WO1987005262A1 - Compound corrugated body and manufacturing method and apparatus thereof - Google Patents

Compound corrugated body and manufacturing method and apparatus thereof Download PDF

Info

Publication number
WO1987005262A1
WO1987005262A1 PCT/JP1987/000148 JP8700148W WO8705262A1 WO 1987005262 A1 WO1987005262 A1 WO 1987005262A1 JP 8700148 W JP8700148 W JP 8700148W WO 8705262 A1 WO8705262 A1 WO 8705262A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
meandering
composite
plane
valleys
Prior art date
Application number
PCT/JP1987/000148
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroo Ichikawa
Original Assignee
Hiroo Ichikawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroo Ichikawa filed Critical Hiroo Ichikawa
Publication of WO1987005262A1 publication Critical patent/WO1987005262A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/146Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers whereby one or more of the layers is a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/20Corrugating; Corrugating combined with laminating to other layers
    • B31F1/24Making webs in which the channel of each corrugation is transverse to the web feed
    • B31F1/26Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions
    • B31F1/28Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions combined with uniting the corrugated webs to flat webs ; Making double-faced corrugated cardboard
    • B31F1/2895Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions combined with uniting the corrugated webs to flat webs ; Making double-faced corrugated cardboard from corrugated webs having corrugations of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02405Floor panels

Definitions

  • the present invention relates to a composite corrugated body, a method for producing the same, and an apparatus for the same.
  • Technical Field The present invention provides a corrugated row by alternately applying vertical peaks and valleys to a workpiece to be processed. At the same time, the corrugated row is meandered planarly to form a corrugated core, and at least one side of the corrugated core is flat-plated.
  • the present invention relates to a composite corrugated body to which a nanoparticle is adhered and a method and an apparatus for producing the same.
  • BACKGROUND ART As a conventional composite corrugated body of this type, as shown in U.S. Pat. No. 2,963,128, the vertical direction of a sheet material is used.
  • the ridges and valleys are alternately applied to form a corrugated array, and the corrugated cores are arranged in a zigzag pattern to form a corrugated core.
  • a composite corrugated body in which a plate liner is adhered to both sides of the body has been proposed.
  • a corrugated core is manufactured by forming a corrugated core between a pair of rollers having an uneven surface corresponding to a corrugated row to be molded. Supplying the work sheet and pressing The resulting roller-forming method is considered to be the fastest, most economical and practical method.
  • a corrugated core such as that shown in the above-mentioned U.S. Patent is applied to a work sheet having almost no stretchability, such as paper or metal.
  • the work piece is to have a zig-zag horn-shaped bend in the vicinity of the horn-shaped projection on the top of the forming roller tooth.
  • the pressure is applied from the outside by the part, and it is formed into a predetermined shape with a corner, and the concentration of the tensile stress near the bent part is reduced to other parts. It is more remarkable and more abrupt than that, causing in-plane strain deformation of the sheet material, eventually exceeding the strain limit and causing the sheet material to break. Often
  • the zigzag-shaped corrugated body is processed by the rolling method, a large number of sharpened parts are formed in the direction orthogonal to the axis of the corrugated row.
  • the bent sheet at the top of the zig-zag tooth profile of the Min-Migler is formed as a square projection, so that the sheet is placed on the tooth profile. Smooth sliding of the corrugated body is prevented from being carried out at a predetermined step, and tears on the inclined wall are formed on the sloped wall of the corrugated body. Was always up to the task.
  • the work sheet is only in the direction perpendicular to the axis of the collet row.
  • the axial direction (longitudinal direction)
  • it is indispensable to repeat the step especially when adjusting the amount of step in order to fine-adjust the step amount.
  • Small movement in the axial direction of the sheet The movement must be smooth.However, the smooth movement of the zigzag-shaped corrugated processing roller is achieved by the horn-shaped bending projection of the tooth shape of the roller. The above steps cannot be performed satisfactorily. As a result, tearing of the sheet and excess wrinkles are generated in the direction perpendicular to the axis of the corrugated row.
  • a trapezoidal wave front and a wave bottom are alternately applied in the vertical direction to form a corrugated line, and further, the corrugated line is planarized.
  • a corrugated core formed by meandering in a waveform, and a flat plate liner bonded to both surfaces of the corrugated core.
  • the corrugated core can be rolled or stretched with a relatively large thickness. It is necessary to form the core of the formed corrugated core by 20 to 30% in the direction of its generatrix compared to the horizontal top * bottom. When stretched, it is considered to be a significant thickness deviation, and it has a structure that cannot be expanded in topological geometry. '
  • the present invention has been made in view of the above-mentioned problems, and the purpose of the "] is particularly to achieve out-of-plane compression strength, out-of-plane bending strength, and in-plane compression strength. It is an object of the present invention to provide a composite corrugated body having a significantly superior strength in all of the above.
  • the second object of the present invention is to meander planarly from a sheet material having almost no extensibility, such as paper, by using a roll roughing method.
  • the present invention also provides a method for forming a corrugated core having the above-mentioned corrugated column and a method for producing the above-mentioned composite corrugated body using the corrugated core. I have to.
  • a third object of the present invention is to provide a suitable apparatus for carrying out the method for producing the above-mentioned composite collagen body.
  • the peaks and valleys in the vertical direction are alternately applied to the sheets.
  • the corrugated rows are meandering in a plane waveform, and the amplitude ratio H / L of the cross-sectional waves of each of the rows of the corrugated rows (where: H, amplitude: ) Is set to 0.2 or more, the meandering weight ratio D / L (D: amplitude of the meandering plane wave) between the corrugated rows in the plane shape is set to 0.5 or more, and
  • the corrugated core is formed by setting the meandering rate N / of each of the corrugated rows in the shape (N: wavelength of the plane meandering wave) to 0.2 or more, and forming a corrugated core.
  • a flat plate liner is adhered to at least one side of the body, and to achieve the second purpose, the book
  • peaks and valleys are alternately formed in a direction orthogonal to the transfer direction during the transfer of the material to be added.
  • the sheet is alternately provided with alternating peaks and valleys in the circumferential direction on the peripheral surface, and these peaks and valleys are corrugated in the axial direction.
  • a pair of corrugated strips that meander in a plane waveform by passing between a pair of mirrors that are meandered to form a corrugated strip are formed.
  • At least one of the upper and lower surfaces of the rows is bonded with a flat plate liner.
  • the apparatus for manufacturing a composite corrugated body according to the present invention may be configured such that the composite corrugated body is paired so as to cross a conveying path of the sheet material to be processed.
  • Establish a corrugation filter for In each of the mining rollers the ridges and valleys are alternately formed along one direction of the peripheral surface thereof, and the ridges are formed along the direction intersecting the direction. And valleys are formed in a meandering wave form, and are placed on the transport path.Before the pair of forming rollers, a mountain is required along the lateral direction of the sheet material.
  • a corrugated guide is formed by providing a corrugated guide means for alternately forming a valley and a valley, and passing through a mirror.
  • a means for bonding a flat plate liner to one of the upper and lower surfaces of the rest is provided.
  • FIG. 1 is a partial perspective view showing a partially broken flat liner of a composite corrugated body used in the present invention
  • Fig. 2 shows (A) to (F) the cross-sectional shapes of the corrugated strips constituting the composite corrugated body, showing the relationship between the wavelength and the wave height;
  • Fig. 3 ( ⁇ ) to ( ⁇ ) show the positional relationship between the corrugated columns in the different meandering polymerization rates of the corrugated columns constituting the composite corrugated body.
  • Figure 4 shows the relationship between the meandering polymerization rate, the amplitude rate, and the maximum out-of-plane bending strength index. A graph showing the relationship;
  • Fig. 5 ( ⁇ ) to (D) show different meandering rates of the corrugated strips constituting the composite corrugated body
  • Figure 6 shows the relationship between meandering polymerization rate, amplitude rate, and out-of-plane maximum bending strength index:
  • Fig. 7 ( ⁇ ) and ( ⁇ ) are sectional views showing a part of the corrugated strip which is meandering in a waveform and a part of the corrugated strip which is meandering in a zigzag shape, respectively;
  • Fig. 8 shows the superimposed traces of the corrugated corrugated strip and the zigzag corrugated corrugated strip.
  • Figures 9 (A) and (B) show the in-plane compressive force acting on the zigzag zigzag corrugated strip and the corrugated zigzag corrugated strip, respectively. Description of figure;
  • FIGS. 10 (A) to 10 (C) are partial perspective views showing different examples of a forming roller used in the present invention:
  • FIG. 11 is an example of the apparatus of the present invention. Perspective view showing the embodiment;
  • FIGS. 12 (A) to 12 (C) are cross-sectional views of the guide blocks shown in FIG.
  • Fig. 13 is a perspective view showing another embodiment of the device of the present invention:
  • Figs. 14 (A) and (B) are cross-sectional views of a corrugated strip formed according to the present invention. It is a diagram.
  • FIG. 1 shows a single-side reinforced composite corrugated body ⁇ 0 according to the present invention, which is composed of a corrugated core body 11 and a flat plate liner ⁇ 2.
  • This corrugated core ⁇ 1 is a plan view of a corrugated column ⁇ 3 formed by alternately applying the peaks M and the valleys V in the z-direction in the vertical direction. In the meantime, the waveform is made to meander in the y-direction, and these corrugated rows are parallel to each other.
  • the flat liner 2 is integrally bonded to the corrugated line 13 at the mountain M of the corrugated line 13.
  • the shape of the corrugated column ⁇ 3 of the corrugated core 11 is defined by the amplitude ratio ⁇ /, the meandering polymerization ratio DZL and the meandering ratio D / N in FIG. Be done.
  • the amplitude ratio H is the relationship between the amplitude ⁇ and the wavelength L of the cross-section wave obtained by cutting the collimated row 13 along the vertical plane in the direction shown in Fig. 1. 2 (a) to 2) show the amplitude ratios when L is varied while ⁇ ⁇ is kept constant. As can be seen from this figure, as the amplitude ratio increases, the cross-sectional wave rises with the angle ⁇ between it and the bottom gradually increasing.
  • the meandering polymerization rate D / L is the amplitude D of each collet strip in a plan view of the collet strip. And the wavelength L of the cross-sectional wave.
  • FIGS. 3 (A) to 3 (E) show the corrugated rows in a plan view and are adjacent to each other in the vertical direction.
  • the tops M1 and M1 of the adjacent corrugated rows 13a, 3 2 is shown by a solid line in a meandering manner, between which the valley bottom V of both rows is shown by a dotted line, S 2 is the upper tangent of the valley bottom V, S 3 is the mid-crossing line of the valley bottom V, B shows the bottom surface of the single-sided reinforced composite corrugated body 10
  • the center of both collets 1 3a and 13b is at the interval of ⁇ / 2 of the wavelength N and the bottom B of the composite corrugated body and the peripheral level.
  • the collet at the cutting position will have the shape of the composite corrugated body. Floating from the bottom surface B or separated from the plate liner 112. This state always occurs when D / L ⁇ 0.5.
  • the slope of the web of the trace becomes steep and the web material (the line segment of the inclined corrugated body) and
  • the number of triangular truss units composed of flanged materials (horizontal flat liners) is rapidly increasing.
  • the corrugated strip 13 a is a flat liner.
  • the dry area to be bonded to 12 and the area that is at the same level as the bottom of the composite conoregate unit increase, and the density of the truss is further increased.
  • the out-of-plane bending strength between the circumference ⁇ S '. Line and the S-11 line increases.
  • the cross-sectional position along the S3 line is shown in FIG. 3 (C3). As is evident, all of the corrugated strips 13a and 13b at these cross-sectional positions are separated from the flat plate liner 12.
  • the corrugated strips 13a and 13 are joined to the flat plate liner 12 at an interval sufficiently smaller than the wavelength N, and are attached to the bottom level of the composite corrugated body.
  • the tras In order to extend to the entire wall thickness, the structure is shifted to the third tracing structure, which is more qualitatively improved than in the case of 0.5 D./L ⁇ 1.0, and The maximum flexural strength will be significantly higher than when 0.5 ⁇ DZL ⁇ 1.0.
  • the unit inclination angle of the triangular trace becomes steeper than that of the second truss structure, and the junction angle with the flat plate liner 12 is increased.
  • the number of locations reaching the bottom level B of the composite corrugated body increases, and the number of triangular trace units consisting of web material and flange material increases to--steps. .
  • the DZ becomes 1.2 when the temperature becomes more than ⁇ .
  • a flat plate is placed at an arbitrary cross-sectional position orthogonal to the direction.
  • the wave front of the waveform extending between the knuckle 2 and the complex corrugated body becomes sharper than when D / L-1.0, that is, the web tilt angle of the unit triangular truss.
  • the steepness is further increased, and the number of joints with the flat plate liner 12 or those reaching the bottom level B of the composite corrugated body increases, and the maximum out-of-plane bending strength is increased. Increase further. This tendency is expected to increase proportionately as D / L increases.
  • the preferred range for obtaining a large out-of-plane bending strength is DZL ⁇ 0.5, and the most preferred range is DZL ⁇ 0.5.
  • a preferable range of the present invention satisfying both is DZL ⁇ 05, H / L> ⁇ .
  • this meandering ratio shows the relationship between the amplitude D and the wavelength N when each of the corrugated strips is viewed in a plane, and it is clear from FIG.
  • the DZN becomes larger, the corrugated strip will become deeper (larger) and meander.
  • the angle ⁇ between the horizontal line in the y-direction at the maximum slope position of the meandering wave is As D / ⁇ increases, the size of the string increases, In this meandering part, the component in the direction gradually increases. This corresponds to the bending stress in the direction perpendicular to the direction.
  • the corrugated core used in the present invention preferably has an amplitude ratio H / L> 0.2, a meandering polymerization rate D / L ⁇ 0.5, and a meandering ratio.
  • a ratio D / L> ⁇ .2 it is more preferable to set H ⁇ > 0.2 and D / ⁇ 1.0.DN> 0.2.
  • Complex korge with a double-row arrangement-Compared with a kart the meandering polymerization rate of the known composite korge body shown in this figure is more than 0.5.
  • the aperture i ⁇ which is small and therefore has an out-of-plane bending strength as compared with the case of the present invention, is remarkably small. Furthermore, in the case of a conventional multi-unit corrugated body, when forming a corrugated line, a part of the corrugated body is stretched to form an uneven thickness portion.
  • the out-of-plane compressive strength of the thin portion is significantly reduced, whereas the composite of the present invention is not limited to this.
  • a corrugated body it is substantially similar to paper.
  • the material of the sheet material to be processed because the sheet material that is not stretched can be formed by corrugating in two directions. Since the sheet material thus produced has substantially no uneven thickness, the out-of-plane compressive strength is extremely large.
  • the single-side reinforced composite corrugated body according to the present invention is mainly compared with a single-sided reinforced composite corrugated body having a corrugated array in which the zigzag meandering is performed. Various differences are seen below.
  • Figs. 7 (A) and (B) each show a corrugated meandering waveform in accordance with the present invention. Section 20 and a portion of the zigzag meandering corrugated section 30 are shown. In addition, a flat plate liner-2 is joined to a valley of the corrugated row, and a triangular trace unit is formed in the direction of the axis and the cross of the corrugated row.
  • Both of the corrugated strips 20 and 30 are greatly bent at two places within the unit length N 0, and have three consecutive bent portions N,,.
  • the corrugated strip 30 meandering in a zigzag shape between the unit lengths N 0, the inclined wall surfaces 3 3a — 3 3b are paired with each other. Since it is formed into a flat, flat shape, the out-of-plane buckling deformation can easily occur due to the vertical compressive force applied to the top 31 and the bottom 32, which is sufficient.
  • the slope 23 cannot be obtained even in the case of the unit length N0. Since a-23 is curved in the axial direction, it is broken by the folding screen. Even when the vertical compressive force is applied, the occurrence of out-of-plane buckling deformation is prevented. It can have high out-of-plane compressive strength.
  • the out-of-plane compressive strength is improved only macroscopically, whereas the corrugated strip of the corrugated strip is improved. This means that the out-of-plane compressive strength is improved both macroscopically and microscopically.
  • Fig. 8 shows the Corrugated column and the zigzag meandering in the waveform, having the first period L and the amplitude H.
  • the trajectories of the ridges of the tops 21 and 31 of the corrugated rows meandering in a zigzag manner are shown in a plan view by superimposing them in the circumferential drawing.
  • the trajectory of the ridgeline of the top 21 of the corrugated row meandering in the waveform is the ridge of the top 31 of the corrugated row of meandering zigzag.
  • the trajectory is formed in a circular arc with the chord as a chord, and the 15 members are significantly longer than the latter.
  • Single-sided reinforced composite Since the flat plate liner of the gate body is adhered to the corrugated strip along the ridge line of the top, when compared in unit area (LXH), it will meander in a waveform.
  • the joint length with the flat plate liner is significantly larger in the corrugated row than in the zigzag meandering corrugated row.
  • the bonding strength between the core rest composed of the corrugated row meandering in the former waveform and the flat plate liner is determined by the latter zigzag meandering corrugated row. It becomes much larger than the joint strength between the core rest and the flat liner. As a result, it can be said that the former composite corrugated body is superior to the latter in both out-of-plane compressive strength and out-of-plane bending strength.
  • each slope is shown in Fig. 7 (A).
  • the wall surface 23a-23b is formed as a ruled surface that is continuously curved in the direction of the ridgeline of the top 2, as shown in Fig. 7 (B).
  • the slope walls 3 3 a-3 3 at the bent portions N,, 2, N 3 are flat in the direction of the ridgeline of the top 3. For this reason, in the former corrugated strip, both oblique walls 23a-23b having different curvatures in the respective parts in plan view are formed.
  • the top of the meeting will sharpen sharply, so maintain the cross-sectional shape near any of the tops over the entire length of the corrugated strip.
  • the top of each zigzag fold is the cross section of the zigzag fold.
  • the flexibility to maintain the shape is high, but the rigidity decreases as the distance from the bent part decreases, and the top part tends to maintain the cross-sectional shape as a whole. Sex is greatly reduced compared to the former. For this reason, in the latter case, the maximum stress for the out-of-plane compressive force at the top and bottom of the composite corrugated body using the corrugated row is significantly higher than that of the former. It will be small.
  • the buckling deformation due to the external force of the entire slope wall in the generatrix direction is likely to be triggered by the stress deformation at the top and bottom. Works extremely effectively to enhance
  • the fact that the vicinity of the top of each corrugated strip is highly rigid as described above means that the flat plate liner is heated and pressed into the corrugated strips. Therefore, when laminating, it is possible to increase the pressing force, shorten the ripening time, and increase the productivity.
  • the in-plane compression external force P-P in the axial direction is applied to the zigzag meandering corrugated strip 30 and the inclined wall 33a.
  • the inner ridge line note that each i, j, and each are symmetrical with respect to the bending centerline, and are equal to each other at "o").
  • the zigzag meandering corrugated strip has a bend 34 along the centerline m of each bend, this bend can be seen. 34 acts to induce bending to the in-plane compressive force, and the in-plane compressive strength is extremely low.
  • FIG. 10 a method and an apparatus for producing a composite corrugated body according to the wood invention will be described with reference to FIGS. 10 to 14.
  • FIG. 10 a method and an apparatus for producing a composite corrugated body according to the wood invention will be described with reference to FIGS. 10 to 14.
  • peaks and valleys are alternately formed in a direction orthogonal to the direction of transfer during the transfer of the sheet material to be processed, and a corrugated portion is formed in advance.
  • the process of one-shot processing, and then, the sheet is alternately formed in the circumferential direction on the peripheral surface, with peaks and valleys alternately.
  • the part I is formed by passing between a pair of mirrors, which meanders in a wave form in the axial direction, to form a corrugated sequence meandering in a plane wave form. of :! It consists of a process of bonding a flat liner to at least one of the upper and lower surfaces of the Ruguet line.
  • the edge of the child mirror is shown in an enlarged manner
  • FIG. 10 (A) shows an example of the child mirror 40.
  • peaks and valleys are alternately formed along the circumferential direction on the peripheral surface, and a waveform is formed. These peaks and troughs meander in a waveform along the axial direction to form a large number of corrugated-song rows of teeth 41. Then, the peaks and the tops of the peaks and valleys are formed. The bottom of the valley may be sharpened, slightly curved, or beveled, as shown in Fig. 10 (A).
  • a pair of peripheral rollers 40-40 are formed on the upper and lower sides of the pair of forming rollers 40-40. ⁇ Tanibe They are arranged so that they interlock.
  • peaks and valleys are formed in a waveform along the axial direction on the peripheral surface.
  • the peaks and valleys meander in a waveform along the circumferential direction to form a large number of corrugated row teeth 43.
  • the top of the peak and the bottom of the valley are sharpened as described above. It is bent or slightly curved.
  • the upper and lower pairs are formed so that the upper and lower peaks and valleys are arranged so as to meet each other. is there .
  • a mining roller 44 shown in FIG. 10 (C) according to another example, the peaks and the valleys are alternately arranged along the circumferential direction on the circumferential surface. Are formed, and the corrugated row-shaped teeth 45 composed of these peaks and valleys meander in a waveform along the axial direction of the roller 44. At times, the roller is twisted in the opposite direction between the right and left halves of the roller as the center of the axis of the roller, and the ridges and valleys coincide at the center of the roller. It is formed to do. Other structures are similar to the above.
  • a sheet material 5 made of paper, metal, synthetic resin or the like is fed between the press rollers formed in FIGS. 10 (A) to (C).
  • a wave guide means 60 is provided for applying a wave in advance in the lateral direction of the sheet material 50.
  • a collet is preliminarily provided in front of the microcomputer 40-40 shown in FIG. 1 (A).
  • a substantially plate-shaped guide block 6 ⁇ is provided, and this guide block 61 is provided along the conveying direction of the sheet material 50.
  • the through-passage 62 is horizontal at the inlet side of the sheet material 5 ⁇ as shown in FIGS. 12 (A) to 12 (C).
  • the waveform gradually forms inward, and the waveform at the outlet side shown in FIG. 12 (C) has a relatively large amplitude.
  • the outlet end of this guide block 6 is a pair of upper and lower
  • the guide member 61 is located close to the pinching portion of the roller 410, and the sheet material 50 carried out of the guide block 61 is a forming roller.
  • the wave adding process is performed as described above, and the continuous corrugated core 51 is formed.
  • a supply guide roller 53 for a continuous flat plate liner 52 is provided, and an adhesive is applied to one side.
  • the flat plate liner 52 passes through the supply guide roller 53, the flat plate liner 52 is corrugated by the adhesive.
  • a continuous composite corrugated body 54 bonded and integrated on the upper surface of the core body 51 was manufactured, and the composite corrugated body 54 was cut into a desired size as shown in FIG.
  • a single-sided reinforced composite korge body 10 is obtained.
  • a pair of mats may be used.
  • a plurality of pairs of corrugated rollers 63a to 63G may be provided as shown in FIG.
  • Each of these corrugated rollers has a wavy concave / convex portion 64 along the axial direction on its peripheral surface, and each concave / convex portion 64 has an annular shape along the circumferential direction.
  • the concavities and convexities of the upper and lower corrugated rollers forming each pair are combined with each other.
  • the depth of the wavy concave and convex portions 64 of the pair of corrugated rollers 63 a farthest from the forming roller 40 is small, and the The depth of the wavy irregularities 64 formed on the pair of corrugated rollers 63 b and 63 c increases as the distance from the corrugated roller 40 increases. Still, preferably, bring the roller gap between the above rollers and the roller between 63 a and 63 c closer to the forming roller 40. Teruji is to be small Accordingly, the sheet material 50 gradually becomes deeper and wavy in the lateral direction while passing through these wave length rollers 63a to 63c. After it is formed, it is supplied between the forming rollers 40-40.
  • the wavy irregularities formed on the sheet material 50 are formed.
  • the depth of the corrugation and the amount of stepping in the lateral direction are determined by the corrugated column that is meandering in a waveform by the controller 40-40. When formed into 0, the sheet material does not need to be further stepped in the lateral direction.
  • the forming roller 40 shown in FIG. 10 (A) was used as the forming roller 40. It is possible to use the forming roller 42 shown in Fig. 10 (B) and Fig. 10 (C) instead of the mining roller 40. Wear .
  • the wave addition processing is performed in advance.
  • the corrugated rows meandering in a plane waveform formed by the forming roller 40 are sharpened at the top and bottom as shown in Fig. 14 (A).
  • the top and the bottom are slightly curved to form a narrow band.
  • almost no in-plane tensile stress is formed on the inclined wall surface of each of the meandering corrugated strips.
  • the conventional top and bottom have a wide cross-section trapezoidal shape, which is compared with the corrugated strip where uneven thickness occurs in each part. Therefore, it is very flexible and can be expanded in topological terms.
  • the narrow band W maintains a relation of W ⁇ 0.08 L with respect to the wavelength L of the corrugated cross section wave.
  • the roller forming process In the case of a band-shaped ridge line whose top is slightly curved or chamfered to form a cross-sectional shape, the roller forming process However, in-plane tensile stress is generated on the sloped wall of each corrugated strip, but it is very slight, so that elongation deformation within 0.8% occurs in the direction of the slope generatrix.
  • the corrugated row is formed to meander in a zigzag shape as in the conventional case
  • it is broken in the bent portion in the direction of the central axis of the mountain at the bent portion. That is, in the case of the present invention, in addition to the fact that the sheet material has been subjected to wave addition processing before reaching the forming roller.
  • the ridgeline or ridgeline of the mountain formed on the peripheral surface of the forming roller is corrugated and substantially meanders smoothly.
  • the sheet material is pressurized between the hill of one forming roller and the hill of the other forming roller, the sheet is locally localized on the sheet.
  • the ridge line is not concentrated on the tensile stress.
  • the stress is dispersed into relatively long line segments, and as a result, the in-plane strain deformation of the sheet material becomes very small, and even with a sheet material such as paper. Even without breaking beyond the strain limit, complete roller forming is performed.
  • the work sheet in the roller forming process has a sharp step of about 30 to 5% in the direction perpendicular to the axis of the corrugated row.
  • the bending portion at the top of the tooth form of the forming roller of the present invention has a curved shape and does not have a zigzag-shaped projection, a sheet necessary for the above-mentioned step-repeat is required. Does not interfere with the smooth sliding of the roller on the tooth form of the roller.
  • the sheet to be processed in the roller forming process has a step repeat of about 5 to 10% along the axial direction of the corrugated row.
  • the top of the tooth form of the forming roller is meandering smoothly and axially in the axial direction, fine adjustment of the stepping amount is required.
  • the minute movement of the sheet material in the axial direction is smoothly performed.
  • the amplitude ratio HL, meandering polymerization rate DZL, and meandering rate L of the corrugated rows are set to be large, and there is no hindrance to the forming process even when the stepping amount is large. It becomes something.
  • a single-side reinforced composite corrugated body in which a flat plate liner is adhered to one side of a corrugated core has been described.
  • Various excellent strengths can be obtained by forming a trace structure by the liner and the corrugated core.
  • the double-sided reinforced composite collage in which a flat plate liner is bonded to both sides of the collage core body in addition to the above-described embodiment.
  • the out-of-plane compressive strength, out-of-plane bending strength, and in-plane compressive strength are lower than those of a single-side reinforced composite corrugated body, because the extra-struc- ture structure becomes stronger. In comparison-it is clear that the increase is dramatic
  • the corrugated core and the flat plate liner according to the above invention are not only formed by paper, but also made of a plastic material such as a metal sheet, a synthetic resin sheet, a foil.
  • Thermoplastic materials such as film, synthetic resin fibers, woven or non-woven fabrics made of ceramic fibers, carbon fibers, etc., or combinations of the above materials as appropriate. Formed.
  • a corrugated row formed by alternately applying peaks and valleys to a sheet material is made to meander in a plane waveform.
  • Ii 3 ⁇ 4c Not limited to a curved meandering, it may be a discontinuous curved shape which is substantially continuous, or a bent portion (top ⁇ bottom of a plane meandering wave) While it is formed in a curved shape, it may have a straight portion in the middle, or may have a meandering shape continuously formed in a trapezoidal shape, and each corner thereof.
  • the curved or curved shape may be curved like a chamfer.
  • each corrugated strip includes a flat plate-shaped part, so that the sloped wall consists of a continuous curved surface.
  • Out-of-plane compressive strength and the hardness of the top and bottom portions are slightly lower than those of the preferred embodiment of the present invention, but are significantly superior to those of the conventional zigzag meandering. There is no change in having various strengths.
  • an example in which the top of the cross-sectional wave of the colrugated row is formed as a ridge or a bottom is formed as a ridge or a narrow band, but the top and the bottom are all ridges. It is not necessary to limit the width of the corrugated row to a narrow band, and the top may be formed as a ridge and the bottom may be formed as a narrow band or vice versa.
  • the lengths in the generatrix direction of the two sloped walls are not limited to isosceles triangles having equal lengths, and may be triangular shapes having different lengths.
  • the amplitude ratio HZL of the cross-sectional wave of each corrugated row is set to 0.2 or more, so that the out-of-plane compressive strength is increased. That is, the meandering polymerization rate DL between the corrugated rows in the surface shape is set to 0.5 or more, and the meandering rate of each of the corrugated rows is set to 0.2. With the above, the out-of-plane bending strength can be increased.
  • the corrugated column having the above-described amplitude rate, meandering polymerization rate, and meandering rate is further meandered in a waveform, so that it is particularly meandered in a zigzag manner.
  • it has outstandingly superior out-of-plane compressive strength, joint strength with a flat liner, and in-plane compressive strength.
  • the composite corrugated body of the present invention can provide a durable and inexpensive packaging material, interior panel, and the like. Further, in the method for producing a composite corrugated body of the present invention, the sheet to be worked is added to the sheet material before passing the work sheet between the heat rolls. Since the peaks and valleys are formed in the soybeans in a direction perpendicular to the transfer direction and the corrugated processing is performed in advance, the sheet material is sharply reduced during rolling. Since it is not stepped in the mn direction, even a non-extensible sheet material such as paper can be forged at high speed without damaging it. -It can be passed through a mining roller to improve production efficiency.
  • the mountain part is formed in advance in the lateral direction of the material to be added in front of the parent roller.
  • a corrugated guide means for alternately forming a valley and a valley is provided, and the peripheral surface of each of the mining rollers is formed along one direction along the mountain.
  • the valleys are formed alternately, the ridges and the valleys are formed to meander in a waveform along the direction intersecting this one direction.
  • the peaks and valleys in which the stress that bends the sheet material meanders in the waveform of the front roller. It is dispersed by the part and the stepping can be adjusted, and the sheet material is not stretched and damaged. It is subjected to a pressure E of the co-Ruge over Bok ridges at the speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A compound corrugated body wherein, in order to increase its strength, a core of the corrugated body is formed in such a way that rows of corrugation are formed by providing top portions and bottom portions alternately in a direction perpendicular to a sheet material and, at the same time, said rows of corrugation are formed into a plane waveform having a zigzag line so that the ratio of amplitude of each sectional wave of the rows of corrugation, H/L (L: wavelength, H: amplitude), is more than 0.2 and the ratio of compound zigzagging in a plane configuration between rows of corrugation, D/L (D: amplitude of plane zigzag wave) is more than 0.5; further, ratio of zigzagging of each row of corrugation in a plane configuration, N/L (N: wavelength of plane zigzag wave) is more than 0.2; wherein a flat liner is adhered to at least one side of said core of corrugated body. Said compount corrugated body is formed by forming top portions and bottom portions alternately in a direction perpendicular to the direction of transfer during the transfer of sheet material to be treated to give in advance corrugation thereon; passing thereafter the sheet between a pair of forming rollers having top portions and bottom portions alternately in a circumferential direction on the circumferential surface thereof, said top portions and bottom portions being zigzagged in a waveform in the axial direction of said rollers, so that rows of corrugation having a shape of plane wave formed into a zigzag line being formed; adhering a flat liner to at least one of the upper and lower surfaces of the rows of corrugation.

