WO1985001301A1 - Sputtering apparatus - Google Patents

Sputtering apparatus Download PDF

Info

Publication number
WO1985001301A1
WO1985001301A1 PCT/JP1984/000442 JP8400442W WO8501301A1 WO 1985001301 A1 WO1985001301 A1 WO 1985001301A1 JP 8400442 W JP8400442 W JP 8400442W WO 8501301 A1 WO8501301 A1 WO 8501301A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
cathode
output
matching circuit
predetermined
Prior art date
Application number
PCT/JP1984/000442
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Kuriyama
Original Assignee
Kabushiki Kaisha Tokuda Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Tokuda Seisakusho filed Critical Kabushiki Kaisha Tokuda Seisakusho
Publication of WO1985001301A1 publication Critical patent/WO1985001301A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering

Definitions

  • the present invention relates to a helical 0 jitter Li in g apparatus causes generating a thin film seed s of the material on the surface of the treatment embedding material.
  • Reference numeral 1 denotes a vacuum vessel serving as an earth electrode, and gas such as argon is supplied to and discharged from the vacuum vessel 1 through needle valves 2 and 3.
  • the substrate holder 6 holding A is accommodated.
  • a high-frequency voltage is applied between the vacuum vessel 1 and the target 5 (cathode 4) and between the vacuum vessel 1 and the material A (substrate holder 6) by the power supply device. .
  • the power supply unit consists of a high-frequency power supply 10 composed of an oscillator and an amplifier that amplifies the output to a predetermined size, and an output of the high-frequency power supply 10 connected to the same cable or the like.
  • High lap The impedance provided through the wave cable 11 is adjusted to adjust the impedance between the vacuum vessel 1 and the target (cathode 4:), and between the vacuum vessel 1 and the forest A to be treated.
  • a matching circuit 12 for applying a predetermined high-frequency voltage is provided between each of the (substrate holders 6).
  • the matching circuit 12 includes matching capacitors 13 and 14, a coil 15 for dividing the output of the high-frequency power supply 10, and a DC cutoff capacitor.
  • capacitors 16 and 17, which are housed and sealed in a matching box 18 to prevent high frequency leakage.
  • the capacitors 13 and 14 and the coil 15 match the impedance of the input side and the output side as viewed from the input terminal of the matching circuit 12.
  • Discharge c. The coil 15 is adjusted so that the maximum value is maximized.
  • the coil 15 is formed by changing the impedance ratio, thereby changing the potential of the cathode 4 and the potential of the substrate holder 6.
  • the potential V 2 is set so that V ⁇ > V 2 and a predetermined potential difference.
  • a high-frequency power meter 20 is read on the high-frequency cable 11, and a voltmeter 21, for a self-pulse voltage monitor is provided on the output side of the matching circuit 12. 2 2 is connected.
  • the high-frequency power supply 10 is turned on, and a predetermined potential difference between the cathode 4 and the substrate holder 6 is observed while watching the voltmeters 21 and 22. That is, the impedance of the coil 15 is adjusted so that the power applied to the cathode 4 is larger than the power applied to the substrate holder 6 by a predetermined value, and the power meter is used. Discharge while watching 20 C. Adjust the capacitance of capacitors 13 and 14 so that the maximum value is obtained, and adjust the distance between the target (cathode 4) and the vacuum container.
  • the high-frequency power output from the high-frequency power supply 10 can be measured by the wattmeter 20, but the high-frequency power applied to the cathode 4. Since it is not possible to separately measure the height of the workpiece A and the height of the wafer that has been put into the substrate holder 6, a matching circuit is required each time the shape and size of the workpiece A differ. Capacitors 13, 14 and coil 15 in 12 must be readjusted to provide optimal power to cathode 4 and substrate holder 6. As a result, the control and design of the equipment such as adjustment work becomes trial and error, resulting in poor reproducibility. There was a drawback that it became a clothing. In other words, the dust 5 and the material A to be treated are both ash. However, it is difficult to form a thin film of a predetermined thickness on the surface of the material to be treated A by precisely controlling the amount. .
  • the cathode 4 and the substrate holder are connected by voltmeters 21 and 22 connected to the output side of the matching circuit 12.
  • the self-bias voltage applied to the cathode 6 and the substrate holder 6 is determined based on the measured value. It is also conceivable to determine the capacities of capacitors 13, 14 and coil 15. In this method, the relationship between the self-power, the bias voltage, and the input power is sharp.
  • the measured value of the self-bias voltage is only a guide because it greatly changes depending on the pressure of the head, the structure of the cathode 4 as an electrode, and the structure of the substrate hologram 6. It is also conceivable to connect a high-frequency power meter to the output side of the matching circuit 12 and directly measure the power input to the cathode 4 and the substrate holder 6. However, in this method, the characteristic influence of the power measurement point is obtained.
  • the invention was made in order to eliminate the above-mentioned drawbacks of the prior art, so that the reproducibility of the cathode on the target side and the substrate holder on the material to be implanted were independently independent of each other.
  • the cathode and the base holder have a high circumference.
  • the power supply that supplies K power is an oscillator.
  • OMPI First and second amplifiers for amplifying the output of this oscillator to a predetermined size, and a coil and a coil provided with the output of the first amplifier via a first high-frequency cable. Inhibit by the capacitor.
  • a first matching circuit for applying a predetermined high-frequency voltage between the substrate holder and the vacuum container by adjusting one dance, and an output of the second amplifier being a second matching circuit.
  • the output of one oscillator is connected to a first intensifier, a first high-frequency cable to which a first power meter is read, and a first matching circuit.
  • a second high-frequency cable to which a second power meter is connected To the substrate holder via a second amplifier, a second high-frequency cable to which a second power meter is connected, and a cathode via a second matching circuit.
  • the first and second wattmeters allow accurate measurement of the high-frequency power applied to the substrate holder and cathode, and the specified high-frequency power is applied to the substrate holder and cathode. Can be supplied independently and with good reproducibility.
  • the high-frequency power is supplied to the substrate holder and the cathode using the output of one oscillator, the frequencies of the two high-frequency powers become the same, thereby the first and second high-frequency powers are supplied. Inhibition due to the matching circuit.
  • One-dense discipline can be performed simply and accurately. Therefore, a thin film of a predetermined thickness is formed on the surface of the material to be treated with high accuracy.
  • FIG. 1 shows the conventional sha.
  • FIG. 2 is a schematic configuration diagram of a sputtering device, and FIG. 2 is a shutter according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the operation of FIG. 2, and
  • FIG. 411 is a shutter showing the high-frequency power supply in FIG. 2 in detail. This is a sputtering device.
  • FIG. 2 shows the shutter according to this embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the Yuttayu of the butterfly device. This sha.
  • the difference between the hitting apparatus and the apparatus shown in FIG. 1 is that two high-frequency power sources 10 i and 102 are provided and the high-frequency power is supplied to the cathode 4 and the substrate holder 6 independently. And so on.
  • the power supply device shown in FIG. 2 includes first and second high-frequency power supplies 10 ⁇ and 1 ⁇ ⁇ 2 each including an oscillator and a vibrator for increasing the output of the oscillator to a predetermined size.
  • first and second high-frequency power source 1 0 i, 1 0 2 outputs same occupation Ke one pull and whether Ranaru first respectively second high-frequency Ke - ⁇ via b le 1 1, 1 1 2 first and second Ma pitch in g circuits 1 2, 1 2 2 Ru given.
  • the first matching circuit 12I is composed of a matching capacitor 13 ⁇ and a coil 15! And a DC blocking connector
  • the power meter, a high-frequency power source Ri by the 2 0 2 can be measured 1 0 2 of outputs can supply predetermined high frequency power to independently cathode 4 and the substrate ho le da 6, Capacitors 13 1, 13, and 13 in the matching circuits 12, 12 2 for optimal power input according to the shape and size of the workpiece A, etc.
  • the adjustment work of the coils 15 ⁇ and 15 becomes easy-and the high frequency power supply 1 is used to facilitate the adjustment of the impedance by the matching circuit 122. It is desired that the output frequency of O i and 102 be the same.
  • the high-frequency power supply 100 i and the oscillator of the high-frequency power supply 102 are commonly used to constitute the high-frequency power supply 100. That is, this high-frequency power supply 100 is composed of an oscillator 101 composed of a crystal oscillation circuit and the like, and first and second output controllers 102 composed of a resistor adjusting the amplitude of the output waveform of the oscillator. , 103, and first and second amplifiers 104, 105 that amplify the outputs of the first and second output controllers 102, 103, respectively. . In the high-frequency power supply 100 having such a configuration, the output signal of one oscillator 101 is transmitted through one ffi-force controller 102 and the first amplifier 104.
  • High frequency shower according to the present invention.
  • Substrates in a sputtering device The applied power to each of the holder and the cathode can be measured accurately, and at the same time, the applied power can be adjusted easily and accurately to form a thin film of the desired thickness with high accuracy.
  • the processing efficiency is greatly improved, and productivity can be increased.

Abstract

A sputtering apparatus is arranged such that the material to be treated and the target are housed in a vacuum vessel and high-frequency electric power is supplied to the material and the target, thereby forming a film of a desired depth on the surface of the material. For the high-frequency electric power, the output of a single oscillator is applied to two amplifiers, whereby two kinds of high-frequency electric power are the respective outputs of the amplifiers and are respectively applied to the material to be treated an to the target in the vacuum vessel through respective wattmeters and matching circuits. By virtue of this arrangement, it is possible to accurately determine the electric power applied to the material and to the target. Moreover, since the two kinds of electric power have the same frequency, each of the two kinds of electric power can be simply and precisely adjusted by adjusting the impedance of the corresponding matching circuit. Accordingly, it is possible to accurately form a film of a desired depth on the surface of the material.

Description

明 細 発明の名称 ス ハ0 ッ タ リ ン グ装置 技術分野 Name helical 0 jitter Li in g devices the art of Akira fine invention
本発明は、 被処埋材の表面に種 々 の材質の薄膜を生成 させる ス ハ0 ッ タ リ ン グ装置に関する。 背景技術 The present invention relates to a helical 0 jitter Li in g apparatus causes generating a thin film seed s of the material on the surface of the treatment embedding material. Background art
従来のス ハ。 ッ タ リ ン グ装置 と し て、 表面から 出 て表面 に入る 閉 じ られた形の磁界を 発生する陰極を備えたいわ ゆ る マ グ ネ ト ロ ン型の構造の も の、 あ る いは こ の よ う な 磁場を 泮わない マ グ ネ ト ロ ン型でない構造の も のがあ り、 例えば第 1 1の よ う な形で知ら れている 。 図において、 Conventional sha. Some of the so-called magnetron-type structures with a cathode generating a closed-form magnetic field exiting from the surface and entering the surface There is a non-magnetron-type structure that does not handle such a magnetic field, and is known, for example, in the form shown in (11). In the figure,
1 はア ー ス電極 と し ての真空容器であ り 、 こ の真空容器 1 には ニ ー ド ル弁 2 , 3 等を介 し て ア ル ゴ ン 等の ガス が 供給、 排出 される。 真空容器 1 内には陰極 4 と 、 陰極 4 の部分に取付けたス ハ0 ッ タ リ ン グ ソ ー ス源 と し て の タ ー ゲ ッ ト 5 と 、 被処理材 ( 例えば半導板基板 ) A を保持す る基板ホ ル ダ 6 と が収容 される。 そ し て電源装置に よ り 真空容器 1 と タ ー ゲ ッ ト 5 ( 陰極 4 ) 間、 及び真空容器 1 と 被処埋材 A ( 基板ホ ル ダ 6 ) 間にそれぞれ高周波電 圧を印加する 。 電源装置は、 発振器及び こ れの出 力 を所 定の大き さ に増幅する増幅器等から な る 高周彼電源 1 0 と 、 こ の高周波電源 1 0 の出力が同職ケ ー ブ ル等の高周 波ケー ブ ル 11を介して与えられィ ン ピ ー ダ ン ス の調整を 行なって前記真空容器 1 と タ ー ゲ ッ ト ( 陰極 4 :) 間、 及 び前記真空容器 1 と被処理林 A ( 基板ホ ル ダ 6 ) 間にそ れぞれ所定の高周波電圧を印加するマ ッ チ ン グ回路 1 2 とを備えている。 マ ッ チ ン グ回路 1 2 は、 マ ッ チ ン グ コ ン デ ン サ 1 3 , 1 4 と、 高周波電源 1 0 の出力を分割す る コ イ ル 1 5 と 、 直流遮断用 の コ ン デ ン サ 1 6 , 1 7 と を備え、 これらは高周波漏洩を防止するためにマ ツチ ン グ ッ ク ス 1 8 内に収容されシ ー ル さ れて い る 。 こ こ でコ ン デ ン サ 1 3 , 1 4 及びコ イ ル 1 5 は、 マ ッ チ ン グ 回路 1 2 の入力端子からみた入力側と出力側のイ ン ピ ー ダ ン ス の整合を と り 放電ハ。 ヮ 一が最大になる よ う に調整 する も の であ り 、 また前記コ イ ル 1 5 は、 イ ン ピ ー ダ ン ス比を変える こ と によ り 陰極 4 の電位 と基板ホルダ 6 の電位 V2 と を V丄 > V2 でかつ所定の電位差になる よ う にするための ものである。 さらに、 高周波ケー ブル 1 1 には高周波電力計 2 0 が接読され、 またマ ッ チ ン グ回 路 1 2 の出力側には自 己パイ ァス電圧モ ニ タ 用の電圧計 2 1 , 2 2 が接続される。 Reference numeral 1 denotes a vacuum vessel serving as an earth electrode, and gas such as argon is supplied to and discharged from the vacuum vessel 1 through needle valves 2 and 3. A cathode 4 in the vacuum chamber 1, and te r g e t preparative 5 of the helical 0 jitter Li in g source over scan source attached to a portion of the cathode 4, the material to be treated (e.g. semiconductive plate substrate ) The substrate holder 6 holding A is accommodated. A high-frequency voltage is applied between the vacuum vessel 1 and the target 5 (cathode 4) and between the vacuum vessel 1 and the material A (substrate holder 6) by the power supply device. . The power supply unit consists of a high-frequency power supply 10 composed of an oscillator and an amplifier that amplifies the output to a predetermined size, and an output of the high-frequency power supply 10 connected to the same cable or the like. High lap The impedance provided through the wave cable 11 is adjusted to adjust the impedance between the vacuum vessel 1 and the target (cathode 4:), and between the vacuum vessel 1 and the forest A to be treated. A matching circuit 12 for applying a predetermined high-frequency voltage is provided between each of the (substrate holders 6). The matching circuit 12 includes matching capacitors 13 and 14, a coil 15 for dividing the output of the high-frequency power supply 10, and a DC cutoff capacitor. It has capacitors 16 and 17, which are housed and sealed in a matching box 18 to prevent high frequency leakage. Here, the capacitors 13 and 14 and the coil 15 match the impedance of the input side and the output side as viewed from the input terminal of the matching circuit 12. Discharge c. The coil 15 is adjusted so that the maximum value is maximized. The coil 15 is formed by changing the impedance ratio, thereby changing the potential of the cathode 4 and the potential of the substrate holder 6. The potential V 2 is set so that V 丄> V 2 and a predetermined potential difference. Further, a high-frequency power meter 20 is read on the high-frequency cable 11, and a voltmeter 21, for a self-pulse voltage monitor is provided on the output side of the matching circuit 12. 2 2 is connected.
以上の構成において、 真空容器 1 内を適切な真空度に 保って高周波電源 1 0 を投入し、 電圧計 2 1 , 2 2 を見 ながら陰極 4 と基板ホ ル ダ 6 間が所定の電位差、 すなわ ち陰極 4 に加える電力を基板ホル ダ 6 に加える電力 よ り も所定の値だけ大き く なる よ う にコ イ ル 1 5 の イ ン ピ ー ダ ン ス調整を行な う と共に、 電力計 2 0 を見ながら放電 ハ。 ヮ 一が最大にな る よ う に コ ン デ ン サ 1 3 , 1 4 のキ ヤ ハ° シ タ ン ス調整を行なって、 タ ーゲ ッ ト ( 陰極 4 ) と 真 空容器 間、 お よ び被処埋材 A ( 基板ホ ル ダ 6 ) と 真空 容器 1 間に所定の高周波電界を加えて放電をお こ させる- する と 、 タ ーダ ッ ト 5 及び被処埋材 A が と も にス ハ。 ッ タ エ ッ チ ン グ される が、 タ ー ダ ッ ト 5 ( 陰極 4 ) に与え ら れる 電力が被処埋材 A ( 基板ホ ル ダ 6 ) に与え られる 電 力 よ り も 大き いため、 被処埋材 A の表面に薄膜が形成 さ れる。 In the above configuration, while maintaining the inside of the vacuum vessel 1 at an appropriate degree of vacuum, the high-frequency power supply 10 is turned on, and a predetermined potential difference between the cathode 4 and the substrate holder 6 is observed while watching the voltmeters 21 and 22. That is, the impedance of the coil 15 is adjusted so that the power applied to the cathode 4 is larger than the power applied to the substrate holder 6 by a predetermined value, and the power meter is used. Discharge while watching 20 C. Adjust the capacitance of capacitors 13 and 14 so that the maximum value is obtained, and adjust the distance between the target (cathode 4) and the vacuum container. When a predetermined high-frequency electric field is applied between the workpiece A (substrate holder 6) and the vacuum vessel 1 to cause discharge, the tardet 5 and the workpiece A are recovered. In addition. Although it is etched, the power supplied to tardat 5 (cathode 4) is larger than the power supplied to buried material A (substrate holder 6). A thin film is formed on the surface of material A to be treated.
し か し ながら、 こ の種 の装置にあっては、 高周波電源 1 0 か ら 出力 される 高周波電力を電力計 2 0 で測定でき る が、 陰極 4 に投入し た高周波ハ。 ヮ 一 と 基板ホ ル ダ 6 に 投入し た高周狡ハ° ヮ 一 と を個別に測定でき ないため、 被 処理材 A の形状や大き さ等が異な るたびに マ ッ チ ン グ回 路 1 2 内の コ ン デ ン サ 1 3 , 1 4 及び コ イ ル 1 5 を再調 整 し て陰極 4 及び基板ホ ル ダ 6 へ最適な電力 を 投入する よ う に し なければな らず、 こ のため調整作業等の装置の 制御や設計が試行錯誤的にな り 、 再現性の乏し いス ハ。 ッ タ リ ン グ装蘆 と な る 欠点があった。 すなわち、 タ 一 ダ ッ ト 5 及び被処理材 A は と も にス ハ。 ッ タ エ ッ チ ン グ される が、 その量を正確に制御 し て被処埋材 A の表面に所定の 厚さの薄膜を形成する こ と が困難であ る と い う 欠点があ つた。  However, in this type of apparatus, the high-frequency power output from the high-frequency power supply 10 can be measured by the wattmeter 20, but the high-frequency power applied to the cathode 4. Since it is not possible to separately measure the height of the workpiece A and the height of the wafer that has been put into the substrate holder 6, a matching circuit is required each time the shape and size of the workpiece A differ. Capacitors 13, 14 and coil 15 in 12 must be readjusted to provide optimal power to cathode 4 and substrate holder 6. As a result, the control and design of the equipment such as adjustment work becomes trial and error, resulting in poor reproducibility. There was a drawback that it became a clothing. In other words, the dust 5 and the material A to be treated are both ash. However, it is difficult to form a thin film of a predetermined thickness on the surface of the material to be treated A by precisely controlling the amount. .
こ の欠点を除去するために、 マ ッ チ ン グ回路 1 2 の 出 力側に接続し た電圧計 2 1 , 2 2 で陰極 4 と 基板ホ ル ダ  In order to eliminate this defect, the cathode 4 and the substrate holder are connected by voltmeters 21 and 22 connected to the output side of the matching circuit 12.
OMPI WEPO 6 に加わる 自 己 ィ ァス電圧を測定し、 こ の測定値を基 に、 陰極 4 及び基板ホルダ 6 へ最適投入電力を加えるた めに必要と される マ ッ チ ン グ回路 1 2 内の コ ン ヂ ン サ 1 3 , 1 4 及びコ ィ ル 1 5 の容量を決定する こ と も考えら れる。 しカゝし こ の方式では、 自 己パ、ィ ァス電圧と投入電 力 と の関係が、 スハ。 ッ タ 圧力や、 電極であ る陰極 4 及び 基板ホノレ ダ 6 の構造等に よ って大き く 変化するため、 自 己 ィ ァ ス電圧の測定値は一つの 目安にしかならない。 またマ ツ チン グ回铬 1 2 の出力側に高周波用の電力計を 接続し て陰極 4 と基板ホルダ 6 の投入電力を直接に測定 する こ と も考え られる。 しかし この方式では 、 電力測定 箇所の特性イ ン ヒ。 — ダ ン ス が電力計の接続状態等に よ つ て変動するため、 高周波ケ ー ブ ル 1 1 における電力測定 よ り も 測定精度が大幅に劣 り 、 こ の測定値を基に的確に 前記コ ン デン サ 1 3 , 1 4 及び コ イ ル 1 5 の容量を決定 する こ と は困難でめ 。 発明の開示 OMPI WEPO The self-bias voltage applied to the cathode 6 and the substrate holder 6 is determined based on the measured value. It is also conceivable to determine the capacities of capacitors 13, 14 and coil 15. In this method, the relationship between the self-power, the bias voltage, and the input power is sharp. The measured value of the self-bias voltage is only a guide because it greatly changes depending on the pressure of the head, the structure of the cathode 4 as an electrode, and the structure of the substrate hologram 6. It is also conceivable to connect a high-frequency power meter to the output side of the matching circuit 12 and directly measure the power input to the cathode 4 and the substrate holder 6. However, in this method, the characteristic influence of the power measurement point is obtained. — Since the dance fluctuates depending on the connection state of the power meter, the measurement accuracy is significantly lower than the power measurement using the high-frequency cable 11, and the accuracy is determined based on this measurement value. Determining the capacities of capacitors 13, 14 and coil 15 is difficult. Disclosure of the invention
不発明は、 以上の よ う な従来技術の欠点を除去するた めにな された も ので、 タ ーゲ ッ ト 側の陰極と被処埋材側 の基板ホ ルダ と にそれぞれ独立に再現性良 く 高周波電力 を 供給し て的確に薄膜形成を行な う こ とができ るス ハ。 ッ タ リ ン グ装 *を提供する こ と を 目 的 と する。  The invention was made in order to eliminate the above-mentioned drawbacks of the prior art, so that the reproducibility of the cathode on the target side and the substrate holder on the material to be implanted were independently independent of each other. A switch that can supply a high-frequency power and form a thin film accurately. The purpose is to provide a butterfly ring *.
上記 目 的を達成するために、 本発明では 陰極 と基扳 ホルダに高周? K電力を供給する電源装置は 発振.器と 、  In order to achieve the above object, according to the present invention, the cathode and the base holder have a high circumference. The power supply that supplies K power is an oscillator.
OMPI こ の発振器の出 力を所定の大き さ に増幅する第 1 と 第 2 の増幅器 と 、 こ の第 1 の増幅器の出 力が第 1 の高周波ケ 一ブルを介し て与え られ コ イ ル及び コ ン デ ン サに よ り ィ ン ヒ。 一 ダ ン ス の調整を行なって前記基板ホ ルダ と 真空容 器間に所定の高周波電圧を印加する第 1 の マ ッ チ ン グ回 路 と 、 前記第 2 の増幅器の出 力が第 2 の高周波ケ ー ブル を介し て与え られ コ イ ル及び コ ン デ ン サに よ り ィ ン ビ 一 ダ ン ス の調整を行なって前記陰極 と 真空容器間に所定の 高周波電圧を 印加する第 2 の マ ッ チ ン グ回路 と 、 前記第 1 と 第 2 の高周波ケ 一 ブルにそれぞれ接続される第 1 と 第 2 の高周波用電力計 と を備えた こ と を特徵 と する。 OMPI First and second amplifiers for amplifying the output of this oscillator to a predetermined size, and a coil and a coil provided with the output of the first amplifier via a first high-frequency cable. Inhibit by the capacitor. A first matching circuit for applying a predetermined high-frequency voltage between the substrate holder and the vacuum container by adjusting one dance, and an output of the second amplifier being a second matching circuit. A second method of adjusting the impedance by a coil and a capacitor provided through a high-frequency cable to apply a predetermined high-frequency voltage between the cathode and the vacuum vessel. It is characterized by comprising a matching circuit and first and second high-frequency power meters connected to the first and second high-frequency cables, respectively.
本発明 に よ れば、 1 つの発振器の 出 力を、 第 1 の増福 器、 第 1 の電力計が接読 される第 1 の高周波ケ ー ブル、 及び第 1 の マ ッ チ ン グ回路を介し て基板ホ ルダ に与え る と 共に、 第 2 の増幅器、 第 2 の電力計が接続さ れる第 2 の高周 ケ 一 ブル、 及び第 2 の マ ッ チ ン グ回路を介し て 陰極に与え る よ う に し たの で、 第 1 と 第 2 の電力計に よ り 基板ホ ル ダ と 陰極へ投入する それぞれの高周波電力を 正確に測定でき 、 基板ホ ルダ と 陰極へ所定の高周波電力 を独立に再現性良 く 供給する こ と ができ る。 し か も 1 つ の発振器の出 力を用いて基板ホ ル ダ と 陰極へ高周波電力 を 供給する ので、 2 つの高周波電力の周波数が同一 と な り 、 こ れに よ り 第 1 と第 2 の マ ッ チ ン グ回路に よ る イ ン ヒ。一ダ ン ス の誡整を簡易的確に行 う こ と ができ る。 従つ て、 被処埋材の表面に所定の厚さ の薄膜を精度 よ く 形成  According to the present invention, the output of one oscillator is connected to a first intensifier, a first high-frequency cable to which a first power meter is read, and a first matching circuit. To the substrate holder via a second amplifier, a second high-frequency cable to which a second power meter is connected, and a cathode via a second matching circuit. The first and second wattmeters allow accurate measurement of the high-frequency power applied to the substrate holder and cathode, and the specified high-frequency power is applied to the substrate holder and cathode. Can be supplied independently and with good reproducibility. However, since the high-frequency power is supplied to the substrate holder and the cathode using the output of one oscillator, the frequencies of the two high-frequency powers become the same, thereby the first and second high-frequency powers are supplied. Inhibition due to the matching circuit. One-dense discipline can be performed simply and accurately. Therefore, a thin film of a predetermined thickness is formed on the surface of the material to be treated with high accuracy.
O PI  O PI
λ'ΑΤΙΟ する こ とができ る 図面の簡単な説明 λ'ΑΤΙΟ Brief description of drawings that can be
第 1 図は従来のス ハ。 ッ タ リ ン グ装置の概略構成図、 第 2 図は本発明の実施例に係るス ハ。 ッ タ リ ン グ装置の概略 構成図、 第 3 図は第 2 図の動作説明図、 第 4 11は第 2 図 中の高周波電源を詳細に示すス ハ。 ッ タ リ ン グ装置である。 発明を実施するための最良の形態  Fig. 1 shows the conventional sha. FIG. 2 is a schematic configuration diagram of a sputtering device, and FIG. 2 is a shutter according to an embodiment of the present invention. FIG. 3 is an explanatory diagram of the operation of FIG. 2, and FIG. 411 is a shutter showing the high-frequency power supply in FIG. 2 in detail. This is a sputtering device. BEST MODE FOR CARRYING OUT THE INVENTION
以下添付図面を参照しつつ本発明の実施例を説明する。 なお、 以下の図面において前記第 1 図中の要素と同一の ものには同一の符号が付されている。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following drawings, the same elements as those in FIG. 1 are denoted by the same reference numerals.
第 2 図は こ の実施例に係るス ハ。 ッ タ リ ン グ装置の溉峪 構成図である。 こ のス ハ。 ッ タ リ ン グ装置が前記第 1 図の もの と 異なる点は、 高周波電源 1 0 i , 1 0 2 を 2台設け て陰極 4 と基板ホ ル ダ 6 にそれぞれ独立に高周波電力を 洪給する よ う にしたこ と等である。  Fig. 2 shows the shutter according to this embodiment. FIG. 2 is a diagram illustrating the configuration of the Yuttayu of the butterfly device. This sha. The difference between the hitting apparatus and the apparatus shown in FIG. 1 is that two high-frequency power sources 10 i and 102 are provided and the high-frequency power is supplied to the cathode 4 and the substrate holder 6 independently. And so on.
すなわち、 第 2 図の電源装置は、 発振器及びこ れの出 力を所定の大き さに增幅する増振器等からなる第 1 と苐 2 の高周波電源 1 0 ι , 1 ひ 2 を備え、 第 1 と第 2 の高周 波電源 1 0 i , 1 0 2 の出力はそれぞれ同職ケ一プル等か らなる第 1 と第 2 の高周波ケ— ブ ル 1 1 , 1 1 2 を介し て苐 1 と第 2 のマ ッ チ ン グ回路 1 2 , 1 2 2 に与えられ る。 第 1 のマ ッ チ ン グ回路 1 2 I は、 マ ッ チ ン グ用の コ ン デ ン サ 1 3 丄 及びコ イ ル 1 5! と、 直流遮断用のコ ン In other words, the power supply device shown in FIG. 2 includes first and second high-frequency power supplies 10 ι and 1 か ら 2 each including an oscillator and a vibrator for increasing the output of the oscillator to a predetermined size. first and second high-frequency power source 1 0 i, 1 0 2 outputs same occupation Ke one pull and whether Ranaru first respectively second high-frequency Ke -苐via b le 1 1, 1 1 2 first and second Ma pitch in g circuits 1 2, 1 2 2 Ru given. The first matching circuit 12I is composed of a matching capacitor 13 丄 and a coil 15! And a DC blocking connector
OMPI  OMPI
、 Wit'U ¾j デ ン サ 1 6丄 と を備え、 シ ー ル の た め に マ ッ チ ン グ ^ ッ ク ス 1 82 内に収容されて いる。 同様に第 2 のマ ッ チ ン グ回路 1 22 は、 マ ッ チ ン グ用の コ ン デ ン サ 1 32 及 び コ イ ル 1 5 o と 、 直流遮断用の コ ン デ ン サ 1 6 2 と を 備え、 マ ッ チ ン グ ^ ッ ク ス 1 8 2 内に収容されている。 そ し て第 1 と 第 2 の高周波ケ 一 プ ル , 1 1 2 にそれ ぞれ高周波用 電力計 2 0 , 2 02 が接続される と共に、 各マ ッ チ ン グ回路 1 2 , 1 2 ゥ の出力側にそれぞれ 自 己 パ イ ァ ス 電圧モ ニ タ 用の電圧計 2 1 , 2 2 が接続される。 , Wit'U ¾j A Devon Sa 1 6丄is accommodated between pitch in g ^ click scan 1 8 in 2 in order was the sheet Lumpur. Similarly, the second Ma pitch in g circuits 1 2 2 Ma pitch down and co emissions Devon Sa 1 3 2及beauty Coil Le 1 5 o for grayed, co down Devon Sa for blocking direct current 16 2 and are accommodated in a matching box 18 2 . Its to the first and second high-frequency Ke one pull-1 1 2 their respective high-frequency power meter 2 0, with 2 0 2 is connected, the Ma pitch in g circuits 1 2, 1 2 The voltmeters 21 and 22 for the self-pulse voltage monitor are connected to the output side of ゥ, respectively.
以上の構成にあっては、 電力計 , 2 0 2 に よ り 高 周波電源 , 1 0 2 の 出力 をそれぞれ測定でき、 陰極 4 と 基板ホ ル ダ 6 に独立に所定の高周波電力を 供給でき、 被処理物 A の形状や大き さ等に応 じた最適'な電力の投入 の ため の マ ッ チ ン グ 回 路 1 2 , 1 2 2 内 の コ ン デ ン サ 1 3 1 , 1 3 及び コ イ ル 1 5 丄 , 1 5 の調整作業が容易 にな る - で、 マ ッ チ ン グ回路 1 2 2 2 に よ る イ ン ピ ー ダ ン ス の調整を容易 する ため、 高周波電源 1 O i と 1 0 2 の出 力周莰数を 同一と する こ と が望 ま し い。 し カゝし、 高周波電源 1 0 j と 1 0 2 が独立に設け られる ため、 作 動中両者の出 力周波数が異な る こ と があ る こ のため陰 極 4 と 基板ホ ル ダ 6 にそれぞれ投入 される 高周波電力が 相互に干 ^-し て 、 例えば第 3 図の よ う に歪んだ波形 と な り 、 負荷であ る 陰極 4 と 基板ホ ル ダ 6 に対し て マ ツ チ ン グが取 り に く く なつて し ま う 。 すなわち、 放電に対し て の高周波マ ッ チ ン グは、 放電電力に よ り イ ン ピ ー ダ ン ス が変化するため、 第 3 図の よ う な歪んだ波形の電力だ と、 マ ッ チ ン グの とれた放電電力 と と れない放電電力が繰 り 返すこ と にな るので、 見かけ上マ ツ チ ン グがと れな く な つて し ま う 。 こ のため、 2 台の高周波電源 1 0丄 と 1 0 2 の出力周波数を常に一致させる こ と が必要と な る。 In the above configuration, the power meter, a high-frequency power source Ri by the 2 0 2 can be measured 1 0 2 of outputs can supply predetermined high frequency power to independently cathode 4 and the substrate ho le da 6, Capacitors 13 1, 13, and 13 in the matching circuits 12, 12 2 for optimal power input according to the shape and size of the workpiece A, etc. The adjustment work of the coils 15 丄 and 15 becomes easy-and the high frequency power supply 1 is used to facilitate the adjustment of the impedance by the matching circuit 122. It is desired that the output frequency of O i and 102 be the same. And mosquitoesゝand, since the high-frequency power source 1 0 j and 1 0 2 is provided independently, the shade electrode 4 and the substrate ho le da 6 for work Dochu both output this frequency Ru different Do that this and there The high-frequency powers applied to each other are mutually dried, resulting in a distorted waveform, for example, as shown in FIG. 3, and matching of the load to the cathode 4 and the substrate holder 6 with respect to each other. Will be difficult to remove. That is, for discharge In high-frequency matching, the impedance changes depending on the discharge power, so if the power has a distorted waveform as shown in Fig. 3, the matched discharge Since the discharge power, which cannot be obtained as power, is repeated, the matching cannot be apparently obtained. For this reason, it is necessary to always make the output frequencies of the two high-frequency power supplies 10 丄 and 102 the same.
そ こ で、 第 4 図に示すよ う に、 高周波電源 1 0 i と 1 0 2 の発振器を共用 させて高周波電源 1 0 0 の よ う に構 成する 。 すなわち こ の高周波電源 1 0 0 は、 水晶発振回 路等からなる 発振器 1 0 1 と 、 こ の発振器出力波形の振 幅を調整する抵抗等からなる第 1 と第 2 の出力制御器 1 0 2 , 1 0 3 と 、 こ の第 1 と第 2 の出力制御器 1 0 2 , 1 0 3 の出力をそれぞれ増幅する第 1 と第 2 の増幅器 1 0 4 , 1 0 5 と よ り 構成される 。 こ の よ う な構成の高周 波電源 1 0 0 にあっては、 1 つの発振器 1 0 1 の出力信 号が、 一方の ffi力制御器 1 0 2 及び第 1 の増幅器 1 0 4 を介し て第 1 のマ ッ チ ン グ回路 1 2 I に与えられる と共 に、 他方の出力制御器 1 0 3 及び第 2 の増幅器 1 0 5 を 介し て第 2 のマ ッ チ ン グ回路 1 2 2 に与えられるため、 陰極 4 と 基板ホ ル ダ 6 に投入される高周波電力の周波数 力 同一 と な り 、 マ ッ チ ン グ回路 1 2 ! と 1 2 2 によ る ィ ン ヒ。一ダ ン ス調整が簡易的確に行なえる。 産案上の利用可能性 Therefore, as shown in FIG. 4, the high-frequency power supply 100 i and the oscillator of the high-frequency power supply 102 are commonly used to constitute the high-frequency power supply 100. That is, this high-frequency power supply 100 is composed of an oscillator 101 composed of a crystal oscillation circuit and the like, and first and second output controllers 102 composed of a resistor adjusting the amplitude of the output waveform of the oscillator. , 103, and first and second amplifiers 104, 105 that amplify the outputs of the first and second output controllers 102, 103, respectively. . In the high-frequency power supply 100 having such a configuration, the output signal of one oscillator 101 is transmitted through one ffi-force controller 102 and the first amplifier 104. Is supplied to the first matching circuit 12I via the other output controller 103 and the second amplifier 105, and is supplied to the first matching circuit 12I. 2 , the frequency of the high-frequency power supplied to the cathode 4 and the substrate holder 6 becomes the same, and the matching circuit 12! When the fin heat that by the 1 2 2. One-dense adjustment can be performed easily and accurately. Industrial availability
本発明に よ り 高周波ス ハ。 ッ タ リ ン グ装置における基板 一 し 、 ホ ル ダ お よび陰極のそれぞれへの投入電力を正確に測定 でき、 同時に投入電力の調整を簡単かつ的確に行って被 処理材の表面 所望厚の薄膜を精度良 く 形成できるから、 被処理材の処理能率が大幅に向上し.、 生産性を高める こ とができる。 High frequency shower according to the present invention. Substrates in a sputtering device The applied power to each of the holder and the cathode can be measured accurately, and at the same time, the applied power can be adjusted easily and accurately to form a thin film of the desired thickness with high accuracy. The processing efficiency is greatly improved, and productivity can be increased.

Claims

SB 求 の 範 囲 陰極 と 、 こ の陰極に取付けられる ス ハ。 ッ タ リ ン グ ソ 一 ス 源 と し て の タ ーダ ッ ト と、 被処埋材を保持する基板ホ ノレダ と を収容し た真空容器 と 、 前記陰極と真空容器間お よ び mi記 极ホル ダ と真空容器間にそれぞれ所定の高周 波電圧を印加 し て放電をお こ させる電源装置と を備え、 前記タ ーゲ ッ ト 及び被処浬材を ス ハ。 ッ タ エ ッ チ ン グ し て 該被処理材の表面に所定の薄膜を形成する ス ハ。 ッ タ リ ン グ装置において ヽ A range of cathodes required for SB and a shower attached to this cathode. A vacuum container containing a tardard as a source of the source of sourcing, a substrate holder for holding the material to be treated, a space between the cathode and the vacuum container, and (4) A power supply device for applying a predetermined high-frequency voltage between the holder and the vacuum vessel to cause discharge is provided, and the target and the material to be treated are discharged. A shutter for forming a predetermined thin film on the surface of the material to be processed by etching. In the sputtering equipment
前記電源装置は、 発振器 と、 こ の発振器の出力をそれ ぞれ所定の大き さに増幅する第 1 と第 2 の.増幅器 と 、 こ の第 1 の増幅器の出力が第 1 の高周波ケ ー ブルを介し て 与え られ コ ィ ル及び コ ン デ ン サに よ り ィ ン ビ 一 ダ ン ス の 調整を行なつて前記基板ホ ル ダ と真空容器間に所定の高 周狡電圧を印加する第 1 の マ ッ チ ン グ回路 と、 前記第 2 の増幅器の出力が.第 2 の高周波ケ 一 プ ルを介し て与え ら れコ ィ ル及びコ ン デ ン サに よ り ィ ン ヒ。一ダ ン ス の調整を 行なって前記陰極と 真空容器間に所定の高周波電圧を印 加する第 2 のマ ッ チ ン グ回路 と 、 前記第 1 と第 2 の高周 波ケ一ブルにそれぞれ接銃される第 1 と第 2 の高周波用 電力計 と を備えた こ と を特徴 と する ス ハ。 ッ タ リ ン グ装置 c The power supply includes an oscillator, and first and second amplifiers for amplifying an output of the oscillator to predetermined magnitudes, respectively. An amplifier and an output of the first amplifier are connected to a first high-frequency cable. A predetermined high peripheral voltage is applied between the substrate holder and the vacuum vessel by adjusting the impedance by a coil and a capacitor given through The matching circuit of (1) and the output of the second amplifier are provided through a second high-frequency cable, and are driven by a coil and a capacitor. A second matching circuit that adjusts the distance and applies a predetermined high-frequency voltage between the cathode and the vacuum vessel; and a second matching circuit that applies a predetermined high-frequency voltage to the first and second high-frequency cables. A switch characterized by comprising first and second high-frequency wattmeters to be touched. Tuttering device c
C PI WIPO C PI WIPO
PCT/JP1984/000442 1983-09-14 1984-09-13 Sputtering apparatus WO1985001301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17044883A JPS6063367A (en) 1983-09-14 1983-09-14 Sputtering device
JP58/170448 1983-09-14

Publications (1)

Publication Number Publication Date
WO1985001301A1 true WO1985001301A1 (en) 1985-03-28

Family

ID=15905113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000442 WO1985001301A1 (en) 1983-09-14 1984-09-13 Sputtering apparatus

Country Status (2)

Country Link
JP (1) JPS6063367A (en)
WO (1) WO1985001301A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624864A (en) * 1985-06-28 1987-01-10 Matsushita Electric Ind Co Ltd Bias sputtering device
JP2831961B2 (en) * 1988-01-11 1998-12-02 忠弘 大見 Sputtering controller for thin film forming equipment
JP5061174B2 (en) * 2009-12-10 2012-10-31 千住スプリンクラー株式会社 Sprinkler head accessory attaching / detaching tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523908B2 (en) * 1975-08-21 1980-06-25
JPS5621836B2 (en) * 1978-10-25 1981-05-21
JPS56138879U (en) * 1980-03-24 1981-10-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523908B2 (en) * 1975-08-21 1980-06-25
JPS5621836B2 (en) * 1978-10-25 1981-05-21
JPS56138879U (en) * 1980-03-24 1981-10-20

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, Vol. 13, No. 5 (October 1970), R.P. AUYANG et al., "Substrate Bias Control for Sputtering", p. 1279-1280. *

Also Published As

Publication number Publication date
JPH0229748B2 (en) 1990-07-02
JPS6063367A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
JP4038242B2 (en) Plasma generation method and apparatus
US5571366A (en) Plasma processing apparatus
US9704692B2 (en) System for instantaneous radiofrequency power measurement and associated methods
TWI558273B (en) Inductively coupled plasma reactor having rf phase control and methods of use thereof
US6509542B1 (en) Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
US6265831B1 (en) Plasma processing method and apparatus with control of rf bias
TW530324B (en) Addition of power at selected harmonics of plasma processor drive frequency
US5325019A (en) Control of plasma process by use of harmonic frequency components of voltage and current
JP3167221B2 (en) Inductively coupled plasma generator
JPH03107456A (en) Film forming device
WO2012078569A1 (en) Plasma processing system control based on rf voltage
JP3424182B2 (en) Surface treatment equipment
JPH05205898A (en) Plasma processing device
WO1985001301A1 (en) Sputtering apparatus
JP3283476B2 (en) Discharge state fluctuation monitor
JPH0240570A (en) Method and apparatus for determining impedance of discharge within plasma furnace and impedance adjustor for discharge within furnace
TW425597B (en) Method of determining a negative ion present in a plasma, and plasma processing method and apparatus
JP2001007089A (en) Plasma treatment method and apparatus
JP2004198126A (en) Film thickness measuring device
WO2001024221A1 (en) Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
JP3038828B2 (en) Plasma processing method
JPH0864393A (en) Plasma processing device
JP2001016779A (en) Impedance matching box for plasma device
JPH10154600A (en) Plasma parameter measurement device
JP2867616B2 (en) High frequency voltage detector for film forming equipment

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB