WO1986001440A1 - Method of controlling winding temperature in hot rolling - Google Patents

Method of controlling winding temperature in hot rolling Download PDF

Info

Publication number
WO1986001440A1
WO1986001440A1 PCT/JP1984/000413 JP8400413W WO8601440A1 WO 1986001440 A1 WO1986001440 A1 WO 1986001440A1 JP 8400413 W JP8400413 W JP 8400413W WO 8601440 A1 WO8601440 A1 WO 8601440A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
section
coil
cooling
control
Prior art date
Application number
PCT/JP1984/000413
Other languages
French (fr)
Japanese (ja)
Inventor
Akinobu Ogasawara
Yuzo Ohshima
Rikichi Kubo
Toshihiko Kawahara
Seiji Konishi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to DE3490758A priority Critical patent/DE3490758C3/en
Priority to KR1019860700125A priority patent/KR910010145B1/en
Priority to DE3490758T priority patent/DE3490758T1/en
Priority to PCT/JP1984/000413 priority patent/WO1986001440A1/en
Publication of WO1986001440A1 publication Critical patent/WO1986001440A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill

Definitions

  • the present invention also relates to a winding temperature control method for realizing the cooling rate control and the coil longitudinal pattern control in the hot rolling cooling process.
  • the winding temperature after E rolling is a strip.
  • the so-called winding temperature control is indispensable because it has a great influence on the quality of the steel, especially on the mechanical strength and workability.
  • the strip from the exit temperature of the finishing E-roller to the winding temperature.
  • Turn control- also has a great influence on the quality of hot E rolling, so cold speed control and strut in these processes are in recent years. It is required to change the target value of the coiling temperature in the longitudinal direction of the strip so that the coil temperature distribution after coiling becomes constant during air cooling.
  • thermometer for each sector, which is necessary for cooling rate control, due to the physical layout of the cooling device on the runout tray and the problem of the thermometer measurement environment. Comb and string.
  • the method of changing the longitudinal winding temperature is
  • the former divides the cooling process into evenly spaced sections, and determines the required number of cooling sections required for a given winding temperature based on the acceleration / deceleration rate of the E-roller.
  • the cooling rate is corrected according to the set acceleration / deceleration rate, so corrections due to operator intervention, etc., are still errors.
  • the cooling rate there is a problem in the evaluation of the cooling rate due to the temperature gradient on the run-out nozzle; ⁇ one-feed control.
  • the latter is the cooling rate of each section, the speed of the strip, and the output temperature of the section determined by the output side target temperature of the preceding section.
  • the number of laminar heads to be injected should be selected and determined, as well as the coil thickness, coil speed, and the selected laminar ⁇
  • the outlet side temperature for each section is calculated using a model formula that uses the heat transfer coefficient, and a model is generated when there is an error with the actual temperature. It is a feedback control that modifies the parameters of the expression.
  • many of the parameters are non-linear with respect to the coil temperature, so there is a problem in the accuracy of the estimation calculation and the speed of correcting the hall parameters.
  • the present invention relates to the hot rolling quality control described above, particularly the temperature in the longitudinal direction of the coil. It is an object of the present invention to provide a winding temperature control method capable of accurately performing turn control.
  • the temperature of the coil piece in each cooling section is estimated and calculated by the state observing device (other).
  • the temperature of the coil pieces in the hot water area cannot be installed because of the environmental impact, and the predictive control and feedback control are performed with high accuracy, and the preconditioning equipment conditions and operation
  • the preconditioning equipment conditions and operation By arbitrarily setting the temperature target value of each cooling section calculated for the conditions, etc., it is possible to obtain an arbitrary cooling temperature gradient pattern. Change the target value of the sequence one by one according to the movement of the string °.
  • the invention is constructed and carried out as described above.
  • OMPI is there. This has the following three effects.
  • the actual temperature compensation corrects each of the estimated section values promptly, resulting in quick control response.
  • the winding temperature accuracy is greatly improved.
  • Dynamization is performed according to the movement of the coil by adjusting the target values for each section obtained by the preset calculation based on the facility capacity, operating conditions, steel type, size, etc. Since it is set to the mike, temperature pattern control in the longitudinal direction of the coil can be performed with high accuracy.
  • the quality of the structure can be controlled by the cold speed control. It is possible to manufacture a uniform quality coil by separating and controlling the temperature pattern of the coil longitudinal temperature, improving the yield by reducing the quality of defective steel, and improving the quality of the product. Economic merit such as production is extremely large.
  • FIG. 1 shows the cooling temperature control of the spreading from the finisher exit side to the winder to explain the winding temperature control method of the friend invention.
  • Fig. 2 is a side view showing the process
  • Fig. 2 is a ⁇ lock diagram showing the composition of the winding temperature control of the invention
  • Fig. 3 is a plan view showing the storage position of the data used in the invention.
  • FIG. 5 is a control block diagram according to the present invention, showing the details of FIG. 2, and FIG. 5 is a diagram showing an example of application effects of the present invention.
  • thermometer FT and the winding thermometer CT are divided into equal intervals L 0 without distinction between water-cooling and air-cooling, and the finishing thermometer FT side ⁇ 1, / 3 ⁇ 4 2 ⁇ / 3 ⁇ 4 ⁇ segment, and the most downstream segment is / 3 ⁇ 4 ⁇ segment.
  • Fig. 1 The example in Fig. 1 consists of 21 water-cooled sections and 5 air-cooled sections.
  • F is a finisher and ⁇ is an intermediate thermometer.
  • FIG. 2 shows an overview of the control method of the invention.
  • the control ⁇ ⁇ check that represents this is roughly divided into functions, and the coil piece constant length micro-tracking function ⁇ , state observer B, optimum controller C and actual value are shown. It is divided into four, processing function D.
  • the coil speed is integrated by integrating the coil velocity.
  • the moving distance is calculated, and each time the coil advances the section length L 0 with the finishing thermometer FT as the starting point, the data transfer is performed for the coil piece.
  • the data to be transferred is work instruction data, etc. that prescribes equipment conditions and operating conditions that are pre-set for each plate thickness H and coil.
  • n ⁇ i the number of upper headers
  • the temperature estimation calculation is performed sequentially from the downstream side to the upstream side from the 3 ⁇ 4 1 section force to the ⁇ 27 section. This is, Ru Oh order to cormorants by other than the co-I-le piece temperature straight near CHAPTERTHREE does not affect the temperature estimation calculation against in the SECTION 0
  • the estimated temperature at the outlet side of each section is predictive control + feedback control according to Eqs. (1) and (4).
  • T M i i output temperature target value
  • w has the following relationship depending on the upper and lower water injection conditions.
  • Cooling coefficient of lower header when upper part is 1.0-- Is.
  • the header output coefficient w is obtained from Eqs. (5), (6), and (7), the lamina in the work instruction data set for each coil in advance is set. "One upper and one lower in-section output headers are determined depending on whether upper or lower water injection is specified. In addition, at the time of upper and lower water injection, The upper and lower force ratios should be set to 1: 1 in consideration of coil passage on the runout tail.
  • the controlled coil reaches the finishing spreader, the operating conditions of the coil, the equipment conditions at that time, the cooling water temperature record, etc.
  • Sectional output side temperature target value temperature in the longitudinal direction of the coil.
  • the temperature target values on the outlet side of the coil at the tip and tail of the coil whether the temperature is above the laminator> the bottom, and whether or not lower water injection is performed, and the initial lam
  • the water injection instruction for each header section is obtained by the initial setting calculation formula, and the calculation conditions such as the numerical values of the parameters used in the initial setting calculation at that time are calculated.
  • work piece constant length micro-tracking function A data is given as work instruction data.
  • the coil fixed length micro-tracking function A is the finishing temperature.
  • the equipment condition is the cooling capacity of each cooling section, and the operating condition is that the coil is taken out from the finishing E-roller and then wound by the winder. During that period, it was stipulated how many operations should be carried out.
  • the upper water injection is specified, and the upper water injection and lower water injection are specified.
  • work conditions such as specification of coil steel type, size, target value of coiling temperature, etc. are not included at all c.
  • State observation function B is a fixed length coil coil. According to the plate thickness and work data of the coil pieces transferred by the tracking function A, as shown in Fig. 3, the thickness transfer tail and work instruction table ⁇ Each data set is carried out in synchronism with the micro coil single-track tracking, and at the same time, each section target value in the work'instruction data is set as a temperature target. Set to the threshold mark.
  • the header output coefficient w is calculated from Eq. (8). .,
  • the estimated temperature value is corrected by equation (4).
  • the optimum controller D is the controller of FIG. 3 which is data-set by the coil fixed length micro-tracking function A and the state observation function B. Read the contents of the thickness transfer table, temperature target value table, work instruction table and temperature estimated value table shown in the table at a fixed cycle considering the responsiveness of the pellet. Then, the number of output headers for each section was calculated from the actual results of coil speed and cooling water temperature at that timing, and the upper header Bottom
  • FIG. 4 shows a control block diagram for implementing the control method described above. It can be said that Fig. 4 is a more detailed development of Fig. 2 after arranging the explanations so far. That is, the coil fixed length micro-tracking function A is activated at every movement of the fixed length LQ to transfer data to the state observing device B, and the state observing device B is For racking data transfer processing The coil piece temperature is calculated based on the equation
  • the optimum controller c calculates each section according to Eq. (7).
  • the number of output headers for each is calculated and converted to the control operating end output according to the number of output headers, and finally the pel ⁇ opening / closing control output is instructed as the actual control output.
  • Figure 5 is grayed La off der Ri steels showing a specific example of the effect of the present invention is ordinary steel (tensile strength 2 0-8 0 / Hall 2) ⁇ U I le control targets value length ratio + 2 0 In ° C 3 ⁇ 4: It shows that the winding temperature applicability when the invention is applied is high, and that the applicability is high with each thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