Description

an  an
明 複合 コ ルゲー 卜 体並びに そ の製法及び装置 技 術 分 野 本発明 は被加 工 シ ー 卜 材 に 垂直方向の 山 部 と 谷部 と を交互 に 施 し て コ ルゲ ー 卜 条列を形成する と と も に こ の コ ルゲ ー 卜 条列 を平面的 に 蛇行 さ せ て コ ルゲ ー 卜 芯体を形成 し 、 こ の コ ルゲ ー 卜 芯体の少な く と も片方の面 に平板ライ ナ ー を接着 し て な る 複合 コ ルゲ ー 卜 体並び に そ の 製法及び装置に 関 す る も ので ある 。 背 景 技 術 従来の こ の種の複合コ ルゲ ー 卜 体 と し て は 、 米国特許第 2 , 9 6 3 , 1 2 8号明細 書に 示す よ う に 、 シ ー ト 材の垂直方向 に 山 部 と 谷部 と を交互に施 し て コ ルゲ ー 卜 条列を形成する と と も に こ れを ジ グザグ状 に 配列 し て コ ルゲー 卜 芯体を形成 し 、 こ の コ ルゲー 卜 芯体の 両面に 平板 ラ イ ナ ー を接着 し た 複合 コ ルゲ 一 卜 体が提案さ れて い る 。  The present invention relates to a composite corrugated body, a method for producing the same, and an apparatus for the same. Technical Field The present invention provides a corrugated row by alternately applying vertical peaks and valleys to a workpiece to be processed. At the same time, the corrugated row is meandered planarly to form a corrugated core, and at least one side of the corrugated core is flat-plated. The present invention relates to a composite corrugated body to which a nanoparticle is adhered and a method and an apparatus for producing the same. BACKGROUND ART As a conventional composite corrugated body of this type, as shown in U.S. Pat. No. 2,963,128, the vertical direction of a sheet material is used. The ridges and valleys are alternately applied to form a corrugated array, and the corrugated cores are arranged in a zigzag pattern to form a corrugated core. A composite corrugated body in which a plate liner is adhered to both sides of the body has been proposed.
上記の よ う な複合コ ルゲー 卜 体 に お ける コ ルゲー 卜 芯体を 製造す る に は 、 成形 さ れる コ ルゲ ー 卜 条列 に 対応 し た 凹凸面 を有 する一対の ロ ー ラ 間 に被加工 シ ー 卜 を供給 し て プ レ ス形 成す る ロ ー ラ フ ォ ー ミ ン グ法が最も高速かつ経済的 に し て 実 用 的な方法 と さ れてい る 。 In order to manufacture a corrugated core in a composite corrugated body as described above, a corrugated core is manufactured by forming a corrugated core between a pair of rollers having an uneven surface corresponding to a corrugated row to be molded. Supplying the work sheet and pressing The resulting roller-forming method is considered to be the fastest, most economical and practical method.
し か し な が ら 、 上記米国特許に 示さ れた よ う な コ ルゲ ー 卜 芯体を紙や金属な ど よ う に殆 ど延伸性を有 し な い被加 工シ ー 卜 か ら ロ ー ラ フ 才 一 ミ ン グ法で形成す る場合 、 こ の被加 工 シ 一 卜 はジ グザグ状の角付屈曲部付近が フ ォ ー ミ ング ロ ー ラの 歯型頂部の角付突起部 に よ り 面外か ら 加圧 せ し め ら れつ つ所 定 の角'付形状 に形成 さ れる こ と に な り 、 その屈曲部付近 に お け る 引 張応力 の集中が他の部位の そ れ よ り も著 し く かつ 急激 で あ る た め 、 シ ー 卜 材の面内歪み変形を 引 き起 こ し 、 つ い に は歪限界を越え て シ ー 卜 材の破断に 至る こ と が多い  However, a corrugated core such as that shown in the above-mentioned U.S. Patent is applied to a work sheet having almost no stretchability, such as paper or metal. -When formed by the roughing method, the work piece is to have a zig-zag horn-shaped bend in the vicinity of the horn-shaped projection on the top of the forming roller tooth. The pressure is applied from the outside by the part, and it is formed into a predetermined shape with a corner, and the concentration of the tensile stress near the bent part is reduced to other parts. It is more remarkable and more abrupt than that, causing in-plane strain deformation of the sheet material, eventually exceeding the strain limit and causing the sheet material to break. Often
ま た 、 ロ ー ラ フ 才 ー ミ ング法で こ の ジ グザグ状コ ルゲー 卜 体を加 工 す る場 口 、 加 ェ シ一 卜 は コ ルゲ ー 卜 条列の軸直交 方向 に多量かつ 急激な段繰 り を不可欠 と する が 、 フ 才 一 ミ ン グ ロ一ラ の ジ グザグ状歯型頂部の屈 曲 部を角付突起 と す る た め 、 上記シ ー 卜 が上記歯型上 に お け る円 滑なる摺動を妨げ ら れ、 所定の 段繰 り が行なわ れず し て コ ルゲ ー 卜 体の条列 に 平 行線状 と な る よ な引裂破損を各斜壁面上 に 引 き起こ す こ と を常 と し て い た 。  In addition, when the zigzag-shaped corrugated body is processed by the rolling method, a large number of sharpened parts are formed in the direction orthogonal to the axis of the corrugated row. Although it is essential that the step bend smoothly, the bent sheet at the top of the zig-zag tooth profile of the Min-Migler is formed as a square projection, so that the sheet is placed on the tooth profile. Smooth sliding of the corrugated body is prevented from being carried out at a predetermined step, and tears on the inclined wall are formed on the sloped wall of the corrugated body. Was always up to the task.
ま た 、 こ の ロ ー ラ フ 才 ー ミ ン グ法で ジ グザグ状コ ルゲー 卜 条列 を形成 す る場合 、 こ の被加 工 シ ー 卜 は コ ルゲ ー 卜 条列 の 軸直交方向 だけでな < そ の軸方向 ( 長手方向 ) に も段繰 り を 不可欠 と さ れ、 特に そ の 段繰 り に 際 し て 段繰量の微調整の た め に 歯型頂部の嚙み合い 時に シ ー 卜 の軸方向へ の微小な る移 動 が 円 滑に 行なわ な け ればな ら な い が 、 ジ グザグ状 コ ルゲ ー 卜 加 工用 ロ ー ラ の 歯型の角付屈 曲突起部 に よ り 、 そ の 円 滑な 移動 が妨げ ら れ 上記段繰 り が充分 に 行なわ れ得な い 。 そ の結 果 、 コ ルゲ ー 卜 条列 の軸 直交方向 に シ ー 卜 の 引 き 裂き破損 と 余剰皴が発生 せ し め ら れる 。 Also, when forming a zig-zag-shaped colgate row by this rolling method, the work sheet is only in the direction perpendicular to the axis of the collet row. In the axial direction (longitudinal direction), it is indispensable to repeat the step, especially when adjusting the amount of step in order to fine-adjust the step amount. Small movement in the axial direction of the sheet The movement must be smooth.However, the smooth movement of the zigzag-shaped corrugated processing roller is achieved by the horn-shaped bending projection of the tooth shape of the roller. The above steps cannot be performed satisfactorily. As a result, tearing of the sheet and excess wrinkles are generated in the direction perpendicular to the axis of the corrugated row.
上記何れの 卜 ラ ブルも高速の ロ ー ラ フ ォ ー ミ ン グ時 に お い て は不可避的 に 発生 し 、 こ の よ う な ジ グザグ状 コ ルゲ ー 卜 条 列 を有す る複合 コ ルゲー 卜 休の実用 化 は不可能 と さ れ て い た こ の よ う な米国特許の 問題点 を解決 す る も の と し て 特公昭 5 4 一 2 3 0 3 5 号 に 係る複合 コ ルゲ ー 卜 体が提案さ れて い る  Any of the above-mentioned troubles is inevitably generated during high-speed roller forming, and is a complex core having such a zigzag-like collet sequence. In order to solve the problem of the U.S. patent, which had been considered impossible to be put into practical use, a composite korge according to Japanese Patent Publication No. 541-23305 was proposed.ー The body has been proposed
こ の 公知 の複 合コ ルゲ ー 卜 休 で は垂直方向 に 台形状の波頭 及び波底を交互 に 施 し て コ ルゲ ー 卜 条列 を形成 し 、 更 に こ の コ ルゲー 卜 条列を平面波形 に 蛇行さ せ て コ ルゲ ー 卜 芯体を形 成 し 、 こ の コ ルゲ 一 卜 芯体の両面 に 平板 ラ イ ナ ー を接着 し た も の が開示さ れ て い る 。  In this known composite corrugated break, a trapezoidal wave front and a wave bottom are alternately applied in the vertical direction to form a corrugated line, and further, the corrugated line is planarized. There is disclosed a corrugated core formed by meandering in a waveform, and a flat plate liner bonded to both surfaces of the corrugated core.
し か し なが ら 、 こ の特公昭 5 4 — 2 3 0 3 5 号 に係る複合 コ ルゲ ー 卜 体で は そ の コ ルゲ ー 卜 芯体を比較的肉厚で圧延或 い は延伸可能な シ ー 卜 材か ら 形成する必要が あ り 、 形成さ れ た コ ルゲ ー 卜 芯体の斜壁面 は水平な頂 * 底部 に 比べ て そ の 母 線方向 に 2 0〜 3 0 % 引 き伸 ばさ れて著 し い 偏 肉 と さ れ 、 位 相幾何学的 に展開不能な構造 と な っ て い る 。 '  However, in the composite corrugated body according to Japanese Patent Publication No. 54-23035, the corrugated core can be rolled or stretched with a relatively large thickness. It is necessary to form the core of the formed corrugated core by 20 to 30% in the direction of its generatrix compared to the horizontal top * bottom. When stretched, it is considered to be a significant thickness deviation, and it has a structure that cannot be expanded in topological geometry. '
こ の た め 、 紙等の よ う に 殆 ど伸縮性を有 し な いシ ー 卜 材を 用 い た 場合 に は斜壁面 に お い て 破断 し て し ま う し 、 ま た 圧延 可能な シ 一 卜 材を用 い た 場合 に お い て も斜壁面 に お い て 破断 し ゃ す く 、 こ の部分に お い て強度低下が著 し い も の と な っ て し ま ラ 。 For this reason, when a sheet material such as paper that has almost no elasticity is used, it will break on the inclined wall surface and be rolled. Even when using a sheet material that can be used, even if it is used, it will easily break on the slope wall, and the strength will be significantly reduced in this part. .
更 に 大きな 問題点は 、 こ の 複合 コ ルゲー 卜 体の コ ルゲー 卜 条列を 平面的 に 見 た 場合に 、 隣接す る コ ルゲ ー 卜 条列 の波形 に 蛇行 し た 頂部 ( 稜線部 ) が相互 にその 間 隔を大 と し て お り ま た そ の頂部の蛇行形の 振幅が上記間 隔 に 比 し て 極め て 小で あ り 、 隣接 する条列 の蛇行形が相互に粗込 ま れ て重 台 する度 合いを著 し く 微小 と し て い る 。 こ の た め こ の コ ルゲ ー 卜 条列 に 接着さ れた平板ラ イ ナ ー は こ の コ ルゲー 卜 条列 間 に お い て 折れ曲 が り や す く 、 特 に 条列 の軸直交方向の 面外曲 げ強度 は 極め て 小さ い も の と な っ て い た 。 発 明 の 開 示 本発明 は 上記の よ う な 問題点 に 鑑みて な さ れ た も ので 、 そ の 第 "] の 目 的 は特に面外圧縮強度, 面外曲 げ強度及び面内圧 縮強度の全て に お い て 従来よ り 格段に 優れ た 強度を有 す る複 合 コ ルゲー 卜 体を提供する に あ る 。  An even greater problem is that, when the corrugated rows of this composite corrugated body are viewed in a plan view, the peaks (ridges) meandering in the waveforms of the adjacent corrugated rows. The amplitude of the meandering shape at the top of the gap is extremely small as compared to the above spacing, and the meandering shape of the adjacent rows is roughened to each other. The degree to which they are placed on top of each other is extremely small. For this reason, the flat plate liner adhered to the corrugated row is easy to bend between the corrugated rows, especially the axis of the row. The out-of-plane bending strength in each direction was extremely small. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the purpose of the "] is particularly to achieve out-of-plane compression strength, out-of-plane bending strength, and in-plane compression strength. It is an object of the present invention to provide a composite corrugated body having a significantly superior strength in all of the above.
ま た 、 本発明 の第 2 の 目 的 は紙等の よ う に 殆 ど延伸性を有 し な い シ 一 卜 材か ら ロ ー ラ フ 才 一 ミ ング法を用 い て平面的に 蛇行 し た コ ルゲー 卜 条列 を有 す る コ ルゲ ー 卜 芯体を形成 す る と と も に 、 こ の コ ルゲー 卜 芯体を用 いて 上記複合コ ルゲー 卜 体を製造す る方法を提供 す る に あ る 。 ま た 、 本発明の第 3 の 目 的 は上記複合 コ ルゲ一 卜 体を製造 す る 方法を実施する た め の好適な装置を提供す め る Further, the second object of the present invention is to meander planarly from a sheet material having almost no extensibility, such as paper, by using a roll roughing method. The present invention also provides a method for forming a corrugated core having the above-mentioned corrugated column and a method for producing the above-mentioned composite corrugated body using the corrugated core. I have to. Further, a third object of the present invention is to provide a suitable apparatus for carrying out the method for producing the above-mentioned composite collagen body.
上記第 1 の 目 的を達成す る た め 、 本発明 に 係る 複合 コ ルゲ 一 卜 体で は 、 シ ー 卜 お に 垂直方向 の 山 部 と 谷部 と を交互 に施 し て コ ルゲ一 卜 条列 を形成 す る と と も に コ ルゲ ー 卜 条列 を平 面波形 に蛇行さ せ て コ ルゲ ー 卜 条列の各々 の 断面波の振幅率 H / L ( し : 波長 , H : 振幅 ) を 0 . 2 以 上 と し 、 平面形状 に お ける コ ルゲ ー 卜 条列間 の蛇行重台率 D / L ( D : 平面蛇 行波の 振幅 ) を 0 . 5 以上 と し 、 更に 平面形状 に お け る コ ル ゲー 卜 条列の各々 の蛇行率 N / し ( N : 平面蛇行波の波長 ) を 0 . 2 以 上 と し て コ ルゲ ー ト 芯体を形成 し 、 コ ルゲ ― 心 体の少な く と も 片面に 平板 ラ イ ナ ー を接 着 し て な る ので あ る ま た 、 上記第 2 の 目 的を達成 す る た め 、 本発明 に係る 複合 コ ルゲ一 卜 体の製法で は 、 被加 ェ シ ー 卜 材を移送する 間 に 移 送方向 と 直交 す る方向 に 山 部 と 谷 部を 交互 に 形成 し て 予め コ ルゲ一 卜 加工 を施 し 、 次 いで こ の シ ー 卜 を 周面上の 円 周方向 に 山 部 と 谷部を交互 に 有す る と と ち に こ れ ら の 山 · 谷部を軸 方向 に波形 に蛇行さ せ て な る一 対の フ 才 ー ミ ン グ ロ一ラ 間 に 通過さ せて 平面波形 に 蛇行 し た コ ルゲ一 卜 条列 を形成 し 、 こ れ ら の コ ルゲ ー 卜 条列の少な く と も 上下何れか 一方の面に 平 板ラ イ ナ ー を接着 し て な る の で あ る 。  In order to achieve the first object, in the composite corrugated body according to the present invention, the peaks and valleys in the vertical direction are alternately applied to the sheets. While forming the rows, the corrugated rows are meandering in a plane waveform, and the amplitude ratio H / L of the cross-sectional waves of each of the rows of the corrugated rows (where: H, amplitude: ) Is set to 0.2 or more, the meandering weight ratio D / L (D: amplitude of the meandering plane wave) between the corrugated rows in the plane shape is set to 0.5 or more, and The corrugated core is formed by setting the meandering rate N / of each of the corrugated rows in the shape (N: wavelength of the plane meandering wave) to 0.2 or more, and forming a corrugated core. A flat plate liner is adhered to at least one side of the body, and to achieve the second purpose, the book According to the method of manufacturing a composite corrugated body according to the present invention, peaks and valleys are alternately formed in a direction orthogonal to the transfer direction during the transfer of the material to be added. Then, the sheet is alternately provided with alternating peaks and valleys in the circumferential direction on the peripheral surface, and these peaks and valleys are corrugated in the axial direction. A pair of corrugated strips that meander in a plane waveform by passing between a pair of mirrors that are meandered to form a corrugated strip are formed. At least one of the upper and lower surfaces of the rows is bonded with a flat plate liner.
更 に ま た 、 上記第 3 の 目 的を達成する た め 、' 本発明 に係る 複合 コ ルゲ一 卜 体の製造装置で は 、 被加 工 シ ー 卜 材の搬送路 を横切る よ う に 一対の 波付用 フ 才 ー S ン グ ロ ー ラ を設け 、 フ 才 ー ミ ン グ ロ ー ラ の各々 に はそ の周面の一方向 に 沿 っ て 山 部 と 谷部を交互 に形成する と と も に 該ー方向 と 交叉する方向 に 沿 っ て 山 部 と 谷部を波形に 蛇行さ せ て 形成 し 、 搬送路 に お け る -- 対の フ ォ ー ミ ン グ ロ ー ラ の手前 に は シ 一 卜 材の横方向 に 沿 っ て 予 め 山 部 と 谷部 を交互 に 形成 す る た め の 波付ガ イ ド 手 段を 設け 、 フ 才 一 ミ ン グ ロ 一 ラ を通過する こ と に よ っ て 形成 さ れた コ ルゲ — 卜 芯休の上下何れか一 方の 面 に 平板ラ イ ナ ー を接着する手段を設け て なる ので あ る 。 In addition, in order to achieve the third object, the apparatus for manufacturing a composite corrugated body according to the present invention may be configured such that the composite corrugated body is paired so as to cross a conveying path of the sheet material to be processed. Establish a corrugation filter for In each of the mining rollers, the ridges and valleys are alternately formed along one direction of the peripheral surface thereof, and the ridges are formed along the direction intersecting the direction. And valleys are formed in a meandering wave form, and are placed on the transport path.Before the pair of forming rollers, a mountain is required along the lateral direction of the sheet material. A corrugated guide is formed by providing a corrugated guide means for alternately forming a valley and a valley, and passing through a mirror. A means for bonding a flat plate liner to one of the upper and lower surfaces of the rest is provided.
本発明 の 上記及び他の 目 的 、 構成並び に 利点 は 、 添附図 面 を 参照 し て 以下 に 詳述 す る実施例 の記載か ら 明 ら か と なるで あ ろ ろ 。 図面の簡単な 説明 第 1 図 は本発明 に用 い る 複 合 コ ルゲ ー 卜 体の平板ラ イ ナ ー を一部破断 し て 示 す 部分斜視図 ;  The above and other objects, configurations and advantages of the present invention will become apparent from the description of the embodiments which will be described in detail below with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial perspective view showing a partially broken flat liner of a composite corrugated body used in the present invention;
第 2 図 は ( A ) 〜 ί F ) は複合 コ ルゲー ト 体を構成する コ ルゲ ー ト 条の 断面形状で 、 そ の波長 と そ の 波高 と の 関係を示 す図 ;  Fig. 2 shows (A) to (F) the cross-sectional shapes of the corrugated strips constituting the composite corrugated body, showing the relationship between the wavelength and the wave height;
第 3 図 ( Α ) 〜 ( Ε ) は複合 コ ルゲ ー 卜 体を構成する コ ル ゲ ー 卜 条列 の異 な っ た 蛇行重合率 に お け る コ ルゲ ー 卜 条列 間 の位置関係 と コ ルゲ一 卜 条 と平板ラ イ ナ ー と の位置関係を示 す 図 :  Fig. 3 (Α) to (Ε) show the positional relationship between the corrugated columns in the different meandering polymerization rates of the corrugated columns constituting the composite corrugated body. Diagram showing the positional relationship between the corrugated strip and the plate liner:
第 4 図 は蛇行重合率 と 振幅率 と面外最大曲 げ強度指数 と の 一 Ί 一 関係を 示す グ ラ フ ; Figure 4 shows the relationship between the meandering polymerization rate, the amplitude rate, and the maximum out-of-plane bending strength index. A graph showing the relationship;
第 5 図 ( Α ) 〜 ( D ) は複合 コ ルゲ ー 卜 体を構成す る コ ル ゲ ー 卜 条の異な っ た 蛇行率を示 す 図 ;  Fig. 5 (Α) to (D) show different meandering rates of the corrugated strips constituting the composite corrugated body;
第 6図 は蛇行重合率 と 振幅率 と 面外最大 曲 げ強度指数 と の 関係を示 す グ ラ フ :  Figure 6 shows the relationship between meandering polymerization rate, amplitude rate, and out-of-plane maximum bending strength index:
