WO1986000079A1 - Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute - Google Patents

Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute Download PDF

Info

Publication number
WO1986000079A1
WO1986000079A1 PCT/SE1985/000239 SE8500239W WO8600079A1 WO 1986000079 A1 WO1986000079 A1 WO 1986000079A1 SE 8500239 W SE8500239 W SE 8500239W WO 8600079 A1 WO8600079 A1 WO 8600079A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
hyaluronic acid
vitreous humor
weight
crosslinked hyaluronic
Prior art date
Application number
PCT/SE1985/000239
Other languages
French (fr)
Inventor
Tomas Mälson
Bengt Lh Lindqvist
Original Assignee
Pharmacia Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SE8403090-7 priority Critical
Priority to SE8403090A priority patent/SE442820B/en
Application filed by Pharmacia Ab filed Critical Pharmacia Ab
Priority claimed from AT85903085T external-priority patent/AT37377T/en
Publication of WO1986000079A1 publication Critical patent/WO1986000079A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Abstract

A vitreous humor substitute intended for ophthalmological uses and consisting of a gel of crosslinked hyaluronic acid and a method at retinal surgery and after vitrectomy when the vitreous humor completely or partially is exchanged for such a gel.

Description

Gel of Crosslinked Hyaluroniσ Acid for Use as a Vitreous Humor Substitute

This invention is concerned with a substitute for vitreous humor to be used in ophthalmology, consisting of a gel of crosslinked hyaluronic acid, and a method at retinal surgery and after vitrectomy when the vitreous humor completely or partially is exchanged for such a gel.

The vitreous humor of the eye, also known as "vitreous body", is a transparent gel-type material occupying an intraocular space which extends forward from the retina to the lens and ciliary body, these latter two formning (normally) the frontal boundary of said space while the retina forms the rear boundary. The retina comprises two layers which are not organically connected with each other over their entire area. The layer immediately adjacent to the vitreous humor, i.e. the receptor layer, contains photosensitive cells while the layer adjacent to the choroid consists of pigment epithelial cells. If fluid penetrates through the receptor layer this may result in a separation of the two layers, that is, in detachment of the retina. Usually this will occur when a hole has been torn in the retina and morbid changes have occurred in the vitreous humor.

Treatments in cases of retinal detachment imply closing the rupture by means of for example a coagulation method such as e.g. cryopexy and contacting the detached retina with the pigment epithelial layer and the choroid. This latter step may be carried out by means of an inward buckle impressed from the outside on the sclera and choroid, or by means of injection of some substance that will increase the volume of the vitreous humor and thereby increase the pressure exerted by the vitreous humor on the retina.

For thi-s last-mentioned method, a number of substances have been tried as substitutes for vitreous humor in cases where recourse has been had to vitrectomy (complete or partial removal of the vitreous humor by surgery) as e.g. after hemorrhages that have not been resorbed satisfactorily or after membrane ingrowth with concomitant retinal detachment due to traction. Examples of such substances are: Gases, salt solutions, silicone oil', polyvinyl pyrrolidone, hyaluronic acid, and hydrogels of the polyacrylamide type as well as polyglyceryl methacrylate.

An ideal vitreous humor substitute will have to possess a high degree of transparency and about the same refractive index as the vitreous humor. The substitute has to be a non-toxic, non-inflammatory, non-immunogenic substance. Moreover, it must be a substance that can be applied easily, for example by i jecion through a fine needle tip, withour undergoing any deterioration of its properties while being thus applied; and in some cases a further requirement is that this substance should be capable of controllable swelling. This substance may be required to act as a support during a prolonged period of time and should therefore be a material - preferably gel material - that is not easily degraded or decomposed. In cases of retinal detachment, a complication occurring fairly often is that secondary reactions show up in the form of cellular growth, concomitant membrane formation and traction forces exerted on the retina. It is therefore a highly important requirement that the substitute material introduced should not be a cell growth substrate.

The aforesaid vitreous humor substitutes of the prior art have serious drawbacks in one or more respects. Thus for instance, silicone oil while being an efficient substance for promoting attachment of the retina has a high frequency of side effects in the form of cataract formation, glaucoma and toxic effects on the tissues of the eye. Among the gaseous substitutes, the one that has been employed most commonly and for many years is air - which however, like several other low molecular substances tested, has the disadvantage of being eliminated too quickly so that conse¬ quently the retina is not held in a fixed position long enough for effective healing. Hyaluronic acid is a substance normally present in the eye; therefore injection of hyaluronic acid will not give rise to any toxicological or immunological reactions. However despite the fact that hyaluronic acid is a high molecular, high viscosity substance the duration of its tampon effect is not sufficient for treatment of the more severe cases of retinal detachment: The hyaluronic acid will become inefficient too soon for such severe cases, due to being dissolved in the aqueous humor and thus carried away.

We have now found that a gel of crosslinked hyaluronic acid has properties in very close agreement with those set forth above as characteristics of an ideal vitreous humor substitute,

The present invention therefore provides a gel of crosslinked hyaluronic acid to be used as a vitreous humor substitute, a method for producing such a gel and furthermore provides a method at retinal surgery and after vitrectomy, implying that a sterile and pyrogen-free gel of crosslinked hyaluronic acid is introduced into an intraocular space enclosed between a rear boundary formed by the retina and a frontal boundary normally formed by the lens and the ciliary body, the introduction of said gel being effected in a manner such that said gel (together with remaining natural vitreous humor, if any) will fill out all of said intraocular space. In eyes where the lens has been removed, so-called aphakic eyes, the frontal boundary of said space is formed by the cornea. - The gel of the present invention is used also in the treatment of retinal detachment, implying that a sterile and pyrogen-free gel of crosslinked hyaluronic acid is introduced into the aforesaid space enclosed between a rear boundary formed by the retina and a frontal boundary normally formed by the lens and ciliary body; this has the effect that the pressure applied on the receptor layer by the hyaluronic acid gel, conjointly with remaining portions of natural vitreous humor (if any) , will cause the receptor layer to lie in contact with the pigment epitheial layer for a period of time sufficient for healing.

Gels of crosslinked hyaluronic acid for gel filtration have been described by Laurent et al. (Acta Chemica Scandinavica 18 (1964), 274-275). Schmut et al. have stated (Graefes Arch Clin Exp Ophthalmol 218 (1982), 311-314) that they have been the first to successfully produce stable gels from hyaluronate solutions at physiological pH, but that the hyaluronic acid - Cu 2+ gels are unsuitable for ophthalmological applications, inter alia because of the toxicity of the copper ion.