A method for controlling winding temperature controls the cooling rate in the cooling step in hot rolling and controls the longitudinal pattern of a coil. The temperature of the coil piece in each cooling section is estimated by means of a state observer, thereby highly accurately effecting forecast control and feedback control. Further, a target temperature value in each cooling section is set as desired, whereby any desired cooling temperature gradient pattern is obtained, and the setting of the target temperature value in each cooling section is changed with the movement of the strip. Thus, it is possible to highly accurately control the winding temperature in the hot rolling.

Description

明 細 熱間 E延におけ る捲取温度制御方法 技術分野  Winding temperature control method for fine hot E rolling Technical field
こ の発明は、 熱間 延の冷却工程における冷却速度 制御及び コ ィ ル長手方向パタ ー ン制御を実現する捲取 温度制御方法に関する も のであ る。 背景技術  The present invention also relates to a winding temperature control method for realizing the cooling rate control and the coil longitudinal pattern control in the hot rolling cooling process. Background technology
熱間 E延における仕上 E延後の捲取温 ·度は、 ス ト リ ッ フ。の品質面、 特に機械的強度や加工性に大き な影響 を与えるため、 所謂捲取温度制御は不可欠であ る 。 さ ら に、 仕上 E延機出 口温度から捲取温度に至 る までの ス ト リ ツ フ。冷却の途中過程のいわゆ る冷却速度制御お よ びス ト リ ッ ヅ長手方向温度ハ。タ ー ン 制御-も熱間 E延 の品質 上大きな影響を与える ため、 近来これらの過 程におけ る 冷速制御 と 、 ま たス ト リ ツ フ。捲取後の コ ィ ル温度分布が空冷中 一定にな る よ う に ス ト リ ツ ヅ長手 方向の捲.取温度狙い値を変化さ せる こ と 、 が要求され ている。  Finishing in hot E rolling The winding temperature after E rolling is a strip. The so-called winding temperature control is indispensable because it has a great influence on the quality of the steel, especially on the mechanical strength and workability. Furthermore, the strip from the exit temperature of the finishing E-roller to the winding temperature. The so-called cooling rate control and temperature in the longitudinal direction of the string during the cooling process. Turn control-also has a great influence on the quality of hot E rolling, so cold speed control and strut in these processes are in recent years. It is required to change the target value of the coiling temperature in the longitudinal direction of the strip so that the coil temperature distribution after coiling becomes constant during air cooling.
然る に ラ ン ナ ゥ ト テ ー ル上の冷却装置の物理的配置 又温度計測定環境の問題等に よ り 冷却速度制御に必要 な各 セ ク ン ヨ ン毎温度計の設置は難かし く 、 ま た ス ト リ ッ フ。長手方向捲取温度を変化させる 方法 も 従来は各 However, it is difficult to install a thermometer for each sector, which is necessary for cooling rate control, due to the physical layout of the cooling device on the runout tray and the problem of the thermometer measurement environment. Comb and string. Conventionally, the method of changing the longitudinal winding temperature is
O PI 鋼種 サイ ズについて定量的に行えなかつた。 O PI Steel type size could not be quantitatively determined.
この背景の も と で提案されている も のに、 特公昭 Although it was originally proposed against this background,
5 8 - 1 5 2 0 2 号公報の 「熱延鋼板の捲取温度制御 方法」 およ び特開昭 5 3 - 2 3 7 0 公報の 「熱延鋼板- の捲取温度制御装匱」 があ る。 5 8-1 5 2 0 2 Publication, "Method for controlling winding temperature of hot rolled steel sheet" and "Panel for controlling winding temperature of hot rolled steel sheet", Japanese Patent Laid-Open No. 5 3-2370 There is.
前者は冷却工程を等間隔の セ ク シ ョ ン に分割 し、 E延 機の加減速率に基づいて所定の捲取温度に必要な冷却 所要セ ク シ ョ ン数を定め る。 こ の方法では、 冷却速度 を設定加減速率に よ り 補正している為ゝ オ ペ レ ー タ介 入等に よ る修正はその ま ま誤差 と なつて し ま う 。 また, 冷却速度について も ラ ン ナ ウ ト テ ー ヅ ル上での温度勾 配; ^ フ ィ 一 フ ォ ー ヮ 一 ド制御の為、 冷却速度に対す る評価に問題があ る。 The former divides the cooling process into evenly spaced sections, and determines the required number of cooling sections required for a given winding temperature based on the acceleration / deceleration rate of the E-roller. In this method, the cooling rate is corrected according to the set acceleration / deceleration rate, so corrections due to operator intervention, etc., are still errors. As for the cooling rate, there is a problem in the evaluation of the cooling rate due to the temperature gradient on the run-out nozzle; ^ one-feed control.
又、 後者は各 セ ク シ ョ ン の冷却速度と ス ト リ ッ プの速 度お よ び前段セ ク シ ョ ン の 出側 目 標温度に じ て定め られた該 セ ク シ ョ ン 出側 目 標 温度と 熱伝達係数等に基 づき 注水すべき ラ ミ ナ一ヘッ ダ ー数を選択決定する と 共に 、 コ イ ル厚、 コ イ ル速 度および選択决定さ れた ラ ミ ナ < ッ ダ ー数等のヅ ロ セ ス実績を も と に、 各 セ ク シ ヨ ン毎出側温度を熱伝達係数を使用 したモ デ ル式に て計算し実績温度 と誤差を生じた時モデル式のパ ラ メ ー タ を修正する フ ィ ー ド フ ォ ワ ー 制御であ る 。 し力 しながら 、 パラ メ ー タ の多 く は 、 コ イ ル温度に対 し非 線形であ る為、 推定計算精度及びハ°ラ メ ー タ 修正速度 に問題があ る 。 The latter is the cooling rate of each section, the speed of the strip, and the output temperature of the section determined by the output side target temperature of the preceding section. Based on the target temperature and heat transfer coefficient, etc., the number of laminar heads to be injected should be selected and determined, as well as the coil thickness, coil speed, and the selected laminar < Based on the track record such as the number of headers, the outlet side temperature for each section is calculated using a model formula that uses the heat transfer coefficient, and a model is generated when there is an error with the actual temperature. It is a feedback control that modifies the parameters of the expression. However, many of the parameters are non-linear with respect to the coil temperature, so there is a problem in the accuracy of the estimation calculation and the speed of correcting the hall parameters.