第 7 図 ( Α ) 及び ( Β ) は 、 そ れぞれ波形 に蛇行さ せ た コ ルゲ ー 卜 条 と ジ グザグ状 に 蛇行さ せ た コ ルゲ ー 卜 条の 一 部を 示す 断面図 ;  Fig. 7 (Α) and (Β) are sectional views showing a part of the corrugated strip which is meandering in a waveform and a part of the corrugated strip which is meandering in a zigzag shape, respectively;
第 8 図 は波形 に 蛇行 さ せ た コ ルゲ ー 卜 条 と ジ グザ グ状 に 蛇 行 さ せ た コ ルゲ ー 卜 条の そ れぞれの 頂部の 軌跡を重合 し て 表 わ し た線図 :  Fig. 8 shows the superimposed traces of the corrugated corrugated strip and the zigzag corrugated corrugated strip. Figure:
第 9 図 ( A ) 及 び ( B ) は 、 そ れぞれ ジ グザグ状 に 蛇行さ せ た コ ルゲ一 卜 条 と 波形 に 蛇行 さ せ た コ ルゲ 一 卜 条 に 作用 す る 面内圧縮力 の説明 図 ;  Figures 9 (A) and (B) show the in-plane compressive force acting on the zigzag zigzag corrugated strip and the corrugated zigzag corrugated strip, respectively. Description of figure;
第 1 0図 ( A ) 〜 ( C ) は本発明 に用 い ら れる フ ォ ー ミ ン グ ロ ー ラ の 異なる例 を示 す 部分斜視 図 : 第 1 1 図 は本発 明 の 装置の一実施例 を示す斜視図 ; '  FIGS. 10 (A) to 10 (C) are partial perspective views showing different examples of a forming roller used in the present invention: FIG. 11 is an example of the apparatus of the present invention. Perspective view showing the embodiment;
第 1 2 図 ( A ) 〜 ( C ) はそ れぞれ第 1 図 に お け る ガ イ ド ブ ロ ッ ク の ( A ) 〜 ( C ) に 洽 つ た 断面図 :  FIGS. 12 (A) to 12 (C) are cross-sectional views of the guide blocks shown in FIG.
第 1 3 図 は本発明 の装置の他の実施例 を示す斜視図 : 第 1 4 図 ( A ) 及び ( B ) はそ れぞ本発明 に よ っ て 形成さ れる コ ルゲ ー 卜 条の 断面図 で あ る 。  Fig. 13 is a perspective view showing another embodiment of the device of the present invention: Figs. 14 (A) and (B) are cross-sectional views of a corrugated strip formed according to the present invention. It is a diagram.
発明 を実施する た め の最良の形態 以下に本発明 の好適な実施例 に つ い て 添附図面を参照 に し て 説 明する 。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
第 1 図 は本発明 に 係る 片面強化複合コ ルゲ一 卜 体 Ί 0 を示 し 、 こ れ は コ ルゲ ー 卜 芯体 1 1 と 平板ラ イ ナ一 Ί 2 と か ら 構 成さ れて い る 。 こ の コ ルゲー 卜 芯体 Ί 1 は垂直方向 に 山 部 M と谷部 V と を施 し た も の を ズ 方向 に 交互 に施 し て形成 し た コ ルゲ一 卜 条列 Ί 3 を 平面的 に y 方向 に 波形 に蛇行 さ せ 、 こ れ ら コ ルゲ ー 卜 条列相互を平行 と し て い る 。 そ し て 、 平扳 ラ イ ナ一 Ί 2 は こ の コ ルゲ一 卜 条列 1 3 の 山部 M に お いて コ ルゲ ー 卜 条列 1 3 と 一体的 に 接着 さ れ て い る 。  FIG. 1 shows a single-side reinforced composite corrugated body Ί0 according to the present invention, which is composed of a corrugated core body 11 and a flat plate liner 一 2. . This corrugated core Ί 1 is a plan view of a corrugated column Ί 3 formed by alternately applying the peaks M and the valleys V in the z-direction in the vertical direction. In the meantime, the waveform is made to meander in the y-direction, and these corrugated rows are parallel to each other. The flat liner 2 is integrally bonded to the corrugated line 13 at the mountain M of the corrugated line 13.
こ の コ ルゲ一 卜 芯体 1 1 の コ ルゲ一 卜 条列 Ί 3 の形状 は 、 第 Ί 図 に おける振幅率 Η / し , 蛇行重合率 D Z L 及 び蛇行率 D / N に よ つ て規定 さ れる 。 こ こ で振幅率 H ノ し と は コ ルゲ ー 卜 条列 1 3 を第 1 図 に お け る 方向 の垂直面で 切 断 し た 断 面波の振幅 Η と 波長 L と の 関係を示 し 、 第 2 図 ( a ) 〜 ) に は Η を一定 に し て L を種々変え た 場合の振幅率を示 し て い る 。 こ の 図か ら 明 ら かな ょ ラ に 、 振幅率が大ぎ < な る につ れ て 断面波 は 、 そ の底面 と の間 に な す角 Θ が徐々 に 大き く な つ て 立上が り 、 その結果断面波の頂点か ら垂直下方に加え ら れ る面外圧縮力 に 対 す る強度は角度 0 に 比例 し て 増大 する と 言 ラ こ と がで き る 。 そ し て 、 H / L が余 り に ち小さ い 時 に は面 . 外圧縮強度が小 さ い だけ で な ぐ 、 当然の こ と な が ら 隣接す る コ ルゲー 卜 条列間 の 間 隔が大き く な り 、 所定面積の コ ルゲ一 卜 芯体に 含 ま れる コ ルゲ ー 卜 条列 の 数も少な く なる 。 従 っ て 実用 範囲 と し て は H ノ L ≥ 0 . 2 と す る こ とで あ る The shape of the corrugated column Ί 3 of the corrugated core 11 is defined by the amplitude ratio Η /, the meandering polymerization ratio DZL and the meandering ratio D / N in FIG. Be done. Here, the amplitude ratio H is the relationship between the amplitude Η and the wavelength L of the cross-section wave obtained by cutting the collimated row 13 along the vertical plane in the direction shown in Fig. 1. 2 (a) to 2) show the amplitude ratios when L is varied while 種 々 is kept constant. As can be seen from this figure, as the amplitude ratio increases, the cross-sectional wave rises with the angle Θ between it and the bottom gradually increasing. As a result, it can be said that the strength against the out-of-plane compressive force applied vertically downward from the top of the section wave increases in proportion to the angle 0. When the H / L is too small, not only the outer compressive strength is small, but also the space between adjacent corrugated rows, as a matter of course. Becomes larger, and The number of corrugated rows included in the core is also reduced. Therefore, the practical range is that H L L ≥ 0.2
蛇行重合率 D ノ L は第 1 図及び第 3 図 に 示 さ れて い る よ に 、 コ ルゲ一 卜 条列を平面的に 見 た 場合 に お け る各コ ルゲ ー 卜 条の振幅 D と 上記断面波の 波長 L と の 関係を示 し て い る 。  As shown in FIGS. 1 and 3, the meandering polymerization rate D / L is the amplitude D of each collet strip in a plan view of the collet strip. And the wavelength L of the cross-sectional wave.
<_ <_ で 、 コ ルゲ ー 卜 条 の平面波の振幅 D 及び波長 N を一 定 に し て 断面波の 波長 L を順次変え た 場合の 隣接 す る コ ルゲ ー 卜 条列 1 3 a , 3 b と 平板 ラ イ ナ ー 1 2 の接合状態 に つ い て 、 第 3 図 ( A ) 〜 ( E ) を参照 に し て 説明 す る 。 こ れ ら の 図 ( A ) 〜 ( E ) は コ ルゲ一 卜 条列 を 平面的 に示 し 、 ズ 方向 に 隣接.す る コ ルゲ ー 卜 条列 1 3 a , Ί 3 の頂部 M 1 , 2 が実線で蛇行状 に 示さ れ 、 こ の 間 に 両条列の谷底部 Vが点線 で示 さ れ 、 S 2 は谷底部 V の 上側接線 、 S 3 は谷底部 V の 中 央横断線 、 B は片面強化複合 コ ルゲ一 卜 体 1 0 の底面を示 し て い る  When the amplitude D and wavelength N of the plane wave of the corrugated strip are fixed and the wavelength L of the cross-sectional wave is sequentially changed, the adjacent corrugated row 13a, 3 The joining state between b and the plate liner 12 will be described with reference to FIGS. 3 (A) to 3 (E). These figures (A) to (E) show the corrugated rows in a plan view and are adjacent to each other in the vertical direction. The tops M1 and M1 of the adjacent corrugated rows 13a, 3 2 is shown by a solid line in a meandering manner, between which the valley bottom V of both rows is shown by a dotted line, S 2 is the upper tangent of the valley bottom V, S 3 is the mid-crossing line of the valley bottom V, B shows the bottom surface of the single-sided reinforced composite corrugated body 10
第 3 図 ( A ) に お け る D Z し = 0 . 4 の と き 、 S , 線 に 沿 つ た 断面位置で は 、 第 3 図 ( A .1 ) に 示 す よ う に コ ルゲ ー 卜 条 Ί 3 a は頂部のみが コ ルゲー 卜 条の波長 NJ と 等間 隔で平板 ラ イ ナ一 1 2 に 接合 し て お り 、 そ の全体 は複合 コ ルゲー ト 体 の底面 B か ら 浮き上が っ た状態 と な っ て いる 。 一方、 S 2 線 に 沿 つ た 断面位置で は第 3 図 ( A 2 〉 に示す よ う に 、 コ ルゲ ー 卜 条 1 3 a は谷底部 V が波長 N と等間 隔で複合 コ ルゲ ー 卜 体の底面 B と 同 レ ベル に あ る が 、 そ の 全体は 平板 ラ イ ナ ー 1 2 か ら分離 し て い る 。 ま た 、 S 3 に 沿 っ た 断面位置で は 、 第 3 図 ( A 3 ) に示す よ う に 両 コ ルゲ一 卜 条 1 3 a , 1 3 b の 中央部 は波長 N の Ί / 2 の 間隔で複合 コ ルゲ一 卜 体の底面 B と周 レ ベル に あ るが 、 そ の全体 は上記 2 線 に 沿 っ た 断面位 置 の場合 と周様に平板ラ イ ナ一 1 2 か ら 大き く 分離 し て い る こ の よ う に D / し 〇 . の と ぎ に は 方向 と 直交 す る 任 意の位置 に お い て y 方向 に 切 断す る と 、 そ の切 断位置 に お け る コ ルゲ ー 卜 条 は複合コ ルゲ一 卜 体の底面 B か ら 浮上 し て い る か或い は平板ラ イ ナ一 1 2 か ら 分離 し て い る 。 こ 'の よ う な 状態 は D / L < 0 . 5 の場合 に 常時発生 す る When DZ = 0.4 in Fig. 3 (A), at the cross-sectional position along the S and line, as shown in Fig. 3 (A.1), Strip 3a is joined only to the flat plate liner 12 at the same interval as the wavelength NJ of the corrugated strip at the top only, and the whole floats from the bottom B of the composite corrugated body It is in a pointed state. On the other hand, the cormorants I is a cross-sectional positions one along the S 2 line shown in FIG. 3 (A 2>, co Ruge over Bok Article 1 3 a composite co Ruge over valley portion V is at equal intervals and the wavelength N It is at the same level as the bottom surface B of the container, but the whole is separated from the plate liner 12. Also, at the cross-sectional position along S3, 3 As shown in Fig. (A3), the center of both collets 1 3a and 13b is at the interval of Ί / 2 of the wavelength N and the bottom B of the composite corrugated body and the peripheral level. However, as a whole, it is largely separated from the flat liner 12 by a large margin around the cross-sectional position along the above two lines. When cutting at any position perpendicular to the direction and cutting in the y-direction, the collet at the cutting position will have the shape of the composite corrugated body. Floating from the bottom surface B or separated from the plate liner 112. This state always occurs when D / L <0.5.
即 ち 、 D / L < 0 . 5 の 片面強化複台 コ ルゲ一 卜 体の 断面 ( A , ) , ( A 2 ) , ( A 3 ) を 卜 ラ ス 溝造 と し て 見 た 場合 卜 ラ スの ゥ エ ツ ブに相 当 する 部分が複合 コ ルゲ一 卜 体の肉厚 全休 ( T ) に 延長す る個所が ない た め 、 X 方向 に 直交す る垂 直面方向 の 曲 げ強度が低い第 1 の 卜 ラ ス搆 と な つ て い る 。  In other words, when the cross-sections (A,), (A2), and (A3) of the single-side reinforced double-unit corrugated body with D / L <0.5 are considered to be ultra-grooves, Since there is no place where the portion corresponding to the metal edge extends to the total thickness (T) of the composite corrugated body, the bending strength in the vertical direction perpendicular to the X direction is low. It is the first trace.
次 に 、 D / L = 0 . 5 の と き は 、 第 3 図 ( B ) に 示 す よ う と S 2 線 と は重複 し 、 こ の線 S , , S 2 に沿 つ た 断面 位置で は 、 第 3 図 ( B ) に 示 す よ う に 、 コ ルゲ一 卜 条 1 3 a は波長 N と等間 隔で平板ラ イ ナ一 1 2 に 接合する と と ち に 複合コ ルゲ ー 卜 体 1 0 の底面 と周 レ べル に な つ て いる 。 こ の ょ ラ に 、 D / L = 0 . 5 の場合に は D ,' L = 0 . 4 の場合 そ の他 D / L < 0 , 5 の場合 と 比較 し 、 S , ♦ S 2 線 ΪΏ つ た 断面部を 卜 ラ ス構 ja と し て見た場合 、 卜 ラ ス の ゥ エ ッ プが 複合コ ルゲ ー 卜 体の 肉厚全体に延長 し て い る た め 、 D / L く 0 . 5 の場台 と構造自体が質的 に異な つ た第 2 の 卜 フ ス JS に 移行 し た こ と に な り 、 全体 と し て お/ 方向 の 面外曲 げ強度が 顕著 に増大す る と 言 う こ と が で き る 。 す なわ ち 、 第 2 の 卜 ラ ス構 ¾で は 、 卜 ラ ス の ウ エ ッ ブの傾斜角が 急 に な り かつ ゥ ェ ッ ブ材 ( 傾斜 す る コ ルゲー 卜 体の線分 ) と フ ラ ン ジ 材 ( 水平 な平板 ラ イ ナ 一 ) で 構成 す る 三角 卜 ラ ス単位 の数が急 に 多 く な っ て い る 。 Next, when D / L = 0.5, as shown in FIG. 3 (B), the line S 2 overlaps with the line S 2, and the cross-sectional position along the lines S, S 2 As shown in FIG. 3 (B), the joints 13a are joined to the flat plate liner 12 at equal intervals from the wavelength N, and then the composite joints It is at the bottom of the body 10 and at the peripheral level. In this case, when D / L = 0.5, D, when L = 0.4 and other D / L <0,5, compared with S, ♦ S 2 line When the cross section is viewed as a truss structure ja, since the L ep of the truss extends to the entire wall thickness of the composite corrugated body, D / L The second platform, JS, which has a qualitatively different platform and structure Therefore, it can be said that, as a whole, the out-of-plane bending strength in the / direction is significantly increased. That is, in the second trace structure, the slope of the web of the trace becomes steep and the web material (the line segment of the inclined corrugated body) and The number of triangular truss units composed of flanged materials (horizontal flat liners) is rapidly increasing.
そ し て、 上記第 2 の 卜 ラ ス構造の質を変えず更 に 強化 し た ち の と し て 、 D / L が 0 . 5 を越え て 例 え ば D / し = 〇 . 8 と な る よ う に 形成 し た ち の が あ り 、 第 3 図 ( C 1 ) 及び ( C Then, assuming that the second trace structure is further strengthened without changing its quality, if D / L exceeds 0.5, for example, D / sh = 〇0.8. As shown in Fig. 3 (C1) and (C
2 ) か ら 明 ら かな よ に、 S , 線 と o 2 線 と の 間で は断面 y 方向の単位長さ に つ い て 見る と 、 コ ルゲ ー 卜 条 1 3 a が 平板 ラ イ ナ一 1 2 に 接合 す る 涸所及び複合 コ ノレゲ 一 卜 体の底面 と 同 レ べルに な る 個所が増え 、 卜 ラ ス の構成密度が更 に 高 ま り こ の S I と S 2 線の 間 、 周 じ < S ' . 線 と S 一 1 線の 間 に お け る面外 曲 げ強度が増大 す る 。 し か し 、 O 1 〜 S 線 の 間 の 区 間 ( こ れ ら の線上を 含 ま な い ) で は 、 S 3 線 に 沿 つ た 断面位.置を 示す第 3 図 ( C 3 ) か ら 明 ら かな よ う に 、 こ れ ら の 断面位置 に お け る コ ルゲ一 卜 条 1 3 a , 1 3 b は全 て 平 板 ラ イ ナ一 1 2 か ら 分離 し て いる 。 2) As can be seen from the figure, when looking at the unit length in the y-direction of the cross section between the S, line and the o 2 line, it is clear that the corrugated strip 13 a is a flat liner. The dry area to be bonded to 12 and the area that is at the same level as the bottom of the composite conoregate unit increase, and the density of the truss is further increased. The out-of-plane bending strength between the circumference <S '. Line and the S-11 line increases. However, in the section between the O1 and S lines (not including on these lines), the cross-sectional position along the S3 line is shown in FIG. 3 (C3). As is evident, all of the corrugated strips 13a and 13b at these cross-sectional positions are separated from the flat plate liner 12.
そ し て 更 に、 D / L = 1 . 0 と な る と 、 第 3 図 ( D ) に 示 す よ う に 、 S 1 線 と S 3 線 と は重複 し 、 こ の線 に 沿 っ た 断面 位置で は コ ルゲ一 卜 条 1 3 a , 3 b は波長 N の 1 κ 2 の 間 隔で平板ラ イ ナ一 1 2 に 接合 する と と も に 複合 コ ルゲー 卜 体 の底面 レ ベル B ま で 波形 と な つ て 延長 し て い る 。 従 っ て 、 D L = . 0の状態で は 、 第 3 図 ( C ) に お い て S , 線〜 S 一 , 線で示 し た よ う な 区間 は消失 し 、 χ 方向 に 直交する任意 の 断面位置に お い て 、 コ ルゲ ー 卜 条 1 3 a , 1 3 は波長 N よ り 充分に 小さ い間隔で平板ライ ナ ー 1 2 に 接合する と と も に 複合コ ルゲ ー 卜 体の底面 レ ベル に ま で延長 し て い る こ と に な り 、 こ れを 卜 ラ ス構造 と し て 見た場合 、 方向 と直交す る 任意の位置に お い て 、 卜 ラ ス が複合 コ ルゲ ー 卜 休の肉厚全体 に 延長する た め 、 0. 5 D ./ L < 1 . 0の場合 と比較 し て 構造が更 に質的 ¾化を遂げた 第 3 の 卜 ラ ス構造 に 移行 し 、 面 外最大曲 げ強度は 0. 5 ≤ D Z L < 1 . 0の場合 と比較 し て — 段 と 増大 す る こ と に な る 。 即 ち 、 単位三角 卜 ラ ス の ゥ エ ツ ァ傾斜角が第 2の 卜 ラス構造 と比較 し て更に急 と な り 、 し か も 平板 ラ イ ナ ー 1 2 と の接合侗所 ま た は 複合コ ルゲー 卜 体の 底面 レベ ル B に到達する個所が増え 、 ま た ウエ ッ ブ材 と フ ラ ン ジ材 と か ら な る三角 卜 ラ ス 単位の数が - - 段 と 多 く な る 。 Further, when D / L = 1.0, as shown in FIG. 3 (D), the S1 line and the S3 line overlap with each other and follow the line. At the cross-sectional position, the corrugated strips 13a and 3b are joined to the flat plate liner 12 at an interval of 1 κ2 of the wavelength N, and the bottom level B of the composite corrugated body It has been extended into a waveform. Therefore, D In the state of L = .0, the section as shown by the S, line to S 1, line in FIG. 3 (C) disappears, and is located at an arbitrary cross-sectional position orthogonal to the 方向 direction. In addition, the corrugated strips 13a and 13 are joined to the flat plate liner 12 at an interval sufficiently smaller than the wavelength N, and are attached to the bottom level of the composite corrugated body. When viewed as a truss structure, at any position perpendicular to the direction, the tras In order to extend to the entire wall thickness, the structure is shifted to the third tracing structure, which is more qualitatively improved than in the case of 0.5 D./L <1.0, and The maximum flexural strength will be significantly higher than when 0.5 ≤ DZL <1.0. Immediately, the unit inclination angle of the triangular trace becomes steeper than that of the second truss structure, and the junction angle with the flat plate liner 12 is increased. The number of locations reaching the bottom level B of the composite corrugated body increases, and the number of triangular trace units consisting of web material and flange material increases to--steps. .
ま た更 に 、 上記第 3の 卜 ラ ス構造の質 を 変えず更 に 強化 し た も の と し て 、 D Zし が Ί . 〇 を越え て 冽え ば 1 . 2 に な る よ う に形成 し た も のがあ り 、 こ の場合 に は第 3図 ( E 1 ) , ( E 2 ) に 示 す よ う に 、 方向 に 直交す る任意の 断面位置 に お い て 、 平板ラ イ ナー Ί 2 と複合コ ルゲ ー 卜 体 と の 間 に延長 す る波形の 波頭が D / L - 1 . 0の 場合 と 比較 し て鋭角化 し す なわ ち 単位三角 卜 ラスの ウエ ッ ブ傾斜角が更 に 急 と な り 、 し かも 平板 ラ イ ナ ー 1 2 と の接合個所ま た は複合 コ ルゲ ー 卜 体の底面 レベル Bに 到達する個所が増え 、 面外最大曲 げ強度 が更 に 増大する 。 こ の傾向 は D / Lが大き く な ればそ れ に 比 例 的 に増大する と 考え ら れる Furthermore, assuming that the quality of the third trace structure is not changed and is further strengthened, the DZ becomes 1.2 when the temperature becomes more than Ί. In this case, as shown in Figs. 3 (E1) and (E2), a flat plate is placed at an arbitrary cross-sectional position orthogonal to the direction. The wave front of the waveform extending between the knuckle 2 and the complex corrugated body becomes sharper than when D / L-1.0, that is, the web tilt angle of the unit triangular truss The steepness is further increased, and the number of joints with the flat plate liner 12 or those reaching the bottom level B of the composite corrugated body increases, and the maximum out-of-plane bending strength is increased. Increase further. This tendency is expected to increase proportionately as D / L increases.
以上の蛇行重合率 D Z L と 面外最大曲 げ応力 指数 M と の 関 係を振 fe ( H / N - 0.1 , 0.2, 0.3, 0.4, 0.5, 0.6) をパ ラ メ 一タ 定数 に し て グ ラ フ に 示す と 第 4 図 の如 く な る 。 即ち 、 D / し ぐ 0 . 5 の場合 に は 、 各 コ ルゲ ー 卜 条 は第 Ί 図 の任意の位置に お け る y 方向 断面 に お い て 平板 ラ イ ナ一 Ί 2 か ら 分離 し て いる か或い は複 合 コ ルゲ ー 卜 体の 底面 ( B ) か ら 浮上 し て い る た め 面外曲 げ強度 は比 較的小 さ い第 1 の 卜 ラ ス構造が 、 D Lが 0 . 5 に 近づ く に つ れて徐々 に 大き く な つ て い く 。 D / L = 0 . 5 に な る と 、 コ ルゲ ー 卜 条の y 方向 断面の う ち に 平板 ラ イ ナ 一 に 接合す る と と も に 複合 コ ルゲー 卜 体の底面 と 同 レ べ ル に な る 部分が生 じ 、 D / し < 0 . 5 の The relationship between the meandering polymerization rate DZL and the out-of-plane maximum bending stress index M was determined using fe (H / N-0.1, 0.2, 0.3, 0.4, 0.5, 0.6) as a parameter constant. Fig. 4 shows the diagram. In other words, in the case of D / sign 0.5, each of the corrugated strips is separated from the flat plate liner 2 in the y-direction cross section at an arbitrary position in FIG. Or the surface of the composite corrugated body floats from the bottom surface (B), so the out-of-plane bending strength is relatively small. As it approaches 0.5, it gradually increases in size. When D / L = 0.5, it is joined to the flat plate liner at the y-direction cross section of the corrugated strip and at the same level as the bottom of the composite corrugated body. The part which becomes D / <<0.5
¾5 口 と比ベ て 質的 に 異 と する 第 2 の 卜 ラ ス構造 に突然移行 し 、 こ れ に よ つ て 面外曲 げ強度の 上昇率 はそ れ以前 と 比べて 一 段 と 大ぎ く な る 。 D Z L が 0 . 5 を越え て 大ぎ く な る につ れて 上記 の よ う に 平板 ラ イ ナ 一 に 接合す る と と も に 、 複合 コ ルゲ 一 卜 体の底面 と 同 レ ベル に な る y 方向 断面の : C 方向 区分 ( 第¾5 Sudden transition to the second truss structure, which is qualitatively different from the mouth, and the rate of increase in out-of-plane bending strength is much greater than before. It gets worse. As the DZL becomes larger than 0.5, it is joined to the flat plate liner as described above and becomes the same level as the bottom of the composite corrugated body. Of the y-direction section: C-direction section (No.
3 図 ( C ) に お け る S S 2 間及び S 一 1 〜 S 2 間 ) の構 造的 に有利な三角 卜 ラ ス単位の数が徐々 に 増大する た め 、 DBecause the 3 number of structural favorable triangular Bok la scan units of Figure (C) between the contact only that SS 2 and S one 1 ~ S 2 between) is increased gradually, D
/ L が 0 . 5 を越え る と D / し ぐ 0 . 5 の メロ に 比べ て よ り 大き な上昇率 と し た 急な勾配 と な り 最大曲げ ^力 指数が増大 す る 。 そ し て 、 D / Lが 1 . 0 に な る と 、 y 方向 断面の任意 の位置 に おい て 、 コ ルゲ ー 卜 条 は平板ラ イ ナ 一 に 接合する と と ち に 複合 コ ルゲ ー 卜 体の底面 レ ベル ま で延長 す る よ う に な る た め 、 し " に お い て 0 . 5 ≤ D / L < 1 . 0 の場合 と比べ て 第 3 の 卜 ラ ス構造 に 再び突然移行 し 、 面外曲 げ強度は 一段 と 大き く なる 。 そ し て 、 D / L が Ί . 〇 を越え て大さ ぐ な る に つ れ て 、 上記 コ ルゲ一 卜 条が平板 ラ イ ナ 一 に 接合 する個所 及び複合コ ルゲ一 卜 体の底面 ま で延長する個所が増 る た め D / L < 0 . 5 の場合に 比べ て よ り 大きな上昇率 と し た 更 に 急な勾配 と な り 最犬曲げ応力 指数が増大する こ と に なる 。 When / L exceeds 0.5, the steep slope with a larger ascending rate than the melody of D / sigma 0.5 is obtained, and the maximum bending force index increases. Then, when D / L becomes 1.0, at any position in the cross section in the y direction, the corrugated strip is joined to the flat plate liner. In particular, the length of the composite corrugated body is extended to the bottom level. The out-of-plane bending strength suddenly shifts again to the ultrastructure, and the out-of-plane bending strength increases further, and as the D / L increases beyond Ί. Since the number of places where the strips join the flat liner and the places where they extend to the bottom of the composite corrugated body increase, the rate of increase is larger than in the case of D / L <0.5. In addition, the slope becomes steeper, and the ultimate dog bending stress index increases.
上記第 4 図 の グラ フ か ら 明 ら かな よ う に 、 大きな面外曲 げ 強力 を得る た め に 好 ま し い範囲 は D Z L ≥ 0 . 5 で 、 最 も好 適な範囲 と し て は D / し ≥ 1 . 0 と す る こ と で あ る 。 そ し て iu 述 し た よ う に 、 & ?Η率 H ノ L は 0 . 2 以上が好適な範囲で あ る た め 、 両者を満足す る本発明の好適な範囲 は D Z L ≥ 0 5 , H / L > 〇 . 2 の斜線で示 し た 範囲内 と言う こ と がで ぎ る  As is evident from the graph in Fig. 4 above, the preferred range for obtaining a large out-of-plane bending strength is DZL ≥ 0.5, and the most preferred range is DZL ≥ 0.5. D / ≥ 1.0. As described in iu, since the & H ratio L / N is a preferable range of 0.2 or more, a preferable range of the present invention satisfying both is DZL ≥05, H / L> 〇. Within the range shown by the diagonal line
次 に 、 本発明 に係る コ ルゲ一 卜 芯体 1 1 を構成 する コ ルゲ ー 卜 条列 1 3 の形状を規定 す る第 3 の 要素で あ る蛇行率 D / Next, the meandering ratio D /, which is the third element that defines the shape of the corrugated row 13 that constitutes the corrugated core 11 according to the present invention, is described.
N につ い て見る と 、 こ の蛇行率 は各コ ルゲ ー 卜 条を平面的 に 見た 場合の振幅 D と 波長 N と の 関係を示す も の で 、 第 5 図か ら 明'ら かな よ う に 、 N が一定の場合 D Z N が大き く なる に つ れ て コ ルゲ ー 卜 条 は深 く ( 大き く ) 蛇行す る よ う に なる 。 Looking at N, this meandering ratio shows the relationship between the amplitude D and the wavelength N when each of the corrugated strips is viewed in a plane, and it is clear from FIG. Thus, for a given N, as the DZN becomes larger, the corrugated strip will become deeper (larger) and meander.
し <_で、 コ ルゲ ー 卜 条 ( A ) 〜 ( D ) の各々 につ い て蛇行 波の最大傾斜位置 に お け る y 方向 の水平線 と の な す角 α に つ い て見る と 、 D / Ν が大き く な る につ れて ひ が大き く な り 、 こ の蛇行部分 に お い て は 方向 の成分 が徐々 に 大き く な つ て い る 。 こ の こ と は 方向 に直交す る 方向 の 曲 げ応力 に 対応 し<_, And for each of the corrugated strips (A) to (D), the angle α between the horizontal line in the y-direction at the maximum slope position of the meandering wave is As D / Ν increases, the size of the string increases, In this meandering part, the component in the direction gradually increases. This corresponds to the bending stress in the direction perpendicular to the direction.
D /, N が 大き い程大きな強度を有 す る こ と を意味 し 、 実用 上 は D Z N > 0 . 2 で あ れば D / L ≥ 0 . 5 の範囲 に お い て 大 き な最大曲 げ強度を得る こ と がで き る 。 こ の 関係を第 6 図 の グラ フ を示 す と 、 斜線で示さ れ た 曲線部分が本発明の コ ルゲ 一 卜 芯体 Ί 1 の好適な蛇行率 D Z N と 蛇行重合率 D Z L の 範 囲 内 と言 う こ と がで き る The larger D /, N means the greater the strength.In practice, if DZN> 0.2, then the largest song in the range of D / L ≥ 0.5 Can obtain high strength. The relationship shown in the graph of FIG. 6 indicates that the curved portion indicated by the diagonal lines is within the range of the preferable meandering rate DZN and meandering polymerization rate DZL of the korge core Ί1 of the present invention. I can say
以上の 理由 か ら 、 本発明 に お い て 使用 す る コ ルゲ ー 卜 芯体 は 、 好 ま し ぐ は振幅率 H / L > 0 . 2 , 蛇行重合率 D / L ≥ 0 . 5 , 蛇行率 D ノ L > 〇 . 2 と す る こ と で 、 よ り 好 ま し く は H し > 0 . 2 , D / し 1 . 0 . D N > 0 . 2 と する こ と で あ る 。  For the above reasons, the corrugated core used in the present invention preferably has an amplitude ratio H / L> 0.2, a meandering polymerization rate D / L ≥0.5, and a meandering ratio. By setting the ratio D / L> 〇.2, it is more preferable to set H−> 0.2 and D / <1.0.DN> 0.2.
上記の よ に し て 得 ら れ た 本発 明 に 係 る片面強化複合 コ ル ゲ 卜 体を従来公知 の特公昭 5 4 — 2 3 0 3 5 号 に 係る波形 に 蛇行さ せ た コ ルゲ ー 卜 条列 を有 す る複合 コ ルゲ — 卜 体 と 比 較 し た ·¾ □ 、 こ の 図示さ れ た 公知 の複合 コ ルゲ ー 卜 体で は蛇 行重合率 は 0 . 5 よ り 極め て小さ く 、 従 つ て 面外曲 げ強度も 本発明 の 場 合 と 比較 し た ¾ 口 i ^ は者 し く 小 さ な ち の と な る 。 更 に 、 従来の複台コ ルゲ一 卜 体で は コ ルゲ一 卜 条列を形成す る 場合 に 、 そ の一 部を延伸 し て 偏 肉部を形成 す る た め 、 被加 ェ シ ー 卜 が延伸可能な素材に 限定 さ れるだけで'な く 、 そ の 肉 薄部 に お い て 面外圧縮強度が著 し く 低下す る こ と に な る の に 対 し 、 本発明 の複合 コ ルゲ ー 卜 体で は紙等の よ う に実質的に 延伸 し な い シ ー ト 材を 2 方向 に 波付け加 工 す る こ と に よ っ て 形成する こ と ができ るか ら 被加 工シ ー 卜 材の素材 に 限定 は な く 、 かつ 成形さ れた シ 一 卜 材 に は実質的に 偏 肉 部がな い か ら 面外圧縮強度も極め て大 き な も の と な る 。 The corrugated body obtained by making the single-sided reinforced composite corrugated body according to the present invention obtained as described above meander to the waveform according to the conventionally known Japanese Patent Publication No. 54-23035. Complex korge with a double-row arrangement-Compared with a kart, the meandering polymerization rate of the known composite korge body shown in this figure is more than 0.5. The aperture i ^, which is small and therefore has an out-of-plane bending strength as compared with the case of the present invention, is remarkably small. Furthermore, in the case of a conventional multi-unit corrugated body, when forming a corrugated line, a part of the corrugated body is stretched to form an uneven thickness portion. In addition to the fact that the material is not limited to a stretchable material, the out-of-plane compressive strength of the thin portion is significantly reduced, whereas the composite of the present invention is not limited to this. In a corrugated body, it is substantially similar to paper. There is no limitation on the material of the sheet material to be processed because the sheet material that is not stretched can be formed by corrugating in two directions. Since the sheet material thus produced has substantially no uneven thickness, the out-of-plane compressive strength is extremely large.
次 に 、 本発明 に係る片面強化複合 コ ルゲ ー 卜 体を ジ グザグ 状 に 蛇行さ せた コ ルゲー 卜 条列 を有 する 片面強化複合 コ ルゲ 一 卜 体 と比較 す る と 、 主 と し て 以 下の よ う な種々 の相違点が 見 ら れる 。  Next, the single-side reinforced composite corrugated body according to the present invention is mainly compared with a single-sided reinforced composite corrugated body having a corrugated array in which the zigzag meandering is performed. Various differences are seen below.
( Ί ) 面外圧縮力 に対す る斜壁面の圧縮強度に つ い て : 第 7 図 ( A ) 及び ( B ) は 、 そ れぞれ本発明 の よ う に 波形 に 蛇行された コ ルゲー 卜 条 2 0 と ジ グザ グ状に 蛇行さ れ た コ ルゲ ー 卜 条 3 0 の一 部分 を 示 し て い る 。 ま た 、 コ ルゲ ー 卜 条 列 の谷部 に 平板ラ イ ナ - 2 が接合さ れ コ ルゲ ー 卜 条列の軸 鼠交方向 に 三角 卜 ラ ス 単位が形成 さ れて い る 。  (Ii) Regarding the compressive strength of the inclined wall against the out-of-plane compressive force: Figs. 7 (A) and (B) each show a corrugated meandering waveform in accordance with the present invention. Section 20 and a portion of the zigzag meandering corrugated section 30 are shown. In addition, a flat plate liner-2 is joined to a valley of the corrugated row, and a triangular trace unit is formed in the direction of the axis and the cross of the corrugated row.
両コ ルゲ— 卜 条 2 0 , 3 0 は共 に 単位長 さ N 0 の 間 に お い て 2 力 所で大き く 折れ曲 が り 、 3 つ の連続 し た屈曲部 N , , Both of the corrugated strips 20 and 30 are greatly bent at two places within the unit length N 0, and have three consecutive bent portions N,,.
N 2 , 3 を形成 し 、 巨視的 に 見れば両者 は同様な屏風折れ と な っ て い る 。 こ の た め 、 コ ルゲ ー 卜 条 2 0 , 3 0 の頂部 2They form N 2, 3, and when viewed macroscopically, both have the same folding screen. For this reason, the top 2 of the corrugated strips 20 and 30
1 , 3 Ί 及ぴ底部 2 2 . 3 2 に加え ら れる鉛直方向の圧縮力 P に よ り 、 コ ルゲ ー 卜 条を画成す る斜壁面 2 3 a — 2 3 b ,Due to the vertical compressive force P applied to the 1, 3 layer and the bottom 2 2. 32, the slope wall 2 3 a — 2 3 b, which defines the corrugated strip,
3 3 a - 3 3 に 加わ る面外座屈変形が上記屏風折れ に よ つ て 防止さ れる こ と に な り 、 巨視的 に は波形 に 蛇行さ れた コ ル ゲー 卜 条 2 0 と ジグザグ状 に蛇行さ れた コ ルゲー 卜 条 3 0 と は共 に 一定 レ ベ ル以 上の大き な面外圧縮強度を持つ と 言 う こ と が で ぎ る 。 3 3 a-33 The out-of-plane buckling deformation acting on the screen is prevented by the folding of the folding screen. Macroscopically, the corrugated strip 20 and the zigzag meandering in a waveform. It can be said that the meandering corrugated strip 30 has a large out-of-plane compressive strength above a certain level. And swell.
し か し 微視的 に 見る と 単位長 さ N 0 の 間 に お い て 、 ジ グザ グ状に蛇行 し た コ ルゲー 卜 条 3 0 で は斜壁面 3 3 a — 3 3 b が対 とな る平坦な扳状に形成さ れる た め 、 頂部 3 1 及び底部 3 2 に 加 え ら れる 鉛直方向 の圧縮力 に よ り 安易 に 面外座屈変 形が発生 せ し め ら れて 充分な圧縮強度を得る こ と がで き ない こ れ に対 し 、 波形 に 蛇行 し た コ ルゲ ー 卜 条 2 0 の場合 に は 、 単位長さ N 0 の 問 に お い て も 斜壁面 2 3 a - 2 3 が軸方向 に 対 し て 湾曲 し て い る た め屏風折れ と な っ て お り 、 上記鉛直 方向 の圧縮力 に 対 し て も 面外座屈変形の発生 を 防ぎ 、 極め て 高い 面外圧縮強度を持つ こ と がで ぎ る 。  However, when viewed microscopically, in the corrugated strip 30 meandering in a zigzag shape between the unit lengths N 0, the inclined wall surfaces 3 3a — 3 3b are paired with each other. Since it is formed into a flat, flat shape, the out-of-plane buckling deformation can easily occur due to the vertical compressive force applied to the top 31 and the bottom 32, which is sufficient. On the other hand, in the case of the corrugated strip 20 having a meandering waveform, the slope 23 cannot be obtained even in the case of the unit length N0. Since a-23 is curved in the axial direction, it is broken by the folding screen. Even when the vertical compressive force is applied, the occurrence of out-of-plane buckling deformation is prevented. It can have high out-of-plane compressive strength.
即 ち 、 ジ グザ グ状 に 蛇行 し た コ ルゲ ー 卜 条の場合 は 巨視的 に の み面外圧縮強度が改善 さ れる の に 対 し 、 波形 に 蛇行 し た コ ルゲ一 卜 条の 口 に は 巨視的に も微視 的 に も 面外圧縮強度 が改善さ れ る こ と に な る 。  In other words, in the case of the zigzag meandering corrugated strip, the out-of-plane compressive strength is improved only macroscopically, whereas the corrugated strip of the corrugated strip is improved. This means that the out-of-plane compressive strength is improved both macroscopically and microscopically.
( 2 ) コ ルゲ ― 卜 条列 と 平板ラ イ ナ 一 と の接台強度に つ い て 第 8 図 は周一 の周期 L , 振幅 H を持ち 、 波形 に 蛇行 し た コ ルゲー 卜 条列 と ジ グザグ状に 蛇行 し た コ ルゲー 卜 条列 の頂部 2 1 , 3 1 の稜線の 軌跡を周一 図 面中 に 重ね合せ て 平面的 に 示 し て い る 。  (2) About the strength of the joint between the Corrugated column and the flat liner Fig. 8 shows the Corrugated column and the zigzag meandering in the waveform, having the first period L and the amplitude H. The trajectories of the ridges of the tops 21 and 31 of the corrugated rows meandering in a zigzag manner are shown in a plan view by superimposing them in the circumferential drawing.
こ の 図 か ら 明 ら かな よ う に 、 波形 に 蛇行 し た コ ルゲー 卜 条 列 の頂部 2 1 の稜線の軌跡は 、 ジグザグ状 に 蛇行 し た コ ルゲ 一 卜 条列の頂部 3 1 の稜線の軌跡を弦 と し た 円 弧状に形成 さ れ 15者の方が後者よ り も顕著に 長 く な る 。 片面強化複合 コ ル ゲ ー 卜 体の平板 ラ イ ナ ー は上記頂部の稜線 に 沿 っ て コ ルゲ ー 卜 条 と接着 さ れるわけで ある か ら 、 単位面積 ( L X H ) で比 較 し た 場合 、 波形に 蛇行 し た コ ルゲ ー 卜 条列 の方が ジ グザグ 状 に 蛇行 し た コ ルゲー 卜 条列 よ り ち 平板ラ イ ナ 一 と の接合長 さ は著 し く 大き く な る 。 こ の た め 、 前者の 波形 に 蛇行 し た コ ルゲー 卜 条列 か ら なる芯休 と平板ラ イ ナ一と の接合強度は 、 後者の ジグザグ状 に 蛇行 し た コ ルゲ ー 卜 条列 か ら な る芯休 と 平板ライ ナ 一 と の接合強度よ り ち はる か に大き く なる 。 そ の 結果、 前者の複合 コ ルゲ ー 卜 体の方が後者のそ れ よ り も 面外 圧縮強度 , 面外曲 げ強度の何れ も優れて いる と言う こ と がで き る 。 As can be seen from this figure, the trajectory of the ridgeline of the top 21 of the corrugated row meandering in the waveform is the ridge of the top 31 of the corrugated row of meandering zigzag. The trajectory is formed in a circular arc with the chord as a chord, and the 15 members are significantly longer than the latter. Single-sided reinforced composite Since the flat plate liner of the gate body is adhered to the corrugated strip along the ridge line of the top, when compared in unit area (LXH), it will meander in a waveform. The joint length with the flat plate liner is significantly larger in the corrugated row than in the zigzag meandering corrugated row. For this reason, the bonding strength between the core rest composed of the corrugated row meandering in the former waveform and the flat plate liner is determined by the latter zigzag meandering corrugated row. It becomes much larger than the joint strength between the core rest and the flat liner. As a result, it can be said that the former composite corrugated body is superior to the latter in both out-of-plane compressive strength and out-of-plane bending strength.