Hyaluronic, acid is a highly viscous glucosamino glycan occurring naturally in animal and human tissues and having a molecular weight usually varying within the range of 20 000 to 8 000 000 depending on its source and purification method. However the molecular weight of the hyaluronic acid is not a critical factor for the practice of this invention, it being an easy matter in each individual case to properly adapt the concentration, type of crosslinking agents employed and degree of crosslinking to the molecular weight of each particular starting material. If for instance the hyaluronic acid has a low molecular weight then both the hyaluronic acid and its crosslinking agent will be added in higher concentrations than in cases where this starting material has a high molecular weight. According to a preferred embodiment a comparatively high molecular hyaluronic acid is chosen, its molecular weight being within the range of from 500 000 to 3 000 000. An important point to be noted is that the hyaluronic acid must have been purified from components that might otherwise cause toxicological or immunological reactions. It is recommendable to employ a highly purified product such as described in for example the U.S. patent specification 4,141,973.

Crosslinking according to the present invention is carried out with known bi- or polyfunctional crosslinking reagents which will produce stable bonds, e.g. ether or amide bonds. There are a large number of commercially available reagents for crosslinking hydroxyl-containing substances such as e.g. polysaccharides, all of these reagents having been described in the literature and being well known to persons skilled in the art. Preferred crosslinking reagents are bi- or poly- functional epoxides, e.g. lower aliphatic epoxides, or their corresponding halohydrins or epihalohydrins or halides, in as much as these will form ether bridges to the hyaluronic acid molecules. As suitable examples may be mentioned epichlorohydrin, divinylsulfone, 1,4-butanediol diglycidyl ether, 1,2-ethylenediol diglycidyl ether, 1-(2,3-epoxypropyl)- 2,3-epoxy cyclohexane, N,N-diglycidyl aniline (Leuktherm X50 Bayer) and epoxy-substituted pentaerythritol (Shell 162) . Other crosslinking agents that may be employed are reactive polymers such as for instance dextran or starch which have been reacted to contain e.g. glycidyl ether groups. Products suitable for use in accordance with the present invention are obtained by carrying out the crosslinking reaction with the crosslinking agent in an amount corresponding to a molar ratio of about 0.03 to 4.0 per disaccharide repeating unit in the hyaluronic acid molecule.

The hyaluronic acid or a salt thereof such as for example the sodium salt is dissolved and reacted with the crosslinking agent in an alkaline medium for a period of time appropriate for the reaction; this is usually a couple of hours. Optionally the reaction may be performed at an elevated temperature, about 50 C. The gel of crosslinked hyaluronic acid will contain some residual unreacted crosslinking agent, and it is therefore of the utmost importance that the gel be washed very thoroughly, as for example by boiling in phosphate-buffered physiological saline.

The swollen gel has a very high content of liquid; these hyaluronic acid gels are perfectly homogeneous and transparent, having a refractive index in very good agreement with that of natural vitreous humor. Their high degree of transparency permits slit lamp examinations, as well as the use of photocoagulation techniques for retina fixation. A composition suitable for administration is a gel completely or partially swollen in phosphate-buffered physiological saline and having a concentration which corresponds to a solids content within the range of 0.1 to 50 % by weight. These gels may be employed whole or crushed. A finely divided gel having a solids content of from 0.1 to 2.5 % by weight, preferably 0.2 to 1.5 % by weight, can be readily injected through a 0.9 mm needle tip. Such a gel will fill out the space into which it has been injected, to thus form therein*, a clear, optically homogeneous mass. It is also possible to employ a whole gel globule which has been shrunk and has a dry solids content of between 10 and 50 % by weight, preferably 12 to 25 % by weight, this globule being introduced surgically into the space normally occupied by the vitreous body. Then, by means of controlled swelling and due to its capacity of plastic deformation, the globule will fill out the entire free space; to do this it must be able to swell to a diameter of up to about 20 mm in case a complete vitrectomy has been carried out. To effect shrinking of the gel globule methods like e.g. drying in a gas stream may be used, to thus reduce the size of the globule to a dimension suitable for its introduction into the eye - i.e. a diameter of usually less than 6 mm.

Compositions containing a gel of crosslinked hyaluronic acid may of course be produced in many different ways by mixing the gel with components that will not cause any undesired reactions of the aforesaid kind. Thus for instance it will be readily appreciated that in addition to the hyaluronic acid gel the composition may contain other polysaccharides such as e.g. dextran, as well as compounds closely related to hyaluronic acid like chondroitin sulfate. Components of these types may be present also when the crosslinking reaction is carried out. The gels are thermostable and can be liberated completely, by washing and heat treatment, from all traces of crosslinking reagents; and they can be sterilized by autoclaving.

The invention will be illustrated further by the below examples which however do not limit the scope thereof in any respect.

EXAMPLES

Preparation of hyaluronic acid gels

Example 1 g 400 g of sodium hyaluronate (molecular weight about 3 x 10 ) was dissolved in 3 ml of 1 % sodium hydroxide in a plastic tube. After about half an hour 25 ,ul of 1,4-butanediol diglycidyl ether (BDDE) was added. The tube was centrifuged to produce a homogeneous solution. The tube was then heated to 50°C for two hours, whereupon it was left standing overnight at room temperature. The gel that had formed was cut into small pieces and was washed thoroughly during a

24-hr period with distilled water to which acetic acid had been added. After further washing for 8 hrs by boiling in phosphate-buffered physiological saline (0,276 g Na„HPO..2H20;

0.0395 g NaH PO-.H-O; 8.476 g NaCl per 1000 ml pH 7.3) the gel was drained, crushed to a desired particle size, and filled into syringes which were autoclaved.

The dry solids content of the gel (% of swollen gel in buffer) was 0.37 %.

The epoxide content (BDDE std) was <1 ppm as determined on hyaluronidase-degraded gel that had been reacted with nicotinamide according to Nelis and Sinsheimer, Anal. Bioche . 115 (1981), 151-157. The refractive index in phosphate-buffered physiological saline was 1 . 3350 .

Example 2

The gel was prepared as in Example 1, but with 40 ,ul of BDDE. The resultant gel had a solids content (% of swollen gel in buffer) amounting to 0.66 %.

The epoxide content (BDDE std) was <1 ppm.

The refractive index in phosphate-buffered physiological saline was 1.3352.

As has been mentioned before, gels of hyaluronic acid may be prepared with varying amounts of crosslinking agents, hyaluronate and hydroxide. Other reaction parameters such as e.g. time and temperature may also be varied to achieve favorable gel forming conditions.

The reaction of Example 1 was repeated in a test series where the temperature, time, hyaluronate concentration, hydroxide concentration or amount of BDDE was varied while all the other parameters were kept constant.

Results:

Temperature Time

25°C no gel 15 min. no gel

50°C' gel 2 hrs gel

75°C no gel 4 hrs gel

100°C no gel 9 hrs gel Cone , of hyaluronic acid Cone, of hydroxide 2 .5 % no gel 0.1 % no gel

5 % no gel 1 % gel

13.3 % gel 3 % no gel

20 % gel 6 % no gel

Amount of BDDE

5 / Ul no gel

10 . ul no gel

50 ,»1 gel

100

/Ul gel.

500 gel

/" '

While these data may give the reader a general idea as to what sorts of reaction conditions are generally suitable it will be appreciated that for persons skilled in the art it is an easy matter to effect changes in any combinations of two or more parameters in order to obtain the desired conditions of reaction (gel formation) .

Example 3

400 mg of low molecular sodium hyaluronate (M about 20 000) was dissolved in 1 ml of 1.3 % sodium hydroxide; then 300 ul of BDDE was added. The reaction was allowed to proceed for two hours at 50 C, whereupon the gel was washed as described above. In this case a gel of 1.2 % solids content was obtained. Example 4 g 800 mg of sodium hyaluronate (M about 1 x 10 ) was dissolved in 3 ml of 1 % sodium hydroxide. 50 ,ul BDDE was added, and when the reaction had proceeded for 2 hours at 50 C the product was washed as described above. A soft gel of 0.23 % solids content was obtained.

Example 5

400 mg of sodium hyaluronate (M about 3 x 10 6) was dissolved in 3 ml of 1.3 % sodium hydroxide, whereupon 70 .ul of epichlorohydrin was added. The reaction was allowed to proceed for 2 hours at 50 C, the product then being washed as described above. The reaction in this case gave a gel of

0.9 % solids content.

Example 6

200 mg of sodium hyaluronate (M about 3 x 10 ) was dissolved in 1.5 ml of 1 % sodium hydroxide, whereupon 5 ,ul of divinyl sulfone was added. The mixture was left standing overnight at room temperature. After washing in the manner as described above a brittle gel was obtained; solids content 0.8 %.

Example 7

50 g of hyaluronic acid gel (produced according to Example 2) in distilled water was introduced into a dialysis tube which was then sealed. The tube was suspended and air-dried in that position. After 3 days the gel weight had decreased to 5 g. Upon resuspension in phosphate-buffered physiological saline the gel was seen to swell, during 24 hours, so as to occupy a volume of 7.5 ml; this was equivalent to 50 % swelling.

Example 8

1,200 ml of crushed hyaluronic acid gel (produced according to Example 2) in phosphate-buffered physiological saline was introduced into a pressure vessel; the vessel had a permeable bottom plate onto which an ultrafiltration membrane had been placed (Amicon Diaflo XM100A) . 840 ml of liquid was expressed from the gel with the aid of applied gas pressure (3.5 kg/sq.cm) The gel was crushed to a finely divided state, filled into syringes and autoclaved. This gel could be readily extruded through a cannula of 0.8 mm interior diameter. To 20 ml of the partially swelled gel was added an excess of phosphate- buffered physiological saline which caused the gel to swell further to a 53 ml volume within 5 days.

Example 9

9.3 g of hyaluronic acid gel (produced according to Example 2) in phosphate-buffered physiological saline was suspended in 5M sodium chloride solution. After 24 hours the weight of the gel had decreased to 7.7 g (83 % of its original weight). The gel was then packed onto a column the volume of which was adapted to the gel volume. The column was eluted with physiological phosphate buffer until the gel was equilibrated therewith. When the gel was resuspended in the buffer it swelled again during a 24 hr period so as to reacquire its original weight (9.3 g) .

Example 10

400 mg of sodium hyaluronate (M about 3 x 10 ) was dissolved in 3 ml of 1 % sodium hydroxide. 100 ,ul of BDDE was added. Drops of the solution were portioned out into small poly¬ ethylene tubes containing 3 ml of a mixture of ethylene dichloride and toluene (61 % ethylene dichloride; 39 % toluene, v/v) . The density of the hyaluronate solution was the same as that of the surrounding solvent mixture, and consequently the globules of hyaluronic acid that were now formed remained freely suspended in the solvent. The tubes were heated at 50 C for 2 hours and were then left standing overnight. The gel globules were washed with distilled water followed by physiological phosphate buffer. One of these gel globules (weight 2.4 g) in phosphate-buffered saline was equilibrated with distilled water and dried in an air stream so as to reduce its weight to 140 mg. The dried and shrunken globule was then allowed to swell in said buffer; after 72 hours it had reacquired its original volume and weight.

Cell culture on hyaluronic acid gel

Example 11

Human fibroblasts (line Flow 2002) , primary heart fibroblasts and an epithelial cell line (VERO) were employed in these experiments, the culture medium being DME/F10 (80:20) with additions of 2 mM L-glutamine, 1 % non-essential amino acids and 10 % FCS. Disks of the gels (the latter having been prepared in the form of plates) were cut out and placed into bacteriological petri dishes; and the culture medium was added together with about 50 000 cells/dish. The cultures were incubated in a humid atmosphere at 30°C (5 % CO-) .

Readings of the dishes were performed every 24 hours during one week. On each occasion the numbers of attached cells and spread-out cells were recorded. Normal cell culture dishes were used as controls.

The results show that cells are unable to grow on hyaluronic acid gel in an in vitro situation, and that this applies to all kinds of cell types. They can attach but cannot spread out/proliferate or divide.

Crosslinked hyaluronic acid gel employed as vitreous humor substitute in vitrectomized rabbits

Example 12

The rabbits (albino, Swedish loop, ) were anesthesized with Mebumal-vet. (ACO) , 60 mg/ml diluted 1:3. The pupils were dilated using Mydriacyl 0.5 % (Alcon) and Cyklogyl® 1 % (Alcon) . Tetracain (Alcon) was employed as local anasthetic.

After disengagement of the conjunctiva and attachment of a holding suture in the rectus nasalis a cut of 1.5 mm length was prepared 2 mm below the limbus, whereupon a 5-0 Mersilene ® U suture (Ethicon) was placed in the prepared cut. The suture loops were lifted out of the incision, and the sclera was perforated with a Superblade (Medical Workshop) . Next a Klδti Microstripper (Oertli) was introduced, with its infusion implement attached thereto. A planar contact lens was placed onto the cornea to facilitate inspection of the media and the eye bottom. The microstripper was set to work going round in small circular movements for a period of 15 minutes, whereby 20 ml of liquid were aspired through the instrument. When the central portion of the vitreous humor had been cut away a thin Silastic tube (Dow Corning Corp.Med.Prod.) , stabilized interiorly with a cannula of 0.6 mm interior diameter, was introduced through the sσlerotomy. Injection of the crosslinked hyaluronic acid gel (produced according to Examples 1 and 2 resp.) was then initiated. Gradually increasing pressure in the vitreous humor caused thin liquid to run off along the outside of the Silastic® tube through the sclerotomy. Injection of the gel through the thin tube proceeded smoothly, without any problems. When 0.6 to 0.7 ml of gel had been injected the sclerotomy was closed while the Silastic® tube was being removed. The conjunctival flap was fastened with 6-0 Catgut Plain (Davis + Geek) .

All in all, 22 eyes were operated on, and all of them were observed during a four-week period. After this, 14 eyes were observed during another five months. The intraocular pressure was normal during the entire postoperative period. All eyes healed, and the blood was absorbed so that after four weeks the retina was contiguous in all cases and the vitreous humor was entirely clear. No side reactions were observed to occur in the form of either inflammatory irritations, cataracts or synechiae. At the end of the experimental period, i.e. after six months, hyaluronic acid gel could still be detected in the vitreous humor of the animals.

Claims

igims
1. A sterile and pyrogen-free gel of crosslinked hyaluronic acid to be used as a substitute for vitreous humor of the eye.
2. A gel according to claim 1 having a dry solids content of from 0.1 to 50 % by weight, preferably 0.2 to 25 % by weight.
3. A gel according to claim 1 or 2 in which said cross¬ linking has been effected with at least one reagent forming ether or amide bridges to the hyaluronic acid molecules.
4. A gel according to claim 3 in which said reagent is a bifunctional or polyfunctional epoxide, or a corresponding halohydrin or epihalohydrin or halide.
5. A gel according to any of claims 1 to 4 wherein the crosslinking reaction has been carried out with an amount of crosslinking agent equal to a molar ratio of 0.03 to 4.0 per disaccharide repeating un t of the hyaluronic acid molecule.
PCT/SE1985/000239 1984-06-08 1985-06-07 Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute WO1986000079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE8403090-7 1984-06-08
SE8403090A SE442820B (en) 1984-06-08 1984-06-08 Gel of hyaluronic acid for tverbunden priority over as vitreous substitutes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE8585903085A DE3565107D1 (en) 1984-06-08 1985-06-07 Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute
JP60502806A JPH0669481B2 (en) 1984-06-08 1985-06-07 Substitute vitreous humor, which consists of cross-linked hyaluronic acid gel
AT85903085T AT37377T (en) 1984-06-08 1985-06-07 Gel of crosslinked hyaluronic acid as a vitreous humor substitute.

Publications (1)

Publication Number Publication Date
WO1986000079A1 true WO1986000079A1 (en) 1986-01-03

Family

ID=20356177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1985/000239 WO1986000079A1 (en) 1984-06-08 1985-06-07 Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute

Country Status (7)

Country Link
US (1) US4716154A (en)
EP (1) EP0185070B1 (en)
JP (1) JPH0669481B2 (en)
CA (1) CA1276142C (en)
DE (1) DE3565107D1 (en)
SE (1) SE442820B (en)
WO (1) WO1986000079A1 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193510A1 (en) * 1985-03-01 1986-09-03 Pharmacia Ab Shaped article of hyaluronic acid and processes for its preparation
WO1989002445A1 (en) * 1987-09-18 1989-03-23 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
US4957744A (en) * 1986-10-13 1990-09-18 Fidia, S.P.A. Cross-linked esters of hyaluronic acid
US4965253A (en) * 1987-10-14 1990-10-23 University Of Florida Viscoelastic material for ophthalmic surgery
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
EP0552593A1 (en) * 1992-01-20 1993-07-28 SOCIETA'INDUSTRIA FRAMACEUTICA ITALIANA S.p.A. Use of hyaluronic acid as ocular prosthesis lubricant
WO1995025287A1 (en) * 1994-03-14 1995-09-21 Seikagaku Corporation Material to be worn on the eyeball
US5527893A (en) * 1987-09-18 1996-06-18 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US5676964A (en) * 1988-05-13 1997-10-14 Fidia, S.P.A. Crosslinked carboxy polysaccharides
US5760200A (en) * 1987-09-18 1998-06-02 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US5789462A (en) * 1995-09-13 1998-08-04 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Photocured crosslinked-hyaluronic acid contact lens
WO2001060868A1 (en) * 2000-02-14 2001-08-23 Genzyme Corporation Single phase gels for the prevention of adhesions
US6294202B1 (en) 1994-10-06 2001-09-25 Genzyme Corporation Compositions containing polyanionic polysaccharides and hydrophobic bioabsorbable polymers
FR2819722A1 (en) * 2001-01-19 2002-07-26 Corneal Ind Use of crosslinked hyaluronic acid for injection into radial scleral incisions during surgical treatment of presbyopia
US6610669B1 (en) 1987-09-18 2003-08-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
WO2004026953A1 (en) * 2002-09-18 2004-04-01 Wakamoto Pharmaceutical Co.,Ltd. Transparent and reversibly heat-gelling aqueous compositions
WO2006056204A1 (en) * 2004-11-24 2006-06-01 Novozymes Biopolymer A/S Method of cross-linking hyaluronic acid with divinylsulfone
US7455248B2 (en) 2004-03-17 2008-11-25 Genzyme Corporation Powder delivery device
WO2011031402A1 (en) 2009-09-10 2011-03-17 Genzyme Corporation Stable hyaluronan/steroid formulation
WO2011148116A2 (en) 2010-05-27 2011-12-01 Laboratoire Idenov Modified hyaluronic acid, method for manufacturing same and uses thereof
US8338388B2 (en) 2003-04-10 2012-12-25 Allergan, Inc. Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US8357795B2 (en) 2008-08-04 2013-01-22 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US8691279B2 (en) 2010-03-22 2014-04-08 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
FR2997085A1 (en) * 2012-10-24 2014-04-25 Teoxane Method of preparing a crosslinked gel
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US8845513B2 (en) 2002-08-13 2014-09-30 Apollo Endosurgery, Inc. Remotely adjustable gastric banding device
US8853184B2 (en) 2007-11-30 2014-10-07 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8900117B2 (en) 2004-01-23 2014-12-02 Apollo Endosurgery, Inc. Releasably-securable one-piece adjustable gastric band
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
US8921338B2 (en) 2010-03-12 2014-12-30 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US8946192B2 (en) 2010-01-13 2015-02-03 Allergan, Inc. Heat stable hyaluronic acid compositions for dermatological use
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US9028394B2 (en) 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US9050165B2 (en) 2010-09-07 2015-06-09 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
US9149422B2 (en) 2011-06-03 2015-10-06 Allergan, Inc. Dermal filler compositions including antioxidants
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
US9220676B2 (en) 2008-10-16 2015-12-29 Bioregen Biomedical (Changzhou) Co., Ltd. Injectable in-situ crosslinked hydrogel and methods of making and using thereof
US9228027B2 (en) 2008-09-02 2016-01-05 Allergan Holdings France S.A.S. Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9265761B2 (en) 2007-11-16 2016-02-23 Allergan, Inc. Compositions and methods for treating purpura
US9295573B2 (en) 2010-04-29 2016-03-29 Apollo Endosurgery, Inc. Self-adjusting gastric band having various compliant components and/or a satiety booster
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US9433805B2 (en) 2007-10-04 2016-09-06 Ultraceuticals R&D Pty Ltd. Method for dermal regeneration by administering an ether cross-linked glucomannan/hyaluronic acid composition
EP3173086A1 (en) 2013-12-23 2017-05-31 Laboratoires Vivacy Hyaluronic acid compositions including mepivacaine
US9795711B2 (en) 2011-09-06 2017-10-24 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US10004824B2 (en) 2015-05-11 2018-06-26 Laboratoires Vivacy Compositions comprising at least one polyol and at least one anesthetic
WO2018138221A1 (en) 2017-01-26 2018-08-02 Beauty System Pharma S.R.L. Hyaluronic acid cross-linked with natural or semi-synthetic crosslinking agents

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920104A (en) * 1988-05-16 1990-04-24 Medchem Products, Inc. Sodium hyaluronate composition
US5783691A (en) * 1989-02-08 1998-07-21 Biomatrix, Inc. Crosslinked hyaluronate gels, their use and method for producing them
WO1994007505A1 (en) * 1991-07-03 1994-04-14 Norpharmco Inc. Use of hyaluronic acid and forms to prevent arterial restenosis
US5102653A (en) * 1990-01-11 1992-04-07 Skelnik Debra L Non-primate vitreal replacement model
US5234914A (en) * 1991-06-11 1993-08-10 Patent Biopharmaceutics, Inc. Methods of treating hemorrhoids and anorecial disease
WO1993003776A1 (en) * 1991-08-16 1993-03-04 Galin Miles A Medicament coated refractive anterior chamber ocular implant
JP2855307B2 (en) * 1992-02-05 1999-02-10 生化学工業株式会社 Photoreactive glycosaminoglycans, crosslinked glycosaminoglycan and a process for their preparation
IL106922A (en) * 1992-09-14 1998-08-16 Novartis Ag Composite materials with one or more wettable surfaces and process for their preparation
EP0784487A1 (en) * 1993-03-19 1997-07-23 Medinvent A composition and a method for tissue augmentation
US5531716A (en) * 1993-09-29 1996-07-02 Hercules Incorporated Medical devices subject to triggered disintegration
WO1995031223A1 (en) * 1994-05-13 1995-11-23 Kuraray Co., Ltd. Medical polymer gel
US5690961A (en) * 1994-12-22 1997-11-25 Hercules Incorporated Acidic polysaccharides crosslinked with polycarboxylic acids and their uses
US5677276A (en) * 1994-12-23 1997-10-14 La Jolla Cancer Research Foundation Immobilization of peptides to hyaluronate
US5612321A (en) * 1995-06-22 1997-03-18 Hercules Incorporated Antioxidant grafted polysaccharides
US5827937A (en) * 1995-07-17 1998-10-27 Q Med Ab Polysaccharide gel composition
US6368356B1 (en) 1996-07-11 2002-04-09 Scimed Life Systems, Inc. Medical devices comprising hydrogel polymers having improved mechanical properties
US6060534A (en) 1996-07-11 2000-05-09 Scimed Life Systems, Inc. Medical devices comprising ionically and non-ionically crosslinked polymer hydrogels having improved mechanical properties
WO1998024477A1 (en) 1996-12-06 1998-06-11 Amgen Inc. Combination therapy using an il-1 inhibitor for treating il-1 mediated diseases
FR2759577B1 (en) * 1997-02-17 1999-08-06 Corneal Ind implant for deep sclerectomy
FR2759576B1 (en) * 1997-02-17 1999-08-06 Corneal Ind Implant sclero-keratectomy pre-descemetic
US6294170B1 (en) 1997-08-08 2001-09-25 Amgen Inc. Composition and method for treating inflammatory diseases
US6024719A (en) * 1998-07-06 2000-02-15 Morris; Robert E Method and apparatus for performing surgery inside the human retina using fluidic internal limiting membrane (ILM) seperation (FILMS)
EP1129683A4 (en) * 1998-11-10 2002-06-19 Denki Kagaku Kogyo Kk Hyaluronic acid gel, process for the preparation thereof and medical materials containing the same
IT1303738B1 (en) * 1998-11-11 2001-02-23 Aquisitio S P A the cross-linking process of carboxylated polysaccharides.
US6913765B2 (en) 2001-03-21 2005-07-05 Scimed Life Systems, Inc. Controlling resorption of bioresorbable medical implant material
US20030060447A1 (en) * 2002-04-24 2003-03-27 Mutlu Karakelle Non-aspirating transitional viscoelastics for use in surgery
ES2617452T3 (en) 2002-08-28 2017-06-19 Apollo Endosurgery, Inc Gastric banding device resistant to fatigue
TWI251596B (en) * 2002-12-31 2006-03-21 Ind Tech Res Inst Method for producing a double-crosslinked hyaluronate material
US8524213B2 (en) * 2003-12-30 2013-09-03 Genzyme Corporation Polymeric materials, their preparation and use
BRPI0418309B1 (en) * 2003-12-30 2016-08-02 Genzyme Corp "Cohesive gels hialuronado and / or hylan cross-linked, a process for the preparation thereof as well as compositions and devices comprising said gels".
AU2005221413B2 (en) 2004-03-08 2010-09-23 Endoart S.A. Closure system for tubular organs
US8236023B2 (en) 2004-03-18 2012-08-07 Allergan, Inc. Apparatus and method for volume adjustment of intragastric balloons
SE0401182D0 (en) * 2004-05-05 2004-05-05 Q Med Ab Novel use of a viscoelastic composition
EP1750769B1 (en) * 2004-05-20 2013-01-23 Mentor Worldwide LLC Methods for making injectable polymer hydrogels
KR101239037B1 (en) * 2004-11-15 2013-03-04 가부시키가이샤 시세이도 Method for producing crosslinked hyaluronic acid gel
CN103860582A (en) * 2004-12-30 2014-06-18 建新公司 Regimens for intra-articular viscosupplementation
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
WO2007002664A2 (en) * 2005-06-22 2007-01-04 Massachusetts Institute Of Technology Propagation of undifferentiated embryonic stem cells in hyaluronic acid hydrogel
WO2007070547A2 (en) * 2005-12-14 2007-06-21 Anika Therapeutics, Inc. Treatment of arthritis and other musculoskeletal disorders with crosslinked hyaluronic acid
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
FR2909560B1 (en) * 2006-12-06 2012-12-28 Fabre Pierre Dermo Cosmetique hyaluronic acid gel for intradermal injection
JP2008255061A (en) * 2007-04-06 2008-10-23 Shiseido Co Ltd Soluble cross-linked hyaluronic acid-containing ophthalmic composition
CA2687990A1 (en) 2007-05-23 2008-12-04 Allergan, Inc. Cross-linked collagen and uses thereof
FR2918377B1 (en) 2007-07-05 2010-10-08 Estelle Piron co-crosslinked gel polysaccharides
US20110077737A1 (en) * 2007-07-30 2011-03-31 Allergan, Inc. Tunably Crosslinked Polysaccharide Compositions
US8318695B2 (en) 2007-07-30 2012-11-27 Allergan, Inc. Tunably crosslinked polysaccharide compositions
US20120071437A1 (en) * 2007-07-30 2012-03-22 Allergan, Inc. Tunable crosslinked polysaccharide compositions
US8697044B2 (en) * 2007-10-09 2014-04-15 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
US20090143348A1 (en) * 2007-11-30 2009-06-04 Ahmet Tezel Polysaccharide gel compositions and methods for sustained delivery of drugs
US8394784B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
FR2924615B1 (en) * 2007-12-07 2010-01-22 Vivacy Lab Cohesive hydrogel biodegradable.
US20100305397A1 (en) * 2008-10-06 2010-12-02 Allergan Medical Sarl Hydraulic-mechanical gastric band
EP2362762A1 (en) 2008-10-06 2011-09-07 Allergan Medical Sàrl Mechanical gastric band with cushions
NO2236523T3 (en) 2009-03-30 2018-07-21
US9371402B2 (en) 2009-04-09 2016-06-21 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
FR2945293B1 (en) * 2009-05-11 2011-06-17 Teoxane Method of preparing a crosslinked gel.
AU2010298484B2 (en) * 2009-09-23 2014-09-25 Glenpharma Ab Compositions and methods for inducing or enhancing connective tissue repair
US8197849B2 (en) * 2010-02-12 2012-06-12 National Health Research Institutes Cross-linked oxidated hyaluronic acid for use as a vitreous substitute
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8343471B2 (en) 2010-04-30 2013-01-01 Indian Institute Of Technology Bombay Nanoparticulate in-situ gels of TPGS, gellan and PVA as vitreous humor substitutes
EP2394636B1 (en) * 2010-05-28 2014-03-19 Novagali Pharma S.A. Method for treating retinal conditions using an intraocular tamponade
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
EP2742070A1 (en) 2011-08-10 2014-06-18 Glycores 2000 srl Degradation-resistant cross-linked, low-molecular-weight hyaluronate
NZ623909A (en) * 2011-10-11 2016-09-30 Allergan Holdings France S A S Threads of cross-linked hyaluronic acid and methods of use thereof
FR2983483B1 (en) 2011-12-02 2014-11-14 Vivacy Lab Method of substitution and simultaneous crosslinking of a polysaccharide via its hydroxyl functions
KR101240518B1 (en) 2012-03-26 2013-03-11 주식회사 제네웰 Raw materials for transplantation using biocompatible polymers
FR3006689A1 (en) * 2013-06-11 2014-12-12 Benedicte Vincente Tauzin crosslinking process of hyaluronic acid; method of preparing an injectable hydrogel; obtained hydrogel; using the obtained hydroget
WO2015128787A1 (en) 2014-02-27 2015-09-03 Pharmalink Ab Hyaluronan conjugates with pharmaceutically active substances, methods and compositions
US20170290947A1 (en) * 2014-10-08 2017-10-12 Therakine Bio Delivery GmbH Micronized hydrophilic cross-linked biopolymer systems and method of making same
EP3476384A1 (en) * 2017-10-25 2019-05-01 F. Hoffmann-La Roche AG Artificial vitreous humor for the investigation of drugs and drug formulations
WO2019097427A1 (en) * 2017-11-17 2019-05-23 Altergon Sa Resorbable implantable devices based on crosslinked glycosaminoglycans, and process for the preparation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH485855A (en) * 1965-03-17 1970-02-15 Etapharm Chem Pharm Lab Gmbh A process for preparing a pure, highly viscous hyaluronic acid preparation
DE2631908A1 (en) * 1975-07-15 1977-02-10 Massachusetts Inst Technology cross-linked polymeric
US4141973A (en) * 1975-10-17 1979-02-27 Biotrics, Inc. Ultrapure hyaluronic acid and the use thereof
US4240163A (en) * 1979-01-31 1980-12-23 Galin Miles A Medicament coated intraocular lens
US4448718A (en) * 1983-09-13 1984-05-15 Massachusetts Institute Of Technology Method for the preparation of collagen-glycosaminoglycan composite materials
EP0138572A2 (en) * 1983-10-11 1985-04-24 FIDIA S.p.A. Hyaluronic acid fractions having pharmaceutical activity, methods for preparation thereof, and pharmaceutical compositions containing the same
EP0143393A2 (en) * 1983-11-25 1985-06-05 Miles Inc. The use of ultrapure hyaluronic acid to improve animal joint function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152170A (en) * 1975-06-18 1979-05-01 Sumitomo Chemical Company, Ltd. Cross-linked pullulan
JPS60130601A (en) * 1983-12-15 1985-07-12 Biomatrix Inc Manufacture of hyaluronic acid water-insoluble composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH485855A (en) * 1965-03-17 1970-02-15 Etapharm Chem Pharm Lab Gmbh A process for preparing a pure, highly viscous hyaluronic acid preparation
DE2631908A1 (en) * 1975-07-15 1977-02-10 Massachusetts Inst Technology cross-linked polymeric
US4141973A (en) * 1975-10-17 1979-02-27 Biotrics, Inc. Ultrapure hyaluronic acid and the use thereof
US4141973B1 (en) * 1975-10-17 1989-08-08
US4240163A (en) * 1979-01-31 1980-12-23 Galin Miles A Medicament coated intraocular lens
US4448718A (en) * 1983-09-13 1984-05-15 Massachusetts Institute Of Technology Method for the preparation of collagen-glycosaminoglycan composite materials
EP0138572A2 (en) * 1983-10-11 1985-04-24 FIDIA S.p.A. Hyaluronic acid fractions having pharmaceutical activity, methods for preparation thereof, and pharmaceutical compositions containing the same
EP0143393A2 (en) * 1983-11-25 1985-06-05 Miles Inc. The use of ultrapure hyaluronic acid to improve animal joint function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ActaChemica Scandinavia 18, 1964, No 1, T Laurent, Cross-linked Gels of Hyaluronic Acid, p 274-275 *

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193510A1 (en) * 1985-03-01 1986-09-03 Pharmacia Ab Shaped article of hyaluronic acid and processes for its preparation
US4957744A (en) * 1986-10-13 1990-09-18 Fidia, S.P.A. Cross-linked esters of hyaluronic acid
US5527893A (en) * 1987-09-18 1996-06-18 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
WO1989002445A1 (en) * 1987-09-18 1989-03-23 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
US4937270A (en) * 1987-09-18 1990-06-26 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
US6610669B1 (en) 1987-09-18 2003-08-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US6174999B1 (en) 1987-09-18 2001-01-16 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US6943154B2 (en) 1987-09-18 2005-09-13 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US5760200A (en) * 1987-09-18 1998-06-02 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
US4965253A (en) * 1987-10-14 1990-10-23 University Of Florida Viscoelastic material for ophthalmic surgery
US5676964A (en) * 1988-05-13 1997-10-14 Fidia, S.P.A. Crosslinked carboxy polysaccharides
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
EP0552593A1 (en) * 1992-01-20 1993-07-28 SOCIETA'INDUSTRIA FRAMACEUTICA ITALIANA S.p.A. Use of hyaluronic acid as ocular prosthesis lubricant
WO1995025287A1 (en) * 1994-03-14 1995-09-21 Seikagaku Corporation Material to be worn on the eyeball
US6294202B1 (en) 1994-10-06 2001-09-25 Genzyme Corporation Compositions containing polyanionic polysaccharides and hydrophobic bioabsorbable polymers
US6703041B2 (en) 1994-10-06 2004-03-09 Genzyme Corporation Compositions containing polyanionic polysaccharides and hydrophobic bioabsorbable polymers
US5789462A (en) * 1995-09-13 1998-08-04 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Photocured crosslinked-hyaluronic acid contact lens
US6521223B1 (en) 2000-02-14 2003-02-18 Genzyme Corporation Single phase gels for the prevention of adhesions
WO2001060868A1 (en) * 2000-02-14 2001-08-23 Genzyme Corporation Single phase gels for the prevention of adhesions
FR2819722A1 (en) * 2001-01-19 2002-07-26 Corneal Ind Use of crosslinked hyaluronic acid for injection into radial scleral incisions during surgical treatment of presbyopia
US8845513B2 (en) 2002-08-13 2014-09-30 Apollo Endosurgery, Inc. Remotely adjustable gastric banding device
WO2004026953A1 (en) * 2002-09-18 2004-04-01 Wakamoto Pharmaceutical Co.,Ltd. Transparent and reversibly heat-gelling aqueous compositions
US10080767B2 (en) 2003-04-10 2018-09-25 Allergan Industrie Sas Injectable monophase hydrogels
US8338388B2 (en) 2003-04-10 2012-12-25 Allergan, Inc. Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US9062130B2 (en) 2003-04-10 2015-06-23 Allergan Industrie Sas Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US8900117B2 (en) 2004-01-23 2014-12-02 Apollo Endosurgery, Inc. Releasably-securable one-piece adjustable gastric band
US7455248B2 (en) 2004-03-17 2008-11-25 Genzyme Corporation Powder delivery device
WO2006056204A1 (en) * 2004-11-24 2006-06-01 Novozymes Biopolymer A/S Method of cross-linking hyaluronic acid with divinylsulfone
US8481080B2 (en) * 2004-11-24 2013-07-09 Novozymes Biopolymer A/S Method of cross-linking hyaluronic acid with divinulsulfone
US20130338100A1 (en) * 2004-11-24 2013-12-19 Novozymes Biopharma Dk A/S Method of Cross-Linking Hyaluronic Acid with Divinylsulfone
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
US9433805B2 (en) 2007-10-04 2016-09-06 Ultraceuticals R&D Pty Ltd. Method for dermal regeneration by administering an ether cross-linked glucomannan/hyaluronic acid composition
US9265761B2 (en) 2007-11-16 2016-02-23 Allergan, Inc. Compositions and methods for treating purpura
US8853184B2 (en) 2007-11-30 2014-10-07 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US9089519B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US9089517B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US10328180B2 (en) 2008-08-04 2019-06-25 Allergan Industrie, S.A.S. Hyaluronic acid-based gels including lidocaine
US9089518B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US9358322B2 (en) 2008-08-04 2016-06-07 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US9238013B2 (en) 2008-08-04 2016-01-19 Allergan Industrie, Sas Hyaluronic acid-based gels including lidocaine
US8450475B2 (en) 2008-08-04 2013-05-28 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US8357795B2 (en) 2008-08-04 2013-01-22 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US9228027B2 (en) 2008-09-02 2016-01-05 Allergan Holdings France S.A.S. Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9861570B2 (en) 2008-09-02 2018-01-09 Allergan Holdings France S.A.S. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9220676B2 (en) 2008-10-16 2015-12-29 Bioregen Biomedical (Changzhou) Co., Ltd. Injectable in-situ crosslinked hydrogel and methods of making and using thereof
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
WO2011031402A1 (en) 2009-09-10 2011-03-17 Genzyme Corporation Stable hyaluronan/steroid formulation
US8946192B2 (en) 2010-01-13 2015-02-03 Allergan, Inc. Heat stable hyaluronic acid compositions for dermatological use
US10220113B2 (en) 2010-01-13 2019-03-05 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
US9655991B2 (en) 2010-01-13 2017-05-23 Allergan Industrie, S.A.S. Stable hydrogel compositions including additives
US9855367B2 (en) 2010-01-13 2018-01-02 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US9333160B2 (en) 2010-01-13 2016-05-10 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US9125840B2 (en) 2010-03-12 2015-09-08 Allergan Industrie Sas Methods for improving skin conditions
US9585821B2 (en) 2010-03-12 2017-03-07 Allergan Industrie Sas Methods for making compositions for improving skin conditions
US8921338B2 (en) 2010-03-12 2014-12-30 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US9012517B2 (en) 2010-03-22 2015-04-21 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US8691279B2 (en) 2010-03-22 2014-04-08 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US9480775B2 (en) 2010-03-22 2016-11-01 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US9028394B2 (en) 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US9295573B2 (en) 2010-04-29 2016-03-29 Apollo Endosurgery, Inc. Self-adjusting gastric band having various compliant components and/or a satiety booster
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
WO2011148116A2 (en) 2010-05-27 2011-12-01 Laboratoire Idenov Modified hyaluronic acid, method for manufacturing same and uses thereof
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
US9050165B2 (en) 2010-09-07 2015-06-09 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
US9950092B2 (en) 2011-06-03 2018-04-24 Allergan, Inc. Dermal filler compositions for fine line treatment
US9737633B2 (en) 2011-06-03 2017-08-22 Allergan, Inc. Dermal filler compositions including antioxidants
US9149422B2 (en) 2011-06-03 2015-10-06 Allergan, Inc. Dermal filler compositions including antioxidants
US9962464B2 (en) 2011-06-03 2018-05-08 Allergan, Inc. Dermal filler compositions including antioxidants
US9821086B2 (en) 2011-09-06 2017-11-21 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US9795711B2 (en) 2011-09-06 2017-10-24 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
WO2014064633A1 (en) * 2012-10-24 2014-05-01 Teoxane Process for preparing a crosslinked gel
FR2997085A1 (en) * 2012-10-24 2014-04-25 Teoxane Method of preparing a crosslinked gel
EP3173086A1 (en) 2013-12-23 2017-05-31 Laboratoires Vivacy Hyaluronic acid compositions including mepivacaine
US10004824B2 (en) 2015-05-11 2018-06-26 Laboratoires Vivacy Compositions comprising at least one polyol and at least one anesthetic
WO2018138221A1 (en) 2017-01-26 2018-08-02 Beauty System Pharma S.R.L. Hyaluronic acid cross-linked with natural or semi-synthetic crosslinking agents

Also Published As

Publication number Publication date
SE442820B (en) 1986-02-03
US4716154A (en) 1987-12-29
SE8403090L (en) 1985-12-09
CA1276142C (en) 1990-11-13
JPH0669481B2 (en) 1994-09-07
DE3565107D1 (en) 1988-10-27
JPS61502310A (en) 1986-10-16
SE8403090D0 (en) 1984-06-08
EP0185070A1 (en) 1986-06-25
EP0185070B1 (en) 1988-09-21

Similar Documents

Publication Publication Date Title
DE69731959T2 (en) Implantable acrylamide copolymer-hydrogel for therapeutic applications
US5846530A (en) Macrocapsules prepared from crosslinkable polysaccharides, polycations and/or lipids and uses therefor
Stenzel et al. Collagen as a biomaterial
US4983585A (en) Viscoelastic fluid for use in surgery and other therapies and method of using same
US5476515A (en) Method of making intraocular lenses with injectable collagen-based compositions
US4969912A (en) Human collagen processing and autoimplant use
RU2360928C2 (en) Complex matrix for medico-biological application
US10265436B2 (en) Immobilized bioactive hydrogel matrices as surface coatings
JP5571562B2 (en) Biodegradable single-phase binding hydrophilic gel
CN1201824C (en) Water solution for producing crystalline lens and suitable material for its production
US6831172B1 (en) Cross-linked hyaluronic acids and medical uses thereof
JP2995090B2 (en) Compositions and methods for tissue augmentation
AU2002223995B2 (en) Cross-linked hyaluronic acid-laminin gels and use thereof in cell culture and medical implants
US6638538B1 (en) Hyaluronic acid gel composition, process for producing the same, and medical material containing the same
EP1149116B9 (en) Process for the production of multiple cross-linked hyaluronic acid derivatives
JP5680501B2 (en) Adhesive gel derived from crosslinked hyaluronan and / or hylan, their preparation and use
US6586493B1 (en) Polysaccharide-based hydrogels and pre-gel blends for the same
EP0107055B1 (en) Artificial organs or membranes for medical use
US6537318B1 (en) Use of glucomannan hydrocolloid as filler material in prostheses
US6780899B2 (en) Homopolymers containing stable elasticity inducing crosslinkers and ocular implants made therefrom
US20040127698A1 (en) Method for producing double-crosslinked hyaluronate material
CN1157191C (en) Hyaluronic acid gel, process for preparation thereof and medical materials containing the same
RU2377260C2 (en) Biologically compatible gel thickened with cross-linked polymer
US5480427A (en) Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US5763504A (en) Photcurable glycosaminoglycan derivatives, crosslinked glycosaminoglycans and method of production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1985903085

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985903085

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985903085

Country of ref document: EP