C ? ヽ ま た、 コ イ ル長手方向温度ハ。タ ー ン に ついて従来は コ イ ル先端、 尾端 ト ラ ッ キ ン グを行ない、 先端、 尾端 力 ラ ン ナ ウ ト テー ^ル上で通過中のみ特定 セ ク シ ョ ン 無注水 と い う 方法を と つて きた。 しカゝしながら 、 この 従来方法では、 冷却速度について品質の管理上お よび 制御上の評価に つ いて の判定が困難であ り 、 'コ ィ ル長 手方向温度ハ。 タ ー ン につ いて も コ イ ル先端、 尾端部の 温度を中央部に対 し各鋼種 サイ ズを通じ て任意の バタ ー ン に制御する のが困難であ る。 発明の開示 C? ヽ In addition, the temperature in the longitudinal direction of the coil. Conventionally, the turn of the coil was performed at the tip of the coil and the tracking of the tail was performed, and the specified section was not injected without water only when passing through the tip and the tail force runout trail. I have come up with a method. However, with this conventional method, it is difficult to judge the quality of the cooling rate in terms of quality control and control. With regard to turns, it is difficult to control the temperature at the tip of the coil and the temperature at the end of the tail to the desired center through the respective steel grade sizes. Disclosure of the invention
本発明は、 前述した熱延品質制御、 特に コ ィ ル長手 方向温 度ハ。タ ー ン制御を精度 よ く 実施でき る捲取温度 制御方法を提供する こ と を 目的 と する。  The present invention relates to the hot rolling quality control described above, particularly the temperature in the longitudinal direction of the coil. It is an object of the present invention to provide a winding temperature control method capable of accurately performing turn control.
上記目 的を達成する ため に本発明に おいては、 各冷 却 セ ク シ ョ ン における コ ィ ル片 の温度を状態観測器 ( オ ザーパ ) に よ り 推定計算する こ と に よ り 設備的 環境的に温度計設置不可湯所におけ る コ ィ ル片 の温度 推定を行なって予測制御、 フ ィ ー ド ッ ク制御を高精 度に行ない 、 ま た、 予かじ め設備条件、 操業条件等に 対 し て計算 された各冷却 セ ク シ ョ ン の温度目 標値を 任意に設定する こ と に よ り 任意の冷却温度勾配パ タ ー ン を得る よ う に し ゝ 各冷却 セ ク シ ョ ン の 目 標値を ス ト リ ッ フ °の動き に合せて逐次設定変更する。  In order to achieve the above-mentioned object, in the present invention, the temperature of the coil piece in each cooling section is estimated and calculated by the state observing device (other). The temperature of the coil pieces in the hot water area cannot be installed because of the environmental impact, and the predictive control and feedback control are performed with high accuracy, and the preconditioning equipment conditions and operation By arbitrarily setting the temperature target value of each cooling section calculated for the conditions, etc., it is possible to obtain an arbitrary cooling temperature gradient pattern. Change the target value of the sequence one by one according to the movement of the string °.
発明は前述の よ う に構成され、 実行さ れる も ので  The invention is constructed and carried out as described above.
OMPI あ る。 これに よ り 下記 3 点の効果が奏せ られる。 OMPI is there. This has the following three effects.
(1)最終セ ク シ ョ ン推定値と 実績温度に誤差を生じた時、 実績温度補償 に よ り 各セ ク シ ョ ン推定値を速やかに修 正する為、 制御 答性が早 く 、 捲取温度精度が格段と 向 上する。  (1) When an error occurs between the final estimated value of the section and the actual temperature, the actual temperature compensation corrects each of the estimated section values promptly, resulting in quick control response. The winding temperature accuracy is greatly improved.
(2)各冷却セ ク シ ョ ン におけ る 温度精定値を コ ィ ルが定 長進む毎に、 絶対値で求める為、 ラ ン ア ウ ト テ ー ^ル 上の温度勾配が明確に推定でき る 。 従って設備的、 環 境的に温度計設置不可能な湯所の温度が推定でき る為、 冷却速度に対する 品質管理上及び制御上の評価ができ る。 ま た、 冷却速度制御が高精度に可能 と なる 。  (2) Since the temperature adjustment value in each cooling section is calculated as an absolute value each time the coil advances, the temperature gradient on the runout ^ is clearly estimated. it can . Therefore, it is possible to estimate the temperature of the bathhouse where the thermometer cannot be installed in terms of equipment and environment, and it is possible to evaluate the cooling rate in terms of quality control and control. In addition, cooling rate control can be performed with high accuracy.
(3)設備能力、 操業条件、 鋼種、 サイ ズ等に よ り 予かじ め設定計算に よ り 求め ら れた各 セ ク シ ョ ン 目 標値を コ ィ ル の動 き に 合せてダイ ナ ミ ッ ク に設定する為、 コ ィ ル長手方向温度パ タ ー ン制御を 、 精度良 く 実施でき る。  (3) Dynamization is performed according to the movement of the coil by adjusting the target values for each section obtained by the preset calculation based on the facility capacity, operating conditions, steel type, size, etc. Since it is set to the mike, temperature pattern control in the longitudinal direction of the coil can be performed with high accuracy.
以 上述べた よ う な各種効果に よ り 、 栻質決定の主要 因子 であ る捲取温度を高精度に得る こ と ができ る と 共 に 、 冷速制御に よ る ^質の造 り 分け及び コ イ ル長手方 问温度パ タ ー ン制御 に よ る均 一 ^質の コ ィ ル製造等が 可能と な り 、 不良钵質減少に よ る歩留 り 向 上、 高品質 製品の生産等、 経済的 メ リ ッ ト は極め て大であ る。  Due to the various effects as described above, it is possible to obtain the winding temperature, which is a major factor in determining the quality of the slag, with high accuracy, and at the same time, the quality of the structure can be controlled by the cold speed control. It is possible to manufacture a uniform quality coil by separating and controlling the temperature pattern of the coil longitudinal temperature, improving the yield by reducing the quality of defective steel, and improving the quality of the product. Economic merit such as production is extremely large.
図面の簡単な説 明 Brief explanation of the drawings
第 1 図は友発明の捲取温度制御方法を説明するため の、 仕上 延機出側から捲取機 ま での 延栻の冷却過 程を示す側面図、 第 2 図は ^:発明の捲取温度制御の構 成を示す ^ロ ッ ク図、 第 3 図は 発明で利 用するデー タの格納位置を示す平面図、 第 4 図は本発明によ る制 御ヂロ ッ ク図であって第 2 図の詳細を示す図、 第 5図 は 発明の適用効果の一例を示す図である。 発明を実施するため の最良の形態 Figure 1 shows the cooling temperature control of the spreading from the finisher exit side to the winder to explain the winding temperature control method of the friend invention. Fig. 2 is a side view showing the process, Fig. 2 is a ^ lock diagram showing the composition of the winding temperature control of the invention, and Fig. 3 is a plan view showing the storage position of the data used in the invention. FIG. 5 is a control block diagram according to the present invention, showing the details of FIG. 2, and FIG. 5 is a diagram showing an example of application effects of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 ^発明を図面に示す実施例に基づいて具体的 に説明する。  Hereinafter, the invention will be specifically described based on the embodiments shown in the drawings.
まず説明を分か り やすく するた め 、 フ。 口 セ ス の幾何 学的定義づけを第 1 図の如 く に行な う 。 即ち、 仕上温 度計 F T と捲取温度計 C T の間を水冷セ ク シ ョ ン 、 空 冷セ ク シ ョ ン の区別無しに等間隔 L 0 に区切 り 、 仕上 温度計 FT 側よ り ^ 1 、 /¾ 2 ··· /¾ ι セ ク 'ン ヨ ン と して 最下流セ ク シ ョ ンを / ¾ η セ ク シ ョ ン とする。 First of all, to make the explanation easier to understand. The geometric definition of the mouth process is performed as shown in Fig. 1. That is, the finishing thermometer FT and the winding thermometer CT are divided into equal intervals L 0 without distinction between water-cooling and air-cooling, and the finishing thermometer FT side ^ 1, / ¾ 2 ··· / ¾ ι segment, and the most downstream segment is / ¾ η segment.
第 1 図における例では 、 水冷セ ク シ ョ ン 2 1 区分、 空 冷セ ク シ ョ ン <5 区分で構成されている。 なお、 第 1 図 中、 Fは仕上 延機、 Μ Τ は中間温度計であ る。 The example in Fig. 1 consists of 21 water-cooled sections and 5 air-cooled sections. In Fig. 1, F is a finisher and ΜΤ is an intermediate thermometer.
第 2 図に、 発明の制御方法の全体概要を示す。 そ れを表わす制御 ^ α ッ ク は機能を大別して区分されて お り 、 コ イ ル片定長 ミ ク ロ ト ラ ッ キ ン グ機能 Α 、 状態 観測器 B 、 最適制御器 C および実績値処理機 能 D の 4 つに区分さ れている。  Figure 2 shows an overview of the control method of the invention. The control ^ α check that represents this is roughly divided into functions, and the coil piece constant length micro-tracking function Α, state observer B, optimum controller C and actual value are shown. It is divided into four, processing function D.
(1) コ ィ ル片定長 ミ ク ロ ト ラ ッ キ ン グ機能 A  (1) Coil fixed length micro-tracking function A
これは、 コ ィ ル速度を積分する こ と に よ り 、 コ イ ルの 移動距離を計算し、 仕上温度計 F Tを起点と して コ ィ ルが セ ク シ ョ ン長 L0 進む毎に、 その コ ィ ル片 につい てのデー タ移送を行な う 。 移送する デー タは、 板厚 H, コ ィ ル毎に予かじめ設定される設備条件操業条件等を 規定した作業指示デー タ等である。 This is because the coil speed is integrated by integrating the coil velocity. The moving distance is calculated, and each time the coil advances the section length L 0 with the finishing thermometer FT as the starting point, the data transfer is performed for the coil piece. The data to be transferred is work instruction data, etc. that prescribes equipment conditions and operating conditions that are pre-set for each plate thickness H and coil.
(2)状態観測器 B (2) State observer B
コ イ ル片が L o 灌む毎に作業指示デー タ 、 コ イ ル片 厚、 コ イ ル速度、 冷却水温、 F T:、 C Γの各実績値、 等よ り 各セク シ ヨ ン 出側温度 Ti を②式に よ り 計算す る o a L Each time the coil piece is irrigated with Lo, work instruction data, coil piece thickness, coil speed, cooling water temperature, FT :, actual values of C Γ, etc. Calculate the temperature Ti by the formula ② oa L
i = ( i - ! - w ) X e一 + w --(l) i = (i-!- w ) X e + w- (l)
P · ii c v こ こ で、 Ti : i セ ク シ ョ ン 出側温度  P · ii c v where Ti: i section output temperature
Ti . i: i セ ク シ ョ ン 入側温度 ( FT に よ り 測定 )  Ti .i: i section inlet temperature (measured by FT)
T w : 冷却水温度  T w: Cooling water temperature
i : i セ ク シ ョ ン熱伝達係数  i: i-section heat transfer coefficient
P : 比重  P: Specific gravity
i : i セ ク シ ョ ン板厚  i: i section plate thickness
C i : i セ ク シ ョ ン比熱  C i: i section specific heat
v : コ イ ル速度  v: coil speed
である。 また、 Oii と C i は下記阕数と なる。 _  Is. In addition, Oii and C i are the following numbers. _
i = f ( ] -! , ητ ι , η β ί ) (2)
Figure imgf000008_0001
こ こ で、 n τ i : 上部 ヘ ッ ダー数
i = f (]-!, ητ ι, ηβ ί) (2)
Figure imgf000008_0001
Where n τ i is the number of upper headers
n B i : 下部出 力 ヘ ッ ダー数  n B i: Number of lower output heads
K · 鋼種  K · Steel type
であ る 。 Is.
(1)式 よ り / ¾ 1 セ ク シ ョ ン力 ら ^ 2 7 セ ク シ ョ ン迄逐次 下流側から 上流側へ温度推定計算をする 。 こ れは、 直 近 セ ク シ ョ ン の コ ィ ル片温度以外は当該 セ ク シ ョ ン に 対する温度推定計算に影響を与えないよ う にする ため あ る 0 From equation (1), the temperature estimation calculation is performed sequentially from the downstream side to the upstream side from the ¾ 1 section force to the ^ 27 section. This is, Ru Oh order to cormorants by other than the co-I-le piece temperature straight near CHAPTERTHREE does not affect the temperature estimation calculation against in the SECTION 0
この よ う に し て求めた結果、 /¾ 2 7 セ ク シ ョ ン 出側 推定温度 と捲取温度と の間 には誤差 Τ Ϊ を生ずるが、 こ れを(4)式に よ り 前段各 セ ク シ ョ ン に配分する。 こ れ は第 3 図の C T 前処理であ り 、 C T 実績補償に相当す o  As a result of the calculation in this way, an error Τ Ϊ is generated between the estimated temperature on the outlet side of the / ¾ 27 section and the winding temperature. Allocate to each section. This is the C T pretreatment in Fig. 3, which corresponds to C T actual compensation.
i = -Gi /(1 + TiS) X (CT- T27) i = -Gi / (1 + TiS) X (CT- T 27 )
Ti = Ti + Ti —— (4)  Ti = Ti + Ti —— (4)
こ こ で、 セ ク シ ョ ン誤差配分率 Where the section error allocation rate
TiS : むだ時間ハ。ラ メ 一 タ  TiS: Dead time ha. Glitter
Ti : i セ ク シ ョ ン 誤差配分量  Ti: i section error allocation amount
CT : 捲 取温度実績値  CT: Actual winding temperature value
Ti : i セ ク シ ョ ン 出 側推定値  Ti: i-side output estimated value
であ る。 Is.
従つ て各 セ ク シ ョ ン 出側温度推定計算は(1)式と (4)式よ り 予測制御 + フ ィ ー パ ッ ク制御 と な る。 Therefore, the estimated temperature at the outlet side of each section is predictive control + feedback control according to Eqs. (1) and (4).
(3)最適制御器 C ペ ル ^ の応答性を考慮 した定阇斯で各 セ ク シ ョ ン温 度推定値が予かじめ操業条件よ り 求めら れた各 セ ク シ ヨ ン 目 標値-になる よ う に各 セ ク シ ョ ン 内 ヘッ ー出力 量を求める。 (3) Optimal controller C In order to ensure that the estimated value of each section temperature becomes a target value of each section obtained from the pre-cure operating conditions by a constant method considering the response of the pell ^. Find the amount of head output in each section.
まず、 セ ク シ ョ ン毎に必要熱伝達係数 a を求める。 t = -Ci ·ν / < L0 X ίη (Τί_1 - W) C MI -T ) > First, find the required heat transfer coefficient a for each section. t = -Ci · ν / <L 0 X ίη (Τ ί _ 1 - W ) C MI -T)>
-— (5) こ こ で、 TMi : i セ ク シ ョ ン 出側温度目 標値 -— (5) Here, T M i: i output temperature target value
であ り 、 ま た ai は コ イ ル片温 度の関数よ り ゝ And ai is a function of coil temperature
Q!i = fCw , Ti-i , A , B , C ) —— (6)  Q! I = fCw, Ti-i, A, B, C) —— (6)
であ る 。 こ し で、 Is. Here,
A 板温熱伝達係数影響係数  A Plate heat transfer coefficient Influence coefficient
B 注水量熱伝達係数影響係数  B Water injection amount Heat transfer coefficient Influence coefficient
C 空冷時熱伝達係数  C Heat transfer coefficient during air cooling
ヘッ ダ ー出 力係数  Header output coefficient
であ る 。 ま た、 wは 上、' 下部注水状態に よ り 次の関係 力 あ る 。 Is. Also, w has the following relationship depending on the upper and lower water injection conditions.
w = f , Π i ηβϊ , Ν , ΝΒ , D , Ε ) —— (7) こ こ で、 II τ i : 上部出 力 ヘッ ダ ー数  w = f, Π i ηβϊ, Ν, ΝΒ, D, Ε) — — (7) where II τ i: upper output header number
下部出 力 ヘ ッ ダ 一数  Lower output head number
Ν : セ ク シ ヨ ン 内 上部設備ヘ ッ ダー数 ΝΒ : セ ク シ ョ ン 内 下部設備ヘ ッ ダー数 D : 板上流水係数 Ν: Number of upper equipment headers in section Ν Β : Number of lower equipment headers in section D: Plate upstream water coefficient
Ε : 上部を 1.0 と した時の 下部 ヘ ッ ダ ー 冷却 能係数 -- であ る。 Ε: Cooling coefficient of lower header when upper part is 1.0-- Is.
従って(5)、 (6)およ び(7)式 よ り 、 ヘッ ダー出 力係数 w が求 ま れば、 予かじ め コ ィ ル毎に設定される作業指示 デー タ 内の ラ ミ ナ " ッ 一上、 下部注水指定か否力 に よ り 、 上部、 下部そ れぞれの セ ク シ ョ ン内 出 力 へ ッ ダ一 数が决定する 。 ま た、 上、 下部注水時は、 ラ ン ナ ウ ト テ ー ル 上での コ ィ ル通板性を考慮 して 上、 下 力比を 1 : 1 とな る よ う にする。  Therefore, if the header output coefficient w is obtained from Eqs. (5), (6), and (7), the lamina in the work instruction data set for each coil in advance is set. "One upper and one lower in-section output headers are determined depending on whether upper or lower water injection is specified. In addition, at the time of upper and lower water injection, The upper and lower force ratios should be set to 1: 1 in consideration of coil passage on the runout tail.
(4)実績値処理機能 D (4) Actual value processing function D
定周期で起動さ れヅ σ セ スデー タ の合理性チェ ッ ク およ び フ ィ ル タ リ ン グ処理を行なっている。  The rationality check and filter processing of the σ sese data are performed at regular intervals.
次に、 上記(1)〜(4)の 4 つの磯能が実制御上 どの よ う に動作し てい く かを具体的に述べる。  Next, we will describe concretely how the above four functions (1) to (4) operate in actual control.
ま ず、 被制御 コ イ ルが仕上 Ε延機に到達し た時点で、 その コ ィ ル の操業条件、 その時点の設備条件、 冷却水 温実績等 よ り コ ィ ル長手方向中央部の各 セ ク シ ョ ン 出 側温度目 標値、 コ イ ル長手方向温度ハ。タ ー ン制御時の コ イ ル先端、 尾端部の各 セ ク シ ョ ン 出側温度目 標値、 ラ ミ ナ > ッ ダ ー 上、 下部注水か否かを、 そ し て初期 ラ ミ ナ一ヘ ッ ダ ー セ ク シ ョ ン毎 注水指示を初期設定計 算モ ^ル式に よ り 求め、 その時の初 期設定計算で使用 し た パ ラ メ ー タ 類の数値等、 計算条件 と 共に作業指示 デー タ と し て コ ィ ル片定長 ミ ク ロ ト ラ ッ キ ン グ機能 A デー タ を与え る。  First, when the controlled coil reaches the finishing spreader, the operating conditions of the coil, the equipment conditions at that time, the cooling water temperature record, etc. Sectional output side temperature target value, temperature in the longitudinal direction of the coil. During turn control, the temperature target values on the outlet side of the coil at the tip and tail of the coil, whether the temperature is above the laminator> the bottom, and whether or not lower water injection is performed, and the initial lam The water injection instruction for each header section is obtained by the initial setting calculation formula, and the calculation conditions such as the numerical values of the parameters used in the initial setting calculation at that time are calculated. Together with this, work piece constant length micro-tracking function A data is given as work instruction data.
コ イ ル片定長 ミ ク ロ ト ラ ッ キ ン グ機能 A は ゝ 仕上温  The coil fixed length micro-tracking function A is the finishing temperature.
C1.171 度計 F T を起点 と して 、 捲取温度'計 C T を コ ィ ルが抜 ける迄その時々 刻 々 の コ ィ ル の位置に よ り 、 仕上最終 ス タ ン ド速度、 捲取機 マ-ン レ ル 周速、 仕上最終ス タ ン ホ ー ル ト 速度等を、 次 々 に速度セ ン チを切換えて 速度積分を 行ない、 コ イ ルがセ ク シ ョ ン長進む毎に、 各 コ ィ ル片 の実績板厚 H お よ び作業指示デー タ の移送 を行ない、 状態観測機能 B を起動する 。 C1.171 Starting from the temperature meter FT, the winding temperature'meter CT is adjusted until the coil is pulled out, depending on the position of the coil at each moment, the final finishing speed, the winding machine The peripheral speed of the wheel, the final finishing stall speed, etc. are switched by successively switching the speed switches, and speed integration is performed. Transfer the plate thickness H and work instruction data, and activate the condition observation function B.
こ こ で、 設備条件と は、 各冷却 セ ク シ ョ ン毎の冷却能 力であ り 、 操業条件と は、 コ イ ルが仕上 E延機を出て から捲取機で捲取ら れる ま での間 、 ど う い う 操業を行 な う か規定された も のであ り 、例えばラ ン ア ウ ト テー ル前半冷却、 均一冷却であった り 、 通板性等を考慮 し て ラ ミ ナ一上部注水指 定、 上、 下部注水指定であつ た り する。 また、 コ イ ル の鋼種、 サ イ ズ 、 捲取温度狙 い値指定等の、 作業明.細 も 含むこ と はい う ま でも ない c 状態観測機能 B は 、 コ イ ル片定長 ミ ク ロ ト ラ ツ キン グ機能 Aが移送した コ ィ ル片の 板厚お よ び作業データ よ り 、 第 3 図に示すよ う に 、 それぞれ厚み移 送テ ー ルお よ び作業指示テ ー ^ ル へ コ ィ ル片 ミ ク ロ ト ラ ツ キ ングと 同期を と つて各デー タ セ ッ ト を行ない、 それと 共に作業'指 示デー タ 内 の各 セ ク シ ョ ン 目 標値を温度目 標値テ ー ル に セ ッ ト する 。 Here, the equipment condition is the cooling capacity of each cooling section, and the operating condition is that the coil is taken out from the finishing E-roller and then wound by the winder. During that period, it was stipulated how many operations should be carried out. The upper water injection is specified, and the upper water injection and lower water injection are specified. In addition, work conditions such as specification of coil steel type, size, target value of coiling temperature, etc. are not included at all c. State observation function B is a fixed length coil coil. According to the plate thickness and work data of the coil pieces transferred by the tracking function A, as shown in Fig. 3, the thickness transfer tail and work instruction table ^ Each data set is carried out in synchronism with the micro coil single-track tracking, and at the same time, each section target value in the work'instruction data is set as a temperature target. Set to the threshold mark.
その後、 各 セ ク シ ョ ン毎の熱伝達係数 の推定で、 上 部ヘ ッ ダーテ ー ヅ 'レお よ び下部 ヘ ッ ダ ーテー ザルにそ れぞれ指定された ラ ミ ナ ^ッ ダ一出力状態 と 、 温度 指定値テ ー プ ル に示さ れた各 セ ク シ ヨ ン 出側温度推定 値に基づいて(9)式よ り 熱伝達係数 0! を求め、 0! 推定テ 一 ルにそれぞれセッ ト する。 After that, by estimating the heat transfer coefficient for each section, the laminar grids specified for the upper and lower headers, respectively. Output state and temperature Obtain the heat transfer coefficient 0! From Eq. (9) based on the estimated temperature on the outlet side of each section shown in the specified value table, and set it to the 0! Estimation table respectively.
まず(8)式よ り 、 ヘッ ダー出力係数 w を求める。 .、 First, the header output coefficient w is calculated from Eq. (8). .,
wi = (D-HTi + Β·ιΐΒί ) / NT + Νβ · E ) —— (8) " CLi = A-wi - i -l + B«wi + C —— (9) 各セ ク シ ョ ン毎に熱伝達係数 O!i が求 ま れば、 各 セ ク シ' ヨ ン 出側温度推定値を(1)式に よ り 求め、 温度推定値 テ ー ゲ ル に セ ッ ト する 。 wi = (D-HTi + Β · ιΐΒί) / NT + Νβ · E) —— (8) "CLi = A-wi-i -l + B« wi + C —— (9) Each section If the heat transfer coefficient O! I is obtained for each, the estimated temperature at the outlet side of each section is obtained from Eq. (1) and set to the estimated temperature value tag.
その後 、 最終セ ク シ ョ ン 出側温度推定値 と捲取温度計 実績値と の間に差があ れば(4)式に よ り 温度推定値を補 正する 。 After that, if there is a difference between the estimated temperature on the outlet side of the final section and the actual measured value on the winding thermometer, the estimated temperature value is corrected by equation (4).
(1)式に よ り 各セ ク シ ョ ン 出側温度を予測計算 し 、 (4) 式に よ り 温度計実績値よ り 修正計算を行ない、 補正後 の各 セ ク シ ョ ン温度推定値を温度推定値テ ー ル に セ ッ ト する 。 ラ ン ア ウ ト テ ー ^ ル 上の冷却温度勾配がこ れに よ り 認識でき る。  Estimate each outlet side temperature using Eq. (1) and make a correction calculation from the actual thermometer value using Eq. (4) to estimate each corrected section temperature. Set the value to the temperature estimate value table. The cooling temperature gradient on the run-out table can be recognized by this.
最適制御器 D は 、 コ ィ ル片定長 ミ ク ロ ト ラ ッ キ ン グ 機能 A お よ び状態観測機能 B に よ り デー タ セ ッ ト され た第 3 図の コ ン ト ロ ー ルテ ー ^ル に示す厚み移送テー ヂ ル ゝ 温度目標値テ ー ル 、 作業指示テ ー ヅ ルお よび 温度推定値テ ー ブ ル の内容を、 ペ ル ヅの 答性を考慮 した定周期で読み、 その タ イ ミ ングでの コ イ ル速度お よび冷却水温等の実績よ り 各 セ ク シ ョ ン毎の 出 力 へッ ダー数を求め、 上部 ヘ ッ ダ ーテ 一 ヅ ルお よ び下 へッ  The optimum controller D is the controller of FIG. 3 which is data-set by the coil fixed length micro-tracking function A and the state observation function B. Read the contents of the thickness transfer table, temperature target value table, work instruction table and temperature estimated value table shown in the table at a fixed cycle considering the responsiveness of the pellet. Then, the number of output headers for each section was calculated from the actual results of coil speed and cooling water temperature at that timing, and the upper header Bottom
一 OMPI — , ダーテー ヅ ル にそれぞれセ ッ ト する。 まず、(5) 式よ り 各 セ ク シ ョ ン 出 側目 標温度を達成する ため に必要なセ ク シ ヨ ン毎の熱伝達係数 οί i を求める。 次に(9)、 (10)式よ り ヘッ ダ ー出力係数 w i を求め る 。 こ こ で αο)式は(9)式よ り 導びかれる も のである。 One OMPI — Set each in the dirty. First, the heat transfer coefficient οίi for each section that is necessary to achieve the target temperature on the outlet side of each section is calculated using Equation (5). Next, the header output coefficient wi is calculated from Eqs. (9) and (10). Here, the expression αο) is derived from the expression (9).
i = ( C — C )/( Α ·Τί -ι + Β ) —— (10)  i = (C — C) / (Α · Τί -ι + Β) —— (10)
dO)式よ り w i が求ま り 、 作業指示デー タ よ り 注水状況 が規定さ れれば、 各 セ ク シ ョ ン毎の 出力 ヘ ッ ダー数が 求ま る。 今仮に ラ ミ ナ一ヘッ ダ ー 上、 下部注水指 定で 上、 下出 力比を 1 : 1 と すれば、 (8)式よ り 、 If w i is calculated from the equation (dO) and the water injection status is specified from the work instruction data, the number of output headers for each section can be calculated. Assuming now that the upper and lower output ratios are 1: 1 above and below the laminar head, the formula (8) gives
ητϊ = ΠΒ Ϊ = η と すれ {^、  ητϊ = ΠΒ Ϊ = η {^,
n = i · CNT + NB * E)/(D + E ) --- (ID n = i · CN T + N B * E) / (D + E) --- (ID
と な る 。 And
HI)式で出 力 ヘッ ダ ー数 n が設備ヘッ ダー数 N τ 、 ΝΒ よ り 大きい時は、 η = Ν τ C = ΝΒ ) と し てい る。 In equation (HI), if the output header number n is larger than the equipment header number N τ, Ν Β , then η = Ν τ C = Ν Β ).
以 上に よ り 各 セ ク シ ョ ン毎の 出 力 ヘ ッ ダー数を計算 し 、 こ れら を 上部ヘ ッ ダ ーテ ー ヅ ル と 下部 ヘ ッ ダ ーテ 一 ^ ル にデー タ セ ッ ト し 、 その後実制御出 力 ( ラ ミ ナ 一へッ ダ一パ ルヅ開閉指示 ) を行な う 。 前述した制御方法を具現化する た め の制御ヅ ロ ッ ク 図を第 4 図 に示す。 第 4 図は こ れま での説明を整理し、 第 2 図を よ り 詳細に展開 した も の と いえ る 。 即ち、 コ ィ ル片 定長 ミ ク ロ ト ラ ッ キ ン グ機能 Αは定長 L Q の移 動毎に起動 して状態観測器 B にデー タ 移送を行ない、 状態観測器 B は定長 ト ラ ッ キ ン グデー タ 移送処理に よ り ω式に基づいて コ ィ ル片温度の計算処理を行ない、The number of output heads for each section is calculated from the above, and these are stored in the upper and lower headers. Then, the actual control output (Lamina-Header-Palds opening / closing instruction) is performed. Figure 4 shows a control block diagram for implementing the control method described above. It can be said that Fig. 4 is a more detailed development of Fig. 2 after arranging the explanations so far. That is, the coil fixed length micro-tracking function A is activated at every movement of the fixed length LQ to transfer data to the state observing device B, and the state observing device B is For racking data transfer processing The coil piece temperature is calculated based on the equation
(4)式に よ り 温度実績に よ る推定温度の補正を行な う 。 Correct the estimated temperature based on the actual temperature according to equation (4).
最適制御器 c では、 この結果及び第 S 図に示すコ ン ト ロ ー ルテ 一 ヅ ルの各種デー タ テ一ゲ ルの内容に基づ いて(7)式に よ り 各 セ ク シ ョ ン毎の 出力 ヘ ッ ダ ー数を計 算 し、 出力 ヘ ッ ダ ー数に よ り 制御操作端出力に変換し 最終的にペル ^開閉制御出 力が実制御出力 と し て指示 される 。  Based on this result and the contents of various data in the control table shown in Fig. S, the optimum controller c calculates each section according to Eq. (7). The number of output headers for each is calculated and converted to the control operating end output according to the number of output headers, and finally the pel ^ opening / closing control output is instructed as the actual control output.
第 5 図は本発明の効果の具体例を示すグ ラ フ であ り 鋼種は普通鋼 ( 引張強度 2 0 〜 8 0 /廳 2 ) ^ コ ィ ル長さ 比で制御目 標値 + 2 0 °C ¾内 と し て: 発明を適 用 し た際の捲取温度適中率を示 し てお り 、 各厚みと も 高い適中率を得ている こ と が判 る Figure 5 is grayed La off der Ri steels showing a specific example of the effect of the present invention is ordinary steel (tensile strength 2 0-8 0 / Hall 2) ^ U I le control targets value length ratio + 2 0 In ° C ¾: It shows that the winding temperature applicability when the invention is applied is high, and that the applicability is high with each thickness.
:·'{?:: · '{?:
T' r T 'one r

Claims

請求の範囲 熱間 E延にぉける冷却工程において、 仕上出口温度 計から捲取温度計の間の冷却、 一ンを制御可能な冷却 ヘッダ一を複数個有する所定の間隔 の セ ク シ ヨ ン に分 害!!し、 セ ク シ ョ ン長に等しいコ ィ ル片 の移動に伴ない 各セ ク シ ョ ン毎の コ ィ ル片の設備条件、 操業条件に対 して予かじめ求められた入側、 出側目標温度を定め る と と も に、 コ ィ ル片の移動毎に各 セ ク シ ョ ン 出側の コ イ ル片温度をモ デ ル式によ り 推定計算し、 一方当該 冷却ラ イ ン に配置した温度計によつて所定の冷却、 一 ン 出側での コ ィ ル片温度を実測 して前記推定温度を補 正し、 前記セ ク シ ヨ ン毎の出側目標温度及び補正後の セ ク シ ョ ン毎人側推定温度と セ ク シ ヨ ン毎の コ イ ル厚 み 、 コ イ ル速度及び冷却水温等の各実績よ り 当該セ ク シ ョ ン毎の冷却制御操作量を決定する こ と を特徴とす る熱間 延 にぉける捲取温度制御方法。  In the cooling process for hot E elongation, cooling is performed between the finishing outlet thermometer and the winding thermometer, and a section with a predetermined interval having a plurality of cooling headers capable of controlling one Harm to! ! However, with the movement of the coil piece equal to the section length, the entrance side that was pre-determined for the equipment condition and operating condition of the coil piece for each section, In addition to setting the target temperature on the outlet side, the temperature of the coil piece on the outlet side of each section is estimated and calculated by a model formula for each movement of the coil piece, while Predetermined cooling is performed by a thermometer placed in the inlet, the temperature of the coil piece on the outlet side is measured to correct the estimated temperature, and the output side target temperature for each section Cooling control for each section based on actual results such as the estimated human side temperature after correction, coil thickness for each section, coil speed, cooling water temperature, etc. A hot-rolling temperature control method characterized by determining the manipulated variable.
PCT/JP1984/000413 1984-08-29 1984-08-29 Method of controlling winding temperature in hot rolling WO1986001440A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE3490758A DE3490758C3 (en) 1984-08-29 1984-08-29 Controlling the take-up temp. in hot rolling
KR1019860700125A KR910010145B1 (en) 1984-08-29 1984-08-29 Method of controlling winding temperature in hot rolling
DE3490758T DE3490758T1 (en) 1984-08-29 1984-08-29 Method of controlling the coil formation temperature in hot rolling
PCT/JP1984/000413 WO1986001440A1 (en) 1984-08-29 1984-08-29 Method of controlling winding temperature in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1984/000413 WO1986001440A1 (en) 1984-08-29 1984-08-29 Method of controlling winding temperature in hot rolling

Publications (1)

Publication Number Publication Date
WO1986001440A1 true WO1986001440A1 (en) 1986-03-13

Family

ID=13818408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000413 WO1986001440A1 (en) 1984-08-29 1984-08-29 Method of controlling winding temperature in hot rolling

Country Status (3)

Country Link
KR (1) KR910010145B1 (en)
DE (2) DE3490758T1 (en)
WO (1) WO1986001440A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537867A (en) * 2017-08-04 2018-01-05 北京首钢股份有限公司 A kind of monitoring method and system of collector valve response time
CN116144888A (en) * 2023-02-01 2023-05-23 北京科技大学 Double-phase steel plate strip homogenizing hanging coil and cooling control quality adjusting method based on transverse and longitudinal temperature difference

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563260B1 (en) * 2001-06-19 2006-03-27 주식회사 포스코 Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JP5054369B2 (en) * 2006-12-19 2012-10-24 株式会社日立製作所 Winding temperature control device and control method
CN110340156B (en) * 2019-07-31 2020-11-20 首钢京唐钢铁联合有限责任公司 Strip steel coiling temperature control method and device and strip steel processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532370A (en) * 1976-06-29 1978-01-11 Kawasaki Steel Co Hot rolled steel plate reeling temperature control device
JPS5815202B2 (en) * 1976-05-19 1983-03-24 株式会社東芝 Coiling temperature control method for hot-rolled steel sheets

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274273A (en) * 1979-10-03 1981-06-23 General Electric Company Temperature control in hot strip mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815202B2 (en) * 1976-05-19 1983-03-24 株式会社東芝 Coiling temperature control method for hot-rolled steel sheets
JPS532370A (en) * 1976-06-29 1978-01-11 Kawasaki Steel Co Hot rolled steel plate reeling temperature control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537867A (en) * 2017-08-04 2018-01-05 北京首钢股份有限公司 A kind of monitoring method and system of collector valve response time
CN107537867B (en) * 2017-08-04 2019-07-12 北京首钢股份有限公司 A kind of monitoring method and system collecting the tube valve response time
CN116144888A (en) * 2023-02-01 2023-05-23 北京科技大学 Double-phase steel plate strip homogenizing hanging coil and cooling control quality adjusting method based on transverse and longitudinal temperature difference
CN116144888B (en) * 2023-02-01 2024-02-20 北京科技大学 Double-phase steel plate strip homogenizing hanging coil and cooling control quality adjusting method based on transverse and longitudinal temperature difference

Also Published As

Publication number Publication date
KR910010145B1 (en) 1991-12-17
DE3490758C2 (en) 1990-08-09
KR870700419A (en) 1987-12-29
DE3490758C3 (en) 1995-08-03
DE3490758T1 (en) 1986-08-07

Similar Documents

Publication Publication Date Title
RU2291750C2 (en) Control method for finishing line stands arranged in front of cooling section and designed for rolling hot rolled metal strip
JP2000167615A (en) Method for controlling coiling temperature and controller
US7853348B2 (en) Method for producing a metal
JP6399985B2 (en) Winding temperature control device and winding temperature control method
JPS587366B2 (en) Stritupuo Reiki Yakusuru Hohou
JP2783124B2 (en) Temperature control method for hot rolled steel
WO1986001440A1 (en) Method of controlling winding temperature in hot rolling
US20080135203A1 (en) Continuous Casting and Rolling Installation For Producing a Steel Strip
JPH05317941A (en) Method for controlling water cooling for barsteel and wire rod
JP2004034122A (en) Winding temperature controller
JPS63168211A (en) Temperature control method for hot rolling process
KR100306147B1 (en) Method for controlling cooling of hot rolled steel sheet
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JPH08103809A (en) Cooling control method of steel plate in hot rolling
JP3450108B2 (en) Hot rolled sheet cooling control device
JPH05277535A (en) Method for controlling cooling of steel strip
JPH08252625A (en) Method for controlling coiling temperature in hot rolling
JP2000271626A (en) Method for controlling coiling temperature
JPH0890036A (en) Method for controlling coiling temperature in hot rolling mill
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JPH03287720A (en) Method for controlling hot finish rolling temperature of strip
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JPS56136215A (en) Method and apparatus for feedback control of water cooling for steel material in rolling line
JPH091224A (en) Device for controlling cooling of hot rolled plate
JP2617666B2 (en) Method of controlling winding temperature of hot-rolled steel strip

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR

RET De translation (de og part 6b)

Ref document number: 3490758

Country of ref document: DE

Date of ref document: 19860807

WWE Wipo information: entry into national phase

Ref document number: 3490758

Country of ref document: DE