( 3 ) コ ルゲー 卜 条列の頂 * 底部付近の 剛性 に つ い て : 波形 に 蛇行 し た コ ルゲ ー 卜 条 2 0 で は 、 第 7 図 ( A ) に 示 す よ う にその各斜壁面 2 3 a ― 2 3 b が頂部 2 の稜線方向 に 連続的 に 湾曲せ し め ら れた線織面 と し て 形成 さ れ 、 こ れ に 対 し第 7 図 ( B 〉 に 示す ょ ラ に ジグザグ状 に蛇行 し た コ ルゲ ー 卜 条 3 0 で は 、 各屈曲部 N , , 2 , N 3 に お け る各斜壁 面 3 3 a - 3 3 が頂部 3 の稜線方向 に平坦状 と さ れる線 織面 と し て 形成さ れ て いる 。 こ の た め 、 前者の コ ルゲ ー 卜 条 で は平面的 に見て各部の 曲率の異なる両斜壁面 2 3 a - 2 3 b が会合す る頂部 は鋭角 的 に 先鋭化 し よ う と す る た め 、 コ ル ゲ ー 卜 条の長さ全体に亘 つ て何れの頂部付近 に お い て も 断面 形状を維持 し ょ う と す る 剐性が高 く な る 。 一方 、 後者の コ ル ゲ ー 卜 条で は各ジグザグ状折囲部 に お いて は頂部がそ の 断面 形状を維持 し よ う と す る 剐性 は高い が 、 折曲部か ら 離れる に 従 っ てそ の 剛性 は低下 し 、 全体 と し て 見る と頂部 が断面形状 を維持 し ょ と す る %性 は前者 に 比べ て 大き く 低下 す る 。 こ の た め 、 後者の コ ルゲ一 卜 条列 を用 い た 複合 コ ルゲ ー 卜 体で は頂 · 底部 に お け る 面外圧縮力 に 対す る最大応力 が 前者 に 比 ベ て 著 し く 小さ い も の と な る 。 ま た 、 母線方向の斜壁面全体 の外力 に よ る座屈変形 は上記頂 · 底部の応力 変形が 引 金 に な り や すい た め 、 剐性の高い頂 ♦ 底部 は斜壁面の 剐性を高め る の に 極め て 有効 に 働 く (3) Rigidity near the top and bottom of the corrugated row: In the corrugated strip 20 that is meandering in the waveform, each slope is shown in Fig. 7 (A). The wall surface 23a-23b is formed as a ruled surface that is continuously curved in the direction of the ridgeline of the top 2, as shown in Fig. 7 (B). In the corrugated strip 30 meandering in a zigzag shape, the slope walls 3 3 a-3 3 at the bent portions N,, 2, N 3 are flat in the direction of the ridgeline of the top 3. For this reason, in the former corrugated strip, both oblique walls 23a-23b having different curvatures in the respective parts in plan view are formed. The top of the meeting will sharpen sharply, so maintain the cross-sectional shape near any of the tops over the entire length of the corrugated strip. On the other hand, in the case of the latter, the top of each zigzag fold is the cross section of the zigzag fold. The flexibility to maintain the shape is high, but the rigidity decreases as the distance from the bent part decreases, and the top part tends to maintain the cross-sectional shape as a whole. Sex is greatly reduced compared to the former. For this reason, in the latter case, the maximum stress for the out-of-plane compressive force at the top and bottom of the composite corrugated body using the corrugated row is significantly higher than that of the former. It will be small. In addition, the buckling deformation due to the external force of the entire slope wall in the generatrix direction is likely to be triggered by the stress deformation at the top and bottom. Works extremely effectively to enhance
ま た 、 上記の よ o に 各 コ ルゲ一 卜 条の頂部付近の刚性が高 い と 言 う こ と は 、 コ ルゲ ー 卜 条列 に 平板 ラ イ ナ ー を加熱加圧 す る こ と に よ つ て 貼合 す る場合 、 加圧力 を増大させ て加熟時 間 を短縮 し て 生産性 を上げる こ と も で き  In addition, as described above, the fact that the vicinity of the top of each corrugated strip is highly rigid as described above means that the flat plate liner is heated and pressed into the corrugated strips. Therefore, when laminating, it is possible to increase the pressing force, shorten the ripening time, and increase the productivity.
( 4 ) 面内圧縮外力 に 対 す る汪縮強度の点 に つ い て :  (4) Regarding the point of wrinkle strength against in-plane compression force:
第 9 図 ( A ) に 示す よ に 、 ジ グザ グ状 に 蛇行さ せ た コ ル ゲ ー 卜 条 3 0 に 軸 方向 の面内圧縮外力 P一 Pを加ス 口 、 斜壁面 3 3 a 内の稜線 と 平行な任意の点 i , j , k ( 尚 、 各 i , 各 j , 各 は屈 曲中心線 に 対 し て 対称の位置 に め " o ) に お い て 相互 に 等 し い Pの分力 P 一 i , P ' j , P " Kが加わ る と : える こ と がで ぎ 、 そ し て こ の場合 に はそ れそれの分力 の稜線 に 直交 す る方向 の成分 P " iy, P ' jy, P 一 kyち ま た 実質的に等 し く な る ( P ' iy = P ' jy = P ^ ky) 。 そ の結果 成分 P ' iy, P " jy, P ' ky-…が全て ジグザグ状に 蛇行 さ せ た コ ルゲー 卜 条の屈曲部中心線 m の付近部位を局部的に 折 曲変形せ し め る よ う に集中作用 す る こ と に な り 、 こ の屈 曲 部 に おいて局部変形, 局部破壊を容易 に発生 せ し め 、 そ の た め 面内圧縮外力 に 対す る圧縮強度 は極め て低い も の と な っ て い る 。 As shown in FIG. 9 (A), the in-plane compression external force P-P in the axial direction is applied to the zigzag meandering corrugated strip 30 and the inclined wall 33a. At any point i, j, k parallel to the inner ridge line (note that each i, j, and each are symmetrical with respect to the bending centerline, and are equal to each other at "o"). When the component force of P P i i, P 'j, P "K is added: The output is high, and in this case, the component of each component in the direction orthogonal to the edge of the component P "iy, P 'jy, P ky or substantially equal (P' iy = P 'jy = P ^ ky.) The resulting components P' iy, P" jy, P ' ky -... all folded locally in a zigzag meandering area around the centerline m of the bent part of the corrugated strip This causes a concentrated action so as to cause a bending deformation, and local deformation and local destruction are easily generated at this bent portion, and therefore, the in-plane compression external force is reduced. Compressive strength is extremely low.
更 に 上記事実 に加 え 、 ジ グザグ状に蛇行さ れ た コ ルゲー 卜 条の斜壁面で は各屈曲部中心線 m に 沿い折曲線 3 4 が形成さ れ て いる た め 、 こ の折曲線 3 4 が面内圧縮力 に対 し て折曲 げ を誘導す る よ う に 作用 し 、 面内圧縮強度 は極め て低い も の と な っ て いる 。  In addition to the above facts, since the zigzag meandering corrugated strip has a bend 34 along the centerline m of each bend, this bend can be seen. 34 acts to induce bending to the in-plane compressive force, and the in-plane compressive strength is extremely low.
こ れ に 対 し 、 第 9 図 ( B ) に 示 す よ o に 、 形 に蛇行さ せ た コ ルケ 一 卜 条 2 0 に 前記 と 周様な面内圧縮外力 P を加 え 、 上記 と周様なハ、、 1 , J , k に お ける P の分力 P i , P j , P k を考え る と 、 稜 に直交 す る方向 の成分 P i y , P j y , P k y は湾曲部中心線 m に 接近する に 従い漸次低減 し 、 湾曲部に お い て 零 と な る 。 そ の結果、 面内圧縮外力 P が波形 に 蛇行 し た コ ルゲー 卜 条を屈曲部中心線 m に お い て局部的 に折曲変形せ し め る よ -う に集中作用 する こ と が な < 、 稜線方向 の斜壁面各 部位に分散分布す る た め 、 ま た 斜壁面か HU 記折曲線 3 4 を何 ら 形成 さ れず滑 ら かな連続曲面 と し て 形成 さ れる た め 、 こ の 面内圧縮外力 に対する圧縮強度を大き ぐ する こ と がで き る 。 On the other hand, as shown in FIG. 9 (B), as shown in FIG. Considering the component forces P i, P j, and P k of P at 1 , J, and k, the components P iy, P jy, and P ky in the direction perpendicular to the ridge are It gradually decreases as it approaches the line m, and becomes zero at the curved part. As a result, the in-plane compressive external force P does not concentrate on the corrugated strip meandering in the waveform, locally bending and deforming at the bent portion center line m. This is because the distribution is distributed to each part of the slope wall in the direction of the ridge, and the slope wall is formed as a smooth continuous curved surface without forming any HU curve 34. It is possible to increase the compressive strength against the in-plane compressive external force.
次 に 、 木発明 に係る複合コ ルゲ ー 卜 体を製造する方法並び に 装置 につ い て 第 1 0 図〜第 1 4 図を参照 に し て 説明 する 。  Next, a method and an apparatus for producing a composite corrugated body according to the wood invention will be described with reference to FIGS. 10 to 14. FIG.
本発明の方法で は 、 被加 工 シ ー 卜 材を移送す る 間 に移送方 向 と直交する方向 に 山 部 と谷部を交互 に 形成 し て予め コ ルゲ 一 卜 加 工 を施す 工程 と 、 次い で こ の シ 一 卜 を周面上の 円 周方 向 に 山 部 と谷部を交互 に.有 す る と と も に こ れ ら の 山 ♦ 谷部を 軸方向 に 波形 に 蛇行さ せ て な る 一対の フ 才 ー ミ ング ロ ー ラ 間 に通過 させ て 平面波形 に 蛇行 し た コ ルゲー 卜 条列 を形成 す る I程 と 、 こ れ ら の :! ルゲ 一 卜 条列 の少な く と ち 上 下何 れかー 方の面 に 平扳ライ ナ ー を接着 する工程 と か ら な つ て い る 。 According to the method of the present invention, peaks and valleys are alternately formed in a direction orthogonal to the direction of transfer during the transfer of the sheet material to be processed, and a corrugated portion is formed in advance. The process of one-shot processing, and then, the sheet is alternately formed in the circumferential direction on the peripheral surface, with peaks and valleys alternately. The part I is formed by passing between a pair of mirrors, which meanders in a wave form in the axial direction, to form a corrugated sequence meandering in a plane wave form. of :! It consists of a process of bonding a flat liner to at least one of the upper and lower surfaces of the Ruguet line.
先づ 、 説明 の便宜上 、 フ ォ ー ミ ング ロ ー ラ に つ い て 第 1 0 図 ( A ) 〜 ( C ) を参照 に じ て 説明 する 。 こ れ ら の 図で は フ 才 ー ミ ン グ ロ ー ラ の端縁部が拡大 し て 示 さ れ 、 第 1 0 図 ( A 〉 に は フ 才 ー ミ ング ロ 一 ラ 4 0 の一例 が示さ れ て い る 。 こ の フ 才 ー ミ ン グ ロ ー ラ 4 0 で は周面上 に 円 周 方向 に 沿 っ て 交互 に 山 部 と谷部を波形 に 形成 する と と も に 、 こ れ ら の 山 ♦ 谷部を 軸方向 に 沿 つ て 波形 に 蛇行 さ せ て 多数の コ ルゲ ー 卜 宋列状 歯 型 4 1 を形成 し て い る 。 そ し て こ の 山 部の頂部 と 谷部の 底部 は先鋭化 さ せ る か或 い は僅か に 湾曲状な い し は面取状 と さ せ て い る 。 こ の第 1 0 図 ( A ) に 示 さ れ た フ ォ ー ミ ン グ ロ ー ラ 4 0 は周形状の も の が一 対形成さ れ 、 これ ら の 一対の フ ォ ー ミ ン グ ロ一ラ 4 0— 4 0 は上 下 に 配置さ れて 上下の 山 ♦ 谷部 が嚙み合 う よ う に 配設 さ れ る 。  First, for convenience of explanation, a forming roller will be described with reference to FIGS. 10 (A) to 10 (C). In these figures, the edge of the child mirror is shown in an enlarged manner, and FIG. 10 (A) shows an example of the child mirror 40. In the case of the mining controller 40, peaks and valleys are alternately formed along the circumferential direction on the peripheral surface, and a waveform is formed. These peaks and troughs meander in a waveform along the axial direction to form a large number of corrugated-song rows of teeth 41. Then, the peaks and the tops of the peaks and valleys are formed. The bottom of the valley may be sharpened, slightly curved, or beveled, as shown in Fig. 10 (A). A pair of peripheral rollers 40-40 are formed on the upper and lower sides of the pair of forming rollers 40-40. ♦ Tanibe They are arranged so that they interlock.
第 1 0 図 ( B ) に 示 し た他の例 に係る フ ォ ー ミ ン グ ロ ー ラ 4 2 で は周 面上の軸方向 に 沿 っ て 山 部 と 谷部を波形 に 形成 す る と と ち に 、 こ の 山 · 谷部を円 周方向 に 沿 つ で 波形 に 蛇行さ せ て 多数の コ ルゲ ー 卜 条列状歯型 4 3 を形成 し て い る 。 そ し て 、 こ の場合も前記同様に 山部の頂部 と 谷部の底部 は先鋭化 さ せ る か僅かに 湾曲 さ せ て い る 。 こ の フ ォ ー ミ ン グ ロ ー ラ 4 2の場合も上下一対形成さ れて 、 上下の 山 · 谷部が嚙み合う よ う に 配設 さ れる こ と は上記の 場合 と周様で あ る 。 In a forming roller 42 according to another example shown in FIG. 10 (B), peaks and valleys are formed in a waveform along the axial direction on the peripheral surface. In particular, the peaks and valleys meander in a waveform along the circumferential direction to form a large number of corrugated row teeth 43. In this case as well, the top of the peak and the bottom of the valley are sharpened as described above. It is bent or slightly curved. Also in the case of the forming rollers 42, the upper and lower pairs are formed so that the upper and lower peaks and valleys are arranged so as to meet each other. is there .
第 1 0図 ( C ) に 示 し た更 に 他の例 に係る フ 才 一 ミ ン グ ロ ー ラ 4 4で は周面上 に 円 周方向 に 沿 っ て 交互 に 山 部 と 谷部 と が形成さ れ 、 こ れ の 山 部 と 谷部 と か ら な る コ ルゲー 卜 条列状 歯型 4 5が ロ ー ラ 4 4の 軸方向 に 沿 っ て 波形に 蛇行せ ら れ る と周時 に ロ ー ラ 4 4の軸 中心 と し て ロ ー ラ の右半分 と左半分 と で反対方向 に 捩 じ ら れ 、 ロ ー ラ の 中央でそ れぞの 山 部 と 谷 部 と が合致する よ う に 形成さ れて いる 。 そ の 他の構造は上記 の 場合 と周 じ で あ る 。  In a further example, a mining roller 44 shown in FIG. 10 (C) according to another example, the peaks and the valleys are alternately arranged along the circumferential direction on the circumferential surface. Are formed, and the corrugated row-shaped teeth 45 composed of these peaks and valleys meander in a waveform along the axial direction of the roller 44. At times, the roller is twisted in the opposite direction between the right and left halves of the roller as the center of the axis of the roller, and the ridges and valleys coincide at the center of the roller. It is formed to do. Other structures are similar to the above.
本発明で は上記の第 Ί 0図 ( A ) 〜 ( C ) に形成さ れたプ レ ス ロ ー ラ 間 に 紙, 金属 , 合成樹脂等か ら な る シ 一 卜 材 5 〇 が送 り 込 ま れる 手前に 、 シ ー 卜 材 5 0の横方向 に 予め 波付加 ェ を施 す 波 ί寸ガ イ ド手段 6 0設け ら れる 。  In the present invention, a sheet material 5 made of paper, metal, synthetic resin or the like is fed between the press rollers formed in FIGS. 10 (A) to (C). Before being inserted, a wave guide means 60 is provided for applying a wave in advance in the lateral direction of the sheet material 50.
第 1 1 図 に 示 し た実施例で は 、 第 1 〇 図 ( A ) で示 し た フ 才 一 ミ ン グ ロ ー ラ 4 0 — 4 0の手前に 予 め コ ルゲ ー 卜 を施 す 手段 と し て 略プ レ ー 卜 状の ガ イ ドプ ロ ッ ク 6 Ί が設け ら れ 、 こ の ガ イ ドプ ロ ッ ク 6 1 に は シ ー 卜 材 5 0の搬送方向 に 沿 つ て 貫通路 6 2が設け ら れ 、 こ の貫通路 6 2 は第 1 2図 ( A ) 〜 ( C ) に 示す よ う に シ ー 卜 材 5 〇 の入口 側で は水 平で あ る が 、 内方に 向 けて徐々 に 波形 に形成さ れ、 第 1 2図 ( C ) に 示 す出 口 側 で は比較的振幅の大きな 波形 と な っ て い る 。 こ の ガ イ ドプ ロ ッ ク 6 の 出 口端は上下一対の フ ォ ー ミ ング ロ一 ラ 4 〇 一 4 0 の 挾圧部 に 近接 し て お り 、 こ の ガ イ ド ブ ロ ッ ク 6 1 か ら 搬出 さ れ た シ 一 卜 材 5 0 は フ ォ ー ミ ン グ ロ ー ラ 4 0 — 4 0 に よ っ て 前述の よ う に 波付加 工 を施 さ れ 、 連続 し た コ ルゲ ー 卜 芯体 5 1 と し て 形成さ れる 。 こ の フ ォ ー ミ ング ロ一 ラ 4 0 — 4 0の 直後 に は連続 し た 平板 ラ イ ナ 一 5 2 の供給ガ イ ド ロ ー ラ 5 3 が 設け ら れ 、 片面 に接着剤を塗布せ ら れた 平 板 ラ イ ナ 一 5 2 が こ の供給ガ イ ド ロ ー ラ 5 3 を通過 す る と 、 そ の接着剤 に よ っ て 平板 ラ イ ナ ー 5 2 が コ ルゲ ー 卜 芯体 5 1 の上面 に 接着一 体化 さ れ 、 連続 し た 複合 コ ルゲ ー 卜 体 5 4 が 製造さ れ 、 こ れ を所望の寸法 に 載断 し て 第 1 図 に 示 し た よ う な片面強化複合 コ ルゲ — 卜 体 1 0 を得 る 。 In the embodiment shown in FIG. 11, a collet is preliminarily provided in front of the microcomputer 40-40 shown in FIG. 1 (A). As a means, a substantially plate-shaped guide block 6 手段 is provided, and this guide block 61 is provided along the conveying direction of the sheet material 50. As shown in FIGS. 12 (A) to 12 (C), the through-passage 62 is horizontal at the inlet side of the sheet material 5 が as shown in FIGS. 12 (A) to 12 (C). However, the waveform gradually forms inward, and the waveform at the outlet side shown in FIG. 12 (C) has a relatively large amplitude. The outlet end of this guide block 6 is a pair of upper and lower The guide member 61 is located close to the pinching portion of the roller 410, and the sheet material 50 carried out of the guide block 61 is a forming roller. According to 40-40, the wave adding process is performed as described above, and the continuous corrugated core 51 is formed. Immediately after this forming roller 40-40, a supply guide roller 53 for a continuous flat plate liner 52 is provided, and an adhesive is applied to one side. When the flat plate liner 52 passes through the supply guide roller 53, the flat plate liner 52 is corrugated by the adhesive. A continuous composite corrugated body 54 bonded and integrated on the upper surface of the core body 51 was manufactured, and the composite corrugated body 54 was cut into a desired size as shown in FIG. A single-sided reinforced composite korge body 10 is obtained.
フ ォ ー ミ ン グ ロ ー ラ 4 0の手前 に 設 け ら れる予め コ ルゲ ー 卜 を施 す手段 と し て は 、 上記の ガ イ ド ブ ロ ッ ク 6 1 以外 に 、 一対の ま た は第 1 3 図 に示 し た よ う に 複数対の波付 ロ ー ラ 6 3 a 〜 6 3 G を設け て も 良い 。 こ の各波付 ロ ー ラ は 、 そ の周 面上 に 軸方向 に 沿 っ て波状凹 凸 6 4 が形成さ れる と と も に 、 各凹 凸 6 4 は 円 周方向 に 沿 っ て 環状 に 形成 さ れ 、 各対を な す 上下の波付 ロ ー ラ の 凹 凸 は相互 に 嚙合 さ れて い る 。 そ し て 、 フ ォ ー ミ ン グ ロ 一 ラ 4 0 か ら 最も離れ た 波付 ロ ー ラ対 6 3 a の波状凹 凸 6 4 の深さ は少な く 、 フ ォ ー ミ ン グ ロ ー ラ 4 0 に 近 ず く に つ れ て 、 波付 ロ ー ラ対 6 3 b , 6 3 c に 形成さ れる 波状凹凸 6 4 の深さ が大き く な つ て い る 。 ま だ 、 好 ま し く は 上記対 ロ ー ラ 間 6 3 a 〜 6 3 c の ロ ー ラ ギ ャ ッ プを 、 フ ォ ー ミ ン グ ロ ー ラ 4 0 に 近ず く に つ れて照次小 と す る こ と で あ る 従 っ て 、 こ れ ら の 波 ί寸 ロ ー ラ 6 3 a 〜 6 3 c を通過 す る 間 に シ ー ト 材 5 0は 、 そ の横方向 に 波状 と なる 凹 凸が徐々 に深 く 形成さ れ た後 に フ ォ ー ミ ン グ ロ ー ラ 4 0 — 4 0間 に供給さ れ る こ と に なる 。 そ し て 、 こ の シ ー ト 材 5 0が フ ォ ー ミ ン グ ロ — ラ 4 0 — 4 0間 に供給 さ れる直前 に お い て 、 シ ー ト 材 5 0 に 形成される 波状凹凸の深さ とそ の横方向 の段操 り 量 は 、 フ 才 一 ミ ン グ ロ ー ラ 4 0 — 4 0に よ っ て 波形に蛇行 し た コ ルゲ 一 卜 条列がシ ー ト 材 5 0に形成さ れる際 に シ 一 卜 材が横方向 に そ れ以上の段繰 り を要 し ない程度 と す る こ と で あ る 。 As a means for applying a collet in advance in front of the forming roller 40, in addition to the guide block 61, a pair of mats may be used. As shown in FIG. 13, a plurality of pairs of corrugated rollers 63a to 63G may be provided as shown in FIG. Each of these corrugated rollers has a wavy concave / convex portion 64 along the axial direction on its peripheral surface, and each concave / convex portion 64 has an annular shape along the circumferential direction. The concavities and convexities of the upper and lower corrugated rollers forming each pair are combined with each other. In addition, the depth of the wavy concave and convex portions 64 of the pair of corrugated rollers 63 a farthest from the forming roller 40 is small, and the The depth of the wavy irregularities 64 formed on the pair of corrugated rollers 63 b and 63 c increases as the distance from the corrugated roller 40 increases. Still, preferably, bring the roller gap between the above rollers and the roller between 63 a and 63 c closer to the forming roller 40. Teruji is to be small Accordingly, the sheet material 50 gradually becomes deeper and wavy in the lateral direction while passing through these wave length rollers 63a to 63c. After it is formed, it is supplied between the forming rollers 40-40. Immediately before the sheet material 50 is supplied between the forming rollers — 40 — 40, the wavy irregularities formed on the sheet material 50 are formed. The depth of the corrugation and the amount of stepping in the lateral direction are determined by the corrugated column that is meandering in a waveform by the controller 40-40. When formed into 0, the sheet material does not need to be further stepped in the lateral direction.
尚 、 上記第 1 1 図及び第 1 3図で は フ ォ ー ミ ング ロ ー ラ 4 0 と し て 第 1 0図 ( A ) で示 し た も の を用 い た が 、 こ の フ 才 一ミ ング ロ ー ラ 4 0の代 り に第 1 0図 ( B ) 及び第 1 0図 ( C ) で示 し た フ ォ ー ミ ン グ ロ ー ラ 4 2 を用 い る こ と もで き る 。  In FIGS. 11 and 13 described above, the forming roller 40 shown in FIG. 10 (A) was used as the forming roller 40. It is possible to use the forming roller 42 shown in Fig. 10 (B) and Fig. 10 (C) instead of the mining roller 40. Wear .
上記の よ う に本発明で は被加 工 シ ー ト 材 5 0を フ ォ ー ミ ン グ ロ ー ラ 4 0 ( 4 2 , 4 4 ) に 供給す る以 前 に 予め 波付加 工 を施さ れ 、 フ ォ ー ミ ング ロ ー ラ 4 0に よ っ て形成さ れる平面 波形 に 蛇行す る コ ルゲー ト 条列 はそ の頂底部が第 1 4図 ( A ) に 示すよ う に先鋭化 し て稜線状に形成さ れ 、 或い は第 1 4図 ( B ) に 示す よ う に 頂 ♦ 底部が僅か に 湾曲 し て狭幅帯状に 形 成さ れる 。 そ し て 、 蛇行 する各 コ ルゲー ト 条の斜壁面に は殆 ど面内 引 張応力 が作用 せ し め ら れる こ と がな く 形成さ れ'る 。 そ の結果、 斜壁面にお いて構造的に欠陥 と なる材質儷肉ゃ材 質疲労が何 ら 発生 す る こ と な く 、 当初 の シ ー 卜 材 と周等の材 質強度を維持す る こ と がで き る た め 、 従来の頂 · 底部が広幅 な断面台形状 と な り 、 各部位 に お い て偏肉 が生 じ る コ ルゲ ー 卜 条 と 比較 し て 、 大幅 に 髙ぃ 剐性を有 し 、 位相幾何学的 に も 展開可能 と な っ て い る 。 As described above, in the present invention, before the sheet material to be processed 50 is supplied to the forming rollers 40 (42, 44), the wave addition processing is performed in advance. The corrugated rows meandering in a plane waveform formed by the forming roller 40 are sharpened at the top and bottom as shown in Fig. 14 (A). Then, as shown in FIG. 14 (B), the top and the bottom are slightly curved to form a narrow band. In addition, almost no in-plane tensile stress is formed on the inclined wall surface of each of the meandering corrugated strips. As a result, there is no occurrence of material fatigue, which causes structural defects on the slope wall, and the initial sheet material and surrounding material are not generated. In order to maintain the quality and strength, the conventional top and bottom have a wide cross-section trapezoidal shape, which is compared with the corrugated strip where uneven thickness occurs in each part. Therefore, it is very flexible and can be expanded in topological terms.
ま た 、 第 1 4 図 ( B ) に 示 す よ う に 、 狭幅帯状 Wが コ ルゲ 一卜 状の断面波の波長 L に対 し て W < 0 . 0 8 L の 関係を維 持す る よ う に 頂 ♦ 底部を僅か に 湾曲或い は面取 り し た 断面形 状 に加 工形成 し た 帯状稜線部の場合に は 、 そ の ロ ー ラ フ ォ ー ミ ン グ過程に お い て 各 コ ルゲ ー 卜 条の斜壁面 に 面内引 張応力 が発生 す る が極 く 僅かで あ る ので 、 該傾斜面母線方向 に 0 . 8 % 以内 の伸び変形が生ず る に 留 ま り 、 殆 ど延伸性を有 し な い紙の 場合で も こ れを破損 す る こ と な く ロ ー ラ · フ ォ ー ミ ン グ に よ っ て コ ルゲ ー 卜 条列 を形成す る こ と がで き 、 材質偏肉 や材質疲労の発生 を充分 に 抑制 し て 大き な 剛性を有 する コ ル ゲ ー 卜 条列 を形成す る こ と がで き る 。  Further, as shown in FIG. 14 (B), the narrow band W maintains a relation of W <0.08 L with respect to the wavelength L of the corrugated cross section wave. In the case of a band-shaped ridge line whose top is slightly curved or chamfered to form a cross-sectional shape, the roller forming process However, in-plane tensile stress is generated on the sloped wall of each corrugated strip, but it is very slight, so that elongation deformation within 0.8% occurs in the direction of the slope generatrix. In addition, even in the case of paper that has almost no stretchability, it is possible to form a corrugated line by roller forming without breaking the paper. Therefore, the occurrence of uneven thickness of the material and fatigue of the material can be sufficiently suppressed to form a corrugated row having great rigidity.
更 に 、 コ ルゲ ー 卜 条列 を従来の よ う に ジ グザグ状 に 蛇行さ せ て 形成する場合 に は非延伸性シ ー 卜 材で は屈 曲部 に お い て 山 中心軸方向 に 破断 す る こ と に な る が 、 本発明 の 場合 に は 、 フ ォ ー ミ ン グ ロ ー ラ に 至る前 に シ ー 卜 材 に 予め波付加 工 が施 さ れ て い る こ と に加 え 、 フ ォ ー ミ ン グ ロ ー ラ の周面 に形成さ れ た 山 部の稜線 ま た は稜線部 は波形 と な っ て 実質上滑 ら か に 蛇行 し て い る た め 、 被加 工 シ ー 卜 材が ー方の フ ォ ー ミ ング ロ — ラの 山 部 と 他方の フ ォ ー ミ ン グ ロ ー ラ の 山部 と で加圧さ れ る 時 、 シ ー 卜 に 局 部的引 張応力 が集中 す る こ と な く 、 稜線 ま た は稜線部 に 沿い応力 は比較的長い線分 に 分散 さ れ 、 そ の結 果 、 シ ー 卜 材の面内歪変形が極 く 僅か と な り 、 紙等のシ ー 卜 材で さ え も歪限界を越え て 破断 す る こ と な く 、 完全な ロ ー ラ フ ォ ー ミ ングが行なわ れる 。 Furthermore, in the case where the corrugated row is formed to meander in a zigzag shape as in the conventional case, in the case of a non-extensible sheet material, it is broken in the bent portion in the direction of the central axis of the mountain at the bent portion. That is, in the case of the present invention, in addition to the fact that the sheet material has been subjected to wave addition processing before reaching the forming roller. The ridgeline or ridgeline of the mountain formed on the peripheral surface of the forming roller is corrugated and substantially meanders smoothly. When the sheet material is pressurized between the hill of one forming roller and the hill of the other forming roller, the sheet is locally localized on the sheet. The ridge line is not concentrated on the tensile stress. Or, along the ridge line, the stress is dispersed into relatively long line segments, and as a result, the in-plane strain deformation of the sheet material becomes very small, and even with a sheet material such as paper. Even without breaking beyond the strain limit, complete roller forming is performed.
ま た 、 ロ ー ラ フ ォ ー ミ ン グ過程 に あ る被加 工用 シ 一 卜 は コ ルゲ一 卜 条列軸直交方向 に 3 0 〜 5 〇 %程の激 し い段繰 り が さ れる が 、 本発明 の フ ォ ー ミ ング ロ ー ラ の 歯型頂部の屈 曲部 が湾曲状 と な り ジグザグ状の突起を持た な い た め 、 上記段繰 り に 必 要な シ ー 卜 が ロ ー ラ の歯型上を円 滑 に 摺動する こ と を 何 ら妨げる こ と がな い 。  In addition, the work sheet in the roller forming process has a sharp step of about 30 to 5% in the direction perpendicular to the axis of the corrugated row. However, since the bending portion at the top of the tooth form of the forming roller of the present invention has a curved shape and does not have a zigzag-shaped projection, a sheet necessary for the above-mentioned step-repeat is required. Does not interfere with the smooth sliding of the roller on the tooth form of the roller.
ま た 、 ロ ー ラ フ ォ ー ミ ン グ過程に あ る 被加工用 シ ー ト は コ ルゲ 一 卜 条列 の軸方向 に 沿 っ て約 5 〜 1 0 %程の段繰 り が な さ れる必要があ る が 、 本発明で は フ ォ ー ミ ング ロ ー ラ の 歯型 頂部が軸方向 に 滑 ら か に 波状に 蛇行 し て い る た め 、 段繰量の 微調整の た め に シ ー 卜 材の軸方向 へ の微小な移動 が円 滑 に行 なわ れる 。 そ の結果 、 コ ルゲ ー 卜 条列 直交方向 の 引 張破損 , 余剰皺の発生を完全 に 防止する こ と がで き る 。 そ し て 、 コ ル ゲー 卜 条列 の振幅率 H L , 蛇行重合率 D Z L , 蛇行率 L の値を大 と し 、 段繰 り 量が多い場合で もその成形加 工 に 何 ら 支障が な い も の と な る 。  In addition, the sheet to be processed in the roller forming process has a step repeat of about 5 to 10% along the axial direction of the corrugated row. However, in the present invention, since the top of the tooth form of the forming roller is meandering smoothly and axially in the axial direction, fine adjustment of the stepping amount is required. In addition, the minute movement of the sheet material in the axial direction is smoothly performed. As a result, it is possible to completely prevent the tensile damage in the direction orthogonal to the corrugated rows and the occurrence of excess wrinkles. The amplitude ratio HL, meandering polymerization rate DZL, and meandering rate L of the corrugated rows are set to be large, and there is no hindrance to the forming process even when the stepping amount is large. It becomes something.
尚 、 本発明の上記実施例で は コ ルゲー ト 芯体の片面に 平板 ラ イ ナ ー を接着 .し た 片面強化複合 コ ルゲ ー 卜 体の場合 に つ い て 述べた が 、 こ れ は平板ラ イ ナ ー と コ ルゲ ー 卜 芯体 と に よ つ て 卜 ラ ス構造を形成す る こ と に よ っ て 各種の優れた 強度を得 る こ と が で ぎ る よ う に な つ た の で あ っ て 、 上記実施例以外 に も コ ルゲ一 卜 芯体の両面 に 平板ラ イ ナ一を接着 し た 両面強化 複合 コ ルゲ ー 卜 体の 場合 に は 卜 ラ ス構造が よ り 強固 な も の と な る た め 、 面外圧縮強度, 面外 曲 げ強度及び面内圧縮強度は 片面強化複 合 コ ルゲ ー 卜 体の場合 に 比 べ て -- 段 と 増大す る こ と は 明 ら かで あ る In the above embodiment of the present invention, a single-side reinforced composite corrugated body in which a flat plate liner is adhered to one side of a corrugated core has been described. Various excellent strengths can be obtained by forming a trace structure by the liner and the corrugated core. In addition to the above-mentioned embodiment, the double-sided reinforced composite collage in which a flat plate liner is bonded to both sides of the collage core body in addition to the above-described embodiment. In the case of a body, the out-of-plane compressive strength, out-of-plane bending strength, and in-plane compressive strength are lower than those of a single-side reinforced composite corrugated body, because the extra-struc- ture structure becomes stronger. In comparison-it is clear that the increase is dramatic
ま た 、 上記発明 に係る コ ルゲ ー 卜 芯体及び平板ラ イ ナ ー は 紙 に よ つ て 形成 さ れる だけ でな く 、 金属 シ ー 卜 な ど の可塑性 素材 、 合成樹脂 シ一 卜 , フ ィ ルム等の熱可塑性素材、 合成樹 脂繊維 . セ ラ ミ ツ ク 繊維 , 炭素繊維等に よ る織布 ま た は不織 布 、 ま た は上記各素材の適宜組合せ た も の に よ っ て 形成さ れ る 。  In addition, the corrugated core and the flat plate liner according to the above invention are not only formed by paper, but also made of a plastic material such as a metal sheet, a synthetic resin sheet, a foil. Thermoplastic materials such as film, synthetic resin fibers, woven or non-woven fabrics made of ceramic fibers, carbon fibers, etc., or combinations of the above materials as appropriate. Formed.
更 に ま た 、 本発明で は シ ー 卜 材 に 山 部 と 谷部 と を交互 に施 し て 形成 し た コ ルゲ ー 卜 条列 を 平面波形 に 蛇行 さ せ て い る が こ の 「 平面波形に蛇行 」 と は; ii ¾c曲線状蛇行 に 限 ら ず 、 実質 上連続 と さ れる不連続曲線状 と さ れ て よ く 、 或い は屈 曲 部 ( 平面蛇行波の頂 ♦ 底部 ) は曲線状 に形成さ れる一方、 そ の 中間部 に 直線状部分を含む よ ¾ に し て も良い し 、 或い は 台形 状 に ½続形成さ れた蛇行形 と しその角部をそ れぞれ曲線状な い し は面取状 に 湾 曲 さ せ た もので も 良い 。 更に ま た 、 上記各 曲線状部分を適宜複数の 直線小 分の連結状部分 に 置ぎ換え て 得 ら れる ち の ¾有効で あ る 0 し の場合 、 こ の よ に し て 形 成 し た コ ルゲー 卜 条列で は 、 各 コ ルゲ一 卜 条の斜壁面 は平板 状部分を含む こ と に な る た め 、 斜壁面が連続 し た 曲面か ら な る本発明 の好適な実施例 の場合 に 比べ て 面外圧縮強度及び頂 ♦ 底部の 剐性は若干低下す る が 、 従来の ジ グザグ状蛇行の場 合に 比べ れば、 著 し く 優れ他の種々 の強度を有 す る こ と に は 変わ り はない 。 Further, in the present invention, a corrugated row formed by alternately applying peaks and valleys to a sheet material is made to meander in a plane waveform. Ii ¾c Not limited to a curved meandering, it may be a discontinuous curved shape which is substantially continuous, or a bent portion (top ♦ bottom of a plane meandering wave) While it is formed in a curved shape, it may have a straight portion in the middle, or may have a meandering shape continuously formed in a trapezoidal shape, and each corner thereof. The curved or curved shape may be curved like a chamfer. Furthermore it was or, in the case of the 0 Mr ¾ Ru effective Ah each curved portion an appropriate plurality of lines small fraction linking shaped portion Chi are obtained found instead location technique of the shape formed by the Yo this In the corrugated row, the sloped wall of each corrugated strip includes a flat plate-shaped part, so that the sloped wall consists of a continuous curved surface. Out-of-plane compressive strength and the hardness of the top and bottom portions are slightly lower than those of the preferred embodiment of the present invention, but are significantly superior to those of the conventional zigzag meandering. There is no change in having various strengths.
更 に ま た 、 本発明で は コ ルゲ ー 卜 条列の 断面波の頂 ♦ 底部 を稜線状 ま た は狭幅帯状に 形成す る例 を述べ た が 、 頂 · 底部 が全て稜線状 ま た は狭幅帯状に 限定 される必要 は な く 、 頂部 を稜線状 と し 底部を狭幅帯状或い はそ の逆 に 形成 し て も良い 更 に 、 各 コ ルゲー 卜 条列の断面波は 、 そ の両斜壁面の母線方 向の長さ が相互 に 等 し い 二等辺三角形状 に 限 ら れず 、 こ れ ら の長さが異な っ た三角 形状でも よ い 。  Further, in the present invention, an example in which the top of the cross-sectional wave of the colrugated row is formed as a ridge or a bottom is formed as a ridge or a narrow band, but the top and the bottom are all ridges. It is not necessary to limit the width of the corrugated row to a narrow band, and the top may be formed as a ridge and the bottom may be formed as a narrow band or vice versa. The lengths in the generatrix direction of the two sloped walls are not limited to isosceles triangles having equal lengths, and may be triangular shapes having different lengths.
以上の よ う に 本発明 に 係る 複合 コ ルゲ ー 卜 体で は各 コ ルゲ 一 卜 条列の 断面波の振幅率 H Z L を 0 . 2 以上 と し た ので 、 面外圧縮強度を大き く す る こ と が で き 、 面形状 に お け る コ ルゲ ー 卜 条列間 の蛇行重合率 D L を 0 . 5 以上 と し 、 更 に コ ルゲ ー 卜 条列 の各々 の蛇行率 し を 0 . 2 以上 と し た の で 、 面外曲げ強度を大き く する こ と がで き る 。  As described above, in the composite corrugated body according to the present invention, the amplitude ratio HZL of the cross-sectional wave of each corrugated row is set to 0.2 or more, so that the out-of-plane compressive strength is increased. That is, the meandering polymerization rate DL between the corrugated rows in the surface shape is set to 0.5 or more, and the meandering rate of each of the corrugated rows is set to 0.2. With the above, the out-of-plane bending strength can be increased.
ま た 、 上記の振幅率 , 蛇行重合率 , 蛇行率を有す る コ ルゲ 一 卜 条列 は更 に 波形 に蛇行せ ら れて いる ので 、 特 に ジ グザグ 状に蛇行せ ら れる も の と 比較 し て 、 格段に 優れた 面外圧縮強 度 , 平扳ラ イ ナ 一 と の接合強度, 面内圧縮強度を持つ こ と が で ぎる 。  In addition, the corrugated column having the above-described amplitude rate, meandering polymerization rate, and meandering rate is further meandered in a waveform, so that it is particularly meandered in a zigzag manner. In comparison, it has outstandingly superior out-of-plane compressive strength, joint strength with a flat liner, and in-plane compressive strength.
従 っ て 、 本発明の複合 コ ルゲー ト 体 は包装資材 , 内装パネ ル等 と し て 丈夫で安価な も の を提供す る こ と がで き る 。 更に 、 本発明 の複合 コ ルゲ一 卜 体を製造す る方法で は 、 被 加 工 シ ー 卜 を フ 才 ー ン グ ロ ー ラ 間 に 通過 さ せ る前に シ ー 卜 材 に 、 そ の移送方向 と 直交 す る 方向 に 山 部 と 谷部 と を 交豆 に 形成 し て 予 め コ ルゲ一 卜 加工 を施 す た め 、 シ ー 卜 材 は ロ ー ラ フ ォ ー ン グ時 に 急激 m n 向 に 段繰 り さ れる こ と が な い た め 、 紙等の よ う に 延伸性の な い シ一 卜 材で あ っ て も こ れを破 損 する こ と な く 高速で フ ォ ー ミ ン グ ロ ー ラ に 通過 さ せ 、 製造 能率を向上さ せ る こ と がで ぎ る 。 Therefore, the composite corrugated body of the present invention can provide a durable and inexpensive packaging material, interior panel, and the like. Further, in the method for producing a composite corrugated body of the present invention, the sheet to be worked is added to the sheet material before passing the work sheet between the heat rolls. Since the peaks and valleys are formed in the soybeans in a direction perpendicular to the transfer direction and the corrugated processing is performed in advance, the sheet material is sharply reduced during rolling. Since it is not stepped in the mn direction, even a non-extensible sheet material such as paper can be forged at high speed without damaging it. -It can be passed through a mining roller to improve production efficiency.
ま た 、 本発明 に係る複 合 コ ルゲ一 卜 体の 製造装置で は 、 フ 才 ー ミ ン グ ロ — ラ の手前 に 被加 ェ シ ー 卜 材の横方向 に 沿 っ て 予め山 部 と 谷部 と を交互 に 形成 す る た め の 波付ガ イ ド 手段を 設け る と と ち に 、 各 フ 才 ー ミ ン グ ロ ー ラ の 周面 に は一方向 に 沿 っ て 山 部 と谷部を交互 に 形成 す る と と ら に こ の一方向 と 交 叉する方向 に 沿 つ て上記 山 部 と 谷部 と を 波形 に 蛇行さ せ て 形 成 し て い る ので 、 フ 才一 ミ ン グ ロ 一ラ に よ つ て コ ルゲー 卜 条 列 を形成する際 に 、 シ ー 卜 材を折曲形成する応力 が フ ォ ー ン グ ロ ー ラ の 波形 に蛇行 す る 山 部 と 谷部 に よ っ て 分散 し かつ 段繰 り 調整を可能 と し 、 そ の シ ー 卜 材 は延伸及び破損 さ れ る こ と な く 高速で コ ルゲ ー 卜 条列 の加 ェ を施さ れる 。  Further, in the apparatus for manufacturing a composite corrugated body according to the present invention, the mountain part is formed in advance in the lateral direction of the material to be added in front of the parent roller. A corrugated guide means for alternately forming a valley and a valley is provided, and the peripheral surface of each of the mining rollers is formed along one direction along the mountain. When the valleys are formed alternately, the ridges and the valleys are formed to meander in a waveform along the direction intersecting this one direction. When forming a corrugated sequence by a micro-roller, the peaks and valleys in which the stress that bends the sheet material meanders in the waveform of the front roller. It is dispersed by the part and the stepping can be adjusted, and the sheet material is not stretched and damaged. It is subjected to a pressure E of the co-Ruge over Bok ridges at the speed.

Claims

請 求 の 範 囲 The scope of the claims
1 . シ ー 卜 材 に 垂直方向の 山部 と 谷部 と を交互 に施 し て コ ル ゲ ― 卜 条列 を形成す る と と ち に 該 コ ルゲ ー 卜 条列 を平面波形 に 蛇行させ て 該コ ルゲー 卜 条列の各々 の 断面波の振幅率 H Z L ( し : 波長, H : 振幅 ) を 0 . 2 以上 と し 、 平面形状 に お け る該コ ルゲ ー ト 条列間の蛇行重合率 D Z L ( D : 平面蛇行 波の振幅 ) を 0 . 5 以上 と し 、 更に 平面形状 に おけ る該 コ ル ゲ ー 卜 条列の各々 の蛇行率 N L ( N : 平面蛇行波の波長 ) を 0 . 2 以上 と し て コ ルゲ 一 卜 芯体を形成 し 、 該 コ ルゲ ー ト 芯体の少な く と も 片面 に 平板 ラ イ ナ ー を 接着 し て なる こ と を 特徴 と す る 複合 コ ルゲ ー 卜 体 。 1. Vertically peaks and valleys are alternately applied to the sheet material to form a corrugated column, and the corrugated column is meandered in a plane waveform. The amplitude ratio HZL (where: H, amplitude) of the cross-sectional waves of each of the corrugated rows is set to 0.2 or more, and meandering polymerization between the corrugated rows in a planar shape is performed. The ratio DZL (D: amplitude of the plane meandering wave) is set to 0.5 or more, and the meandering ratio NL (N: wavelength of the plane meandering wave) of each of the colgate rows in the plane shape is set to 0. A composite corrugated body characterized in that a corrugated core body is formed as at least 2 and a flat plate liner is adhered to at least one side of the corrugated core body.ー Body.
2 . 前記蛇行重合率 D Z L が Ί . 0 以上 であ る こ と を特徴 と す る請求の範囲第 Ί 項記載の 複合 コ ルゲ ー 卜 体 。  2. The composite corrugated body according to claim 2, wherein said meandering polymerization rate DZL is about 0.0 or more.
3 . 前記各 コ ルゲー 卜 条の頂部及び底部を稜線状 に形成 する と と ち に 該 コ ルゲ ー 卜 条の斜壁面を延伸 ま た は圧延 す る こ と な ぐ形成 し 、 該コ ルゲ ー ト 条を位相幾何学的 に 展開可 能 と し て な る こ と を特徴 と す る 請求の範囲第 1 項 ま た は第 2 項記載 の複合コ ルゲ ー 卜 体 。  3. The top and bottom of each of the corrugated strips are formed into a ridge line, and the inclined wall surfaces of the corrugated strips are formed by stretching or rolling. The composite collet body according to claim 1 or 2, characterized in that the article (g) can be developed topologically.
4 . 前記各コ ルゲ ー 卜 条の頂部及び底部を微小な帯状幅に形 成 し 、 該コ ルゲ ー 卜 条の斜壁面の S線方向 の延伸量 ま た は圧 延量が被加ェ シ ー 卜 の 0 . 8 % を越えない微弱なる範囲 と し 該帯状幅の部分を実質的に 延伸 ま た は圧延 し て い ない こ と を 特徴 と する請求の範囲第 1 項ま た は第 2 項記載の複合コルゲ 一 卜 体。 4. The top and bottom of each of the corrugated strips are formed in a minute band-like width, and the amount of stretching or rolling in the S-line direction of the inclined wall surface of each of the corrugated strips is applied. Claim 1 or Claim 2 characterized in that the band width is not stretched or rolled substantially within a weak range that does not exceed 0.8% of the area. Compound corge described in section One body.
5 . 被加 ェ シ ー 卜 材を移送する 間 に移送方向 と 直交する方向 に 山 部 と谷部を交豆 に 形成 し て 予め コ ルゲ ー 卜 加 工 を施 し 、 次いで該 シ一 卜 を周面上の 円 周方向 に 山 部 と 谷部を交互に 有 す る と と ち に 該山 ♦ 谷部 を軸方向 に 波形 に 蛇行さ せ て な る一 対の フ 才一、ン グ ロ ー ラ 間 に 通過さ せ て 平面波形に蛇行 し た コ ルゲ ー 卜 条列 を形成 し 、 該 コ ルゲ ー 卜 条列 の 少な く と も 上 下何れか —一方の面 に 平板ラ イ ナ一を接着 し て な る こ と を特徴 と す る 複合 コ ルゲ一 卜 体の製法  5. During the transfer of the sheared material, the peaks and valleys are formed in the soybeans in a direction orthogonal to the transfer direction, and the collet processing is performed in advance, and then the sheets are removed. When a pair of peaks and valleys are alternately arranged in the circumferential direction on the circumferential surface, and the peaks and valleys meander in a waveform in the axial direction, a pair of grooves are formed. To form a corrugated array meandering in a plane waveform by passing between at least one of the upper and lower sides of the corrugated array. Method for producing composite corrugated body characterized in that it is bonded to
6 . 前記予め コ ルゲ — 卜 加 工 を前記被加工 シ ー 卜 の移送方向 の 複数個所 に お い て 浅い 波付状態か ら 深い 波付状態へ と 顺次 行な う こ と を特徴 と する 請求の範囲第 5 項記載の複合コ ルゲ — 卜 体の製法  6. The method is characterized in that the corrugation processing is performed in advance from a shallow corrugated state to a deep corrugated state at a plurality of positions in the transfer direction of the work sheet in advance. A method for producing a composite korge-to-body according to claim 5.
7 . 被加 ェ シ一 卜 材の搬送路を横切る よ に 一対の波付用 フ 才 ー ミ ン グ 口 ー ラ を設け 、 該 フ 才 ー ミ ン グ ロ ー ラ の各々 に は そ の周面の一方向 に 沿 つ て 山 部 と 谷部を 交互に 形成する と と も に 該ー方向 と 交叉 す る方向 に 沿 つ て 該山 部 と谷部を波形 に 蛇行 さ せ て 形成 し 、 該搬送路 に お け る該一対の フ 才一ミ ン グ ロ ー ラ の 手 iu に は該 シ ー 卜 材の横方向 に 沿 つ て 予め山 部 と 谷 部を交互 に形成す る た め の波付ガ イ ド手段を設け 、 該 フ ォ ー ミ ン グ 口一ラ を通過 す る こ と に よ っ て 形成 さ れ た ルゲ ー 卜 芯体の上下何れか一方の面 に 平板 ラ イ ナ ー を接着する手段を 設け て な る こ と を特徴 と す る複合 コ ルゲ一 卜 体の製造装置。  7. A pair of corrugated connecting rollers is provided so as to traverse the transport path of the material to be added, and each of the connecting rollers is provided with a peripheral member. Forming peaks and valleys alternately along one direction of the surface and meandering the peaks and valleys in a waveform along a direction intersecting the-direction; In order to form the peaks and the valleys alternately in advance along the lateral direction of the sheet material, the pair of hand-rollers iu in the conveying path are formed in advance in the lateral direction of the sheet material. A corrugated guide means is provided, and a flat plate line is provided on one of the upper and lower surfaces of the rugate core formed by passing through the forming opening. An apparatus for manufacturing a composite corrugated body, characterized in that a means for bonding a nail is provided.
8 . 前記波付ガ イ ド手段が入口 側か ら 出 口側 に 向け て 波の 断 面形状 が徐々 に 深 く なる 波形貫通路を有す る ガ イ ド プ ロ ッ ク か ら なる こ と を特徴 と する請求の範囲第 7 項記載の複合コ ル ゲ 卜 体の製造装置 0 8. The corrugated guide means breaks waves from the entrance side to the exit side. 8. The apparatus for manufacturing a composite corrugated body according to claim 7, wherein the apparatus comprises a guide block having a corrugated through-path whose surface shape gradually becomes deeper.
9 . 前記波付ガィ ド 手段が前記被加 工 シ ー 卜 を 上下か ら 挾持 する 波付 ロ ー ラ か ら な る こ と を特徴 と す る 請求の範囲第 7 項 記載の複合 コ ルゲー 卜 体の製造装置 。  9. The composite corrugation according to claim 7, wherein said corrugated guide means comprises a corrugated roller for clamping said work sheet from above and below. Production equipment for bottles.
1 0 . 目 u 記 フ ォ ー ミ ング ロ ー ラ の各々 の周面 ί は 、 円 周方向 に 洽 つ て 交互 に 山 部 と谷部 と が形成さ れる と と も に 、 軸方向 に 沿 つ て 該山 部 と 谷部 と が波形に 蛇行さ れて な る こ と を特徴 と す る請求の範囲第 7 項 ま た は第 8 項 ま た は第 9 項記載の複The peripheral surface の of each of the forming rollers is formed such that peaks and valleys are alternately formed in the circumferential direction along the axis, and along the axial direction. Claims 7 or 8, wherein the peaks and valleys are meandering in a waveform.
A , ルゲ ー 卜 体の製 ja ¾。 A, Manufacture of rugate body ja ¾.
1 1 . 前記 フ ォ ー ミ ン グ ロ ー ラ の各 々 の周面 に は 、 軸方向 に 沿 つ て交互 に 山 部 と 谷部 と が形成さ れる と と も に 周方向 に 沿 つ て 該山 部 と 谷部が波形 に 蛇行さ れて な る こ と を特徴 と す る 請求の範囲第 7 項 ま た は第 8 項 ま た は第 9 項記載の複合 コ ル ゲ ― 卜 体の製造装置 o  11 1. On each of the peripheral surfaces of the forming roller, a mountain portion and a valley portion are alternately formed along the axial direction, and the peripheral surface is formed along the circumferential direction. 10. The composite corrugated body according to claim 7 or 8, wherein said peaks and valleys are meandering in a waveform. Manufacturing equipment o
1 2 . BU 記 フ ォ ー ミ ン グ ロ ー ラ の各 々 の周面 に は 、 周 向 に 沿 つ て 交豆 に 山 部 と 谷部 と が形成 さ れる と と も に 、 該山 部 と 該谷部が該 ロ ーラ の軸を中心 と し て 該 ロ ー ラ の右半分 と左半 分 と で反対方向 に 捩 ら れて 形成さ れ 、 該 ロ ー ラ の左右方向 中 央部で 反対方向 に捩 ら れた 該山 部 と 該谷部 と がそれぞれ会合 し て なる こ と を特徴 と す る 請求の範囲第 7 項 ま た は第 8 項 ま た は第 9 項記載の複合コ ルゲ ー 卜体の製造装置。  12 2. BU notation On each of the peripheral surfaces of the forming roller, a mountain and a valley are formed in the soybean along the circumference, and the mountain is formed. And the valley is formed by being twisted in the opposite direction between the right half and the left half of the roller about the axis of the roller, and the center of the roller in the left-right direction is formed. 10. The composite according to claim 7, wherein the peaks and the valleys twisted in opposite directions in the above-described manner are respectively associated with each other. Manufacturing equipment for corrugated bodies.
3 . 前記波付ガ イ ド手段が 訪記被加 工 シ ー 卜 の搬送方向 に 沿 っ て 複数個所に 分離配設 さ れた 複数対の 波付 ロ ー ラ か ら な り 、 該複数対の波付 ロ ー ラ の 波面形状が該被加 工 シ ー ト の搬 送方向 前方に 移行 す る に 従い深 く 形成さ れ て な る こ と を特徴 と す る請求の範囲第 9 項記載の複合 コ ルゲ ー 卜 休の製造装置 3. The corrugated guide means moves in the transport direction of the work sheet to be visited. It consists of a plurality of pairs of corrugated rollers separated and arranged at a plurality of locations along the road, and the wavefront shapes of the plurality of pairs of corrugated rollers are in the carrying direction of the work sheet. 10. The manufacturing apparatus according to claim 9, wherein the apparatus is formed deeper as the process moves to
PCT/JP1987/000148 1986-03-10 1987-03-10 Compound corrugated body and manufacturing method and apparatus thereof WO1987005262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61/51686 1986-03-10
JP5168686 1986-03-10

Publications (1)

Publication Number Publication Date
WO1987005262A1 true WO1987005262A1 (en) 1987-09-11

Family

ID=12893772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000148 WO1987005262A1 (en) 1986-03-10 1987-03-10 Compound corrugated body and manufacturing method and apparatus thereof

Country Status (2)

Country Link
AU (1) AU7122887A (en)
WO (1) WO1987005262A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015905A2 (en) * 1989-06-19 1990-12-27 Hilmar Werner Construction system consisting of moulded bricks and light supporting frameworks
US5615796A (en) * 1994-09-19 1997-04-01 Boise Cascade Corporation Container for hot food
US20220355619A1 (en) * 2019-06-14 2022-11-10 Compagnie Generale Des Etablissements Michelin Method for manufacturing an airtight layer used in the composition of a tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845049A (en) * 1981-09-10 1983-03-16 五十田 順一 Synthetic plane material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845049A (en) * 1981-09-10 1983-03-16 五十田 順一 Synthetic plane material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015905A2 (en) * 1989-06-19 1990-12-27 Hilmar Werner Construction system consisting of moulded bricks and light supporting frameworks
WO1990015905A3 (en) * 1989-06-19 1991-06-13 Hilmar Werner Construction system consisting of moulded bricks and light supporting frameworks
US5615796A (en) * 1994-09-19 1997-04-01 Boise Cascade Corporation Container for hot food
US20220355619A1 (en) * 2019-06-14 2022-11-10 Compagnie Generale Des Etablissements Michelin Method for manufacturing an airtight layer used in the composition of a tire

Also Published As

Publication number Publication date
AU7122887A (en) 1987-09-28

Similar Documents

Publication Publication Date Title
KR970000930B1 (en) Process and apparatus for compressive transverse stretching of polymeric sheet material
EP0424526B1 (en) Reinforced composite corrugated body
JP3599335B2 (en) Laminated film
US6913570B2 (en) Method and apparatus for producing a composite structural panel with a folded material core
US9033857B2 (en) Apparatus and method for continuous microfolding of sheet materials
RU2457945C2 (en) Method and device for making cross-oriented film of thermoplastic material and products thus made
EP2156436B1 (en) Wide ultra high molecular weight polyethylene sheet and method of manufacture
US20120205035A1 (en) Method of Making Multilayer Product Having Honeycomb Core
US9005096B2 (en) Folding method and apparatus
US8888941B2 (en) Method of making multilayer product having honeycomb core of improved strength
US11446893B2 (en) System and method for producing a multi-layered board having a medium with improved structure
US4981744A (en) Non-planar expandable honeycomb structure
US5443779A (en) Method of production of reinforced composite corrugated body and method of formation of corrugating rollers for use therein
KR100809942B1 (en) Unequally thick rim, and method of manufacturing the rim
WO1987005262A1 (en) Compound corrugated body and manufacturing method and apparatus thereof
JPH0710579B2 (en) Composite corrugated body and its manufacturing method and apparatus
JPS62184848A (en) Reinforced corrugated body and manufacture thereof
JP2008521639A (en) Two-dimensional structure and three-dimensional structure and method for producing two-dimensional structure and three-dimensional structure
JP3447073B2 (en) Method and apparatus for manufacturing a meandering corrugated body
JP2568088B2 (en) Manufacturing method of reinforced corrugated body and its apparatus
JP2693766B2 (en) Reinforced composite corrugated body
JPS6333122A (en) Method and device for manufacturing reinforced corrugated sheet
RU96114241A (en) METHOD FOR PRODUCING FLAT AND SPATIAL CELL CELL STRUCTURES AND STRUCTURES BASED ON THEM
JP2680668B2 (en) Assembled box
TW509597B (en) Method and apparatus for the continued press-forming of wide panels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU GB KR SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE