sont laissées en l'air. Le tronçon T peut être constitué à partir d'un câble coaxial identique. Dans cet exemple le point chaud de la ligne haute fréquence est constitué par l'âme du tronçon T. Elle est reliée par une connexion 41 au demi-brin 22.24. The half-strands 22 and 23 on the one hand and 21 and 24 on the other hand are of equal length and have the same shape. The half-strands 22 and 23 are connected together at one of their ends, and at capacities C, and C ? respectively at their other ends. The half-strands 21 and 24 are also connected together at one of their ends and respectively at capacities C, and C 2 at their other ends. The sections of the conductors of the half-strands are the same. They can for example be hollow conductors. In the invention, the half-strand 21 however forms with a conductor which is parallel to it, a section T of high frequency line. This section T is longer than a normal half-strand: the half-strand 24 is electrically connected to it at a certain location to determine the half-strand 21, and to constitute with it strand 18. The symmetrization is obtained by connecting the hot spot of the line at the end 40 of the half-strand 22 (connected to the capacitor C,) on the one hand, and to an adaptation-amplification circuit 25 on the other hand. In a preferred manner, the half-strands 22, 23 and 24 are formed from elements of coaxial cables, the useless cores of which are left in the air. The section T can be formed from an identical coaxial cable. In this example, the hot spot of the high frequency line is formed by the core of the section T. It is connected by a connection 41 to the half-strand 22.
Le circuit 25 est placé à proximité immédiate de l'antenne (quelques centimètres). Il comporte essentiellement un transistor 26 a effet de champ (FET). Le transistor 26 est alimenté par une alimentation 27, découplée, et de type connu dont le potentiel (Vcc) est transporté par l'âme d'un câble coaxial de liaison 28. Le circuit 25 comporte en outre une résistance de polarisation 29 et une capacité de découplage 30 montées en émetteur commun. Le circuitThe circuit 25 is placed in the immediate vicinity of the antenna (a few centimeters). It essentially comprises a field effect transistor (FET) 26. The transistor 26 is supplied by a supply 27, decoupled, and of known type, the potential (Vcc) of which is transported by the core of a coaxial connecting cable 28. The circuit 25 further comprises a bias resistor 29 and a decoupling capacity 30 mounted as a common transmitter. The circuit
25, qui constitue un amplificateur à haute impédance d'entrée, effectue la transformation de l'impédance de l'antenne 14 pour l'adapter à celle de la ligne 28. En effet l'égalité des courants circulant dans les brins conducteurs 18 et 19 et dans les capacités Ci et C2 entraine une très forte impédance du circuit résonnant présentée à l'entrée de l'amplificateur 25. Alors que ce circuit débite dans une charge faible par l'intermédiaire de la ligne 28, par sa forte impédance d'entrée le circuit 25 réalise la transformation d'impédance. La ligne 28 sert aussi à transporter le signal reçu vers les moyens de traitement 15. Dans un exemple le tronçon T est fabriqué à partir d'un élément de câble coaxial d'impédance carac¬ téristique 50 Ohms. A une fréquence de résonance de 20 MHz, la longueur d'onde c?u signal de résonance vaut environ 15 mètres. Le tronçon T, dont la longueur peut être de l'ordre de 0,50 mètre (bien inférieure au quart de la longueur d'onde) et qui est chargé par une impédance quasiment infinie (celle du circuit 25), se comporte comme une impédance capacitive de valeur C . Le circuit ampli¬ ficateur-adaptateur 25 a par ailleurs un schéma équivalent alter- natif composé d'une résistance R « en parallèle avec une capacité.25, which constitutes an amplifier with high input impedance, performs the transformation of the impedance of the antenna 14 to adapt it to that of the line 28. Indeed, the equality of the currents flowing in the conductive strands 18 and 19 and in the capacitors Ci and C 2 causes a very high impedance of the resonant circuit presented at the input of the amplifier 25. While this circuit delivers in a low load via the line 28, by its high impedance input circuit 25 performs the impedance transformation. Line 28 is also used to transport the received signal to the processing means 15. In one example, the section T is made from a coaxial cable element with a characteristic impedance of 50 Ohms. At a resonance frequency of 20 MHz, the wavelength of this resonance signal is approximately 15 meters. The section T, the length of which can be of the order of 0.50 meters (much less than a quarter of the wavelength) and which is charged by an almost infinite impedance (that of circuit 25), behaves like a capacitive impedance of value C. The amplifier-adapter circuit 25 also has an equivalent alternative circuit composed of a resistor R "in parallel with a capacitor.
C» . L'accord en fréquence de la boucle de courant par les capacités C, et C2 en est modifié. Dans ces conditions on choisit C , tel que :VS" . The frequency tuning of the current loop by capacitors C, and C 2 is modified. Under these conditions we choose C, such that:
L'extrémité 31 du tronçon T raccordée au circuit 25 est colineaire à l'axe Z. Aussi aucun courant de mode commun ne peut plus circuler dans l'âme du tronçon T du fait de la symétrie électrique et mécanique du dispositif. Dans une réalisation parti¬ culière la boucle 14 est installée sur une feuille isolante en un matériau souple et résistant; le tronçon de ligne T peut y être réalisé sous forme de microbande. Ceci facilite la mise en place sur le corps. Le circuit 25 est placé directement en aval de l'antenne, sur la même feuille. Le câble 28 relie ce circuit, posé sur le corps dans le tunnel de l'appareil de RMN, au circuit 15. The end 31 of the section T connected to the circuit 25 is collinear with the axis Z. Also no common mode current can no longer flow in the core of the section T due to the electrical and mechanical symmetry of the device. In a particular embodiment the loop 14 is installed on an insulating sheet of a flexible and resistant material; the section of line T can be produced therein in the form of a microstrip. This facilitates placement on the body. The circuit 25 is placed directly downstream of the antenna, on the same sheet. The cable 28 connects this circuit, placed on the body in the tunnel of the NMR apparatus, to circuit 15.

Claims

REVENDICATIONS
1 - Antenne (14) de réception pour appareil d'imagerie par résonance magnétique nucléaire comportant des moyens (18-24) pour assurer sa symetrisation (T) pour la réception du signal de résonance et un circuit pour assurer la transformation (25) de son impédance1 - Receiving antenna (14) for a nuclear magnetic resonance imaging device comprising means (18-24) for ensuring its symmetrization (T) for receiving the resonance signal and a circuit for ensuring the transformation (25) of his impedance
- pour la transmission de ce signal de résonance caractérisée en ce que les moyens de symetrisation comportent une boucle selfique (18- 19) accordée en fréquence par une capacité répartie comportant au moins une capacité (C .-C ) disposée symétriquement dans la boucle, et un circuit (25) de réception du signal induit dans la i n boucle, branché ( 1) aux bornes de l'une des capacités, ce circuit de réception comportant un tronçon (T) d'une ligne haute fréquence dont un conducteur de masse (21) participe à la boucle selfique et dont une âme, qui sert à conduire le signal reçu, est reliée d'une part au reste (C . ) de la boucle et d'autre part au circuit (25) de- for the transmission of this resonance signal characterized in that the symmetrization means comprise a inductive loop (18-19) tuned in frequency by a distributed capacitor comprising at least one capacitor (C.-C) arranged symmetrically in the loop, and a circuit (25) for receiving the signal induced in the in-loop, connected (1) across one of the capacitors, this reception circuit comprising a section (T) of a high frequency line including a ground conductor (21) participates in the inductive loop and a core of which, which serves to conduct the received signal, is connected on the one hand to the rest (C.) Of the loop and on the other hand to the circuit (25) of
1 transformation d'impédance.1 impedance transformation.
2 - Antenne selon la revendication 1 caractérisée en ce que la boucle présente une symétrie géométrique par rapport à un pian (XOZ), qui la coupe sensiblement perpendiculairement à son propre plan. o 3 - Antenne selon la revendication 2 caractérisée en ce que l'extrémité (31) du tronçon (T) de ligne haute fréquence reliée au circuit de transformation d'impédance est contenue dans le plan de symétrie.2 - Antenna according to claim 1 characterized in that the loop has a geometric symmetry with respect to a plane (XOZ), which cuts it substantially perpendicular to its own plane. o 3 - Antenna according to claim 2 characterized in that the end (31) of the section (T) of high frequency line connected to the impedance transformation circuit is contained in the plane of symmetry.
4 - Antenne selon l'une quelconque des revendications 1 à 3 caractérisée en ce que la section du conducteur qui forme le reste de la boucle est celle d'un câble coaxial identique à celui du tronçon (T) de ligne haute réquence.4 - Antenna according to any one of claims 1 to 3 characterized in that the section of the conductor which forms the rest of the loop is that of a coaxial cable identical to that of the section (T) of high frequency line.
5 - Antenne selon l'une quelconque des revendications 1 à 4 caractérisée en ce que le circuit de transformation d'impédance est 0 un circuit à haute impédance d'entrée.5 - Antenna according to any one of claims 1 to 4 characterized in that the impedance transformation circuit is 0 a high input impedance circuit.
6 - Antenne selon la revendication 5 caractérisée en ce que le circuit de transformation d'impédance est placé à proximité immédiate de l'antenne. 7 - Antenne selon la revendication 6 caractérisée en ce que le circuit de transformation d'impédance comporte un transistor (26) à effet de champ monté en émetteur commun (29-30).6 - Antenna according to claim 5 characterized in that the impedance transformation circuit is placed in the immediate vicinity of the antenna. 7 - Antenna according to claim 6 characterized in that the impedance transformation circuit comprises a transistor (26) with field effect mounted as a common emitter (29-30).
8 - Antenne selon la revendication 7 caractérisée en ce que le transistor à effet de champ est alimenté par une tension de polarisation (Vcc) découplée (27) du signal amplifié et placée à distance (28).8 - Antenna according to claim 7 characterized in that the field effect transistor is supplied by a bias voltage (Vcc) decoupled (27) from the amplified signal and placed at a distance (28).
9 - Antenne selon la revendication 3 caractérisé en ce que les capacités d'accord des deux parties symétriques de la boucle sont égales. 9 - Antenna according to claim 3 characterized in that the tuning capacities of the two symmetrical parts of the loop are equal.
PCT/FR1987/000197 1986-02-07 1987-06-02 Receiving aerial for nmr imaging apparatus WO1988009926A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR8601722A FR2594232B1 (en) 1986-02-07 1986-02-07 RECEIVING ANTENNA FOR NUCLEAR MAGNETIC RESONANCE IMAGING APPARATUS
PCT/FR1987/000197 WO1988009926A1 (en) 1987-06-02 1987-06-02 Receiving aerial for nmr imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1987/000197 WO1988009926A1 (en) 1987-06-02 1987-06-02 Receiving aerial for nmr imaging apparatus

Publications (1)

Publication Number Publication Date
WO1988009926A1 true WO1988009926A1 (en) 1988-12-15

Family

ID=9346806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000197 WO1988009926A1 (en) 1986-02-07 1987-06-02 Receiving aerial for nmr imaging apparatus

Country Status (1)

Country Link
WO (1) WO1988009926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384602A (en) * 1992-06-10 1995-01-24 Ge Medical Systems S.A. Device for the filtering of a video signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2517968A (en) * 1945-01-17 1950-08-08 Rca Corp Line balance converter
DE3608473A1 (en) * 1985-03-19 1986-12-04 Elscint Ltd., Haifa TWO-FREQUENCY SURFACE PROBE
US4649348A (en) * 1984-08-20 1987-03-10 Technicare Corporation Radio frequency coils for nuclear magnetic resonance imaging systems
EP0222982A1 (en) * 1985-11-18 1987-05-27 Siemens Aktiengesellschaft Surface coil for nuclear magnetic resonance analysis
EP0223284A2 (en) * 1985-11-02 1987-05-27 Philips Patentverwaltung GmbH High frequency coil arrangement for nuclear spin resonance device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2517968A (en) * 1945-01-17 1950-08-08 Rca Corp Line balance converter
US4649348A (en) * 1984-08-20 1987-03-10 Technicare Corporation Radio frequency coils for nuclear magnetic resonance imaging systems
DE3608473A1 (en) * 1985-03-19 1986-12-04 Elscint Ltd., Haifa TWO-FREQUENCY SURFACE PROBE
EP0223284A2 (en) * 1985-11-02 1987-05-27 Philips Patentverwaltung GmbH High frequency coil arrangement for nuclear spin resonance device
EP0222982A1 (en) * 1985-11-18 1987-05-27 Siemens Aktiengesellschaft Surface coil for nuclear magnetic resonance analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384602A (en) * 1992-06-10 1995-01-24 Ge Medical Systems S.A. Device for the filtering of a video signal

Similar Documents

Publication Publication Date Title
US4634980A (en) Nuclear magnetic resonance radio frequency antenna
US9103864B2 (en) Non-intrusive cable fault detection and methods
EP0232189B1 (en) Orbit coil for a nuclear magnetic resonance imaging apparatus
EP0239426B1 (en) Receiving antenna for a nuclear magnetic resonance imaging apparatus
US20100277171A1 (en) Novel method and apparatus for mri signal excitation and reception using non-resonance rf method (norm)
US20050253603A1 (en) Ultra-broadband differential voltage probes
JPH01160539A (en) Magnetic resonance method and local coil means for magnetic resonance apparatus
JPH0217037A (en) Operator for symmetrical high frequency antenna
US7936171B2 (en) Baluns, a fine balance and impedance adjustment module, a multi-layer transmission line, and transmission line NMR probes using same
EP0109867B1 (en) Sensitive broad band alternating magnetic field detector, and its use as a measuring apparatus
EP0363381B1 (en) Electromagnetic antenna and excitation antenna provided with such electromagnetic antenna for a nuclear magnetic resonance apparatus
AU768008B2 (en) Probe head for an NMR spectrometer
US7482814B2 (en) Electric/magnetic field sensor
FR2615040A1 (en) PASSIVE DECOUPLING RECEIVING ANTENNA, IN PARTICULAR FOR NUCLEAR MAGNETIC RESISTANCE IMAGING APPARATUS
CN112147554B (en) Frequency and matching tuning device of receiving coil, low-temperature probe and magnetic resonance device
WO1988009926A1 (en) Receiving aerial for nmr imaging apparatus
EP0468857A1 (en) Wireless receiving means for NMR imaging apparatus
FR2594232A1 (en) Receiving antenna for nuclear magnetic resonance imaging equipment
US5233362A (en) Maypole antenna
KR101682820B1 (en) Sheath current filter with integrated optical cable guide for use in magnetic resonance tomography
US10670673B2 (en) Device and method for transmitting signals over a shielded balanced line
US20210181278A1 (en) Sheath wave barrier for magnetic resonance (mr) applications
US4721915A (en) High frequency antenna system for nuclear magnetic resonance tomography devices
EP0578561B1 (en) Receiver with internal ferrite antenna
JPH0766616A (en) Antenna for communication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP