WO1988000555A1 - Vertical flight control unit for airships - Google Patents

Vertical flight control unit for airships Download PDF

Info

Publication number
WO1988000555A1
WO1988000555A1 PCT/JP1987/000488 JP8700488W WO8800555A1 WO 1988000555 A1 WO1988000555 A1 WO 1988000555A1 JP 8700488 W JP8700488 W JP 8700488W WO 8800555 A1 WO8800555 A1 WO 8800555A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium gas
gas chamber
airship
solenoid valve
altitude
Prior art date
Application number
PCT/JP1987/000488
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Nakata
Original Assignee
Hideo Nakata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16519487A external-priority patent/JPS63149291A/en
Application filed by Hideo Nakata filed Critical Hideo Nakata
Publication of WO1988000555A1 publication Critical patent/WO1988000555A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements
    • B64B1/62Controlling gas pressure, heating, cooling, or discharging gas

Definitions

  • the conventional airship mechanism principle has the following defects. Airships currently in use do not have a vertical ascent / descent maneuvering function with static control.
  • the airship's envelope consists of a combination of a helium gas chamber for Junji and a front and rear paronet for adjusting the pressure of the envelope and adjusting the front and rear buoyancy
  • the helium gas chamber is raised due to the rise in atmospheric temperature.
  • the air in the front and rear parones is discharged and contracted, becoming stiff and increasing the buoyancy of the airship.
  • the helicopter gas chamber contracts due to a decrease in the atmospheric temperature, air is blown from the air blower to the front and rear paronets and expands and becomes heavy, reducing the buoyancy of the airship.
  • the pressure of the envelope is kept constant by the pressure control function of the front and rear ports by the pressure control system, but on the other hand, the superheat due to the change of the atmospheric temperature.
  • landing is difficult if the airship is too light because there is no vertical cone landing function due to static adjustment. Because it is not possible to take off if it is too heavy, it is necessary to keep the difference in weight within a certain limit, so weight adjustment by ballast is an important inspection work for airships.
  • the present invention will be described with reference to FIGS. 1 and 2.
  • the static contact required for the vertical takeoff and landing of an airship is calculated by using the amount of real gas to the floating helium gas chamber ( ⁇ ⁇ ) of the envelope (15). Then, from the negative state to the maximum positive buoyancy (pressure altitude), the floating helium gas chamber (1) to the solenoid valve (5A) and the solenoid valve (5 From A) to compressor (4), from compressor (4) to cooler (3), from cooler (3) to check valve (10A), from reverse it valve (1OA) A pipe (16) is connected to the accumulator helium gas chamber (2), and from this accumulator helium gas chamber (2) to the solenoid valve (5B), and from the solenoid valve (5B) to the temperature controller.
  • the buoyancy of the airship at the time of landing is a negative condition when the helium gas chamber (1) contracts to the minimum and the front and rear nets (11A, 1IB) expand to the maximum.
  • the maneuvering operation releases the gas in the accumulator helium gas chamber (2) to the helium gas (1).
  • the floating gas chamber ( ⁇ ) expands to the maximum and the front and rear paronets (11A, 11B) contract to the minimum.
  • the pressure control and system are activated as the helium gas chamber (1) contracts. Air is blown from the air blower (13) to the front and rear paronet ( ⁇ iA11B), and descends with a decrease in static buoyancy to enable vertical landing.
  • 4) and the control circuit of the control unit (7) for controlling the cooler (3) are connected to the altitude designated sensor unit (8), and the accumulator helium gas chamber (2) is connected to the altitude designated sensor unit (8).
  • the vertical lift control device of the airship combines an automatic altitude adjustment device that automatically adjusts the buoyancy required at the specified altitude with the signal detected by the altitude designation sensor and the vertical lift control device.
  • a solenoid valve ( ⁇ A) for intake and compression, a compressor (4) and a cooler ( 3) works, and the helium gas in the helium gas chamber (1) is stored in the helium gas chamber (2).
  • the helium gas chamber (2) is pumped to the air blower (13) by the contraction of the helium gas chamber (2).
  • Air is pumped to ⁇ nets (1I ⁇ , 11 1), and the rise of the airship is prevented because the static buoyancy decreases with expansion of the front and rear paronets (11A, 11B).
  • the airship in 1 B) is discharged and the static buoyancy increases, preventing the airship from descending.
  • the system of the automatic altitude adjusting device has an effect of maintaining a fixed altitude because the static altitude is adjusted to maintain the specified altitude.
  • FIG. 1 is Gai ⁇ necessary to explain mechanism principles of the airship 'circuit diagram
  • FIG. 2 is a schematic cross-sectional view necessary for the description of the circuit diagram sigma' -
  • the best mode is an airship vertical ascent / descent control device that combines a vertical ascent / descent control device by operating a circulation device and an automatic altitude adjustment device.
  • the cooler (3) and the temperature controller (6) were removed from the steam gas compression and expansion system S, and the control unit system of the automatic altitude adjustment device was also removed.
  • the simplest simple vertical helium gas compression / expansion loop device eliminates the vertical lifting and lowering control device.
  • an accumulator tank can be installed outside the envelope (15) or on the gondola ( ⁇ ⁇ 4).
  • the simple helium gas compression / expansion circulator is suitable for adjusting the buoyancy of a helium gas balloon.
  • the pressure difference between the internal pressure of the airship envelope (15) and atmospheric pressure is kept within a specified range, and the static buoyancy required for vertical landing of the airship is reduced from the negative state to the positive maximum buoyancy (pressure Control the static buoyancy required for vertical ascent and descent from negative to positive maximum buoyancy, and from positive maximum to negative buoyancy so that control can be performed within the range of altitude.
  • the helium gas chamber (1) which has a large volume depending on the amount of helium gas, and a helium gas storage using a gas barrier material for the coating material and a fiber material having a high specific strength for the strength material Cover the entire pressure-resistant ball with a cover net for capture, suspend the upper part of the cover net with a cable, and connect the lower part of the cover net to the lower part of the envelope (15) (lower abdomen of the hull) with a cable.
  • Pressure accumulator helicopter due to the pressure difference ⁇
  • the breakdown voltage sphere bag volume hardly changes by increasing or decreasing the amount of gas is obtained by partitioning using the accumulator helicopter Umugasu tuft (2).
  • the control unit (7) of the compressor (4) and the cooler (3) is connected to the altitude designation sensor unit (8), and the solenoid valve ( 5 B) and temperature controller (6) control unit C9) to altitude specification sensor * Combination of automatic altitude adjustment device connected to unit (8) and vertical elevation operation device Vertical elevation operation control The details of the device Sakuina will be described in detail.
  • the signal detected by the altitude sensor sends a signal from the altitude sensor to the altitude sensor unit (8).
  • the solenoid valve (5 mm), the compressor (4) and the control of the cooler (3) are sent to the control unit (7), and the solenoid valve (5 mm) and the compressor (4) are sent to the solenoid valve (5 mm).
  • the operation of the cooler (3) and the operation of the cooler (3) cause the pumping of the helium gas in the floating gas chamber (1) to the accumulating helium gas chamber (2). Control system works, air is blown from the air blower (13) to the front and rear paronets (11A, 11 ⁇ ) and expands and becomes heavier, raising the airship due to reduced airship buoyancy. Is prevented.
  • the signal sensed by the altitude sensor is output from the altitude designated sensor unit.
  • (8) is sent to the control unit (9) of the solenoid valve (5B) and the temperature controller (6), and is operated by the operation of the solenoid valve (5B) and the temperature controller (6).
  • Helium gas in the accumulating helium gas chamber (2) is released to the floating helium gas chamber (1), and the air valves (12A, 12B) are expanded with the expansion of the helium gas chamber (1).
  • the air in the front and rear paronets (11A, 11B) is discharged and shrinks, and the buoyancy of the airship increases, which prevents flying and the descent of the ship.
  • the signal detected by the altitude sensor is transmitted from the altitude designation sensor unit (8) to the solenoid valve (5A) of the helium gas suction / compression section of the helium gas compression / expansion / circulation device and the compressor ( 4) Control of the cooler (3) * Control unit (7) and control of the solenoid valve (5B) and temperature controller (6) of the accumulator helium gas discharge section Automatic altitude adjustment to be sent to the unit (9).
  • the system of the equipment is specified to adjust the static altitude so that the altitude of the airship is maintained at the specified altitude due to atmospheric changes. It has the effect of maintaining altitude.
  • the vertical takeoff and landing of the airship is performed by operating the vertical lift control system at will.
  • the airship is in a negative state without buoyancy, with the ⁇ helium gas chamber (1) contracted to a minimum and the front and rear paronets ( ⁇ A, 11 1) expanded to a maximum. .
  • the solenoid valve (5 mm) for release adjustment and the temperature controller (6) are activated by maneuvering operation, and the helium gas in the accumulator helium gas chamber (2) is transferred to the floating helium gas chamber (1).
  • the air valves (12A, 12B) are opened by the expansion of the Chunpo Hembo Gas Chamber (I), and the air of the front and rear paronets ( ⁇ 1A, 1iB) is discharged, and the airship Ascends by increasing static buoyancy.
  • the levitation force increases due to a synergistic effect between the increase in the static buoyancy and the tilt structure thruster.
  • the maximum buoyancy (pressure altitude) of the airship is such that the floating gas chamber (1) expands to its maximum and the parones (11A, 11B) before and after are minimized. It is in the state of contraction.
  • the solenoid valve (5 mm), compressor (4) and cooler (3) in the suction / compression section are operated by maneuvering operation, and the helium gas in the levitation helium gas chamber (1) is stored.
  • the pressure is sent to the baffle (2), and the pressure-control system is activated by the contraction of the levitation air-gas baffle (1), and the air blower (13) receives the front and rear outlets (1).
  • ⁇ ⁇ Air is pumped to A, 11 B) and expands and becomes heavier, descends with a decrease in static buoyancy, and makes vertical landing. In addition, the descent speed increases due to the static buoyancy and the riding effect of the tilt structure propulsion.
  • the illustration of the pressure control system, the tilt propulsion device, and the trim adjustment which are not directly related to the present invention, are omitted.
  • the airship in the text is a drinking airship, but it can also be used for rigid airships.
  • the airship of the present invention has a smaller absolute pay port than conventional airships, but does not require a ballast for hull weight adjustment and has a function to deal with the weight. There is a characteristic that the code shows. Tilt structure The dynamic buoyancy of the propulsion unit and the vertical buoyancy effect of the static buoyancy overcome the fatal flaws of conventional airships to enhance maneuvering stability with the vertical take-off and landing function. It clarifies the fundamental mechanistic reform of an airship that simplifies work and changes the way it operates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

An airship in which a floating helium gas chamber (1) and an accumulating helium gas chamber (2) are connected together by a control unit (7) having an electromagnetic valve (5A), a compressor (4) and a cooler (3), and a control unit (9) having an electromagnetic valve (5B) and a temperature controller (6). In order to fly the airship upward, the helium gas is supplied from the accumulating helium gas chamber (2) to the floating helium gas chamber (1) by operating the control unit (9) to increase the volume of the floating helium gas chamber (1). In order to fly the airship downward, the helium gas is returned from the floating helium gas chamber (1) to the accumulating helium gas chamber (2) by operating the control unit (7) to reduce the volume of the floating helium gas chamber (1). The altitude of the airship can be maintained automatically at a predetermined level by operating both of the control units (7), (9) in accordance with a signal from an altitude designating sensor unit (8).

Description

明 JiH 書  Ming JiH
発明の名称 飛行船の垂直昇降操縦制御装置  Title of the invention Vertical control of vertical control of airship
「技術分野 J  `` Technical field J
飛行船の基本的な機構原理の根本的な改革による新型飛行船の機構原 理と操縦制御装置。  The fundamentals of the airship's basic mechanism are fundamentally reformed, and the mechanism and operation control of the new airship.
「背景技術」  "Background technology"
従来の飛行船の機構原理には、 下記のよう な欠陥がある。 現在使用さ れている飛行船には静的淳カ調整による垂直昇降操縦機能がな く 、 また The conventional airship mechanism principle has the following defects. Airships currently in use do not have a vertical ascent / descent maneuvering function with static control.
、 飛行船のエンベロ ープが、 淳擤用のヘ リ ウムガス房とエンベロ ー プの 圧力調整兼用前後浮力調整用の前後パロネ ッ トの組み合わせから成るた め、 大気温度の上昇によってヘ リ ウムガス房が膨張する と き、 前後パロ ネ .ソ トの空気が排出され収縮して菘く なり飛行船の浮力が増加する。 大 気温度の低下によってヘリ'ゥムガス房が収縮する と き、 空気送風機から 前後パロネ ッ トへ空気が圧送され膨張して重く なり飛行船の浮力が減少 する。 このよ う に プレ ッ シャ ー ♦ コ ン ト ロ ール ' システムによる前後パ 口ネ ッ トの圧力調整機能によってエンベロープの圧力が一定に保たれる 反面、 大気温度の変化によるスーパ一 · ヒ ー ト に対処できない致命的な 欠陥がある。 飛行中乱気流に巻き込まれたと き、 上昇気流や下降気流に よる高度の変化に対処できない欠点等の他に、 静的淨カ調整による垂直 錐着陸機能がないために飛行船が軽すぎる と着陸が難し く 重すぎる と離 陸できないため蛏重の差を一定の限度内に保つ必要から、 バラス トによ る重量調整が飛行船の重要な点検作業になっている。 こ のよ う に、 飛行 船の機構原理に多々欠陥があり静的浮力調整による垂直昇降操緩機能の 必要性を認めながら、 静的淳カ調整が原理的に不可能なものと して長年 棚上げされ基本的な機構原理の改革に至らず、 ヘルスタ ツ トゃ回耘球型 飛行船等その他の機構が研究されている。 Since the airship's envelope consists of a combination of a helium gas chamber for Junji and a front and rear paronet for adjusting the pressure of the envelope and adjusting the front and rear buoyancy, the helium gas chamber is raised due to the rise in atmospheric temperature. When inflated, the air in the front and rear parones is discharged and contracted, becoming stiff and increasing the buoyancy of the airship. When the helicopter gas chamber contracts due to a decrease in the atmospheric temperature, air is blown from the air blower to the front and rear paronets and expands and becomes heavy, reducing the buoyancy of the airship. As described above, the pressure of the envelope is kept constant by the pressure control function of the front and rear ports by the pressure control system, but on the other hand, the superheat due to the change of the atmospheric temperature. There are fatal flaws that cannot be addressed. In addition to the drawbacks of being unable to cope with changes in altitude due to ascending and descending air currents when being caught in turbulence during flight, landing is difficult if the airship is too light because there is no vertical cone landing function due to static adjustment. Because it is not possible to take off if it is too heavy, it is necessary to keep the difference in weight within a certain limit, so weight adjustment by ballast is an important inspection work for airships. As mentioned above, while the mechanism principle of airships is often flawed and the necessity of vertical lifting and lowering control by static buoyancy adjustment is recognized, it has long been considered that static adjustment is impossible in principle. Other mechanisms, such as the HealthTat® Tiller-ball-type airship, are being researched because of the shelving and the fundamental mechanism principle has not been reformed.
本発明は、 従来の飛行船の機構原理の欠陥を克服するために、 浮揚へ リ ウムガス房 ( 1 ) と前後パロネッ ト ( I 1 A , 1 i B ) の他に蓄圧へ リ ウムガス房 ( 2 ) を設けて、 さ らにヘリ ゥムガス圧縮膨張痏環装置を 付加した静的浮力調整機能による垂直昇降操縦制御装置により、 飛行船 の垂直離着陸が可能となり、 重量調整のための点検作業が不要でスーパ — · ヒー トゃ上昇気流や下降気流による高度の変動に対処するこ とので き-る、 根本的な機構原理の改革による新型飛行船の機構原理について明 示した.ものである。 In order to overcome the shortcomings of the conventional airship mechanism, Static buoyancy by installing a lithium gas chamber (2) in addition to the lithium gas chamber (1) and the front and rear paronets (I1A, 1iB) to accumulate pressure and adding a compression / expansion ring device for a Helium gas The vertical ascent / descent control system with the adjustment function enables the airship to take off and land vertically, eliminating the need for inspection work for weight adjustment and super-heat.It can deal with altitude fluctuations due to ascending and descending airflow. -This clarifies the mechanism principle of the new type airship due to the fundamental mechanism principle reform.
「発明の開示」  "Disclosure of the invention"
本発明を第 1 図と第 2図を基に説明する、 飛行船の垂直離着陸に必要 な静的淳カを、 エンベロープ ( 1 5 ) の浮揚ヘリ ウムガス房 ( Γ ) のへ リ ゥムガス量を增玆して、 負の状態から正の最大浮力 (圧力高度) の範 囲内で、'任意に操縦制御できるように、 浮揚へリ ウムガス房 ( 1 ) から 電磁弁 ( 5 A ) へ、 電磁弁 ( 5 A ) からコ ン レッサー ( 4 ) へ、 コ ン プレッサ一 ( 4 ) から冷却器 ( 3 ) へ、 冷却器 ( 3 ) から逆止弁 ( 1 0 A ) へ、 逆 it弁 ( 1 O A ) から蓄圧ヘリ ウムガス房 ( 2 ) へ、 管 ( 1 6 ) で連結して、 さ らに、 この蓄圧ヘリ ウムガス房 ( 2 ) から電磁弁 ( 5 B ) へ、 電磁弁 ( 5 B ) から温度調節器 ( 6 ) へ、 温度調節器 ( 6 ) か ら逆止弁 ( i 0 B ) へ、 逆 it弁 ( 1 0 B ) から浮揚ヘリ ゥムガス房 ( I ) へ、 管 ( 1 6 ) で連結したヘリ ゥムガス圧縮膨張循環装置の操作によ る圧縮と膨張により、 淳擤ヘリ ゥムガス房 ( 1 ) の容積の増嫁を可能に した静的浮力調整機能によって、 垂直昇降運動効果を高めた垂直昇降操 縱装置である。  The present invention will be described with reference to FIGS. 1 and 2. The static contact required for the vertical takeoff and landing of an airship is calculated by using the amount of real gas to the floating helium gas chamber (ガ ス) of the envelope (15). Then, from the negative state to the maximum positive buoyancy (pressure altitude), the floating helium gas chamber (1) to the solenoid valve (5A) and the solenoid valve (5 From A) to compressor (4), from compressor (4) to cooler (3), from cooler (3) to check valve (10A), from reverse it valve (1OA) A pipe (16) is connected to the accumulator helium gas chamber (2), and from this accumulator helium gas chamber (2) to the solenoid valve (5B), and from the solenoid valve (5B) to the temperature controller. To (6), from the temperature controller (6) to the check valve (i0B), from the iterator (10B) to the buoyant helium gas chamber (I), via pipe (16). The vertical lift with a vertical lifting motion effect is enhanced by the static buoyancy adjustment function that enables the expansion of the capacity of the helium gas chamber (1) by compressing and expanding by operating the connected helium gas compression and expansion circulation device. It is a vertical control device.
飛行船の着陸時の浮力は負の状態で淳擤ヘリ ゥムガス房 ( 1 ) が最小 限度まで収縮し前後パ口ネッ ト ( 1 1 A , 1 I B ) が最大限度まで膨張 した状態のときである。 操縦操作によつて蓄圧ヘリ ウムガス房 ( 2 ) の ヘリ ゥムガスを淳擤ヘリ ゥムガス ( 1 ) へ放出すれば、 浮揚ヘリ ゥムガ ス房 ( 1 ) の膨張によって前後パロネ ッ ト ( 1 1 A , 1 1 Β ) の空気が 排出され静的淳力の増加によって淳上し垂直離陸が可能となる、 最大浮 力 (圧力高度) は、 浮揚ヘリ ゥムガス房 ( ί ) が最大限度まで膨張して 前後パロネ ッ ト ( 1 1 A , 1 1 B ) が最小限度まで収縮した状態のと き である。 浮揚ヘリ ウムガス房 ( 1 ) のヘリ ウムガスを、 蓄圧ヘリ ゥムガ ス房 ( 2 ) へ圧縮圧送すれば、 浮揚ヘリ ウムガス房 ( 1 ) の収縮に伴い プレッ シャー . コ ン ト ロール , システムが作動して空気送風機 ( 1 3 ) から前後パロネ ッ ト ( ί i A 1 1 B ) に空気が圧送され静的浮力の减 少に伴って下降し垂直着陸が可能となる。 The buoyancy of the airship at the time of landing is a negative condition when the helium gas chamber (1) contracts to the minimum and the front and rear nets (11A, 1IB) expand to the maximum. The maneuvering operation releases the gas in the accumulator helium gas chamber (2) to the helium gas (1). The maximum buoyancy (pressure altitude) at which the air in the front and rear paronet (11A, 11Β) is exhausted by the expansion of the cell (1) and rises due to the increase in static force to take off vertically In this case, the floating gas chamber (ί) expands to the maximum and the front and rear paronets (11A, 11B) contract to the minimum. If the helium gas in the floating helium gas chamber (1) is compressed and sent to the accumulating helium gas chamber (2), the pressure control and system are activated as the helium gas chamber (1) contracts. Air is blown from the air blower (13) to the front and rear paronet (ίiA11B), and descends with a decrease in static buoyancy to enable vertical landing.
さ らに、 浮揚ヘリ ウムガス房 ( 1 ) のヘリ ウムガスを吸入圧縮して冷 やしてから蓄圧ヘリ ゥムガス房 ( 2 ) へ蓄えるための吸入調整用の電磁 弁 ( 5 A ) と コ ンプレッサー ( 4 ) および冷却器 ( 3 ) を制御する コ.ン ト ロー)レ · ュニツ ト ( 7 ) の制御回路を高度指定センサ ュニッ ト ( 8 ) へ接続して、 この蓄圧ヘリ ウムガス房 ( 2 ) のヘリ ウムガスを淳擤 ヘリ ゥムガス房 ( 1 ) へ放出循環するための放出詞整用の電磁弁 ( 5 B ) および温度調節器 ( 6 ) を制御する コ ン ト ロール · ュニッ ト ( 9 ) の 制御回路を高度指定センサー · ュニッ ト ( 8 ) へ接繞した自動高度調整 装-置である。  In addition, a solenoid valve (5A) for adjusting suction and a compressor (5A) for sucking and compressing the helium gas in the floating helium gas chamber (1), cooling it, and storing it in the accumulator helium gas chamber (2). 4) and the control circuit of the control unit (7) for controlling the cooler (3) are connected to the altitude designated sensor unit (8), and the accumulator helium gas chamber (2) is connected to the altitude designated sensor unit (8). Control of a control unit (9) that controls a solenoid valve (5B) and a temperature controller (6) for emission control for releasing and circulating helium gas to the helium gas chamber (1) It is an automatic altitude adjustment device in which the circuit is connected to an altitude designation sensor unit (8).
高度指定センサーで感知された信号によって指定高度に必要な浮力を 自動的に調節する自動高度調整装置と垂直昇降操縦装置を組み合わせた のが飛行船の垂直昇降操綾制御装置である。  The vertical lift control device of the airship combines an automatic altitude adjustment device that automatically adjusts the buoyancy required at the specified altitude with the signal detected by the altitude designation sensor and the vertical lift control device.
空中静止状態の飛行船が大気の影響によって、 飛行船が上昇しよ う と する と き高度センサーで感知された信号によって吸入圧縮用の電磁弁 ( δ A ) と コ ンプレッサー ( 4 ) および冷却器 ( 3 ) が働き、 浮揚へリ ウ ムガス房 ( 1 ) のヘリ ゥムガスが蓄 ffヘリ ゥムガス房 ( 2 ) へ圧送され 浮揚ヘルムガス房 ( 〖 ) の収縮によ って空気送風機 ( 1 3 ) から前後パ σネツ ト ( 1 I Α , 1 1 Β ) へ空気が圧送され、 前後パロネッ ト ( 1 1 A , 1 1 B ) の膨張に伴って静的浮力が嫁少するために飛行船の上昇が 防止される。 また逆に、 飛行船が下降しょう とするとき高度センサ一で 感知された信号によって放出調簦甩の電磁弁 ( 5 B ) および温度調節器When a stationary airship is trying to ascend under the influence of the atmosphere due to the effect of the atmosphere, a solenoid valve (δA) for intake and compression, a compressor (4) and a cooler ( 3) works, and the helium gas in the helium gas chamber (1) is stored in the helium gas chamber (2). The helium gas chamber (2) is pumped to the air blower (13) by the contraction of the helium gas chamber (2). Air is pumped to σ nets (1IΑ, 11 1), and the rise of the airship is prevented because the static buoyancy decreases with expansion of the front and rear paronets (11A, 11B). You. Conversely, when the airship is about to descend, a signal sensed by the altitude sensor (1B) and a solenoid valve (5B) for emission control and a temperature controller
( 6 ) が働き、 蓄圧ヘリ ウムガス房 ( 2 ) のヘリ ウムガスが浮揚へリ ウ ムガス房 ( i ) へ放出され、 淳擤へリ ウムガス房 ( 1 ) の膨張によつて エアー . バ.ル.ブ ( 1 2 A , 1 2 B ) が開き前後パロネッ ト ( 1 1 A , 1(6) works, and the helium gas in the accumulator helium gas chamber (2) is released to the floating helium gas chamber (i), and the air valve is expanded by the expansion of the helium gas chamber (1). (12A, 12B) open and the front and rear paronets (11A, 1A)
1 B ) の空気が排出されて静的浮力が増加するために飛行船の下降が防 止される。 このよ う に自動高度調整装置のシステムは、 指定高度を保つ ように静的淳カを調節するため揩定高度を維持する効果がある。 The airship in 1 B) is discharged and the static buoyancy increases, preventing the airship from descending. In this way, the system of the automatic altitude adjusting device has an effect of maintaining a fixed altitude because the static altitude is adjusted to maintain the specified altitude.
「図面の簡単な説明」  "Brief description of the drawings"
第 1図は、 飛行船の機構原理の説明に必要な概咯'回路図、 第 2図は、 この回路図の説明に必要な概略断面説明図である σ ' -Figure 1 is Gai咯necessary to explain mechanism principles of the airship 'circuit diagram, FIG. 2 is a schematic cross-sectional view necessary for the description of the circuit diagram sigma' -
1 浮揚へリ ゥムガス房、 1 Levitation room gas chamber,
2 蓄圧へリ ゥムガス房、 2 Accumulated fuel gas chamber,
3 冷却器、 4 · · コ ンプレ ッサ一、 3 Cooler, 4 Compressor,
5 A • 電磁弁、 5 B · • 電磁弁、 5 A • Solenoid valve, 5 B · • Solenoid valve,
6 温度調節器、 6 temperature controller,
7 電磁弁 ( 5 A ) とコ ンプレッサー ( 4 ) および冷却器 ( 3 ) を 制御するコ ン ト ロ ール · ュニッ ト、 7 Control unit that controls the solenoid valve (5A), compressor (4) and cooler (3)
8 高度揩定センサー · ュニ 'プ ト、  8 Advanced sensors and units
9 電磁弁 ( 5 B ) および温度調節器 ( 6 ) を制御するコ ン ト ロー ル · ュ二 'ソ 卜 9 Control unit to control solenoid valve (5B) and temperature controller (6)
1 0 A • · 逆止弁、 〖 0 B · · .逆止弁、  1 0 A • Check valve, 〖0 B Check valve,
1 1 A • · 前部パ口ネッ ト、 1 1 B · · · 後部パ σネッ ト、 1 2 A • ' エア一 · バルブ、 1 2 Β · · · エア " . バルブ、 1 3 · · · 空気送風機、 1 4 · · · ゴン ドラ、1 1 A • Front port net, 1 1 B • Rear port sigma net, 12 A • 'Air-valve, 12Β ··· Air 1 3 · · · Air blower, 1 4 · · Gondola,
1 5 · · · エンベロープ、 1 6 · · · 管。 1 5 · · · envelope, 16 · · · tube.
「発明を実施するための最良の形態」 および 「産業上の利用可能性」 本発明を詳細に説明するために第 1 図と第 2図に基づいて説明する と 、 上記のヘ リ ウムガス圧縮膨張循環装置の操作による垂直昇降操较装置 と自動高度調整装置を組み合わせた飛行船の垂直昇降操縦制御装置が最 良の形態である。 また、 ヘリ ゥムガス圧縮膨張痏環装 Sから冷却器 ( 3 ) と温度調節器 ( 6 ) を取り除き、 さ らに、 自動高度蠲整装置の各コ ン ト ロ ール . ュニ ッ ト · システムを取り除いたのが最 簡単な簡易へリ ウ ムガス圧縮膨張痏環装置による垂直昇降操縦装置である。 蓄圧ヘリ ウム ガス房 ( 2 ) の代わり に蓄圧タ ンクをエンベロープ ( 1 5 ) の外部、 ま たはゴン ドラ ( Γ·4 ) の部分に設置する こ と も可能である。 また、 簡易 ヘリ ウ ムガス圧縮膨張循環装置は、 ヘ リ ウムガス気球の浮力調整に'適し ている。  "Best Mode for Carrying Out the Invention" and "Industrial Applicability" To explain the present invention in detail with reference to FIG. 1 and FIG. The best mode is an airship vertical ascent / descent control device that combines a vertical ascent / descent control device by operating a circulation device and an automatic altitude adjustment device. In addition, the cooler (3) and the temperature controller (6) were removed from the steam gas compression and expansion system S, and the control unit system of the automatic altitude adjustment device was also removed. The simplest simple vertical helium gas compression / expansion loop device eliminates the vertical lifting and lowering control device. Instead of the accumulator helium gas chamber (2), an accumulator tank can be installed outside the envelope (15) or on the gondola (Γ · 4). Further, the simple helium gas compression / expansion circulator is suitable for adjusting the buoyancy of a helium gas balloon.
飛行船のエンベロープ ( 1 5 ) の内部圧と大気圧との圧力差を、 定め られた範囲ないに保ち、 飛行船の垂直雜着陸に必要な静的浮力を、 負の 状態から正の最大浮力 (圧力高度) の範囲まで操綾制御できるよ う に、 負の状態から正の最大浮力へ、 また正の最大浮力から負の状態へと、 垂 直昇降運動に必要な静的浮力をコ ン ト ロールするため、 ヘリ ゥムガス量 の增减によつて容積も增减するヘリ ウムガス房 ( 1 ) と、 皮膜材にガス バリ ヤ材と強度材に比強度の大きい繊維材を用いたヘリ ウムガス貯蔵用 の耐圧球全体を捕強用カバーネ ッ トで覆い、 こ のカバーネ ッ ト上部を力 テナリ ー . ケーブルで吊り、 カバーネ ッ ト下部をエンベロープ ( 1 5 ) の下部 (船体下腹部) にケーブルで連結して、 圧力差の関係で蓄圧ヘリ ゥムガス量の増減によって容積がほとんど変わらない耐圧球袋を、 蓄圧 ヘリ ゥムガス房 ( 2 ) に用いて区分したものである。 淳擤ヘリ ゥムガス房 ( 1 ) から電磁弁 ( 5 A ) へ、 この電磁弁 ( 5 A ) から コ ンプレ ッ サー ( 4 ) へ、 このコ ンプレ ッサー ( 4 ) から冷却器 ( 3 ) へ、 この冷却器 ( 3 ) から逆 Lh弁 ( 1 O A ) へ、 この逆 it弁 ( 1 0 A ) から蓄圧へリ ウムガス房 ( 2 ) へ、 それぞれ管 ( 〖 6 ) で連結して 、 この蓄圧へリ ウムガス房 ( 2 ) から電磁弁 ( 5 B ) へ、 この電磁弁 ( - 5 B ) から温度謌節器 ( 6 ) へ、 この温度調節器 ( 6 ) から逆止弁 ( 1 0: B へ、 この逆止弁 ( 1 0 B ) から浮揚へリ ゥ ムガス ( 1 ) へ、 そ - れぞれ管 ( 1 6 ) で連結したへリ ゥムガス圧縮膨張痏環装置の、 電磁弁 ( 5 A ) とコ ンプレッサー ( 4 ) および冷却器 〔 3 ) のコ ン ト ロール ' ュニッ ト ( 7 ) を高度指定センサー · ユニッ ト ( 8 ) へ接綠して、 さ ら に、 電磁弁 ( 5 B ) および温度調整器 ( 6 ) のコ ン トロール ' ュニツ ト ' C 9 ) を高度指定センサー * ユニッ ト ( 8 ) へ接続した自動高度調整装 置と垂直昇降操縦装置を組み合わせ 垂直昇降操縦制御装置の作翁 ίこつ いて詳細に説明する。 The pressure difference between the internal pressure of the airship envelope (15) and atmospheric pressure is kept within a specified range, and the static buoyancy required for vertical landing of the airship is reduced from the negative state to the positive maximum buoyancy (pressure Control the static buoyancy required for vertical ascent and descent from negative to positive maximum buoyancy, and from positive maximum to negative buoyancy so that control can be performed within the range of altitude. The helium gas chamber (1), which has a large volume depending on the amount of helium gas, and a helium gas storage using a gas barrier material for the coating material and a fiber material having a high specific strength for the strength material Cover the entire pressure-resistant ball with a cover net for capture, suspend the upper part of the cover net with a cable, and connect the lower part of the cover net to the lower part of the envelope (15) (lower abdomen of the hull) with a cable. , Pressure accumulator helicopter due to the pressure difference ゥThe breakdown voltage sphere bag volume hardly changes by increasing or decreasing the amount of gas is obtained by partitioning using the accumulator helicopter Umugasu tuft (2). From the helium gas chamber (1) to the solenoid valve (5A), from the solenoid valve (5A) to the compressor (4), from the compressor (4) to the cooler (3), From the cooler (3) to the reverse Lh valve (1 OA), from the reverse it valve (10A) to the accumulator to the lithium gas chamber (2), each is connected by a pipe (〖6), and then connected to the accumulator. From the Umgas chamber (2) to the solenoid valve (5B), from this solenoid valve (-5B) to the temperature controller (6), from this temperature controller (6) to the check valve (10: B, The check valve (10B) is connected to the floating gas (1) by the solenoid valve (5A) of the vacuum gas expansion / compression device connected by a pipe (16). The control unit (7) of the compressor (4) and the cooler (3) is connected to the altitude designation sensor unit (8), and the solenoid valve ( 5 B) and temperature controller (6) control unit C9) to altitude specification sensor * Combination of automatic altitude adjustment device connected to unit (8) and vertical elevation operation device Vertical elevation operation control The details of the device Sakuina will be described in detail.
空中静 [ヒ状態で高度搢定された飛行船が大気温度の上昇や上昇気流に よつて飛行船が上昇しょう とする とき、 高度センサーで感知された信号 が高度揩定センサー · ユニッ ト ( 8 ) から電磁弁 ( 5 Α ) とコ ンプレツ サー ( 4 ) および冷却器 ( 3 ) のコ ン ト ロール * ュ二 -ゾ ト ( 7 ) へ送ら れ、 電磁弁 ( 5 Α) と コ ンプレ ッサー ( 4 ) および冷却器 ( 3 ) の作動 により、 浮揚へリ ゥムガス房 ( 1 ) のヘリ ゥムガスが蓄圧へリ ゥムガス 房 ( 2 ) へ圧送され、 浮揚へリ ウムガス房 ( 1 ) の収縮に伴いプレツシャ 一 · コ ン ト ロール · システムが働き、 空気送風機 ( 1 3 ) から空気が前 後パロネッ ト ( 1 1 A , 1 1 Β ) に圧送され膨張して重く なり、 飛行船 の浮力が减少するために飛行船の上昇が防止される。  When an airship that is altitude set in the air is trying to ascend due to rising air temperature or ascending air currents, the signal detected by the altitude sensor sends a signal from the altitude sensor to the altitude sensor unit (8). The solenoid valve (5 mm), the compressor (4) and the control of the cooler (3) are sent to the control unit (7), and the solenoid valve (5 mm) and the compressor (4) are sent to the solenoid valve (5 mm). The operation of the cooler (3) and the operation of the cooler (3) cause the pumping of the helium gas in the floating gas chamber (1) to the accumulating helium gas chamber (2). Control system works, air is blown from the air blower (13) to the front and rear paronets (11A, 11Β) and expands and becomes heavier, raising the airship due to reduced airship buoyancy. Is prevented.
また、 大気温度の低下や下降気流によつて飛行船が下降しよう とする とき、 高度セ ンサ一で感知された信号が、 高度指定センサ一 · ユニッ ト - ( 8 ) から電磁弁 ( 5 B ) および温度調節器 ( 6 ) のコ ン ト ロール · ュ ニッ ト ( 9 ) へ送られ、 電磁弁 ( 5 B ) および温度調節器 ( 6 ) の作動 によ り、 蓄圧へリ ウムガス房 ( 2 ) のヘリ ゥムガスが浮揚へリ ウムガス 房 ( 1 ) へ放出され、 淳揚ヘリ ウムガス房 ( 1 ) の膨張に伴いエアー · バルブ ( 1 2 A, 1 2 B ) が開き、 前後パロネ ッ ト ( 1 1 A , 1 1 B ) の空気が排出され収縮して柽く なり、 飛行船の浮力が増加するために飛 行.船の下降が防止される効果がある。 このよ う に、 高度センサーで感知 された信号を高度指定センサー · ュニッ ト ( 8 ) から、 ヘリ ウムガス圧 縮膨張循環装置の、 ヘリ ウムガス吸入圧縮部の電磁弁 ( 5 A ) と コ ンプ レッサー ( 4 ) および冷却器 ( 3 ) のコ ン ト ロール * ュ二 'ソ 卜 ( 7 ) と 、 蓄圧ヘリ ウムガス放出部の電磁弁 ( 5 B ) および温度調節器 ( 6 ) の コ ン ト σ—ル . ユニッ ト ( 9 ) へ送り制御す,る自動高度調整.装置のシス テムは、 大気の変化による飛行船の高度の変動に対し指定高度を保'つよ う に静的淳カを調節するため指定高度を維持する効果がある。 Also, when the airship is about to descend due to a decrease in atmospheric temperature or a downdraft, the signal sensed by the altitude sensor is output from the altitude designated sensor unit. (8) is sent to the control unit (9) of the solenoid valve (5B) and the temperature controller (6), and is operated by the operation of the solenoid valve (5B) and the temperature controller (6). Helium gas in the accumulating helium gas chamber (2) is released to the floating helium gas chamber (1), and the air valves (12A, 12B) are expanded with the expansion of the helium gas chamber (1). , The air in the front and rear paronets (11A, 11B) is discharged and shrinks, and the buoyancy of the airship increases, which prevents flying and the descent of the ship. In this way, the signal detected by the altitude sensor is transmitted from the altitude designation sensor unit (8) to the solenoid valve (5A) of the helium gas suction / compression section of the helium gas compression / expansion / circulation device and the compressor ( 4) Control of the cooler (3) * Control unit (7) and control of the solenoid valve (5B) and temperature controller (6) of the accumulator helium gas discharge section Automatic altitude adjustment to be sent to the unit (9). The system of the equipment is specified to adjust the static altitude so that the altitude of the airship is maintained at the specified altitude due to atmospheric changes. It has the effect of maintaining altitude.
飛行船の垂直離着陸は、 垂直昇降操縦装置を任意に操作して行われる 。 着陸時の飛行船は、 浮力のない負の状態で淳撬ヘリ ウムガス房 ( 1 ) が最小限度まで収縮し、 前後パロネ ッ ト ( 〖 〖 A , 1 1 Β ) が最大限度 まで膨張いた状態である。 垂直離陸は、 操縦操作によ り放出調整用の電 磁弁 ( 5 Β ) および温度調節器 ( 6 ) が作動して蓄圧ヘリ ウムガス房 ( 2 ) のヘリ ウムガスが浮揚ヘリ ウムガス房 ( 1 ) に放出され、 淳擤ヘリ ゥムガス房 ( I ) の膨張によってエア一 ' バルブ ( 1 2 A , 1 2 B ) が 開き、 前後パロネ ッ ト ( 〖 1 A , 1 i B ) の空気が排出され、 飛行船の 静的浮力の増加によって浮上する。 また、 静的浮力の増加とティ ル ト構 造推進機との相乗効果によ り浮上力が増す効果がある。  The vertical takeoff and landing of the airship is performed by operating the vertical lift control system at will. At the time of landing, the airship is in a negative state without buoyancy, with the 撬 helium gas chamber (1) contracted to a minimum and the front and rear paronets (〖〖A, 11 1) expanded to a maximum. . During vertical take-off, the solenoid valve (5 mm) for release adjustment and the temperature controller (6) are activated by maneuvering operation, and the helium gas in the accumulator helium gas chamber (2) is transferred to the floating helium gas chamber (1). The air valves (12A, 12B) are opened by the expansion of the Chunpo Hembo Gas Chamber (I), and the air of the front and rear paronets (〖1A, 1iB) is discharged, and the airship Ascends by increasing static buoyancy. In addition, there is an effect that the levitation force increases due to a synergistic effect between the increase in the static buoyancy and the tilt structure thruster.
飛行船の最大浮力 (圧力高度) は、 浮揚ヘリ ゥムガス房 ( 1 ) が最大 限度まで膨張して、 前後パロネ 'ソ ト ( 1 1 A , 1 1 B ) が最小限度に収 縮した状態のときである。 また、 垂直着陸は、 操縦操作により吸入圧縮 部の電磁弁 ( 5 Α ) とコ ンプレ ッサー ( 4 ) および冷却器 ( 3 ) が作動 して浮揚ヘリ ウムガス房 ( 1 ) のヘリ ゥムガスが蓄 ヘリ ゥムガス房 ( 2 ) へ圧送され、 浮揚ヘリ ゥムガス房 ( 1 ) の収縮によってプレ ッ シャ — · コ ン ト ロ ール . システムが働き、 空気送風機 ( 1 3 ) から前後パ口 ネ 'ブ ト ( 1 〖 A , 1 1 B ) に空気が圧送され膨張して重く なり、 静的浮 方の玆少に伴って下降し垂直着陸する。 また、 静的浮力の威少とティ ル 卜構造推進機との柜乗効果により下降速度が増す効果がある。 なお、 本 発明と直接関係のないプレ ッ シャ ー · コ ン ト ロ ール ' システムやティ ル ト搆造推進機や ト リム調整の図示説明は省略する。 また、 本文の飛行船 は、 飮式飛行船であるが硬式飛行船にも利用できる。 The maximum buoyancy (pressure altitude) of the airship is such that the floating gas chamber (1) expands to its maximum and the parones (11A, 11B) before and after are minimized. It is in the state of contraction. In a vertical landing, the solenoid valve (5 mm), compressor (4) and cooler (3) in the suction / compression section are operated by maneuvering operation, and the helium gas in the levitation helium gas chamber (1) is stored. The pressure is sent to the baffle (2), and the pressure-control system is activated by the contraction of the levitation air-gas baffle (1), and the air blower (13) receives the front and rear outlets (1).空 気 Air is pumped to A, 11 B) and expands and becomes heavier, descends with a decrease in static buoyancy, and makes vertical landing. In addition, the descent speed increases due to the static buoyancy and the riding effect of the tilt structure propulsion. The illustration of the pressure control system, the tilt propulsion device, and the trim adjustment, which are not directly related to the present invention, are omitted. The airship in the text is a drinking airship, but it can also be used for rigid airships.
本発明の飛行船は、 従来の飛行船に ベて絶対的ペイ口一ドが玆少す る反面、 船体重量調整のためのバラス トが不要となり、 重量增¾に対処 する機能があるため実用的ペイロ ー ドが增す特徴がある。 ティ ルト搆造 推進機による動的浮力と静的浮力による昇降運動柜乗効果により、 従来 の飛行船の致命的な欠陥を克服して垂直離着陸機能により操縦安定性を 高め、 地上施設と離着陸時の作業を簡素化し、 運行方法を一変させる飛 行船の根本的な機構原理の改革について明示した—ものである。  The airship of the present invention has a smaller absolute pay port than conventional airships, but does not require a ballast for hull weight adjustment and has a function to deal with the weight. There is a characteristic that the code shows. Tilt structure The dynamic buoyancy of the propulsion unit and the vertical buoyancy effect of the static buoyancy overcome the fatal flaws of conventional airships to enhance maneuvering stability with the vertical take-off and landing function. It clarifies the fundamental mechanistic reform of an airship that simplifies work and changes the way it operates.

Claims

請 求 の 範 囲 The scope of the claims
、 浮揚ヘリ ゥムガス房 ( I ) のヘリ ゥムガス量の增減によって、 飛行 船の浮力を負の状態から正の最大浮力 (圧力高度) の範囲内で任意に 调節(操縦制御)でき る よ う に、 浮揚ヘリ ゥムガス房 ( 1 ) から電磁弁 ( 5 A ) へ、 電磁弁 ( 5 A ) からコ ンプレ ッ サー ( 4 ) へ、 コ ンプ レ ッ サー ( 4 ) から冷却器 ( 3 ) へ、 冷却器 ( 3 ) から逆 弁 ( 1 0 Λ ) へ、, 逆止弁 ( 1 O A ) から蓄 B£ヘリ ウムガス房 ( 2 ) へ、 管 ( 1 6 ) で連 結して、 さ らに、 この蓄圧ヘリ ウムガス房 ( 2 ) から 電磁弁 ( 5 B ) へ、 電磁弁 ( 5 B ) か 温度調節器 ( 6 ) へ、 温度 調節器 ( 6 ) から 逆 Lh弁 ( 1 0 B ) へ、 逆止弁 ( 1 0 B ) から浮揚 ヘ リ ウムガス房 ( 1 ) へ、 管 ( 1 6 ) で連結したヘリ ウムガス圧縮 膨張 環装置の操作に よ って、 飛行船 静的浮力を調節する垂直昇 降操縦装置。 - 、 ヘリ ウムガス圧縮膨張痏環装置のヘリ ウムガス吸入調整圧縮部の電 磁弁 ( 5 A ) と コ ンプレ ッ サー ( 4 ) および冷却器 ( 3 ) を制御す る コ ン ト ロール · ュニッ ト ( 7 ) の制御回路を高度指定セ ンサー · ュ二 .:/ ト ( 8 ) へ接続して、 さ らに蓄圧ヘリ ウムガス放出調整部の 電磁弁 ( 5 B ) および温度調節器 ( 6 ) を制御する コ ン ト ロ ール * ュ 二 'ソ ト ( 9 ) の制御回路を高度指定セ ンサ— · ュニッ ト ( 8 ) へ接繞 した自動高度蠲整装置に垂直昇降操縦装置を組み合わせた垂直昇降操 縦制御装置。  By reducing the amount of helical gas in the levitation helm gas chamber (I), the airship's buoyancy can be arbitrarily controlled (steering control) within a range from a negative state to a positive maximum buoyancy (pressure altitude). From the floating gas chamber (1) to the solenoid valve (5A), from the solenoid valve (5A) to the compressor (4), from the compressor (4) to the cooler (3), A pipe (16) is connected from the cooler (3) to the check valve (10 °), from the check valve (1OA) to the storage B £ helium gas chamber (2), and From the accumulator helium gas chamber (2) to the solenoid valve (5B), to the solenoid valve (5B) or temperature controller (6), from the temperature controller (6) to the reverse Lh valve (10B), Airship static by operating a helium gas compression and expansion annulus connected by a pipe (16) from a stop valve (10B) to a floating helium gas chamber (1) Vertical temperature descending flight control to adjust the force. -The control unit that controls the solenoid valve (5A) and the compressor (4) and the cooler (3) of the helium gas suction adjustment compression section of the helium gas compression and expansion ring device The control circuit of 7) is connected to the advanced designated sensor unit 2 /: (8) to further control the solenoid valve (5B) and temperature controller (6) of the accumulator helium gas release adjustment section. Control * The vertical lifting and lowering device is combined with an automatic altitude adjusting device in which the control circuit of the console (9) is connected to an altitude designated sensor / unit (8). Flight control device.
PCT/JP1987/000488 1986-07-12 1987-07-09 Vertical flight control unit for airships WO1988000555A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61/162955 1986-07-12
JP16295586 1986-07-12
JP16519487A JPS63149291A (en) 1986-07-12 1987-07-03 Automatic height regulator for airship
JP62/165194 1987-07-03

Publications (1)

Publication Number Publication Date
WO1988000555A1 true WO1988000555A1 (en) 1988-01-28

Family

ID=26488562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000488 WO1988000555A1 (en) 1986-07-12 1987-07-09 Vertical flight control unit for airships

Country Status (2)

Country Link
AU (1) AU7691487A (en)
WO (1) WO1988000555A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386480B1 (en) 1988-12-11 2002-05-14 Southwest Research Institute Autonomous stratospheric airship
US6607163B2 (en) 1998-12-11 2003-08-19 Southwest Research Institute Autonomous stratospheric airship
FR2846937A1 (en) * 2002-11-13 2004-05-14 Michel Teychenne Device for maintaining the pressure for displacement of a inflated helium balloon, uses manometer to control pressure in order to inflate it
EP1327580A3 (en) * 2002-01-15 2004-05-26 Kawasaki Jukogyo Kabushiki Kaisha Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
EP1667900A2 (en) * 2003-09-30 2006-06-14 Space Data Corporation System and applications of lighter-than-air (lta) platforms
WO2011095663A1 (en) * 2010-02-02 2011-08-11 Pascual Martinez Oliver Controlled vertical lifting and landing system
WO2012063258A1 (en) * 2010-11-08 2012-05-18 Konark Manocha Helium vehicles
WO2013131155A1 (en) * 2012-03-06 2013-09-12 Freire Lincoln Fernandez System for controlling the temperature of lifting gas in airships
CN110466731A (en) * 2019-08-24 2019-11-19 哈尔滨工业大学 A kind of dirigible buoyant weight balance control method based on air bag and the interaction of helium capsule
CN114018507A (en) * 2021-12-06 2022-02-08 合肥工业大学 Method and device for measuring helium leakage of aerostat
CN114278604A (en) * 2022-01-05 2022-04-05 北京临近空间飞艇技术开发有限公司 Helium gas compressor of anti-surge start-up under high back pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504796A (en) * 1973-05-17 1975-01-18
JPS5090097A (en) * 1973-12-17 1975-07-18
JPS5663599A (en) * 1979-10-29 1981-05-30 Tetsushi Okamoto Controlling method for floating gas of balloon and airship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504796A (en) * 1973-05-17 1975-01-18
JPS5090097A (en) * 1973-12-17 1975-07-18
JPS5663599A (en) * 1979-10-29 1981-05-30 Tetsushi Okamoto Controlling method for floating gas of balloon and airship

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386480B1 (en) 1988-12-11 2002-05-14 Southwest Research Institute Autonomous stratospheric airship
US6607163B2 (en) 1998-12-11 2003-08-19 Southwest Research Institute Autonomous stratospheric airship
EP1327580A3 (en) * 2002-01-15 2004-05-26 Kawasaki Jukogyo Kabushiki Kaisha Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
US6811115B2 (en) 2002-01-15 2004-11-02 Kawasaki Jukogyo Kabushiki Kaisha Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
KR100473833B1 (en) * 2002-01-15 2005-03-09 가와사키 쥬코교 가부시키가이샤 Method and system for setting hull parameter of airship and method of adjusting ascension rate of the same
FR2846937A1 (en) * 2002-11-13 2004-05-14 Michel Teychenne Device for maintaining the pressure for displacement of a inflated helium balloon, uses manometer to control pressure in order to inflate it
EP1667900A4 (en) * 2003-09-30 2012-01-18 Space Data Corp System and applications of lighter-than-air (lta) platforms
EP1667900A2 (en) * 2003-09-30 2006-06-14 Space Data Corporation System and applications of lighter-than-air (lta) platforms
WO2011095663A1 (en) * 2010-02-02 2011-08-11 Pascual Martinez Oliver Controlled vertical lifting and landing system
ES2394560A1 (en) * 2010-02-02 2013-02-01 Pascual MARTÍNEZ OLIVER Controlled vertical lifting and landing system
WO2012063258A1 (en) * 2010-11-08 2012-05-18 Konark Manocha Helium vehicles
WO2013131155A1 (en) * 2012-03-06 2013-09-12 Freire Lincoln Fernandez System for controlling the temperature of lifting gas in airships
CN110466731A (en) * 2019-08-24 2019-11-19 哈尔滨工业大学 A kind of dirigible buoyant weight balance control method based on air bag and the interaction of helium capsule
CN114018507A (en) * 2021-12-06 2022-02-08 合肥工业大学 Method and device for measuring helium leakage of aerostat
CN114018507B (en) * 2021-12-06 2023-06-23 合肥工业大学 Aerostat helium leakage measurement method and device
CN114278604A (en) * 2022-01-05 2022-04-05 北京临近空间飞艇技术开发有限公司 Helium gas compressor of anti-surge start-up under high back pressure

Also Published As

Publication number Publication date
AU7691487A (en) 1988-02-10

Similar Documents

Publication Publication Date Title
US6305641B1 (en) Super-pressured high-altitude airship
US6648272B1 (en) Airship
WO1988000555A1 (en) Vertical flight control unit for airships
US7690596B2 (en) Apparatus for lighter-than-air aircraft
US20090321557A1 (en) Airship & method of operation
US10625842B2 (en) Lighter-than-air fractal tensegrity structures
US8333346B2 (en) Sky station
WO2008051638A2 (en) Buoyancy control system for an airship
US8459589B2 (en) External pressurization system for lighter than air vehicles
CN103072686B (en) Inflation valve and diaphragm structure product
US20190039710A1 (en) "heracles" airship
CN210258804U (en) Stratospheric airship
JP3952255B2 (en) Airship intake and exhaust method and apparatus
CN110217376B (en) Stratospheric airship and steady-state lifting and cruising method thereof
US1853376A (en) Airship
JP2540378B2 (en) How to lift a pressurized airship
CN104098002A (en) Airbag-type rapid pressure increase or decrease control system in elevator car
CN106945839A (en) Flight instruments and its flying method
RU2752326C1 (en) Folding airship-airplane
CN208264544U (en) Floating device suitable near space
JPH01156197A (en) Method of elevating airship, etc.
CN1339381A (en) Combined airship with static buoyancy regualting system
RU196628U1 (en) Airship Ballast System
CN118062215A (en) Air-sky floating platform
JP4019165B2 (en) High altitude return and aerial powered balloon and its operation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR KR SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE