WO1988000654A1 - Knock controller of internal combustion engine - Google Patents

Knock controller of internal combustion engine Download PDF

Info

Publication number
WO1988000654A1
WO1988000654A1 PCT/JP1987/000504 JP8700504W WO8800654A1 WO 1988000654 A1 WO1988000654 A1 WO 1988000654A1 JP 8700504 W JP8700504 W JP 8700504W WO 8800654 A1 WO8800654 A1 WO 8800654A1
Authority
WO
WIPO (PCT)
Prior art keywords
knock
engine
output
signal
frequency
Prior art date
Application number
PCT/JP1987/000504
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi; Komurasaki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO1988000654A1 publication Critical patent/WO1988000654A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor

Definitions

  • the present invention relates to a knock control device for an internal combustion engine that suppresses knocking of the internal combustion engine.
  • Control methods for detecting and suppressing knock generated by the engine include fuel control, ignition timing control, and supercharging pressure control. The following description is based on ignition timing control, which is the most widely used. .
  • FIG. 1 in Fig. 1 is an acceleration sensor that is attached to the engine and detects the vibration acceleration of the engine.
  • 2 is the frequency of the output signal of the acceleration sensor 1 that is highly sensitive to knocking.
  • a frequency filter 3 that allows the signal component to pass through is an analog gate that blocks noise that becomes an interference wave in the knock detection of the output signal of the frequency filter 2.
  • the gate timing controller 4 instructs the opening and closing of the analog gate 3 according to the time of occurrence of the disturbance noise.
  • the output of the analog gate 3 is sent to the noise level detector 5 and the comparator 6.
  • the noise level detector 5 detects the level of mechanical vibration noise of the engine other than the knocking. It is.
  • the comparator 6 compares the output voltage of the analog gate 3 with the output voltage of the noise level detector 5, generates a knock detection pulse, and outputs it to the integrator 7. .
  • the integrator 7 integrates the output pulse of the comparator 6 and generates an integrated voltage according to the knocking intensity. .
  • the phase shifter 8 shifts the position of the reference ignition signal in accordance with the output voltage of the integrator 7.
  • reference numeral 9 denotes a rotation signal generator for generating an ignition signal according to a preset ignition advance characteristic.
  • the output of the rotation signal generator 9 is waveform-shaped by a waveform shaping circuit 10; At the same time ignition coil I.
  • the control of the closing angle of electricity is performed in the second step .
  • squirrel Lee production kitchen grayed circuits 1 1 by the output signal of the Utsurikashiwa device 8 is in the earthenware pots by intermittently feeding the ignition Coil le I 2.
  • Fig. 2 shows the frequency characteristics of the output signal of acceleration sensor 1.
  • A is the case where there is no knocking
  • B is the case where knocking occurs.
  • the output signal of the acceleration sensor 1 includes a knock signal (a signal generated by knocking), other mechanical noises of the engine, and various noises riding on the signal transmission path. Ingredients, such as ignition noise. Comparing the characteristics A and B of FIG. 2, 0 it can be seen that the Roh click signal with a specific frequency characteristic This distribution is different depending on the engine or the mounting position of the acceleration sensor 1, but in each case there is a clear difference depending on the presence or absence of knocking. Therefore, by passing the frequency component of the knock signal, the noise of other frequency components can be suppressed, and the knock signal can be detected efficiently.
  • a knock signal a signal generated by knocking
  • Ingredients such as ignition noise. Comparing the characteristics A and B of FIG. 2, 0 it can be seen that the Roh click signal with a specific frequency characteristic This distribution is different depending on the engine or the mounting position of the acceleration sensor 1, but in each case there is a clear difference depending on the presence or absence of knocking. Therefore, by passing the frequency component of the knock signal, the noise of other frequency components can be suppress
  • FIGS. 3 and 4 show the operation waveforms of the respective parts in FIG. 1 and the same reference numerals indicate the waveforms of the same parts, and FIG. 3 shows the mode in which engine knocking does not occur. The figure shows the engine knocking mode.
  • the ignition signal generated by the rotation signal generator 9 corresponding to the ignition timing characteristic set in advance by the rotation of the engine is waveform-shaped by a waveform shaping circuit 10 into an opening / closing pulse having a desired closing angle.
  • the switching circuit 11 is driven via the phase shifter 8 to interrupt the power supply to the ignition coil 12, and the ignition voltage of the ignition coil 12 generated when the current supplied to the ignition coil 12 is cut off.
  • the organization is ignited and operated.
  • the engine vibration that occurs during operation of this engine is detected by the acceleration sensor 1.
  • the analog noise 3 is output from the gate timing controller 4 which is triggered by the output of the transferer 8, since the ignition noise is erroneously recognized as a knock signal.
  • the gate is closed by a force (Fig. 3 (c)) for a certain period from the ignition timing to shut off the ignition noise. Therefore, only low-level mechanical noise remains at the output of analog gate 3, as shown in Fig. 3 (d).
  • the noise level detector 5 responds to a change in the beak value of the output signal of the analog gate 3 and, in this case, to a relatively gradual change due to the peak value of the normal mechanical noise.
  • the output voltage of the integrator 7 remains zero as shown in FIG. 4 (f), and the phase shift angle by the phase shifter 8 (input / output (FIG. 4) ( g ), (h)
  • the phase difference is also zero. Therefore, the open / close phase of the switching circuit 11 driven by this output, that is, the intermittent phase of energization of the ignition coil 12, has the same phase as the reference ignition signal of the output of the waveform shaping circuit 10. Thus, the ignition timing becomes the reference ignition timing.
  • the output of acceleration sensor 1 contains a knock signal near a certain time delay from the fire timing as shown in Fig. 4 ( a ), and the frequency
  • the signal after passing through filter 2 and analog gate 3 is a signal in which the knock signal is greatly superimposed on the mechanical noise as shown in Fig. 4 (d).
  • the integrator 7 integrates the pulse and generates an integrated voltage as shown in FIG. 4 (f).
  • the phase shifter 8 shifts the phase of the output signal (FIG. 4 (g) (reference ignition signal)) of the waveform shaping circuit 10 to a time-delay side in accordance with the output voltage of the integrator 7. Therefore, the output of the transfer unit 8 has a phase delayed from the phase of the reference ignition signal of the waveform shaping circuit 10, and drives the switching circuit 11 with the phase shown in FIG. 4 (h).
  • FIG. 4 (h) reference ignition signal
  • the purpose of the present invention is to obtain a knock control device for an internal combustion engine that can detect a sufficient level.
  • a knock control device for an internal combustion engine includes a knock sensor having a knock sensor having different characteristics from each other, a frequency filter, and a plurality of knock detection systems including a reference voltage generation unit. It is.
  • the characteristics of each component in each knock detection system are designed to be optimal for the detection system, and Knock detection is performed at first.
  • FIG. 1 is a block diagram of a conventional knock control device for an internal combustion engine
  • FIG. 2 is a diagram showing an output of an acceleration sensor for explaining the operation of the knock control device of the internal combustion engine of FIG.
  • FIG. 3 is an operation waveform diagram of each part of the mode in which the engine does not generate knocking for explaining the operation of the knock control device for the internal combustion engine of FIG. 1
  • FIG. 1 is an operation waveform diagram of each part of a mode in which the engine generates knocking for explaining the operation of the knock control device of the internal combustion engine shown in FIG. 5;
  • FIG. 6 and FIG. 7 are block diagrams showing the configuration of an embodiment of the knock control device, and FIGS. 6 and 7 show the acceleration sensor for explaining the operation of the knock control device of the internal combustion engine.
  • FIG. 6 and 7 show the acceleration sensor for explaining the operation of the knock control device of the internal combustion engine.
  • FIG. 5 is a block diagram showing the configuration of the embodiment.
  • the portions indicated by reference numerals 4 and 7 to 12 in FIG. 5 are the same as those in FIG. 1, and the portions described below are different from FIG. 1 and are features of the present invention.
  • first and second knock detection systems 100 and 200 are provided.
  • 51 and 61 are engine An acceleration sensor that detects vibration acceleration (corresponding to acceleration sensor 1 in Fig. 1).
  • the outputs of the acceleration sensors 51 and 61 are sent to frequency filters 52 and 62, respectively.
  • the frequency filters 52 and 62 select and output only the knock signal component from the outputs of the acceleration sensors 51 and 61 (corresponding to the frequency filter 2 in Fig. 1).
  • the signals are output to analog gates 53 and 63, respectively.
  • analog gates 53 and 63 block noise that becomes an interference wave for knock detection among the output signals of the frequency filters 52 and 62 , respectively (corresponding to analog gate 3 in Fig. 1). )
  • the outputs of the analog gates 53 and 63 are sent to noise level detectors and 65 and comparators and 66, respectively.
  • the noise level detectors 55 and 65 each detect the level of mechanical vibration noise of the engine other than the knocking and use it as a reference voltage (corresponding to the noise level detector 5 in Fig. 1). , comparator 5 6, 66 each analyst port Guge DOO 53, 63 of the output voltage and Bruno Lee Zureberu detector 55 compares the 65 output voltage to generate the Roh click detection pulse (comparator of FIG. 1 Equivalent to 6)
  • This 0 R circuit 0 is a knock detection pulse from the outputs of both comparators 56 and 66. Output the logical OR signal of the signals.
  • the first knock detection system 100 is composed of the acceleration sensor 51 to the comparator 56
  • the second knock detection system 200 is composed of the acceleration sensor S1 to the comparator. .
  • the basic operation of the block circuit of each configuration is the same as that of the conventional device described above, and the connection between the block circuits is also the same. As shown in Fig. 5, it is the same as the conventional device in Fig. 1, and the description of the basic operation of knock detection is omitted.
  • This embodiment has two knock detection systems of the first and second knock detection systems 100 and 200, and the comparator 56 of the first knock detection system 100 and the second knock detection system 100 have the same function.
  • the knock detection pulse output from the comparator 66 of the second knock detection system 200 is ORed by an OR circuit 70 and input to the integrator 7.
  • the integrator 7 Since the integrator 7 generates a control voltage corresponding to the input pulse, similarly to the conventional device (FIG. 1), the knock is detected in either of the first and second knock detection systems 100 and 200. Even if it is detected, a control voltage is generated from the integrator 7, the ignition timing is retarded, and the knock of the engine is suppressed.
  • the detection signals of the acceleration sensors 51 and 61 do not basically become the same because they vary depending on the difference in the mounting position of the engine as described above.
  • this frequency is the cylinder block of the engine. This is because it belongs to high frequency in the vibration characteristics of ⁇ and always shows delicate characteristics.
  • each of the detection signals of the acceleration sensors 51 and 61 has the engine noise signal and the knock signal having the frequency characteristics shown in FIG. 2, and the noise component is knocked between the detection signals. If the components appear at the same frequency at the same frequency, the first and second knock detection systems 100 and 200 have exactly the same characteristics if they are composed of only two systems. (If two block circuits are provided), the desired knock detection can be performed.
  • the frequency component of the signal detected by the acceleration sensor 51 is in the characteristic shown in Fig. 2 depending on whether the engine is knocked, the frequency component of the signal detected by the acceleration sensor 61 attached to one of the different positions Is as shown in Fig. 6 or Fig. 7.
  • characteristic A represents the frequency characteristics when no knock occurs in the engine
  • characteristic B represents the frequency characteristics when knock occurs in the engine
  • Fig. 6 shows the case where the characteristic B when knocking occurs in the engine differs from the frequency characteristic of Fig. 2 and the knock signal level is low. .
  • the frequency distribution of the knock signal is the same as in Fig. 2, but the level of the noise signal when no knock occurs in the engine is based on the characteristic A in Fig. 2. This is the case.
  • the frequency filters 52 and 62 are used to obtain an output signal from each input signal that can reliably perform knock detection.
  • the center frequency is a frequency at which the noise signal component is small and the knock signal component is large, and the frequency selectivity is determined along with the setting of the bandwidth.
  • the center frequency voltage gain is a voltage amplification factor that sets the output signal to a desired voltage.
  • the acceleration sensors 51 and 61 have the same frequency characteristics, and the frequency selectivity is given to the frequency filters 52 and 62. When using a single acceleration sensor, this frequency selectivity is also provided. In order to make the knock characteristics different among the knock detection systems 1000, acceleration sensors with different resonance characteristics are required.
  • the comparators 56 and 66 can reliably detect knocks. Cannot be performed 0
  • the voltage relationship between the two types of inputs of the comparators 56 and 66 is the same as that shown in Fig. 3 (d) for the conventional device shown in Fig. 1 (b).
  • the characteristics of the noise level detectors 55 and 65 so that there is always a relationship between (a) and (b) (when engine knocks) in Fig. 4 (d). Must be optimized for each input word.
  • the characteristics of the noise level detectors 55 and 65 include offset voltage and voltage gain.
  • the offset voltage is the output voltage when there is no input, and the voltage gain is the amplification factor of the input signal.
  • the acceleration sensors 51 and 61 are mounted at different positions, the characteristics of each detection signal are different, so that the frequency filter 52, 62 or the noise level detector 55, Unless the waiting time of step 5 is made different from each other between the knock detection systems, the knocks are surely knocked in each knock detection system.
  • the characteristics cannot be optimized for detection.
  • acceleration sensors 51 and 61 have resonance characteristics, it is necessary to make these resonance characteristics different from each other.

Abstract

A device in which knock information of an engine is detected by a knock sensor, knock signal components are selectively produced from the knock information through a frequency filter, a reference voltage of knock detection is made from the above output, and knocking generated in the engine is detected by comparing the reference voltage with the output of the frequency filter. A plurality of the above knock detection systems are provided, where the knock sensors, frequency filters and the circuits for producing reference voltages are designed to have characteristics that are different depending upon the individual detection systems. Therefore, optimum characteristics can be obtained in each of the knock detection systems; i.e., the knock detection systems exhibit characteristics to uniformly and reliably detect knocks of all cylinders of an engine.

Description

明 細 ' 書  Specification
内燃機関のノ ッ ク制御装置  Knock control device for internal combustion engine
技術分野  Technical field
この発明は、 内燃機関のノ ッ キ ン グを抑制する内燃機 関のノ ック制御装置に関する も のである。  The present invention relates to a knock control device for an internal combustion engine that suppresses knocking of the internal combustion engine.
背景技術  Background art
機関が発生する ノ ッ ク を検出し、 抑制する制御方式に は燃料制御、 点火時期制御、 過給圧制御などがあるが、 以下の説明では最も多く 実用化されている点火時期制御 において説明する。  Control methods for detecting and suppressing knock generated by the engine include fuel control, ignition timing control, and supercharging pressure control.The following description is based on ignition timing control, which is the most widely used. .
以下に第 1 図に示す従来の内燃機関の点火時期制御装 置につ.いて述^:る。 · · こ の第 1 図の 1 は機関に取り付けられ機関の振動加速 度を検出する加速度セ ンサ、 2 は加速度セ ンサ 1 の出力 信号のう ち ノ ッ キ ン グに対し感度の高い周波数の信号成 分を通過させる周波数フ ィ ルタ 、 3 は周波数フ ィ ルタ 2 の出力信号のう ち ノ ック検出に対し妨害波となるノ ィ ズ を遮断す アナロ グゲー トである。  Hereinafter, the conventional ignition timing control device for an internal combustion engine shown in FIG. 1 will be described. 1 in Fig. 1 is an acceleration sensor that is attached to the engine and detects the vibration acceleration of the engine. 2 is the frequency of the output signal of the acceleration sensor 1 that is highly sensitive to knocking. A frequency filter 3 that allows the signal component to pass through is an analog gate that blocks noise that becomes an interference wave in the knock detection of the output signal of the frequency filter 2.
ま た、 ゲー ト タ イ ミ ン グ制御器 4 は妨害ノ イ ズの発生 時期に対応してアナロ グゲー 卜 3 の開閉を指示するよ う に し ている。  Further, the gate timing controller 4 instructs the opening and closing of the analog gate 3 according to the time of occurrence of the disturbance noise.
こ の ア ナ ロ グゲー 卜 3 の出力は ノ イ ズレベル検出器 5 と比較器 6 に送られる。 ノ イ ズレベル検出器 5 は ノ ツ キ ン グ以外の機関の機械振動ノ ィ ズの レベルを検出する も のである。 The output of the analog gate 3 is sent to the noise level detector 5 and the comparator 6. The noise level detector 5 detects the level of mechanical vibration noise of the engine other than the knocking. It is.
また、 比較器 6 はアナ口 グゲー ト 3 の出力電圧と ノ ィ ズレベル検出器 5 の出力電圧とを比較し、 ノ ッ ク検出パ ルスを発生して積分器 7 に出力するよ う にしている。  The comparator 6 compares the output voltage of the analog gate 3 with the output voltage of the noise level detector 5, generates a knock detection pulse, and outputs it to the integrator 7. .
積分器 7は比較器 6 の出力パルスを積分し、 ノ ッ キ ン グ強度に応じた積分電圧を発生する も のである。 . The integrator 7 integrates the output pulse of the comparator 6 and generates an integrated voltage according to the knocking intensity. .
この積分器 7の出力電圧に応じて移相器 8 は基準点火 信号の位置を変位させる ものである。  The phase shifter 8 shifts the position of the reference ignition signal in accordance with the output voltage of the integrator 7.
—方、 9 はあ らかじめ設定した点火進角特性に応じた 点火信号を発生する回転信号発生器であ り 、 この回転信 号発生器 9 の出力を波形整形回路 10で波形整形し、 同時 に点火コ ィ ル I。2の 電の閉路角制御を行な う よ う になつ ている。 On the other hand, reference numeral 9 denotes a rotation signal generator for generating an ignition signal according to a preset ignition advance characteristic. The output of the rotation signal generator 9 is waveform-shaped by a waveform shaping circuit 10; At the same time ignition coil I. The control of the closing angle of electricity is performed in the second step .
また、 上記移栢器 8 の出力信号によ りス イ ッチン グ回 路 1 1は点火コ イ ル I 2の給電を断続するよ う に している。 Further, squirrel Lee production kitchen grayed circuits 1 1 by the output signal of the Utsurikashiwa device 8 is in the earthenware pots by intermittently feeding the ignition Coil le I 2.
第 2図に加速度セ ンサ 1 の出力信号の周波数特性を示 す。 この第 2 図において、 Aはノ ッ キ ン グのない場合、 B はノ ッキ ン グの発生した場合であ る。  Fig. 2 shows the frequency characteristics of the output signal of acceleration sensor 1. In FIG. 2, A is the case where there is no knocking, and B is the case where knocking occurs.
この加速度セ ンサ 1 の出力信号には、 ノ ッ ク信号 ( ノ ッキ ン グに伴ない発生される信号) やそれ以外の機関の 機械的ノ イ ズや信号伝達経路に乗る各種ノ イ ズ成分、 た とえばィ グニッ シヨ ン ノ イ ズなどが含まれる。 第 2図の 特性 Aと B とを比べる と、 ノ ック信号には特有の周波数 特性のある ことがわかる 0 この分布は機関の違い、 あるいは加速度セ ンサ 1 の取 付位置の違いによ り差はある も のの、 それぞれの場合に ノ ッキ ン グの有無によ り 明確な分布の違いがある。 そこ で、 このノ ッ ク信号の有する周波数成分を通過させる こ とによって他の周波数成分のノ イ ズを抑圧し、 ノ ッ ク信 号を効率よ く検出する こ とができ る。 The output signal of the acceleration sensor 1 includes a knock signal (a signal generated by knocking), other mechanical noises of the engine, and various noises riding on the signal transmission path. Ingredients, such as ignition noise. Comparing the characteristics A and B of FIG. 2, 0 it can be seen that the Roh click signal with a specific frequency characteristic This distribution is different depending on the engine or the mounting position of the acceleration sensor 1, but in each case there is a clear difference depending on the presence or absence of knocking. Therefore, by passing the frequency component of the knock signal, the noise of other frequency components can be suppressed, and the knock signal can be detected efficiently.
第 3 図、 第 4図は第 1 図の各部の動作波形を示し同一 符号は同一部分の波形を示すも ので、 第 3 図は機関のノ ッキングが発生していないモ ー ドを、 第 4 図は機関のノ ッキンク:が発生しているモ ドを示している。  FIGS. 3 and 4 show the operation waveforms of the respective parts in FIG. 1 and the same reference numerals indicate the waveforms of the same parts, and FIG. 3 shows the mode in which engine knocking does not occur. The figure shows the engine knocking mode.
次に、 第 1 図の内燃機関の点火時期制御装置の動作を 説明する。 機関の回転によ り予め設定された点火時期特 性に対応して回転信号発生器 9 よ り発生する点火信号は 波形整形回路 1 0によって所望の閉路角を も つ開閉パルス に波形整形され、 移相器 8 を介してス イ ッ チ ン グ回路 1 1 を駆動し、 点火コ イ ル 1 2の給電を断続し、 その通電電流 の遮断時に発生する点火コ イ ル 1 2の点火電圧によって機 関は点火されて運転される。 この機関の運転中に起こる 機関振動は加速度セ ンサ 1 によって検出される。  Next, the operation of the ignition timing control device for an internal combustion engine in FIG. 1 will be described. The ignition signal generated by the rotation signal generator 9 corresponding to the ignition timing characteristic set in advance by the rotation of the engine is waveform-shaped by a waveform shaping circuit 10 into an opening / closing pulse having a desired closing angle. The switching circuit 11 is driven via the phase shifter 8 to interrupt the power supply to the ignition coil 12, and the ignition voltage of the ignition coil 12 generated when the current supplied to the ignition coil 12 is cut off. The organization is ignited and operated. The engine vibration that occurs during operation of this engine is detected by the acceleration sensor 1.
いま、 機関のノ ッ キ ン グが発生していない場合におい ては、 ノ ッ キ ン グによ る機関振動は発生しないが、 他の 機械的振動によ り加速度セ ンサ 1 の出力信号には第 3.図 (a)で示すよ う に機械的ノ ィ ズゃ点火時期 F に信号伝達路 に乗る ィ グニッ シ ョ ン ノ ィ ズが発生する。 この信号は周波数フ ィ ルタ 2 を通過する こ とによ り 、 第 3 図 (b)のよ う に機械的ノ ィズ成分が相当抑圧されるが、 ィ グニ ッ シ ヨ ン ノ ィ ズ成分は強力なため周波数フ ィ ル タ 2 を通過後も大きなレベルで出力されるこ とがある。 Now, when engine knocking has not occurred, engine vibration due to knocking does not occur, but the output signal of acceleration sensor 1 due to other mechanical vibrations. As shown in Fig. 3. (a), an ignition noise occurs on the signal transmission path at the mechanical noise ゃ ignition timing F. By passing this signal through frequency filter 2, the mechanical noise component is considerably suppressed as shown in Fig. 3 (b), but the ignition noise is reduced. Since the component is strong, it may be output at a large level even after passing through the frequency filter 2.
このままでは、 ィ グニッ シヨ ンノ イ ズを ノ ッ ク信号と 誤認してしま う ため、 アナログゲー ト 3 は移栢器 8 の出 力によって ト リ ガされるゲー トタ イ ミ ング制御器 4の出 力 ( 第 3 図 (c) ) によつて点火時期からある期間そのゲー ト を閉じ、 ィ グニ ッ シ ヨ ン ノ イ ズを遮断する。 このため、 アナロ グゲー ト 3 の出力には第 3 図(d)のィ のよ う に レべ ルの低い機械的ノ ィ ズのみが残る。  In this state, the analog noise 3 is output from the gate timing controller 4 which is triggered by the output of the transferer 8, since the ignition noise is erroneously recognized as a knock signal. The gate is closed by a force (Fig. 3 (c)) for a certain period from the ignition timing to shut off the ignition noise. Therefore, only low-level mechanical noise remains at the output of analog gate 3, as shown in Fig. 3 (d).
—方、 ノ イ ズレべル検出器 5 はアナロ グゲー ト 3 の出 力信号のビーク値変化に応動し、 この場合、 通常の; ¾械 的ノ ィズのピーク値による比較的緩かな変化には応動し 得る特性をも ち、 機械的ノ ィ ズのピーク値よ り若干高い 直流電圧を発生する (第 3 図(d)の口 ) 。  On the other hand, the noise level detector 5 responds to a change in the beak value of the output signal of the analog gate 3 and, in this case, to a relatively gradual change due to the peak value of the normal mechanical noise. Has a characteristic that can respond and generates a DC voltage slightly higher than the peak value of the mechanical noise (port in Fig. 3 (d)).
したがって、 第 3 図(d)に示すよ う にアナログゲー ト 3 の出力信号の平均点なピーク値よ り も ノ ィ ズレベル検出 器 5の出力が大きいため、 これら を比較する比較器 6の 出力は第 3 図(e)のよ う に何も出力されず、 結局ノ ィズ信 号はすべて除去される。  Therefore, as shown in FIG. 3 (d), since the output of the noise level detector 5 is larger than the average peak value of the output signal of the analog gate 3, the output of the comparator 6 which compares these outputs is obtained. Nothing is output as shown in Fig. 3 (e), and all the noise signals are eventually removed.
このため、 積分器 7の出力電圧は第 4図(f)のよ う に零 のままで移相器 8 によ る移相角 (入出力 (第 4図 )(g) , (h)の位相差 ) も零となる。 したがって、 この出力によ り駆動されるスイ ッチング 回路 1 1の開閉位相、 すなわち、 点火コ イ ル 1 2の通電の断 続位相は波形整形回路 1 0の出力の基準点火信号と同位相 と な り 、 点火時期は基準点火時期となる。 Therefore, the output voltage of the integrator 7 remains zero as shown in FIG. 4 (f), and the phase shift angle by the phase shifter 8 (input / output (FIG. 4) ( g ), (h) The phase difference is also zero. Therefore, the open / close phase of the switching circuit 11 driven by this output, that is, the intermittent phase of energization of the ignition coil 12, has the same phase as the reference ignition signal of the output of the waveform shaping circuit 10. Thus, the ignition timing becomes the reference ignition timing.
また、 ノ ッ キ ングが発生した場合、 加速度セ ンサ 1 の 出力には第 4図(a)のよ う に 火時期よ り ある時間遅れた 付近でノ ッ ク の信号が含まれ、 周波数フ ィ ルタ 2 およ び アナロ グゲー ト 3 を通過後の信号は第 4 図(d)のィのよ う に機械的ノ ィ ズに ノ ック信号が大き く 重畳した も のにな な 。 When knocking occurs, the output of acceleration sensor 1 contains a knock signal near a certain time delay from the fire timing as shown in Fig. 4 ( a ), and the frequency The signal after passing through filter 2 and analog gate 3 is a signal in which the knock signal is greatly superimposed on the mechanical noise as shown in Fig. 4 (d).
このアナロ グゲー ト 3 を通過した信号の う ち、 ノ ック 信号の立上り は急峻なため、 ノ イ ズレベル検出器 5 の出 力電圧のレベルがノ ッ ク信号に対して応答が遅れる。 そ の結果、 比較器 6 の入力はそれぞれ第 4 図 (d)のィ 、 口 と なるので、 比較器 6 の出力には第 4図(e)のよ う にパル ス が発生する。  Since the knock signal rises steeply among the signals that have passed through the analog gate 3, the response of the output voltage level of the noise level detector 5 to the knock signal is delayed. As a result, the input of the comparator 6 becomes the input and the output of the comparator 6 in FIG. 4 (d), and a pulse is generated in the output of the comparator 6 as shown in FIG. 4 (e).
積分器 7がそのパ ルスを積分し、 第 4図(f)のよ う に積 分電圧を発生する。 そ し て、 移相器 8 が積分器 7 の出力 電圧に応じて波形整形回路 1 0の出力信号 ( 第 4 図 (g) ( 基 準点火信号 ) ) を時間的に遅れ側に移相するため、 移送 器 8 の出力は位相が波形整形回路 1 0の基準点火信号の位 相よ り も遅れ、 第 4 図(h)に示す位相でス イ ッ チ ン グ回路 1 1を駆動する。 その結果、 点火時期が遅れ、 ノ ッ キ ン グ が抑圧された状態となる。 結局、 これら第 3 図、 第 4 図 の状態が繰り返されて最適の点火時期制御が行なわれる。 上記従来装置では、 加速度セ ンサ 1 ないし比較器 6 が 各々 1個からな り 、 ノ ッ ク検出系が一つであった The integrator 7 integrates the pulse and generates an integrated voltage as shown in FIG. 4 (f). Then, the phase shifter 8 shifts the phase of the output signal (FIG. 4 (g) (reference ignition signal)) of the waveform shaping circuit 10 to a time-delay side in accordance with the output voltage of the integrator 7. Therefore, the output of the transfer unit 8 has a phase delayed from the phase of the reference ignition signal of the waveform shaping circuit 10, and drives the switching circuit 11 with the phase shown in FIG. 4 (h). As a result, the ignition timing is delayed, and the knocking is suppressed. After all, these Figures 3 and 4 Is repeated to perform optimal ignition timing control. In the above-described conventional device, each of the acceleration sensor 1 and the comparator 6 is one, and the knock detection system is one.
しかし、 最近の機関の高出力化において、 機関の気筒 数が 6個以上のも のあるいは機関のシ リ ンダブロック形 状がいわゆる V字形になされたものでは、 一つの検出系 では全気筒で発生のノ ックが一様に確実に検出できない こ とがあ り、 上記メ ック検出系を複数個設ける こ とがあ る  However, with the recent increase in engine output, if the engine has more than six cylinders or the engine has a so-called V-shape cylinder block, a single detection system generates all cylinders. Knock may not be detected uniformly and reliably, and there may be multiple
この場合、 ノ ッ ク検出系を単に複数個設けても、 その ノ ック検出性が十分な も のにな らないという問題があつ た。 ノ この発明は、 かかる問題を解決するためになされた も ので、 各ノ ック検出系のノ ック検出特性を各検出系にお いて最良にし、 すべての気筒で発生のノ ックを一様に十 分なレベルで検出できる内燃機関のノ ッ ク制御装置を得 る ことを目的と している。  In this case, there is a problem that even if a plurality of knock detection systems are provided, the knock detection performance is not sufficient. This invention has been made to solve such a problem. Therefore, the knock detection characteristics of each knock detection system are optimized in each detection system, and the knock generated in all cylinders is unified. The purpose of the present invention is to obtain a knock control device for an internal combustion engine that can detect a sufficient level.
発明の開示 Disclosure of the invention
この発明に係る内燃機関のノ ック制御装置は、 互 に 異なる特性を有する ノ ッ ク セ ンサ、 周波数フ ィ ル およ び基準電圧発生手段を有する複数のノ ック検出系を設け た ものである。  A knock control device for an internal combustion engine according to the present invention includes a knock sensor having a knock sensor having different characteristics from each other, a frequency filter, and a plurality of knock detection systems including a reference voltage generation unit. It is.
この発明においては、 各ノ ック検出系において各構成 要素の特性をその検出系に最適な設計に成されて、 確実 に ノ ッ ク検出を行な う。 In the present invention, the characteristics of each component in each knock detection system are designed to be optimal for the detection system, and Knock detection is performed at first.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図は従来の内燃機関のノ ック制御装置のブロ ッ ク 図、 第 2 図は第 1 図の内燃機関のノ ック制御装置の動作 を説明するための加速度センサの出力を示す図、 第 3 図 は第 1 図の内燃機関のノ ック制御装置の動作を説明する ための機関がノ ッ キ ン グを発生していないモー ドの各部 の動作波形図、 第 4 図は第 1 図の内燃機関のノ ッ ク制御 装置の動作を説明するための機関がノ ッキ ン グを発生し ているモー ドの各部の動作波形図、 第 5 図はこの発明の 内燃機関のノ ック制御装置の一実施例の構成を示すプロ ック図、 第 6図および第 7図は同上内燃機関のノ ,ック制 御装置の動作を説.明するための加速度'セ ンサの出力を示 す図である。  FIG. 1 is a block diagram of a conventional knock control device for an internal combustion engine, and FIG. 2 is a diagram showing an output of an acceleration sensor for explaining the operation of the knock control device of the internal combustion engine of FIG. FIG. 3 is an operation waveform diagram of each part of the mode in which the engine does not generate knocking for explaining the operation of the knock control device for the internal combustion engine of FIG. 1, and FIG. FIG. 1 is an operation waveform diagram of each part of a mode in which the engine generates knocking for explaining the operation of the knock control device of the internal combustion engine shown in FIG. 5; FIG. 6 and FIG. 7 are block diagrams showing the configuration of an embodiment of the knock control device, and FIGS. 6 and 7 show the acceleration sensor for explaining the operation of the knock control device of the internal combustion engine. FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の内燃機関のノ ッ ク制御装置の実施例 について図面に基づき説明する。 第 5 図はその一実施例 の構成を示すブロ ック図である。 この第 5 図における符 号 4 および 7 〜1 2で示す部分は第 1 図と同様であ り 、 以 下に述べる部分が第 1 図とは異な り 、 この発明の特徵を なす部分である。  Hereinafter, an embodiment of a knock control device for an internal combustion engine according to the present invention will be described with reference to the drawings. FIG. 5 is a block diagram showing the configuration of the embodiment. The portions indicated by reference numerals 4 and 7 to 12 in FIG. 5 are the same as those in FIG. 1, and the portions described below are different from FIG. 1 and are features of the present invention.
すなわち、 第 5 図の実施例では、 第 1 および第 2 のノ ック検出系 1 0 0 、 2 0 0カ '設けられている。 この第 1 、 第 2 の ノ ック検出系 1 0 0 , 2 0 0 において、 5 1 , 6 1は機関の 振動加速度を検出する加速度セ ンサ (第 1 図の加速度セ ンサ 1 に相当 ) である。 That is, in the embodiment shown in FIG. 5, first and second knock detection systems 100 and 200 are provided. In the first and second knock detection systems 100 and 200, 51 and 61 are engine An acceleration sensor that detects vibration acceleration (corresponding to acceleration sensor 1 in Fig. 1).
各加速度セ ンサ 51 , 61 の出力は周波数フ ィ ルタ 52 ,62 にそれぞれ送出するよ う になつている。 周波数フ ィ ルタ 52 , 62 は各加速度セ ンサ 51, 61の出力から ノ ッ ク信号成 分のみ選択して出力する (第 1 図の周波数フ ィルタ 2 に 相当 ) ものであ り 、 この出力はそれぞれアナログゲー ト 53, 63に出力するよ う にしている。  The outputs of the acceleration sensors 51 and 61 are sent to frequency filters 52 and 62, respectively. The frequency filters 52 and 62 select and output only the knock signal component from the outputs of the acceleration sensors 51 and 61 (corresponding to the frequency filter 2 in Fig. 1). The signals are output to analog gates 53 and 63, respectively.
このアナ ロ グゲー ト 53 , 63は各々周波数フ イ ソレタ 52, 62の出力信号のう ちノ ッ ク検出に対し妨害波となるノ ィ ズを遮断する (第 1 図のアナロ グゲー ト 3 に相当 ) もの である。 These analog gates 53 and 63 block noise that becomes an interference wave for knock detection among the output signals of the frequency filters 52 and 62 , respectively (corresponding to analog gate 3 in Fig. 1). )
このアナログゲー 卜 53 , 63の出力ほそれぞれノ ィ ズレ ベル検出器 , 65、 比較器 56, 66に送出するよ う になつ ている。  The outputs of the analog gates 53 and 63 are sent to noise level detectors and 65 and comparators and 66, respectively.
ノ ィ ズレベル検出器 55, 65はそれぞれノ ッキン グ以外 の機関の機械振動ノ ィ ズの レベルを検出して基準電圧と する も のであ り (第 1 図のノ イ ズレベル検出器 5に相当)、 比較器 56, 66は各々アナ口 グゲー ト 53, 63の出力電圧と ノ イ ズレベル検出器 55, 65の出力電圧とを比較しノ ッ ク 検出パルスを発生する (第 1 図の比較器 6 に相当 ) も の ひめ o The noise level detectors 55 and 65 each detect the level of mechanical vibration noise of the engine other than the knocking and use it as a reference voltage (corresponding to the noise level detector 5 in Fig. 1). , comparator 5 6, 66 each analyst port Guge DOO 53, 63 of the output voltage and Bruno Lee Zureberu detector 55 compares the 65 output voltage to generate the Roh click detection pulse (comparator of FIG. 1 Equivalent to 6)
両比較器 56, 66の出力は 0 R回路 70に送られる。 この 0 R回路ァ0は両比較器 56, 66の出力から ノ ック検出パル スの論理和信号を出力するよ う に し ている。 The outputs of the comparators 56 and 66 are sent to the OR circuit 70. This 0 R circuit 0 is a knock detection pulse from the outputs of both comparators 56 and 66. Output the logical OR signal of the signals.
こ のよ う に第 1 の ノ ッ ク検出系 100 は加速度セ ンサ 51 〜比較器 56で構成され、 第 2 のノ ッ ク検出系 200 は加速 度セ ンサ S1〜比較器 から構成されている。  As described above, the first knock detection system 100 is composed of the acceleration sensor 51 to the comparator 56, and the second knock detection system 200 is composed of the acceleration sensor S1 to the comparator. .
第 1 、 第 2 の各ノ ッ ク検出系 100 , 200において、 各構 成のブロ ック回路の基本の動作は上記従来装置の通り で あ り 、 また各ブロ ッ ク回路間の接続も第 5 図の通り第 1 図の従来装置と同等であ る ので、 ノ ッ ク検出の基本動作 についての説明は省略する。  In the first and second knock detection systems 100 and 200, the basic operation of the block circuit of each configuration is the same as that of the conventional device described above, and the connection between the block circuits is also the same. As shown in Fig. 5, it is the same as the conventional device in Fig. 1, and the description of the basic operation of knock detection is omitted.
こ の実施例は上記第 1 、 第 2 のノ ッ ク検出系 100, 200 の 2個のノ ッ ク検出系を有しており 、 第 1 のノ ッ ク検出 系 100 の比較器 56と第 2 のノ ック検出系 200 の比較器 66 の出力のノ ック検出パルスは 0 R回路 70で各々の論理和 信号になされて積分器 7 に入力される。  This embodiment has two knock detection systems of the first and second knock detection systems 100 and 200, and the comparator 56 of the first knock detection system 100 and the second knock detection system 100 have the same function. The knock detection pulse output from the comparator 66 of the second knock detection system 200 is ORed by an OR circuit 70 and input to the integrator 7.
積分器 7 は従来装置 (第 1 図 ) 同様に入力パルスに対 応した制御電圧を発生するので、 上記第 1 およ び第 2 の ノ ック検出系 100 , 200のいずれにおいてノ ックが検出さ れて も 、 積分器 7から制御電圧が発生され、 点火時期が 遅角制御され、 機関のノ ッ クは抑制される。  Since the integrator 7 generates a control voltage corresponding to the input pulse, similarly to the conventional device (FIG. 1), the knock is detected in either of the first and second knock detection systems 100 and 200. Even if it is detected, a control voltage is generated from the integrator 7, the ignition timing is retarded, and the knock of the engine is suppressed.
と こ ろで、 加速度セ ンサ 51 , 61の検出信号は、 前述の 通り機関の取付位置の違いによ り変わるので、 基本的に 同じにな らない。  At this point, the detection signals of the acceleration sensors 51 and 61 do not basically become the same because they vary depending on the difference in the mounting position of the engine as described above.
なぜな ら、 機関のノ ッ ク信号は数 KHz〜 1 OKHz の成分 である こ とが多く 、 この周波数は機関のシ リ ンダブロ ッ ク の振動特性において高周波に属し、 穽常に微妙な特性 を表わすからである。 Because the knock signal of the engine is often a component of several KHz to 1 OKHz, this frequency is the cylinder block of the engine. This is because it belongs to high frequency in the vibration characteristics of ク and always shows delicate characteristics.
すなわち、 加速度セ ンサ 51 , 6 1の各検出信号が機関の ノ ィ ズ信号と ノ ック信号を第 2図の周波数特性を有し、 各検出信号間でノ ィ ズ成分に対しノ ック成分が周じ周波 数で、 同じレベルで現れるな らば、 上記第 1 、 第 2 のノ ック検出系 1 0 0 , 20 0は全く 同じ特性のも のを単に 2系統 分だけ構成すれば ( 各々のブロック回路を 2個設ければ )、 所望のノ ッ ク検出が行なえるこ とになる。  That is, each of the detection signals of the acceleration sensors 51 and 61 has the engine noise signal and the knock signal having the frequency characteristics shown in FIG. 2, and the noise component is knocked between the detection signals. If the components appear at the same frequency at the same frequency, the first and second knock detection systems 100 and 200 have exactly the same characteristics if they are composed of only two systems. (If two block circuits are provided), the desired knock detection can be performed.
しかし、 実際の各検出信号は互いに周波数的あるいは レベル的に微妙に異なるので、 上記 2種のノ ッ ク検出系 の各搆成ブ口 ック回路の特性が互いに同じで、 全く 同じ 検出特性にあると き、 ノ ッ ク検出性が最良であるのは稀 である。 '  However, since the actual detection signals are slightly different from each other in frequency or level, the characteristics of the respective block circuits of the above two types of knock detection systems are the same, and the detection characteristics are exactly the same. In some cases, knock detection is rarely the best. '
たとえば、 加速度セ ン サ 5 1による検出信号の周波数成 分が機関のノ ック有無において第 2図の特性にあれば、 一方の異なる位置に取付けた加速度セ ン サ 61による検出 信号の周波数成分は第 6 図または第 7図のよ う になる。  For example, if the frequency component of the signal detected by the acceleration sensor 51 is in the characteristic shown in Fig. 2 depending on whether the engine is knocked, the frequency component of the signal detected by the acceleration sensor 61 attached to one of the different positions Is as shown in Fig. 6 or Fig. 7.
これらの図において、 特性 Aは機関にノ ッ クが発生し てないと き、 特性 Bは機関にノ ックが発生したと きの各 々周波数特性を表わす。  In these figures, characteristic A represents the frequency characteristics when no knock occurs in the engine, and characteristic B represents the frequency characteristics when knock occurs in the engine.
第 6 図は第 2 図の—周波数特性に対し機関にノ ッ クが発 生したと きの特性 Bが異な り、 ノ ック信号のレベルが小 さい場合である。 . 第 7図はノ ック信号の周波数分布は第 2図と変わ らな いが、 機関にノ ッ クが発生していないと きのノ ィ ズ信号 のレベルが第 2図の特性 Aよ り大きい場合である。 Fig. 6 shows the case where the characteristic B when knocking occurs in the engine differs from the frequency characteristic of Fig. 2 and the knock signal level is low. . In Fig. 7, the frequency distribution of the knock signal is the same as in Fig. 2, but the level of the noise signal when no knock occurs in the engine is based on the characteristic A in Fig. 2. This is the case.
こ のよ う に加速度セ ンサ 5 1 , 6 1の各々の検出信号が異 なる場合、 周波数フ ィ ルタ 52 , 62は各入力陰号から ノ ッ ク検出が確実に行なえる出力信号を得るべく 異なる周波 数選択性を もつよ う に設定しなければな らない。 その主 な特性は中心周波数、 中心周波数電圧利得、 帯域幅など であ "3 0 When the detection signals of the acceleration sensors 51 and 61 are different from each other, the frequency filters 52 and 62 are used to obtain an output signal from each input signal that can reliably perform knock detection. Must be set to have different frequency selectivity. Its main characteristic is the center frequency, the center frequency voltage gain, der bandwidth, etc. "3 0
中心周波数はノ イ ズ信号成分が少なく ノ ッ ク信号成分 が多く分布する周波数にし、 帯域幅の設定と と も に周波 数選択性を決める も のであ る。 中心周波数電圧利得は出 力信号を所望の電圧にするよ う設定する電圧増幅率であ o  The center frequency is a frequency at which the noise signal component is small and the knock signal component is large, and the frequency selectivity is determined along with the setting of the bandwidth. The center frequency voltage gain is a voltage amplification factor that sets the output signal to a desired voltage.
第 6 図 , 第 7図では ノ ックが発生していない時の特性 A と ノ ックが発生している時の特性 B との間にノ ック信 号あるいはノ イ ズの分布の差がある場合 (: ノ ッ ク信号周 波数は一定 ) であったが、 これらに限らずノ ッ ク信号と ノ イ ズの分布に有意差がな く 、 ノ ッ ク信号周波数が単に 異なる場合も ある。  In Figs. 6 and 7, the difference in the distribution of the knock signal or noise between the characteristic A when no knock occurs and the characteristic B when no knock occurs. However, there is no significant difference in the distribution of the knock signal and the noise, and there is also a case where the knock signal frequency is simply different. is there.
こ の実施例では、 加速度セ ンサ 5 1, 61は周波数特性が 平担なも の と し、 周波数選択性を周波数フ ィ ル タ 5 2 , 6 2 に も たせているが、 共振特性を も つ加速度セ ンサ と し た 場合、 この周波数選択性も兼ね備える ので、 周波数選択 性を各ノ ック検出系 1 0 0 2 0 0間で異なる仕様にするには、 異なる共振特性の加速度セ ンサが必要になる。 In this embodiment, the acceleration sensors 51 and 61 have the same frequency characteristics, and the frequency selectivity is given to the frequency filters 52 and 62. When using a single acceleration sensor, this frequency selectivity is also provided. In order to make the knock characteristics different among the knock detection systems 1000, acceleration sensors with different resonance characteristics are required.
以上のよ う に、 周波数フ ィ ルタ 52 , 6 2の各入力信号お よび各々の周波数選択性が互いに異なるので、 各出力信 号のノ ィズ信号およびノ ッ ク信号の電圧 (: 各々のピーク 値およびその変動 ) が互いに異な り 、 ノ ィズレベル検出 器 55, 65の各々の待性は各入力信号に対し最適な特性に しなければ比較器 5 6 , 6 6で確実なノ ック検出が行なえな い 0 As described above, since each input signal and each frequency selectivity of the frequency filters 52 and 62 are different from each other, the voltage of the noise signal and the knock signal of each output signal (: Peak values and their fluctuations) are different from each other, and if the latency of each of the noise level detectors 55 and 65 is not optimized for each input signal, the comparators 56 and 66 can reliably detect knocks. Cannot be performed 0
すなわち、 比較器 56 , 6 6の各々の 2種の入力の電圧関 係が第 1図の従来装置で説明した第 3 図 (d)のィ とロ (機 関にノ ッ夕が発生していない場合) 、 および第 4図 (d)の ィ と ロ ( 機関にノ ッ クが発生した場合) の関係に常にあ るよ う にノ イ ズレべル検出器 55 , 6 5の各々の特性は各入 力 ί言号に対し最適な特性にしなければな らない。  In other words, the voltage relationship between the two types of inputs of the comparators 56 and 66 is the same as that shown in Fig. 3 (d) for the conventional device shown in Fig. 1 (b). And the characteristics of the noise level detectors 55 and 65 so that there is always a relationship between (a) and (b) (when engine knocks) in Fig. 4 (d). Must be optimized for each input word.
こ のノ ィ ズレベル検出器 55, 6 5の特性と してオフセ ッ ト電圧、 電圧利得などがある。 オフセッ ト電圧は入力が ないと きの出力電圧、 電圧利得は入力信号の増幅率を各 々麦わす。  The characteristics of the noise level detectors 55 and 65 include offset voltage and voltage gain. The offset voltage is the output voltage when there is no input, and the voltage gain is the amplification factor of the input signal.
以上説明のよ う に、 加速度セ ンサ 5 1, 6 1を異なる位置 に取付けた場合、 各検出信号の特性が異なるので、 周波 数フ イリレタ 52, 6 2あ るいはノ ィ ズレベル検出器 55, 6 5 の 各々の待性を各ノ ック検出系間において互いに異なる特 性にしなければ、 各ノ ッ ク検出系において確実にノ ッ ク 検出が行なえる最適な特性にでき ない。 As described above, when the acceleration sensors 51 and 61 are mounted at different positions, the characteristics of each detection signal are different, so that the frequency filter 52, 62 or the noise level detector 55, Unless the waiting time of step 5 is made different from each other between the knock detection systems, the knocks are surely knocked in each knock detection system. The characteristics cannot be optimized for detection.
加速度セ ンサ 51 , 61が共振特性の場合は この共振特性 を互いに異なる も のにする こ とが必要であ る。  If the acceleration sensors 51 and 61 have resonance characteristics, it is necessary to make these resonance characteristics different from each other.

Claims

請 求 の 範 囲 The scope of the claims
機関の振動加速度を検出して ノ ッ ク情報を得る加速度 セ ンサ、 上記ノ ック情報から ノ ック信号成分を選択して 出力する周波数フ ィ ルタ 、 この周波数フ ィ ルタ の出力か ら基準電圧を発生する基準電圧発生手段、 上記周波数フ ィ ルタの出力と基準電圧との比較から機関のノ ックを検 出して機関の点火時期を制御してノ ックを抑制するよ う に制御する制御手段を備え上記加速度セ ンサ、 周波数フ ィ ルタおよび基準電圧発生手段をそれぞれ備えて複数の ノ ッ ク検出系を形成し、 この各ノ ッ ク検出系の加速度セ ンサ、 周波数フ ィ ルタ または基準電圧発生手段が各ノ ッ ク検出系ごとに異なる特性のもの-で搆成されたことを特 徵とする内燃機関のノ ック制御装置。  An acceleration sensor that obtains knock information by detecting the vibration acceleration of the engine, a frequency filter that selects and outputs a knock signal component from the knock information described above, and a reference that is based on the output of this frequency filter Reference voltage generating means for generating a voltage, controlling the ignition timing of the engine by detecting the knock of the engine based on the comparison between the output of the frequency filter and the reference voltage so as to suppress the knock. A plurality of knock detection systems are formed by respectively providing the acceleration sensor, the frequency filter, and the reference voltage generation means, and the acceleration sensor and the frequency filter of each of the knock detection systems are provided. Alternatively, a knock control device for an internal combustion engine, characterized in that the reference voltage generating means is formed with different characteristics for each knock detection system.
PCT/JP1987/000504 1986-07-14 1987-07-14 Knock controller of internal combustion engine WO1988000654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61/166189 1986-07-14
JP61166189A JPH076487B2 (en) 1986-07-14 1986-07-14 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO1988000654A1 true WO1988000654A1 (en) 1988-01-28

Family

ID=15826733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000504 WO1988000654A1 (en) 1986-07-14 1987-07-14 Knock controller of internal combustion engine

Country Status (3)

Country Link
JP (1) JPH076487B2 (en)
DE (1) DE3790397T1 (en)
WO (1) WO1988000654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421952A1 (en) * 1989-10-03 1991-04-10 MARELLI AUTRONICA S.p.A. Device for detecting pinking, cylinder by cylinder, in an internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506272B4 (en) * 1995-02-23 2006-04-13 Adam Opel Ag Method for knock control of an internal combustion engine
JP2002087605A (en) * 2000-09-12 2002-03-27 Toshiba Corp Unit control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141649A (en) * 1979-04-21 1980-11-05 Nissan Motor Co Ltd Knocking detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337640A (en) * 1979-04-10 1982-07-06 Nissan Motor Co., Ltd. Knocking sensor
JPS56115860A (en) * 1980-02-18 1981-09-11 Nissan Motor Co Ltd Knocking controller
DE3133703A1 (en) * 1981-08-26 1983-03-10 Robert Bosch Gmbh, 7000 Stuttgart "DEVICE FOR DETECTING KNOCKING IN INTERNAL COMBUSTION ENGINES"
DE3430080C2 (en) * 1983-08-17 1994-10-20 Mitsubishi Electric Corp Ignition timing control system for internal combustion engines with multiple cylinders
DE3523017A1 (en) * 1984-06-29 1986-01-02 Nissan Motor Co., Ltd., Yokohama, Kanagawa DEVICE AND METHOD FOR DETERMINING AND INFLUENCING THE KNOCKING OF AN INTERNAL COMBUSTION ENGINE
JPS61142366A (en) * 1984-12-14 1986-06-30 Nissan Motor Co Ltd Knocking detector for internal-combustion engine
JPH0680305B2 (en) * 1985-04-05 1994-10-12 トヨタ自動車株式会社 Knotting detection device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141649A (en) * 1979-04-21 1980-11-05 Nissan Motor Co Ltd Knocking detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIPPONDENSO KOKAI GIHO, No. 23, July 1981, (AICHI) NARITA HIROSHI, "Tenka Jiki Seigyo Sochi", p. 22. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421952A1 (en) * 1989-10-03 1991-04-10 MARELLI AUTRONICA S.p.A. Device for detecting pinking, cylinder by cylinder, in an internal combustion engine

Also Published As

Publication number Publication date
DE3790397T1 (en) 1988-07-14
JPS6321364A (en) 1988-01-28
JPH076487B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4370963A (en) Ignition timing control system for internal combustion engine
JPS6314193B2 (en)
US4440129A (en) Ignition timing control system for internal combustion engine
US4606316A (en) Ignition timing control system for internal combustion engine
JPH0374572A (en) Ignition timing control device for internal combustion engine
WO1988000654A1 (en) Knock controller of internal combustion engine
KR930005158B1 (en) Knock suppresing device
JPH0494440A (en) Igniti0n timing control device of internal combustion engine
US4607602A (en) Ignition timing control apparatus for internal combustion engine
JPH02233857A (en) Controller with computer for internal combustion engine
EP0095520B1 (en) Ignition timing control system for an internal combustion engine
JPS6256351B2 (en)
JPH0477154B2 (en)
JPS61261673A (en) Control device for ignition timing in internal combustion engine
JPS632029B2 (en)
JPS61234277A (en) Ignition timing control device for internal-combustion engine
JPS633557B2 (en)
JPS632611Y2 (en)
JPS6020584B2 (en) Internal combustion engine ignition timing control device
JPS63295863A (en) Ignition timing control device for internal combustion engine
JPS6252143B2 (en)
JPS61201884A (en) Ignition-timing controller for internal-combustion engine
JPH0366507B2 (en)
JPH0299742A (en) Controller utilizing detection of vibration for internal combustion engine
JPS63179177A (en) Ignition timing controlling device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US