WO1984004943A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO1984004943A1
WO1984004943A1 PCT/US1984/000873 US8400873W WO8404943A1 WO 1984004943 A1 WO1984004943 A1 WO 1984004943A1 US 8400873 W US8400873 W US 8400873W WO 8404943 A1 WO8404943 A1 WO 8404943A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
seal
bore
chamber
sealing
Prior art date
Application number
PCT/US1984/000873
Other languages
French (fr)
Inventor
Edward Charles Mendler Iii
Original Assignee
Edward Charles Mendler Iii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1983/001244 external-priority patent/WO1984000993A1/en
Application filed by Edward Charles Mendler Iii filed Critical Edward Charles Mendler Iii
Publication of WO1984004943A1 publication Critical patent/WO1984004943A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/10Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F01C20/16Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/24Rotary-piston machines or engines of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions
    • F01C1/28Rotary-piston machines or engines of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/08Axially-movable sealings for working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to rotary machines that have a fluid chamber of changing volume, as in an engine or a pump.
  • Rotary machines of this type employ a rotating surface to have a working relationship with a fluid, e.g. compression or expansion. In the case of an engine, the machine also generates shaft energy as where a compressed gas and fuel mixture is ignited for explosive expansion within the chamber of the machine.
  • Prior rotary machines have typically employed one eccentric rotor or multiple adjacent rotors that turn in opposite directions so that adjacent rotor surfaces move in the same direction; however, machines having rotors turning in the same direction have been suggested.
  • the invention applies to a rotary machine which comprises a rotor and means defining a bore surface with which the rotor is arranged to interact to cyclically define a fluid chamber during rotor rotation.
  • a variable member defining a portion of the bore surface is movable toward and away from the rotor in the manner to vary the rotational position of a transition point at which a sealed relationship between the rotor and the bore surface begins or ends, and means responsive to desired operating conditions to vary the position of the variable portion thereby to vary the rotational position of the point at which the sealed relationship begins or ends.
  • the rotary machine is in the form of a rotary internal combustion engine in which the rotor and bore surface are cooperatively constructed to form at least part of a combustion chamber, the variable member defining with the rotor the point where the volume of the combustion chamber is first closed, variation in the position of the member serving to vary the compression ratio of the engine; and the bore surface is comprised in part of a relatively stationary first bore surface segment of radius which progressively enlarges relative to the radius of the rotor at points at progressively greater arcuate distance about the rotor axis from the point of the segment which lies closest to the rotor, the variable member defining a second bore surface segment which is movable outwardly relative to the first segment and has a transition end portion disposed closely adjacent to the relatively stationary segment, the transition end portion being movable along the first bore surface segment as the variable member moves outwardly from the rotor axis to expose an increasing amount of the first bore surface segment, preferably the variable member is pivotable about a pivot axis lying directly out
  • the invention applies to a rotary machine that cyclically defines a chamber of progressively changing volume by means of a pair of co-acting rotors.
  • the rotors are mounted for dependent rotation on parallel axes of adjacent cylindrical bores formed in a block, the axes being spaced apart a distance less than the sum of the radii of the bores.
  • the rotors have surfaces adapted to provide a progressive rotor-to-rotor seal while each rotor also forms a rotor-to-bore-wall, seal and face-to-end-closing-surface seals, the rotor surfaces in cooperation with the other surfaces of the machine defining the chamber.
  • the rotors rotate in the same direction
  • a cylindrical surface of the first rotor of radius substantially equal to the radius of its bore and having substantial arcuate extent, is arranged in sealing relationship with its bore wall and with a surface of the second rotor, at least part of the surface of the second rotor exposed to this chamber has a progressively changing radius to cause the chamber volume to progressively change during rotation, and the rotor surfaces are constructed to avoid interfering contact.
  • the invention applies to a rotary machine which comprises a rotor, means defining a complementary, opposed surface, and a sealing member bodily carried by the rotor member and movable with respect to the rotor member toward the complementary surface to form a seal therewith, the point of sealing of the sealing member progressing about the surface as the rotor rotates.
  • restraint means are responsive to increase in the rotational rotor speed to apply increased restraint on the freedom of relative motion of the sealing member toward the surface thereby to enable decrease or elimination of direct pressure contact between the sealing member and the surface upon increased rotor speed.
  • the restraint means comprises a restraint member carried by the rotor and defining a friction brake surface engageable with the sealing member in a manner to restrain movement of the seal member, the restraint member being responsive to increase in centrifugal force attributable to increased speed of rotor rotation, to increase the pressure of engagement of the friction brake surface upon the sealing member, thereby to increase the restraint of the sealing member
  • the sealing member comprises a member having a rotary bearing surface bearing upon a corresponding surface defined by the rotor, the sealing member extending from and rotatable with the rotary bearing surface to move into sealing engagement with the complementary surface
  • the restraint member comprising a member lying inwardly of the sealing member, the restraint member having a surface engaged for relative motion with a corresponding surface of the sealing member, the restraint member being constrained against rotation with the sealing member and disposed to respond to increase in centrifugal force to engage the sealing member with increased pressure, thereby to frictionally restrain
  • the invention applies to a rotary machine which comprises a rotor and means defining relatively stationary surfaces with which the rotor is arranged to interact to cyclically define a fluid chamber during rotor rotation.
  • the rotor includes a seal means for providing a sealing relationship with a complementary stationary chamber surface during rotary motion of the rotor, the seal means being comprised of at least one sealing member carried on the rotor and defining a sealing surface disposed in face-to-face relationship with the complementary surface, bias means between the member and the rotor adapted to bias the sealing member toward the complementary surface, the bias means having a biasing portion with at least a component lying perpendicular to the radius of the rotor and a point of attachment spaced from the biasing portion, which is adapted and configured to apply a biasing force to the sealing member toward said complementary surface, the dimensional extent of the biasing portion in a direction perpendicular to the radius of the rotor at a first speed of rotation being different from the dimensional extent at a second speed of rotation, the biasing portion adapted to move elastically between positions at first and second speeds of rotation in response to increase of centrifugal force thereon, the biasing force applied by the biasing portion
  • the bias means is a corrugated, relatively flat metal member attached to the rotor at a point along the length of the bias means inward of the center of mass of the bias means, the outer end of the bias means having a dimensional component perpendicular to a radius of the rotor, whereby, due to said perpendicular dimensional component, the bias means, when the rotor is at rest, biasing a sealing member toward a complementary stationary surface, and when the rotor is rotating at a different, higher speed, the outer end of the bias means is urged radially outward by centrifugal force thereby reducing its perpendicular dimensional component and reducing the biasing force of the bias means toward the sealing member, and the sealing member comprises a plurality of flat sealing members disposed in axially superposed relationship, there being bias means between each pair of said flat sealing members and between said rotor and its adjacent said flat sealing member, adapted to bias the respective members apart, whereby the total clearance is divided between a plurality of
  • a machine comprises a moving element and means defining a fixed surface with which the moving element is arranged to interact to cyclically define a fluid chamber during movement of the element, a surface of the element and the fixed surface adapted to be disposed in close-mated relationship to retard movement of fluid therebetween between the fluid chamber and an area of different pressure.
  • a multiplicity of grooves defined in a fixed surface are configured and arranged to permit fluid moving between surfaces in close-mated relationship from a first area of relatively high pressure to a second area of relatively lower pressure to pressurized the grooves in progression from the first area toward the second area
  • the grooves defined in the fixed surface are configured and arranged to provide that movement of element surface in close-mated relationship with the fixed surface is adapted to progressively expose the grooves to the fluid chamber, whereby as leakage of fluid between the close-mated surfaces from the area of relatively higher pressure to a first groove defined in the fixed surface adjacent to the area of relatively higher pressure increase the pressure therein, movement of the element causes the first groove to be exposed to the area of higher pressure, thereby increasing the sealing performance of the close-mated surfaces.
  • FIG. 1 is a cross-sectional view of a segment of a preferred internal combustion engine according to the invention taken on line 1-1 of Fig. 3 showing the rotors full rather than in cross-section;
  • Fig. 1a is a similar view of an engine with variable compression ratio taken at the line 1a-1a of Fig. 3a;
  • Fig. 1b and 1c are diagrammatic views of the engine of Fig. 1a at different compression ratios
  • Fig. 1d is a view similar to that in Figs. 1 and 1a of another variable compression engine construction
  • Fig. 2 is an axial cross section taken on line 2-2 of Fig. 1, again showing the rotors full rather than in cross-section, and also showing part of a second segment of the engine without rotors;
  • Fig. 2a is a similar view of the engine having variable compression, taken at line 2a-2a of Fig. 3a;
  • Fig. 3 is a diagrammatic side view partially in section of a complete engine having six segments in accordance with Fig. 1;
  • Fig. 3a is diagrammatic side view partially in section of a two-chamber engine block with variable compression
  • Fig. 4 is a cross-sectional view taken on line 4-4 of Fig. 3 showing gearing of the rotor shafts;
  • Figs. 5 through 5f depict the engine segment of Fig. 1 showing the rotors in the various phases of operation of an upper chamber, from intake through exhaust;
  • Fig. 6 is an isometric view of a rotor removed from the engine, not showing spline teeth or labyrinth grooves;
  • Fig. 7 is a side view of an apex seal employed in the rotor of Fig. 6;
  • Fig. 7a is an axial view in section of the bias spring of the apex seal, taken on line 7a-7a of Fig. 8, the apex seal and spring being shown in full;
  • Fig. 8 is a diagrammatic plan view partially in section of the apex seal of the rotor of Fig. 6 acting upon the surface of the mating rotor;
  • Fig. 8a is a similar view of an apex seal with restraining means, while Fig. 8b is a side plan view of the seal with restraining means;
  • Fig. 9 is a diagrammatic view of the apex seal of Fig. 8, suggesting its movements in use;
  • Fig. 9a is a free body diagram of the apex seal member of Fig. 8.
  • Fig. 10 is a plan view on enlarged scale of a single rotor of Fig. 1, omitting the spline teeth, while Figs. 11 and 12 are partial axial cross-sectional views taken on lines 11-11 and 12-12 respectively, of Fig. 10;
  • Fig. 10a is a plan view of a rotor cut away to show the bias means.
  • Fig. 10b is a force diagram, while Figs. 11a and 12a are partially axial cross-sectional views taken on lines 11a-11a and 12a-12a respectively of Fig. 10a;
  • Fig. 11b is view similar to Fig. 11a of an alternative embodiment
  • Figs. 12b and 12d are enlarged representation views of the opposed rotor and fixed bore wall seals with the leak retarding system of Fig. 1b, while Figs. 12c and 12e are bar graph representation of the pressures in Figs. 12b and 12d, respectively;
  • Fig. 13 is a cross-sectional view similar to Fig. 1 of another preferred embodiment employing three rotors;
  • Fig. 14 and 15 are views of an identical pump structure adapted, respectively, by virtue of opposite rototation, to compress or expand the chamber;
  • Figs. 16 through 16c are sequential diagrammatic views of the preferred embodiment of a liquid pump having stages creating suction and pressure;
  • Fig. 17 is a cross-sectional view of a further embodiment employing rotors of unequal size but of identical revolutionary speed;
  • Fig. 18 is a cross-sectional view of a three rotor machine employing small outer rotors and a larger central rotor which rotates at one half the speed of the outer rotors;
  • Fig. 19 is a top section view showing an alternate apex seal construction.
  • Fig. 20 is a diagrammatic view of an alternate embodiment of a biased force seal, while Figs. 21 and 22 are side views taken at the lines 21-21 and 22-22, respectively thereof.
  • engine block 10 is comprised of block segments 12 and 14, gear-and-bearing segments 16 and bearing segments 18, Power shafts 20 and 20' extend from respective ends of block 10.
  • the exhaust and intake manifolds 22 defining exhaust passages 24 and intake passages 26 on each side of the block are formed by unitary castings which extend substantially throughout the combined height of segments 12 and 14 of block 10 and service the combustion chambers formed in these block segments.
  • Fuel injection port and/or ignition means 28 for each segment is shown in the center.
  • Bolts 30 extend through the block and hold the segments together.
  • Bolts 31 extend through blocks 16 and 18 for the same purpose.
  • Block segment 12, shown in Fig. 1 is provided with holes for bolts 30 and additional holes 34 for bolts which terminate within the segments 16, further serving to hold the block segments together.
  • Each block segment 12 defines first and second adjacent cylindrical bores 36 and 38 formed in the block segment about parallel axis A and B. As shown in Figs. 1. 2. each block segment has a single end plate 42, with opposite surfaces 40, 40' of this end plate closing the bores formed in adjacent block segments.
  • the central block segment 14 is identical to block segment 12, except it has two sets of rotors with an intervening dividing plate 42' serving to close one side of the bores for each set of rotors. The bores in the block segments at respective ends of the block are closed by additional closing plates 44.
  • the bores 36 and 38 on axes A and B are defined in each block segment 12, and on each side of block segment 14.
  • the bores have equal radius R and the axes of the bores are spaced a distance D apart, D being less than the sum of the radii of the adjacent bores, i.e. less than 2R.
  • R may be 2 inches and D may be 3 inches.
  • First and second rotors 50 and 52, respectively, are closed in bores 36 and 38, on fixed axes A and B respectively, and splined in identical angular position to rotor shafts 46 and 48, respectively, extending along those axes.
  • the rotor surfaces are specially constructed to form progressive rotor-to-rotor seals between the two rotors while each rotor also forms a rotor-to-bore-wall seal with the wall of its respective bore, these rotor surfaces adapted to serve as bounding surfaces in cooperation with relatively stationary surfaces of the bores to define chambers of changing volume.
  • this relationship is realized by major and minor cylindrical surfaces, C L and C S . respectively; each centered on the axis A of the rotor, and diametrically opposed, these surfaces being joined by cylindrical transition surfaces, T L and T F , which are centered about points spaced from the axis of the rotor.
  • the major and minor cylindrical surfaces have an equal arcuate extent, and the joining transition surfaces on each of the rotor similarly have equal arcuate extent .
  • the center for each transition surface, of radius R T is located at the apex, A P . formed at the intersection of the major cylindrical surface and the opposed transition surface.
  • the minor cylindrical surface, C S has a radius substantially equal to the difference between the length of the line of centers of the rotors, D, and the radius, R, of the major cylindrical surface of the adjacent rotor.
  • Figs. 5 through 5f engine segment 12 of Fig. 1 is shown in reduced scale through a sequence of stages.
  • Rotors 50, 52 rotate in a clockwise direction from the stage of flow of air through the engine prior to the combustion reaction in the upper chamber (Fig. 5) to the flow-through of air following combustion (Fig. 5f). The air removes exhaust gas from the upper chamber after combustion, cools internal surfaces of the engine and provides combustion air for the next cycle.
  • rotors 50, 52 in conjunction with surfaces 37, 39 of cylindrical bores 36, 38, respectively, and intervening surface 35 form a flow-through passage (shown by arrows) for cooling air from intake 26 to exhaust 24, which is supplied, e.g., by a blower (not shown).
  • Fig. 5a shows rotors 50, 52 after clockwise rotation.
  • Rotor 52 closes intake 26, while rotor 50 closes exhaust port 24 to form closed chamber 60, the coaction of the rotors trapping a volume of the flowing fluid within the chamber, which is defined by the leading transition surface, T L , of rotor 52, the large cylindrical surface, C L . of rotor 50, the cylindrical surface 39 of chamber 38, and the intervening surface 35 joining cylindrical surfaces 37, 39 of bores 36, 38.
  • the small cylindrical surface, C S of rotor 52. contacts the large cylindrical surface of rotor 50, closing chamber 60.
  • rotors 50, 52 have rotated to decrease the volume of chamber 60, by the relative motion of leading transition surface, T L , on rotor 52 moving toward to large cylindrical surface, C L , of rotor 50, compressing the fluid in the chamber.
  • surface C L being progressive parts of a constant diameter cylinder centered on axis A does not affect the volume of chamber 60 during this compression stage.
  • the seal between the two rotors is formed by the trailing apex seal, A PF , of rotor 50 contacting the leading transitional, surface T L of rotor 52.
  • rotor 50 has come out of contact with the minor cylindrical surface, C S , and into contact with the transition surface T L of rotor 52. As the apex seal contacts the opposed transition surface the critical compression stage begins.
  • rotors 50, 52 have rotated to top center position and chamber 60, now formed by the major cylindrical surfaces, C L , of both rotors and by the intervening surface 35 that joins the cylinder bores, is at minimum size and the contained fluid is at maximum compression.
  • fuel is injected prior to this point and the air-and-fuel mixture compressed in the chamber is ignited.
  • the inertia, of the spinning rotors carries the rotors through the compression phase to the point of maximum compression (Fig. 5c).
  • the chamber is further defined by the intervening surface 35 and the cylindrical surface 37 of chamber 36. Expansion of the combusted gas acts against the following transitional surface, T F , of rotor 50 to urge it to rotate about axis A. transmitting power through shaft 46 to power shaft 20 via gears 62. 64.
  • T F transitional surface
  • chamber 60 has been expanded by rotation of the rotors to nearly maximum size, which typically can be larger than the compression chamber.
  • the leading apex seal of rotor 52 has moved out of contact with the surface of rotor 50.
  • the sealing contact in this area now being between the major cylindrical surface, C L , of rotor 52 and the minor cylindrical surface, C S , of rotor 50.
  • the ratio of compression to expansion depends upon the arcuate locations of the points where a seal is first and last made.
  • the lip 27 of the intake manifold fairs into the cylindrical surface of the bore, whereas the lip 25 of the exhaust manifold defines a cylindrical extension of the bore. Because the portions of bores 36 and 38 defined by the -housing are equal, the bore extension provided by the exhaust manifold extends the expansion and the ratio of compression to expansion is therefore less than one.
  • the rotors form, with the bore surfaces 37, 35, 39, a flow-through path for flow of air from intake 26 to exhaust 24. The flow of air through this path removes combustion products, and also cools the engine.
  • each of the rotor pairs is 120° out of phase with adjacent rotors in order to form a dynamically balanced engine.
  • Segment 16 (Fig. 4) also includes an additional idler gear 74, to allow application of static torque to prevent backlash of the gears for better synchronization of the rotors. Also, use of idler gears distributes the power load for better efficiency. Referring to Fig.
  • variable members 1002 which are movable toward or away from rotors 50, 52 in a manner to vary the rotational angle at which the sealed relationship between apex seals 82 of rotors 50, 52 and the bore surfaces 27 begin and define the maximum confined initial volume of the chamber.
  • This provides the engine with a variable compression ratio, i.e. the ratio between the volume of the combustion chamber when it is first formed (Fig. 5a) and the volume of the chamber at the time of ignition, typically approximately at the point of minimum chamber volume (Fig. 5c).
  • Fig. 1a the members 1002 are in the maximum chamber position, with arcuate surfaces 1004 disposed for initial sealing contact with seals 82 at the earliest point, e.g. as also shown in Fig. 1.
  • Downstream ends 1006 of variable members 1002 provide smooth transition onto fixed bore surfaces 1008. with surfaces 1010 contacting the curved surfaces 1012 of the fixed portions.
  • flexible fairing members 1016 also provide smoothly curved surfaces.
  • Variable member 1002 is constructed to pivot about axis V located to the right of a line between the rotor axis and the end of movable surface 1004 closest to the pivot axis V. Member 1002 is selectively positioned by means of piston 1018 on the basis of engine operating conditions. Typically, the controlling condition is engine speed, with arcuate surfaces 1004 displaced to avoid early sealing contact at slower speeds, but other factors may be considered. If desired, the controlling factors can be evaluated by computer, shown in dashed line, which in turn controls the positions of surfaces 1004. Referring to Figs, 1b and 1c. during operation at low speeds, arcuate surfaces 1004 are disposed at positions for delayed sealing contact. (Fig. 1b).
  • an example of the compression ratio would be 3:1:10.35 (initial confined volume: minimum confined volume: final confined volume) and the peak pressure would be about 430 psia.
  • the engine would be very efficient at low speeds and due to the enormous expansion ratio, would be very quiet with mild combustion shock.
  • the exhaust pressure would be about two atmospheres versus 5 1/2 atmospheres in typical piston engines.
  • the arcuate surfaces 1004 are disposed for early sealing contact and maximum compression rates for operation at higher engine speeds.
  • an example of compression ratio would be 9:1:10.35, with maximum pressure about 1437 psia, for driving and accelerating power.
  • Fig. 2a a different sectional view of the rotary engine operating at low speeds is shown with variable member 1002 in retracted position, and in Fig. 3a, a chamber engine block with variable compression is shown.
  • Fig. 1d another construction with the bore cylindrical surfaces 27, 39 and 25, 37 defined by variable members 1002 is shown. Hydraulic pressure is applied to surface 1014 of piston 1016 to urge it against the surface of asymmetrical cam 1018 in aperture 1020. The rotational position of cam 1018 controls the adjustment of surface defining bore 36, 38.
  • the contact surface 1004 is a soft material, e.g. nickel, aluminum or plastic, to allow it to wear to fit. Movement of the contact surface is linear, with no provision for smooth transition between downstream surfaces.
  • high compression engine operation e.g. above 3,000 r.p.m., the clearance between adjacent surfaces would be lowered to less than 0.001 inches (0.025 mm). It is anticipated an automobile engine equipped with this system would require tuning only every 60.000 miles (96,500 km).
  • a single rotor 50 identical to the rotors described above, is shown in detail with-spline teeth and face seal labyrinths omitted. It comprises rotor body 80 to which are attached apex seals 82 and face seals 84, 86. At the apex of the rotating surfaces of rotor 50, i.e. at the intersection of the major cylindrical surface, C L , and the transition surface, T, a special apex seal 82 is located in rotor aperture 88. Apex seal 82 is a moveable sealing member having sealing surface 90 (Fig. 8) adapted to contact the opposed surface 92 of the opposite rotor 52 and apply an outward sealing pressure against that surface.
  • Apex seal 82 has a moveable tail portion 94 that is free to slightly swing between a first position P 1 (Fig. 9) and a second position P 2 (shown in dashed line) about a pivot region positioned inwardly from the periphery of the rotor.
  • each apex seal 82 consists of upper and lower sealing members 81, 83 urged axially apart by corrugated spring 96 which urges face surfaces 98, 100 of members 81, 83 into sealing contact with the opposed end surfaces 40, 40' (not shown here) of bore 36. Leakage through the spring compartment is restricted by an overlap of the joint between members 81, 83 at the exposed axial surfaces 90, 91 (Figs. 7 and 7a. and shown in dashed lines in the axial direction Fig. 8).
  • the apex seal member 82 has an enlarged head portion 102 to which the tail portion 94 is joined.
  • Head 102 is fixed against radial movement but is allowed to rotate about axis X.
  • Axis X of head 102 lies on a radius R x of rotor 50 (Figs. 9, 10) which is offset from the center of mass of the sealing member, either considering the entire mass of the member or the mass of the non-balanced tail portion 94. In Figs. 9 and 10 radius
  • Rcm is shown projected through the center of mass cm. of the non-balanced portion.
  • centrifugal force, F C , Fig. 9a effectively acts at the center of mass cm.
  • the centrifugal force has a radial component, F CR . which has no effect on seal position, and a tangential component, F RT , which tends to move the center of mass, C M , of the seal to overcome the opposed spring force, F S , thus moving the sealing surface 90 toward position P 2 (a movement shown exaggerated in Fig. 9).
  • This movement reduces the contacting force F CP Pxerted by the sealing surface 90 on the opposed surface 92 as speed increases.
  • F CP Pxerted by the sealing surface 90 on the opposed surface 92 In operation at slow speeds, where the compression/expansion cycle of the machine takes a relatively long period of time, it is necessary that the seal between the apex of one rotor and the transition surface of the opposed rotor be tightly maintained, e.g. to avoid leakage and lost power.
  • the spring 108 enables the apex sealing surface 90 to exert the required contact force F CP against the opposed transition surface 92.
  • seal contact pressure becomes less critical.
  • the novel seal relaxes this seal pressure and thus reduces efficiency loss that otherwise would occur due to friction.
  • the seal pressure may be made to vary with inverse relationship to the size of the chamber.
  • the effective lever arm L n of the contact force F CP is greatest in the rotor position of Fig. 5c where the chamber volume is smallest. Contrarwise, when the chamber is largest, i.e. when the seal member approaches alignment with the line of centers, between Figs. 5d and 5e, this lever arm is minimal.
  • the total sealing pressure is also affected by friction effects that are taken into account in the design, bearing in mind that though the friction force tending to drag the seal open is also lowest in the position between Figs. 5d and 5e, the effective lever arm for this force is at a maximum, and vice versa with respect to the position of Fig. 5c.
  • apex seal 82 is shown positioned in rotor 50 which in this case has an enlarged aperture 88' for head 102. Also disposed in aperture 88' is restraint or damping means 1102 which has an arcuate surface 1104 complementary to the surface 1106 of seal head 102. A biasing means (not shown) urges the arcuate surface 1104 of restraint means 1102 into friction-brake contact. At low rotational speed, the force of surface
  • seal 84, and similarly seal 86. is comprised of two substantially flat, plate-form members 118, 120 at each surface, the outer surface of member 118 forming the contacting surface 122 between the rotor and the bore wall 40, 40'.
  • the inner surface 124 of member 118 and the outer surface 126 of member 120, and inner surface 128 of member 120 and surface 130 of the rotor body 80 form additional contacting surfaces.
  • the clearance between rotor surface 116 and bore surface 40 is divided into segments which are. of course, smaller than the total clearance and thus are more restrictive, due, e.g. to viscous friction, to gas flow between the opposing surfaces.
  • the surfaces of member 118 and member 120 also contain grooves 132 running substantially parallel to the cylindrical surfaces of the rotor. These grooves are divided from each other by ridges 134 of reduced clearance with the opposed surface, thus forming chambers or recesses for cascading pressure from the region of high pressure to the region of lower pressure (sometimes referred to labyrinth seals).
  • the chambers between member 118 and the bore surface 40, 40' are examples of the bore surface 40, 40'.
  • Fig. 12 is similar to Fig. 11 showing the members 118, 120 of the flat plate seals at a different position about the rotor axis. Pin 140 holds the seals 84, 86 to the rotor body 80.
  • bias means 1202 for retractably biasing face seal 84' toward a complementary bore surface is shown.
  • bias means 1202 is a relatively flat sheet of corrugated spring steel fixed at point Q to retaining pin 140' which in turn is fixed in the rotor body 80'.
  • bias means 1202. which has dimensional extent both along the rotor radius, R R , and also perpendicular thereto P R , is fixed to the rotor at point Q along the length of the bias means closer to the inner end from its center of mass.
  • centrifugal force, F CM acts on the perpendicular dimensional component of the spring outward of the point of attachment to overcome spring force F S , and reduce the perpendicular component.
  • the biasing force of the spring against the face seal is also reduced as is the contacting force of the sealing surfaces against bore wall.
  • frictional contact is reduced at higher engine speeds when, due to the shortened cycle time,. reduced sealing is required.
  • two bias means 1202', 1202'' may be used to bias two overlying face seals 118', 120' to divide the clearance for reduced leakage, as discussed above relative to Fig. 11.
  • a face seal Referring to Figs. 20, 21 and 22, a face seal
  • Arcuate face seal 1302 lies within an arcuate aperture 1304 disposed inward from the radial surface 1306 of rotor 1308. Over its major length, seal 1302 fits into aperture 1304 with tight clearance to provide a tortuous path for gas leakage around the seal.
  • retaining pins 1310 are provided with attached bias means 1312 that apply biasing force to seal 1302 toward the complementary bore surface 1314. As discussed above, centrifugal force generated by increased rotor rotational speed cause bias means 1312 to apply reduced force to the seal.
  • a track sealing system for retarding leakage from fluid chamber 60 is shown.
  • a series of parallel grooves 1022 lying generally coaxial with the bore, and perpendicular to the direction of rotation of rotor 50.
  • the size, shape and arrangement of the grooves varies with application. In a typical compression engine (shown) the grooves are about 0.125 inches (3.2 mm) deep, and have approximately the same width, W. The distance between grooves Y, is about equal to W, or slightly less.
  • the relationship of the close-mated surfaces of the moving rotor and the fixed bore surface defining the grooves are shown in enlarged scale in Figs. 12b and 12d, to which we now refer.
  • chamber 60 is at a pressure, P c relatively higher than port 24. Fluid under pressure in chamber 60 leaks through the gap 1024, typically between about .004 to .007 inches (0.10 to 0.18 mm), between the moving surface of rotor 50 and the fixed bore surface 25 in the direction indicated by arro L. Leakage beyond the first groove is somewhat limited as the leaking fluid fills and pressurizes the relatively large volume, compared to the narrow gap, of the groove to a pressure, P 1 , approaching, but slightly below the chamber pressure P . Pressurization of the grooves occurs progressively as shown by the bar graph of pressure in Fig. 12c.
  • FIG. 13 shows an alternate embodiment of the engine of Fig. 1, with three rotors 150, 152, 152' rotating in phase in the same direction.
  • a second chamber 160a, 160a' (only chamber 160a' in the lower phase is shown) is formed simultaneously in each stage of rotation, i.e. in Fig. 13 the engine is forming two compression chambers 160' and 160a'.
  • a flow-through path from intake 126 to exhaust 124 is formed across the top of the rotors again as in Fig. 1.
  • An engine of this embodiment would typically provide greater power output for the weight of engine machinery required, as compared to the embodiment of Fig. 1.
  • Fig. 14 shows a fluid pressure pump 210.
  • fluid taken into the engine through intake 226 is pressurized in chamber 260 by action of rotors 250, 252.
  • Valving means 228 remains closed until the desired degree of compression of the fluid in chamber 260 is achieved, e.g. if the fluid is substantially noncompressible, e.g. water, valving means 228 will open almost immediately and the compressive action of the device will be used to squeeze the liquid forcefully through exit port 224. If the fluid is compressible, valving means 228 will remain closed until the fluid is substantially compressed, e.g. until rotor 250 and rotor 252 reach a point close to maximum compression.
  • Compression in chamber 260 is achieved by the combined action of the rotors 250 and 252 with the cooperative surfaces of engine 210 to reduce the size of chamber 260 to its minimum point.
  • a similar process would occur in the lower phase, i.e. 180° out of phase with the process just described, with the valving means 228' acting to allow compressed fluid in chamber 260' to exit.
  • a device 310 similar to the fluid pressure pump of Fig. 14 is shown.
  • the rotors 350, 352 rotate in a counter clockwise direction thus causing chamber 360 to expand in size.
  • valving means 328 activates to allow fluid to be drawn through intake 326 into chamber 360.
  • the rotation of rotor 350 creates a lowered pressure in chamber 360 which upon opening of the valving means induces fluid to enter chamber 360. Again a similar process would take place 180° out of phase in lower chamber 360'.
  • a pump 410 with simultaneous suction and pumping phases suitable for pumping fluid e.g. for use as a circulation pump
  • the pump comprises rotors 450, 452. slightly different in configuration from the rotors of Fig. 1 to accommodate a closer spacing of the rotor axes in this embodiment (closer spacing enabling increase of pumping flow versus size of overall machine).
  • the rotors rotate in phase in the same direction and at the same speed, and intake and exhaust ports 426, 426' and 424, 424', respectively, are provided, each with an associated one-way-valve 425.
  • intake and exhaust ports 426, 426' and 424, 424' are provided, each with an associated one-way-valve 425.
  • chamber 460 sealed by the surfaces of the rotors and the block is decreasing in volume to force fluid out through one-way exhaust 425 and port 424 while the back volume draws fluid in primarily through intake port 426'.
  • both upper chambers 460 and 460a are at minimum volume.
  • chamber 460a is expanding in volume to draw fluid into the pump through one-way intake valve 425 and port 426 while fluid is exhausted from the back volume primarily through exhaust port 424'.
  • chamber 460a' is nearly sealed by the rotor surfaces for exhaust of fluid through valve 424'.
  • Fig. 17 shows an internal combustion engine 510 of operation similar to Fig. 1.
  • rotors 550. 552 are of different size. Both rotors move in the same direction at the same revolutionary speed, i.e. same rpm, but have different surface speeds. Operation of this device is the. same as the earlier embodiments.
  • the seals of this embodiment illustrate some of the variations that can be used to advantage.
  • the seals 582 of the smaller rotor are of cantilever form, the larger root portion 502 being fixed to rotor 552, and the slender tail portions 504 being spring cantilever extensions integral with root 502, but free to deflect within a range of clearance provided by the slot in the rotor through which they extend.
  • the ends of these extensions form seals as in the previously described embodiment.
  • the leading seal 584 of the larger rotor in Fig. 17 is an inertial seal, specially constructed to cause the seal surface to radially retract between rest and high speed positions.
  • This seal member can form effective seals both with the rotor and bore surfaces at respective stages of rotation. This is accomplished by selected location of the seal surface and the center of the mass.
  • the radius R x ' is pro jected f rom the rotor center to the pivot axis X' for the seal member.
  • the center of mass cm' of the seal member lies to one side of this radius while the sealing surface lies to the other side.
  • the trailing seal 588 is similar to seal 584 positioned in a way to be effective with the bore 537 and the opposed rotor. It also rotates, with increase in speed, in direction opposite to that of the rotor, in this case away from the large cylindrical surface, toward the following transitional surface.
  • Fig. 18 shows still another embodiment of a device 610 according to the invention.
  • three rotors 650, 652, 652' rotate in the same direction but at different rpra, e.g. center rotor 650 turns at one half the revolutionary speed of rotors 652, 652'.
  • Rotors 652, 652' are 180° out of phase, but operate at the same position on the cycle, i.e. simultaneously form compression and expansion chambers 660, 660a' with the surface of center rotor 650.
  • Other embodiments of the invention are within the following claims. For example, various rotor shapes and multiple rotor configurations are anticipated within the invention, e.g.
  • the small cylindrical surface may not be configured for sealing contact with the opposed large cylindrical surface, or the apex seal may not trace the point of contact with the opposed transition surface.
  • the apex seal 582 may be in the form of a cantilevered member 504 with the head portion 502 fixed against rotation, also the head portion may be fixed to the rotor surface, e.g. by a screw.
  • the labyrinth effect employed for the seals on the rotor faces could also be employed on the cylindrical surfaces by means of axially aligned recesses 532 on the major cylindrical surfaces disposed for rotor-to-bore wall sealing relationship during critical periods of compression and/or expansion.
  • variable members may be used to define a portion of the bore wall on the expansion side of the machine, e.g. for an expansion machine, or may be used on both sides, e.g. to vary the timing and rotational angle of the cycle, or could be used in other types of rotary devices or engines.
  • a rectilinear head 102' may be used on apex seal 82' to fix the bias of the flexible tail 94' in the rest position, without requiring a contact spring.
  • the damping or restraint means could be made adjustable by allowing variation of the position of the friction brake contact surface on the seal surface relative to the rotor radius, i.e.
  • the clamping force generated is greater where the surface is perpendicular to the radius as opposed to some other angle approaching parallel.
  • the clamping or restraint means could also be used in other types of rotary devices or engines, e.g. of the Wankel type, to temporarily fix or restrain a seal to reduce contact at higher speeds.
  • the bias means sensitive to centrifugal force could be used to retract or project seals or other surfaces in other types of rotary devices or engines.

Abstract

In a rotary machine (10) including a rotor (50) and a bore surface (37) with which the rotor interacts to cyclically define a fluid chamber (60) during rotation, a variable member (1002) defining part of the bore surface is movable relative to the rotor by means responsive to desired operating conditions to vary the point where the rotor and surface begin or end a sealed relationship. In a machine including a seal (82) on the rotor movable with respect thereto toward a complementary surface to seal with it, the sealing point progressing about the surface, a means of restraint (1102) is responsive to rotor speed to increase restraint on relative motion of the seal toward the complementary surface to enable decrease or elimination of direct pressure contact between the seal and surface upon increased speed. In a machine also comprising stationary surfaces with which the rotor interacts, a seal seals with a complementary surface of the chamber during rotor motion, the seal comprised of at least one member on the rotor defining a sealing surface in face-to-face relationship with the complementary surface, means (1202) between the member and rotor bias the seal toward the complementary surface, the biasing force applied varying with rotor speed. A tracking sealing system (figs. 1e and 12b-e) for retarding leakage from the fluid chamber is also described.

Description

ROTARY MACHINE Background of the Invention The invention relates to rotary machines that have a fluid chamber of changing volume, as in an engine or a pump.
Rotary machines of this type employ a rotating surface to have a working relationship with a fluid, e.g. compression or expansion. In the case of an engine, the machine also generates shaft energy as where a compressed gas and fuel mixture is ignited for explosive expansion within the chamber of the machine. Prior rotary machines have typically employed one eccentric rotor or multiple adjacent rotors that turn in opposite directions so that adjacent rotor surfaces move in the same direction; however, machines having rotors turning in the same direction have been suggested.
Summary of the Invention In detail, the invention applies to a rotary machine which comprises a rotor and means defining a bore surface with which the rotor is arranged to interact to cyclically define a fluid chamber during rotor rotation.
According to the invention, a variable member defining a portion of the bore surface is movable toward and away from the rotor in the manner to vary the rotational position of a transition point at which a sealed relationship between the rotor and the bore surface begins or ends, and means responsive to desired operating conditions to vary the position of the variable portion thereby to vary the rotational position of the point at which the sealed relationship begins or ends.
In preferred embodiments, the rotary machine is in the form of a rotary internal combustion engine in which the rotor and bore surface are cooperatively constructed to form at least part of a combustion chamber, the variable member defining with the rotor the point where the volume of the combustion chamber is first closed, variation in the position of the member serving to vary the compression ratio of the engine; and the bore surface is comprised in part of a relatively stationary first bore surface segment of radius which progressively enlarges relative to the radius of the rotor at points at progressively greater arcuate distance about the rotor axis from the point of the segment which lies closest to the rotor, the variable member defining a second bore surface segment which is movable outwardly relative to the first segment and has a transition end portion disposed closely adjacent to the relatively stationary segment, the transition end portion being movable along the first bore surface segment as the variable member moves outwardly from the rotor axis to expose an increasing amount of the first bore surface segment, preferably the variable member is pivotable about a pivot axis lying directly outwardly from the first bore surface segment and, the first bore surface segment is cylindrical, centered on the pivot axis, more preferably the second bore surface segment defined by the variable member is an arcuate surface of radius substantially equal to the radius of the rotor, and the machine further includes a flexible fairing member disposed at the outward end of the variable member, and a positioning means adapted to selectively position the variable means.
In a further preferred embodiment, the invention applies to a rotary machine that cyclically defines a chamber of progressively changing volume by means of a pair of co-acting rotors. The rotors are mounted for dependent rotation on parallel axes of adjacent cylindrical bores formed in a block, the axes being spaced apart a distance less than the sum of the radii of the bores. The rotors have surfaces adapted to provide a progressive rotor-to-rotor seal while each rotor also forms a rotor-to-bore-wall, seal and face-to-end-closing-surface seals, the rotor surfaces in cooperation with the other surfaces of the machine defining the chamber. According to the invention of this preferred embodiment, in combination, the rotors rotate in the same direction, a cylindrical surface of the first rotor, of radius substantially equal to the radius of its bore and having substantial arcuate extent, is arranged in sealing relationship with its bore wall and with a surface of the second rotor, at least part of the surface of the second rotor exposed to this chamber has a progressively changing radius to cause the chamber volume to progressively change during rotation, and the rotor surfaces are constructed to avoid interfering contact.
In another aspect, the invention applies to a rotary machine which comprises a rotor, means defining a complementary, opposed surface, and a sealing member bodily carried by the rotor member and movable with respect to the rotor member toward the complementary surface to form a seal therewith, the point of sealing of the sealing member progressing about the surface as the rotor rotates.
According to this aspect of the invention, restraint means are responsive to increase in the rotational rotor speed to apply increased restraint on the freedom of relative motion of the sealing member toward the surface thereby to enable decrease or elimination of direct pressure contact between the sealing member and the surface upon increased rotor speed.
In preferred embodiments of this aspect of the invention, the restraint means comprises a restraint member carried by the rotor and defining a friction brake surface engageable with the sealing member in a manner to restrain movement of the seal member, the restraint member being responsive to increase in centrifugal force attributable to increased speed of rotor rotation, to increase the pressure of engagement of the friction brake surface upon the sealing member, thereby to increase the restraint of the sealing member, preferably the sealing member comprises a member having a rotary bearing surface bearing upon a corresponding surface defined by the rotor, the sealing member extending from and rotatable with the rotary bearing surface to move into sealing engagement with the complementary surface, the restraint member comprising a member lying inwardly of the sealing member, the restraint member having a surface engaged for relative motion with a corresponding surface of the sealing member, the restraint member being constrained against rotation with the sealing member and disposed to respond to increase in centrifugal force to engage the sealing member with increased pressure, thereby to frictionally restrain rotation of the sealing member toward the complementary surface.
In a further aspect, the invention applies to a rotary machine which comprises a rotor and means defining relatively stationary surfaces with which the rotor is arranged to interact to cyclically define a fluid chamber during rotor rotation.
According to this further aspect of the invention, the rotor includes a seal means for providing a sealing relationship with a complementary stationary chamber surface during rotary motion of the rotor, the seal means being comprised of at least one sealing member carried on the rotor and defining a sealing surface disposed in face-to-face relationship with the complementary surface, bias means between the member and the rotor adapted to bias the sealing member toward the complementary surface, the bias means having a biasing portion with at least a component lying perpendicular to the radius of the rotor and a point of attachment spaced from the biasing portion, which is adapted and configured to apply a biasing force to the sealing member toward said complementary surface, the dimensional extent of the biasing portion in a direction perpendicular to the radius of the rotor at a first speed of rotation being different from the dimensional extent at a second speed of rotation, the biasing portion adapted to move elastically between positions at first and second speeds of rotation in response to increase of centrifugal force thereon, the biasing force applied by the biasing portion to the sealing member varying with variation in dimensional extent.
In preferred embodiments of this further aspect, the bias means is a corrugated, relatively flat metal member attached to the rotor at a point along the length of the bias means inward of the center of mass of the bias means, the outer end of the bias means having a dimensional component perpendicular to a radius of the rotor, whereby, due to said perpendicular dimensional component, the bias means, when the rotor is at rest, biasing a sealing member toward a complementary stationary surface, and when the rotor is rotating at a different, higher speed, the outer end of the bias means is urged radially outward by centrifugal force thereby reducing its perpendicular dimensional component and reducing the biasing force of the bias means toward the sealing member, and the sealing member comprises a plurality of flat sealing members disposed in axially superposed relationship, there being bias means between each pair of said flat sealing members and between said rotor and its adjacent said flat sealing member, adapted to bias the respective members apart, whereby the total clearance is divided between a plurality of small, flow-resistant gaps.
In detail of a still further aspect of the invention, a machine comprises a moving element and means defining a fixed surface with which the moving element is arranged to interact to cyclically define a fluid chamber during movement of the element, a surface of the element and the fixed surface adapted to be disposed in close-mated relationship to retard movement of fluid therebetween between the fluid chamber and an area of different pressure.
According to this aspect of the invention, a multiplicity of grooves defined in a fixed surface are configured and arranged to permit fluid moving between surfaces in close-mated relationship from a first area of relatively high pressure to a second area of relatively lower pressure to pressurized the grooves in progression from the first area toward the second area, and the grooves defined in the fixed surface are configured and arranged to provide that movement of element surface in close-mated relationship with the fixed surface is adapted to progressively expose the grooves to the fluid chamber, whereby as leakage of fluid between the close-mated surfaces from the area of relatively higher pressure to a first groove defined in the fixed surface adjacent to the area of relatively higher pressure increase the pressure therein, movement of the element causes the first groove to be exposed to the area of higher pressure, thereby increasing the sealing performance of the close-mated surfaces.
Preferred Embodiment The structure and operation of certain preferred embodiments of the invention will now be described, after describing the drawings.
Drawings Fig. 1 is a cross-sectional view of a segment of a preferred internal combustion engine according to the invention taken on line 1-1 of Fig. 3 showing the rotors full rather than in cross-section;
Fig. 1a is a similar view of an engine with variable compression ratio taken at the line 1a-1a of Fig. 3a;
Fig. 1b and 1c are diagrammatic views of the engine of Fig. 1a at different compression ratios;
Fig. 1d is a view similar to that in Figs. 1 and 1a of another variable compression engine construction;
Fig. 2 is an axial cross section taken on line 2-2 of Fig. 1, again showing the rotors full rather than in cross-section, and also showing part of a second segment of the engine without rotors;
Fig. 2a is a similar view of the engine having variable compression, taken at line 2a-2a of Fig. 3a;
Fig. 3 is a diagrammatic side view partially in section of a complete engine having six segments in accordance with Fig. 1;
Fig. 3a is diagrammatic side view partially in section of a two-chamber engine block with variable compression;
Fig. 4 is a cross-sectional view taken on line 4-4 of Fig. 3 showing gearing of the rotor shafts; Figs. 5 through 5f depict the engine segment of Fig. 1 showing the rotors in the various phases of operation of an upper chamber, from intake through exhaust; Fig. 6 is an isometric view of a rotor removed from the engine, not showing spline teeth or labyrinth grooves;
Fig. 7 is a side view of an apex seal employed in the rotor of Fig. 6; Fig. 7a is an axial view in section of the bias spring of the apex seal, taken on line 7a-7a of Fig. 8, the apex seal and spring being shown in full;
Fig. 8 is a diagrammatic plan view partially in section of the apex seal of the rotor of Fig. 6 acting upon the surface of the mating rotor;
Fig. 8a is a similar view of an apex seal with restraining means, while Fig. 8b is a side plan view of the seal with restraining means;
Fig. 9 is a diagrammatic view of the apex seal of Fig. 8, suggesting its movements in use;
Fig. 9a is a free body diagram of the apex seal member of Fig. 8;
Fig. 10 is a plan view on enlarged scale of a single rotor of Fig. 1, omitting the spline teeth, while Figs. 11 and 12 are partial axial cross-sectional views taken on lines 11-11 and 12-12 respectively, of Fig. 10;
Fig. 10a is a plan view of a rotor cut away to show the bias means. Fig. 10b is a force diagram, while Figs. 11a and 12a are partially axial cross-sectional views taken on lines 11a-11a and 12a-12a respectively of Fig. 10a;
Fig. 11b is view similar to Fig. 11a of an alternative embodiment;
Figs. 12b and 12d are enlarged representation views of the opposed rotor and fixed bore wall seals with the leak retarding system of Fig. 1b, while Figs. 12c and 12e are bar graph representation of the pressures in Figs. 12b and 12d, respectively;
Fig. 13 is a cross-sectional view similar to Fig. 1 of another preferred embodiment employing three rotors;
Fig. 14 and 15 are views of an identical pump structure adapted, respectively, by virtue of opposite rototation, to compress or expand the chamber;
Figs. 16 through 16c are sequential diagrammatic views of the preferred embodiment of a liquid pump having stages creating suction and pressure;
Fig. 17 is a cross-sectional view of a further embodiment employing rotors of unequal size but of identical revolutionary speed;
Fig. 18 is a cross-sectional view of a three rotor machine employing small outer rotors and a larger central rotor which rotates at one half the speed of the outer rotors;
Fig. 19 is a top section view showing an alternate apex seal construction; and
Fig. 20 is a diagrammatic view of an alternate embodiment of a biased force seal, while Figs. 21 and 22 are side views taken at the lines 21-21 and 22-22, respectively thereof.
Referring to Figs. 1 through 4, engine block 10 is comprised of block segments 12 and 14, gear-and-bearing segments 16 and bearing segments 18, Power shafts 20 and 20' extend from respective ends of block 10.
Referring to Figs. 1 and 3. the exhaust and intake manifolds 22 defining exhaust passages 24 and intake passages 26 on each side of the block are formed by unitary castings which extend substantially throughout the combined height of segments 12 and 14 of block 10 and service the combustion chambers formed in these block segments. Fuel injection port and/or ignition means 28 for each segment is shown in the center. Bolts 30 extend through the block and hold the segments together. Bolts 31 extend through blocks 16 and 18 for the same purpose. Block segment 12, shown in Fig. 1, is provided with holes for bolts 30 and additional holes 34 for bolts which terminate within the segments 16, further serving to hold the block segments together.
Each block segment 12 defines first and second adjacent cylindrical bores 36 and 38 formed in the block segment about parallel axis A and B. As shown in Figs. 1. 2. each block segment has a single end plate 42, with opposite surfaces 40, 40' of this end plate closing the bores formed in adjacent block segments. The central block segment 14 is identical to block segment 12, except it has two sets of rotors with an intervening dividing plate 42' serving to close one side of the bores for each set of rotors. The bores in the block segments at respective ends of the block are closed by additional closing plates 44.
Referring to Figs. 1 and 2 , the bores 36 and 38 on axes A and B are defined in each block segment 12, and on each side of block segment 14. In this preferred embodiment the bores have equal radius R and the axes of the bores are spaced a distance D apart, D being less than the sum of the radii of the adjacent bores, i.e. less than 2R. Typically for a small engine R may be 2 inches and D may be 3 inches. First and second rotors 50 and 52, respectively, are closed in bores 36 and 38, on fixed axes A and B respectively, and splined in identical angular position to rotor shafts 46 and 48, respectively, extending along those axes. (Shafts 46 and 48 are shown bored for oil feed lines.) The rotor surfaces are specially constructed to form progressive rotor-to-rotor seals between the two rotors while each rotor also forms a rotor-to-bore-wall seal with the wall of its respective bore, these rotor surfaces adapted to serve as bounding surfaces in cooperation with relatively stationary surfaces of the bores to define chambers of changing volume.
Referring to Fig. 10, this relationship is realized by major and minor cylindrical surfaces, CL and CS. respectively; each centered on the axis A of the rotor, and diametrically opposed, these surfaces being joined by cylindrical transition surfaces, TL and TF, which are centered about points spaced from the axis of the rotor. The major and minor cylindrical surfaces have an equal arcuate extent, and the joining transition surfaces on each of the rotor similarly have equal arcuate extent . In the present embodiment, where the rotors are of identical size and designed to turn at identical speed, the center for each transition surface, of radius RT, is located at the apex, AP. formed at the intersection of the major cylindrical surface and the opposed transition surface. The minor cylindrical surface, CS, has a radius substantially equal to the difference between the length of the line of centers of the rotors, D, and the radius, R, of the major cylindrical surface of the adjacent rotor.
In Figs. 5 through 5f, engine segment 12 of Fig. 1 is shown in reduced scale through a sequence of stages. Rotors 50, 52 rotate in a clockwise direction from the stage of flow of air through the engine prior to the combustion reaction in the upper chamber (Fig. 5) to the flow-through of air following combustion (Fig. 5f). The air removes exhaust gas from the upper chamber after combustion, cools internal surfaces of the engine and provides combustion air for the next cycle. Referring now to Fig. 5, rotors 50, 52 in conjunction with surfaces 37, 39 of cylindrical bores 36, 38, respectively, and intervening surface 35 form a flow-through passage (shown by arrows) for cooling air from intake 26 to exhaust 24, which is supplied, e.g., by a blower (not shown). Fig. 5a shows rotors 50, 52 after clockwise rotation. Rotor 52 closes intake 26, while rotor 50 closes exhaust port 24 to form closed chamber 60, the coaction of the rotors trapping a volume of the flowing fluid within the chamber, which is defined by the leading transition surface, TL, of rotor 52, the large cylindrical surface, CL. of rotor 50, the cylindrical surface 39 of chamber 38, and the intervening surface 35 joining cylindrical surfaces 37, 39 of bores 36, 38. At this point, i.e. early in the compression stage, the small cylindrical surface, CS, of rotor 52. contacts the large cylindrical surface of rotor 50, closing chamber 60.
Referring now to Fig. 5b, rotors 50, 52 have rotated to decrease the volume of chamber 60, by the relative motion of leading transition surface, T L, on rotor 52 moving toward to large cylindrical surface, CL, of rotor 50, compressing the fluid in the chamber. (Surface CL, being progressive parts of a constant diameter cylinder centered on axis A does not affect the volume of chamber 60 during this compression stage.) At this point, the seal between the two rotors is formed by the trailing apex seal, APF, of rotor 50 contacting the leading transitional, surface TL of rotor 52. Between the rotor positions in Fig. 5a and Fig. 5b, rotor 50 has come out of contact with the minor cylindrical surface, CS, and into contact with the transition surface TL of rotor 52. As the apex seal contacts the opposed transition surface the critical compression stage begins. Referring now to Fig. 5c, rotors 50, 52 have rotated to top center position and chamber 60, now formed by the major cylindrical surfaces, CL , of both rotors and by the intervening surface 35 that joins the cylinder bores, is at minimum size and the contained fluid is at maximum compression. In the combustion engine, fuel is injected prior to this point and the air-and-fuel mixture compressed in the chamber is ignited. The inertia, of the spinning rotors carries the rotors through the compression phase to the point of maximum compression (Fig. 5c).
Referring to Fig. 5d, expansion of chamber 60, now formed by major cylindrical surface, CL, of rotor 52 and the following transitional surface, TF, of rotor 50, begins. The seal between the rotor surfaces is made by the leading apex seal APL, of rotor 52 against the following transition surface, TF, of rotor
50. The chamber is further defined by the intervening surface 35 and the cylindrical surface 37 of chamber 36. Expansion of the combusted gas acts against the following transitional surface, TF, of rotor 50 to urge it to rotate about axis A. transmitting power through shaft 46 to power shaft 20 via gears 62. 64. In Fig. 5e, chamber 60 has been expanded by rotation of the rotors to nearly maximum size, which typically can be larger than the compression chamber. The leading apex seal of rotor 52 has moved out of contact with the surface of rotor 50. The sealing contact in this area now being between the major cylindrical surface, CL, of rotor 52 and the minor cylindrical surface, CS, of rotor 50.
It should be noted that the ratio of compression to expansion depends upon the arcuate locations of the points where a seal is first and last made. In this embodiment, as best seen in Fig. 1. the lip 27 of the intake manifold fairs into the cylindrical surface of the bore, whereas the lip 25 of the exhaust manifold defines a cylindrical extension of the bore. Because the portions of bores 36 and 38 defined by the -housing are equal, the bore extension provided by the exhaust manifold extends the expansion and the ratio of compression to expansion is therefore less than one. In Fig. 5f, the rotors form, with the bore surfaces 37, 35, 39, a flow-through path for flow of air from intake 26 to exhaust 24. The flow of air through this path removes combustion products, and also cools the engine.
It is characteristic of the machine that the compression and expansion chambers just described, once formed, continuously change in volume, and the duration between final compression and initial expansion is only for an instant, (e.g. there is no extended transfer period or the like between the two) and thus work can be performed in an efficient manner. Referring back to Fig. 5, a similar cycle of compression, ignition and expansion takes place in the lower chamber 60', occurring exactly 180° out of phase with the upper chamber, with expansion of the ignited mixture acting on the trailing transition surface, T L, of rotor 52 to transmit power through shaft 48 to power shaft 20 through gears 66, 64. Where the engine block 10 is made up of six such rotor pairs, as shown in Fig. 3, each of the rotor pairs is 120° out of phase with adjacent rotors in order to form a dynamically balanced engine. Segment 16 (Fig. 4) also includes an additional idler gear 74, to allow application of static torque to prevent backlash of the gears for better synchronization of the rotors. Also, use of idler gears distributes the power load for better efficiency. Referring to Fig. 1a, in bore 38 , the bore cylindrical surfaces 27 , 39 and 25 , 37 are defined in part by variable members 1002 which are movable toward or away from rotors 50, 52 in a manner to vary the rotational angle at which the sealed relationship between apex seals 82 of rotors 50, 52 and the bore surfaces 27 begin and define the maximum confined initial volume of the chamber. This in turn provides the engine with a variable compression ratio, i.e. the ratio between the volume of the combustion chamber when it is first formed (Fig. 5a) and the volume of the chamber at the time of ignition, typically approximately at the point of minimum chamber volume (Fig. 5c).
In Fig. 1a, the members 1002 are in the maximum chamber position, with arcuate surfaces 1004 disposed for initial sealing contact with seals 82 at the earliest point, e.g. as also shown in Fig. 1. Downstream ends 1006 of variable members 1002 provide smooth transition onto fixed bore surfaces 1008. with surfaces 1010 contacting the curved surfaces 1012 of the fixed portions. At the upstream ends 1014 of variable members 1002. flexible fairing members 1016 also provide smoothly curved surfaces.
Variable member 1002 is constructed to pivot about axis V located to the right of a line between the rotor axis and the end of movable surface 1004 closest to the pivot axis V. Member 1002 is selectively positioned by means of piston 1018 on the basis of engine operating conditions. Typically, the controlling condition is engine speed, with arcuate surfaces 1004 displaced to avoid early sealing contact at slower speeds, but other factors may be considered. If desired, the controlling factors can be evaluated by computer, shown in dashed line, which in turn controls the positions of surfaces 1004. Referring to Figs, 1b and 1c. during operation at low speeds, arcuate surfaces 1004 are disposed at positions for delayed sealing contact. (Fig. 1b). In a typical engine, an example of the compression ratio would be 3:1:10.35 (initial confined volume: minimum confined volume: final confined volume) and the peak pressure would be about 430 psia. The engine would be very efficient at low speeds and due to the enormous expansion ratio, would be very quiet with mild combustion shock. The exhaust pressure would be about two atmospheres versus 5 1/2 atmospheres in typical piston engines.
In Fig. 1c, the arcuate surfaces 1004 are disposed for early sealing contact and maximum compression rates for operation at higher engine speeds. In a typical engine, an example of compression ratio would be 9:1:10.35, with maximum pressure about 1437 psia, for driving and accelerating power. In Fig. 2a, a different sectional view of the rotary engine operating at low speeds is shown with variable member 1002 in retracted position, and in Fig. 3a, a chamber engine block with variable compression is shown.
In Fig. 1d, another construction with the bore cylindrical surfaces 27, 39 and 25, 37 defined by variable members 1002 is shown. Hydraulic pressure is applied to surface 1014 of piston 1016 to urge it against the surface of asymmetrical cam 1018 in aperture 1020. The rotational position of cam 1018 controls the adjustment of surface defining bore 36, 38. Typically the contact surface 1004 is a soft material, e.g. nickel, aluminum or plastic, to allow it to wear to fit. Movement of the contact surface is linear, with no provision for smooth transition between downstream surfaces. During high compression engine operation. e.g. above 3,000 r.p.m., the clearance between adjacent surfaces would be lowered to less than 0.001 inches (0.025 mm). It is anticipated an automobile engine equipped with this system would require tuning only every 60.000 miles (96,500 km).
Referring now to Fig. 5, a single rotor 50, identical to the rotors described above, is shown in detail with-spline teeth and face seal labyrinths omitted. It comprises rotor body 80 to which are attached apex seals 82 and face seals 84, 86. At the apex of the rotating surfaces of rotor 50, i.e. at the intersection of the major cylindrical surface, CL, and the transition surface, T, a special apex seal 82 is located in rotor aperture 88. Apex seal 82 is a moveable sealing member having sealing surface 90 (Fig. 8) adapted to contact the opposed surface 92 of the opposite rotor 52 and apply an outward sealing pressure against that surface. The sealing pressure applied by surface 90 decreases in magnitude with the increase in rotational velocity of rotor 50. Apex seal 82 has a moveable tail portion 94 that is free to slightly swing between a first position P1 (Fig. 9) and a second position P2 (shown in dashed line) about a pivot region positioned inwardly from the periphery of the rotor.
Referring to Fig. 7, each apex seal 82 consists of upper and lower sealing members 81, 83 urged axially apart by corrugated spring 96 which urges face surfaces 98, 100 of members 81, 83 into sealing contact with the opposed end surfaces 40, 40' (not shown here) of bore 36. Leakage through the spring compartment is restricted by an overlap of the joint between members 81, 83 at the exposed axial surfaces 90, 91 (Figs. 7 and 7a. and shown in dashed lines in the axial direction Fig. 8). In the preferred embodiment, the apex seal member 82 has an enlarged head portion 102 to which the tail portion 94 is joined.
Head 102 is fixed against radial movement but is allowed to rotate about axis X. Aperture 88 of rotor
50 is sized with some slight clearance (C, Fig. 9, e.g.
.007 inch) to allow the tail portion 94 of seal 82 to rotate slightly about the axis X between a first (rest) position P1, and a second (high speed) position P2. In the rest position; the tail portion 94 is biased toward position P1 by spring 108 (Figs. 7a and 8) disposed in the rotor 50. As shown in Fig. 7a. spring
108 is a mildly corrugated thin piece of metal.
Axis X of head 102 lies on a radius Rx of rotor 50 (Figs. 9, 10) which is offset from the center of mass of the sealing member, either considering the entire mass of the member or the mass of the non-balanced tail portion 94. In Figs. 9 and 10 radius
Rcm is shown projected through the center of mass cm. of the non-balanced portion.
At rest, or at slow speeds, spring 108 biases the tail portion 94 of seal 82 toward position P1, Fig. 9, where sealing surface 90 exerts maximum contacting pressure on the opposing surface 92 (transition surface T). As rotor speed increases, centrifugal force, FC, Fig. 9a, effectively acts at the center of mass cm. As shown, the centrifugal force has a radial component, FCR. which has no effect on seal position, and a tangential component, FRT, which tends to move the center of mass, C M, of the seal to overcome the opposed spring force, FS, thus moving the sealing surface 90 toward position P2 (a movement shown exaggerated in Fig. 9). This movement reduces the contacting force FCP Pxerted by the sealing surface 90 on the opposed surface 92 as speed increases. In operation at slow speeds, where the compression/expansion cycle of the machine takes a relatively long period of time, it is necessary that the seal between the apex of one rotor and the transition surface of the opposed rotor be tightly maintained, e.g. to avoid leakage and lost power. The spring 108 enables the apex sealing surface 90 to exert the required contact force FCP against the opposed transition surface 92. As rotational speed increases, the time duration of the cycle decreases, there is less time for leakage to occur, hence seal contact pressure becomes less critical. The novel seal relaxes this seal pressure and thus reduces efficiency loss that otherwise would occur due to friction.
Further, the seal pressure may be made to vary with inverse relationship to the size of the chamber. In the preferred embodiment, because the seal member is biased mainly in the tangential direction relative to its rotor, the effective lever arm Ln of the contact force FCP is greatest in the rotor position of Fig. 5c where the chamber volume is smallest. Contrarwise, when the chamber is largest, i.e. when the seal member approaches alignment with the line of centers, between Figs. 5d and 5e, this lever arm is minimal. The total sealing pressure is also affected by friction effects that are taken into account in the design, bearing in mind that though the friction force tending to drag the seal open is also lowest in the position between Figs. 5d and 5e, the effective lever arm for this force is at a maximum, and vice versa with respect to the position of Fig. 5c.
Referring to Fig. 8a, apex seal 82 is shown positioned in rotor 50 which in this case has an enlarged aperture 88' for head 102. Also disposed in aperture 88' is restraint or damping means 1102 which has an arcuate surface 1104 complementary to the surface 1106 of seal head 102. A biasing means (not shown) urges the arcuate surface 1104 of restraint means 1102 into friction-brake contact. At low rotational speed, the force of surface
1104 against seal 82 is not sufficient to prevent the centrifugal force generated by rotation of rotor 50 from overcoming the force of spring 108 to retract the sealing surface 90 for reduced sealing contact on opposed surface 92. As the rotational speed increases, the braking force of arcuate surface 1104, caused by centrifugal force acting on the mass of restraint means 1102 urging it outward, on the surface 1106 of apex seal 102, retards, and at sufficiently high speeds eliminates, rotation of the seal in aperture 88' holding sealing surface 90 in the retracted position between sealing contacts in the make-and-break contact cycle to maintain proper alignment for the next contact to thereby reduce initial contact pressure and also prevent introduction of vibration.
Referring now to Figs. 10, 11 and 12, the face surfaces 116, 116' of rotor 50 are sealed against the opposed end surfaces 40, 40' of the bore by means of flat plate seals 84, 86, as well as surfaces 98, 100 of apex seals 82 discussed above. Referring to Fig. 11, seal 84, and similarly seal 86. is comprised of two substantially flat, plate-form members 118, 120 at each surface, the outer surface of member 118 forming the contacting surface 122 between the rotor and the bore wall 40, 40'. The inner surface 124 of member 118 and the outer surface 126 of member 120, and inner surface 128 of member 120 and surface 130 of the rotor body 80 form additional contacting surfaces. By using two members 118, 120, the clearance between rotor surface 116 and bore surface 40 is divided into segments which are. of course, smaller than the total clearance and thus are more restrictive, due, e.g. to viscous friction, to gas flow between the opposing surfaces. The surfaces of member 118 and member 120 also contain grooves 132 running substantially parallel to the cylindrical surfaces of the rotor. These grooves are divided from each other by ridges 134 of reduced clearance with the opposed surface, thus forming chambers or recesses for cascading pressure from the region of high pressure to the region of lower pressure (sometimes referred to labyrinth seals). The chambers between member 118 and the bore surface 40, 40'. between members 118, 120, and between member 120 and the rotor surface 130 are also connected by means of axial holes 136, 138 which enable a balancing of pressure between the individual parts. This balancing of pressure between the axially oriented chambers in effect serves to force members 118 and 120 apart to balance the clearance gaps between the individual surfaces whereby the leak through each path is substantially equal and the overall leakage in this region is reduced from what would occur if a single gap were employed. Fig. 12 is similar to Fig. 11 showing the members 118, 120 of the flat plate seals at a different position about the rotor axis. Pin 140 holds the seals 84, 86 to the rotor body 80.
Referring to Fig. 10a, bias means 1202 for retractably biasing face seal 84' toward a complementary bore surface is shown. Referring also to Figs. 11a and 12a, bias means 1202 is a relatively flat sheet of corrugated spring steel fixed at point Q to retaining pin 140' which in turn is fixed in the rotor body 80'. Face seal 84', through which retaining pin 140' passes, rests on the opposed ends 1204, 1206 of bias means 1202 which at rest urge the seal 84' into sealing contact with the complementary bore surface (not shown). Sealing contact is achieved along surfaces 122' while most of the intervening portion of the seal is apertured (1208) to prevent pressure differential between the face seal surfaces.
Referring to the force diagram in Fig. 10b, bias means 1202. which has dimensional extent both along the rotor radius, RR, and also perpendicular thereto PR, is fixed to the rotor at point Q along the length of the bias means closer to the inner end from its center of mass. As the rotational speed of the rotor increases, centrifugal force, FCM, acts on the perpendicular dimensional component of the spring outward of the point of attachment to overcome spring force FS, and reduce the perpendicular component.
(The portion of the spring lying inwardly at the point of attachment is also urged outward by the centrifugal force generated.)
As the perpendicular dimensional component of the spring is reduced, the biasing force of the spring against the face seal is also reduced as is the contacting force of the sealing surfaces against bore wall. Thus, frictional contact is reduced at higher engine speeds when, due to the shortened cycle time,. reduced sealing is required.
In another embodiment (Fig. 11b), two bias means 1202', 1202'' may be used to bias two overlying face seals 118', 120' to divide the clearance for reduced leakage, as discussed above relative to Fig. 11. Referring to Figs. 20, 21 and 22, a face seal
1302 without a flush radial surface is shown. Arcuate face seal 1302 lies within an arcuate aperture 1304 disposed inward from the radial surface 1306 of rotor 1308. Over its major length, seal 1302 fits into aperture 1304 with tight clearance to provide a tortuous path for gas leakage around the seal. At spaced points along the aperture, retaining pins 1310 are provided with attached bias means 1312 that apply biasing force to seal 1302 toward the complementary bore surface 1314. As discussed above, centrifugal force generated by increased rotor rotational speed cause bias means 1312 to apply reduced force to the seal.
Referring back to Fig. 1d. and also to Figs. 12b, c, d and e, a track sealing system for retarding leakage from fluid chamber 60 is shown. Defined in the surface 25 of bore 36 are a series of parallel grooves 1022 lying generally coaxial with the bore, and perpendicular to the direction of rotation of rotor 50. The size, shape and arrangement of the grooves varies with application. In a typical compression engine (shown) the grooves are about 0.125 inches (3.2 mm) deep, and have approximately the same width, W. The distance between grooves Y, is about equal to W, or slightly less. The relationship of the close-mated surfaces of the moving rotor and the fixed bore surface defining the grooves are shown in enlarged scale in Figs. 12b and 12d, to which we now refer.
In the preferred compression engine, chamber 60 is at a pressure, Pc relatively higher than port 24. Fluid under pressure in chamber 60 leaks through the gap 1024, typically between about .004 to .007 inches (0.10 to 0.18 mm), between the moving surface of rotor 50 and the fixed bore surface 25 in the direction indicated by arro L. Leakage beyond the first groove is somewhat limited as the leaking fluid fills and pressurizes the relatively large volume, compared to the narrow gap, of the groove to a pressure, P1, approaching, but slightly below the chamber pressure P . Pressurization of the grooves occurs progressively as shown by the bar graph of pressure in Fig. 12c. If the opposed bore and rotor surfaces were fixed relative to each other, the pressure in the gap and grooves would stabilize quickly at a pressure close to that of the chamber, Pc. However, movement of rotor 50. see Fig. 12d in which the chamber has enlarged due to rotor movement and the pressure has correspondingly decreased to Pc', causes each groove progressively to be reepoxed to the chamber. As shown in Fig. 12d, pressure P1 in the first groove, now exposed, equals the chamber pressure, Pc'.
In this manner, the cascade of grooves is reepoxed more quickly than the pressure of leaking fluid can advance along the gap between the opposed surfaces, and lost mass is recovered to the system. Fig. 13 shows an alternate embodiment of the engine of Fig. 1, with three rotors 150, 152, 152' rotating in phase in the same direction. By use of an additional rotor 152', a second chamber 160a, 160a' (only chamber 160a' in the lower phase is shown) is formed simultaneously in each stage of rotation, i.e. in Fig. 13 the engine is forming two compression chambers 160' and 160a'. At the same time, a flow-through path from intake 126 to exhaust 124 is formed across the top of the rotors again as in Fig. 1. An engine of this embodiment would typically provide greater power output for the weight of engine machinery required, as compared to the embodiment of Fig. 1.
Fig. 14 shows a fluid pressure pump 210. In the upper phase (shown), fluid taken into the engine through intake 226 is pressurized in chamber 260 by action of rotors 250, 252. Valving means 228 remains closed until the desired degree of compression of the fluid in chamber 260 is achieved, e.g. if the fluid is substantially noncompressible, e.g. water, valving means 228 will open almost immediately and the compressive action of the device will be used to squeeze the liquid forcefully through exit port 224. If the fluid is compressible, valving means 228 will remain closed until the fluid is substantially compressed, e.g. until rotor 250 and rotor 252 reach a point close to maximum compression. Compression in chamber 260 is achieved by the combined action of the rotors 250 and 252 with the cooperative surfaces of engine 210 to reduce the size of chamber 260 to its minimum point. A similar process would occur in the lower phase, i.e. 180° out of phase with the process just described, with the valving means 228' acting to allow compressed fluid in chamber 260' to exit.
Referring to Fig. 15, a device 310 similar to the fluid pressure pump of Fig. 14 is shown. However, in this embodiment the rotors 350, 352 rotate in a counter clockwise direction thus causing chamber 360 to expand in size. As chamber 360 is enlarged by rotation of the two rotors, valving means 328 activates to allow fluid to be drawn through intake 326 into chamber 360. The rotation of rotor 350 creates a lowered pressure in chamber 360 which upon opening of the valving means induces fluid to enter chamber 360. Again a similar process would take place 180° out of phase in lower chamber 360'.
Referring to Figs. 16-16c, a pump 410 with simultaneous suction and pumping phases suitable for pumping fluid, e.g. for use as a circulation pump, is shown. The pump comprises rotors 450, 452. slightly different in configuration from the rotors of Fig. 1 to accommodate a closer spacing of the rotor axes in this embodiment (closer spacing enabling increase of pumping flow versus size of overall machine). The rotors rotate in phase in the same direction and at the same speed, and intake and exhaust ports 426, 426' and 424, 424', respectively, are provided, each with an associated one-way-valve 425. In Fig. 16, chamber 460, sealed by the surfaces of the rotors and the block is decreasing in volume to force fluid out through one-way exhaust 425 and port 424 while the back volume draws fluid in primarily through intake port 426'. In Fig. 16a, both upper chambers 460 and 460a are at minimum volume. In Fig. 16b, chamber 460a is expanding in volume to draw fluid into the pump through one-way intake valve 425 and port 426 while fluid is exhausted from the back volume primarily through exhaust port 424'. In Fig. 16c, chamber 460a' is nearly sealed by the rotor surfaces for exhaust of fluid through valve 424'.
Fig. 17 shows an internal combustion engine 510 of operation similar to Fig. 1. However, in this embodiment rotors 550. 552 are of different size. Both rotors move in the same direction at the same revolutionary speed, i.e. same rpm, but have different surface speeds. Operation of this device is the. same as the earlier embodiments.
The seals of this embodiment illustrate some of the variations that can be used to advantage. The seals 582 of the smaller rotor are of cantilever form, the larger root portion 502 being fixed to rotor 552, and the slender tail portions 504 being spring cantilever extensions integral with root 502, but free to deflect within a range of clearance provided by the slot in the rotor through which they extend. The ends of these extensions form seals as in the previously described embodiment. Figs. 7-9a.
The leading seal 584 of the larger rotor in Fig. 17 is an inertial seal, specially constructed to cause the seal surface to radially retract between rest and high speed positions. This seal member can form effective seals both with the rotor and bore surfaces at respective stages of rotation. This is accomplished by selected location of the seal surface and the center of the mass. The radius Rx ' is pro jected f rom the rotor center to the pivot axis X' for the seal member. The center of mass cm' of the seal member lies to one side of this radius while the sealing surface lies to the other side. Thus, as rotor speed increases and spring force F is progressively overcome, the center of mass cm' moves toward alignment with radius Rx (and toward the large cylindrical surface) while the sealing surface rotates away from that radius in the rotational direction opposite direction opposite to that of rotor 550, to a position closer to the center of the rotor 550 and away from the surfaces against which it seals. In this case both the frictional and effective inertial forces act in the same direction.
The trailing seal 588 is similar to seal 584 positioned in a way to be effective with the bore 537 and the opposed rotor. It also rotates, with increase in speed, in direction opposite to that of the rotor, in this case away from the large cylindrical surface, toward the following transitional surface.
Fig. 18 shows still another embodiment of a device 610 according to the invention. In this embodiment, three rotors 650, 652, 652' rotate in the same direction but at different rpra, e.g. center rotor 650 turns at one half the revolutionary speed of rotors 652, 652'. Rotors 652, 652' are 180° out of phase, but operate at the same position on the cycle, i.e. simultaneously form compression and expansion chambers 660, 660a' with the surface of center rotor 650. Other Embodiments Other embodiments of the invention are within the following claims. For example, various rotor shapes and multiple rotor configurations are anticipated within the invention, e.g. where the application dictates, the small cylindrical surface may not be configured for sealing contact with the opposed large cylindrical surface, or the apex seal may not trace the point of contact with the opposed transition surface. As shown in Fig. 17, the apex seal 582 may be in the form of a cantilevered member 504 with the head portion 502 fixed against rotation, also the head portion may be fixed to the rotor surface, e.g. by a screw. The labyrinth effect employed for the seals on the rotor faces could also be employed on the cylindrical surfaces by means of axially aligned recesses 532 on the major cylindrical surfaces disposed for rotor-to-bore wall sealing relationship during critical periods of compression and/or expansion. The intake and/or exhaust ports could be aligned axially. Also, variable members may be used to define a portion of the bore wall on the expansion side of the machine, e.g. for an expansion machine, or may be used on both sides, e.g. to vary the timing and rotational angle of the cycle, or could be used in other types of rotary devices or engines. Referring to Fig. 19, a rectilinear head 102' may be used on apex seal 82' to fix the bias of the flexible tail 94' in the rest position, without requiring a contact spring. The damping or restraint means could be made adjustable by allowing variation of the position of the friction brake contact surface on the seal surface relative to the rotor radius, i.e. the clamping force generated is greater where the surface is perpendicular to the radius as opposed to some other angle approaching parallel. The clamping or restraint means could also be used in other types of rotary devices or engines, e.g. of the Wankel type, to temporarily fix or restrain a seal to reduce contact at higher speeds. The bias means sensitive to centrifugal force could be used to retract or project seals or other surfaces in other types of rotary devices or engines.

Claims

1. In a rotary machine, which comprises a rotor and means defining a bore surface with which said rotor is arranged to interact to cyclically define a fluid chamber during rotation of said, rotor, the improvement wherein a variable member defining a portion of said bore surface is movable toward and away from said rotor in the manner to vary the rotational position of a transition point at which a sealed relationship between said rotor and said bore surface begins or ends, and means responsive to desired operating conditions to vary the position of said variable portion thereby to vary the rotational position of said point at which said sealed relationship begins or ends.
2. The rotary machine of claim 1 in the form of a rotary internal combustion engine in which said rotor and bore surface are cooperatively constructed to form at least part of a combustion chamber, said variable member defining with said rotor the point where the volume of said combustion chamber is first closed, variation in the position of said member serving to vary the compression ratio of said engine.
3. The rotary machine of claim 1 or 2 wherein said bore surface is comprised in part of a relatively stationary first bore surface segment of radius which progressively enlarges relative to the radius of said rotor at points at progressively greater arcuate distance about the rotor axis from the point of said segment which lies closest to said rotor, said variable member defining a second bore surface segment which is movable outwardly relative to said first segment and has a transition end portion disposed closely adjacent to said relatively stationary segment, said transition end portion being movable along said first bore surface segment as said variable member moves outwardly from said rotor axis to expose an increasing amount of said first bore surface segment.
4. The rotary machine of claim 3 wherein said variable member is pivotable about a pivot axis lying directly outwardly from said first bore surface segment, and said first bore surface segment is cylindrical, centered on said pivot axis.
5. The rotary machine of claim 4 wherein the second bore surface segment defined by said variable member is an arcuate surface of radius substantially equal to the radius of said rotor, and said machine further includes a flexible fairing member disposed at the outward end of said variable member, and a positioning means adapted to selectively position said variable means.
6. The rotary machine of claim 1, said machine further including a stationary block, first and second adjacent substantially cylindrical bores formed in said block about parallel axes, said bores being closed by end surfaces, the axes of said bores being spaced apart a distance less than the sum of the radii of the adjacent bores, first and second rotors disposed in the respective bores on fixed axes corresponding to the axes of the respective bores, said rotors having surfaces arranged to form a progressive rotor-to-rotor seal between the two rotors while, each rotor also forms a rotor-to-bore-wall seal with the wall of its respective bore and end seals with respective end-closing surfaces of said bores, said rotor surfaces adapted to serve as chamber-bounding surfaces which cooperate with relatively stationary surfaces of the machine to define said chamber, said rotors being mounted for dependent rotation, intake means for introducing fluid into said chamber, and exhaust means for exhausting fluid from said chamber, the further improvement wherein, in combination, the said rotors are arranged to rotate in the same rotary direction, the chamber-bounding surface of said first rotor is a cylindrical surface of radius substantially equal to the radius of said first bore, and centered on the axis thereof. said cylindrical surface having a substantial arcuate extent, arranged to maintain, throughout a chamber-defining range of rotation, sealing relationship with both the wall defining the respective bore to form a rotor-to-bore-wall seal, and a surface of the second rotor to form said rotor-to-rotor seal, at least part of the chamber-bounding surface of said second rotor having a progressively changing radius to cause the volume of said chamber to progressively change during said range of rotation, said rotor surfaces being constructed to avoid interfering contact during said dependent rotation in said same rotary direction.
7. In a rotary machine which comprises a rotor, means defining a complementary opposed surface, and a sealing member bodily carried by said rotor member and movable with respect to said rotor member toward said complementary surface to form a seal with said surface, the point of sealing of said sealing member progressing about said surface as said rotor rotates, the improvement comprising restraint means responsive to increase in the rotational speed of said rotor to apply increased restraint on the freedom of relative motion of said sealing member toward said surface thereby to enable decrease or elimination of direct pressure contact between said sealing member and said surface upon increased speed of said rotor.
8. The rotary machine of claim 7 wherein said restraint means comprises a restraint member carried by said rotor and defining a friction brake surface engageable with said sealing member in a manner to restrain said movement of said sealing member, said restraint member being responsive to increase in centrifugal force attributable to increased speed of rotation of said rotor, to increase the pressure of engagement of said friction brake surface upon said sealing member, thereby to increase the restraint of said sealing member.
9. The rotary machine of claim 8 wherein said seal member comprises a member having a rotary bearing surface bearing upon a corresponding surface defined by said rotor, and a sealing member extending from and rotatable with said rotary bearing surface to move into sealing engagement with said complementary surface, said restraint member comprising a member lying inwardly of said sealing member, said restraint member having a surface engaged for relative motion with a corresponding surface of said sealing member, said restraint member being constrained against rotation with said sealing member and disposed to respond to increase in centrifugal force to engage said sealing member with increased pressure, thereby to frictionally restrain rotation of said sealing member toward said complementary surface.
10. In a rotary machine, which comprises a rotor and means defining relatively stationary surfaces with which said rotor is arranged to interact to cyclically define a fluid chamber during rotation of said rotor, the improvement wherein said rotor includes a seal means for providing a sealing relationship with a complementary stationary surface of said chamber during rotary motion of said rotor, said seal means comprised of at least one sealing member carried on said rotor and defining a sealing surface disposed in face-to-face relationship with said complementary surface, bias means between said member and said rotor adapted to bias said sealing member toward said complementary surface, said bias means having a biasing portion with at least a component lying perpendicular to the radius of said rotor and a point of attachment spaced from said biasing portion, said biasing portion adapted and configured to apply a biasing force to said seal toward said complementary surface, the dimensional extent of said biasing portion in a direction perpendicular to the radius of said rotor at a first speed of rotation being different from said dimensional extent at a second speed of rotation, said biasing portion adapted to move elastically between positions at said first and second speeds of rotation in response to increase of centrifugal force thereon, the biasing force applied by said biasing portion to said seal varying with variation in said dimensional extent.
11. The rotary machine of claim 10 wherein said bias means is a corrugated relatively flat metal member attached to said rotor at a point along the length of said bias means inward of the center of mass of said bias means, the outer end of said bias means having a dimensional component perpendicular to a radius of said rotor, whereby, due to said perpendicular dimensional component, the bias means, when said rotor is at rest, biases a sealing member toward a complementary stationary surface, and when said rotor is rotating at a different, higher speed, the outer end of said bias means is urged radially outward by centrifugal force thereby reducing its perpendicular dimensional component and reducing the biasing force of said bias means toward said sealing member.
12. The rotary machine of claim 10 wherein said sealing member comprises a plurality of flat sealing members disposed in axially superposed relationship, there being bias means between each pair of said flat sealing members and between said rotor and its adjacent said flat sealing member, adapted to bias the respective members apart, whereby the total clearance is divided between a plurality of small, flow-resistant gaps.
13. In a machine which comprises a moving element and means defining a fixed surface with which said moving element is arranged to interact to cyclically define a fluid chamber during movement of said element, a surface of said element and said fixed surface adapted to be disposed in close-mated relationship to retard movement of fluid therebetween between said fluid chamber and an area of different pressure, the improvement wherein a multiplicity of grooves defined in said fixed surface are configured and arranged to permit fluid moving between said surfaces in close-mated relationship from a first area of relatively high pressure to a second area of relatively lower pressure to pressurize said grooves in progression from said first area toward said second area, and said grooves defined in said fixed surface are configured and arranged to provide that movement of said surface of said element in close-mated relationship with said fixed surface is adapted to progressively expose said grooves to said fluid chamber, whereby as leakage of said fluid between said close-mated surfaces from the area of relatively higher pressure into a first said groove defined in said fixed surface adjacent to the area of relatively higher pressure increase the pressure therein, movement of said element causes said first groove to be exposed to said area of higher pressure, thereby increasing the sealing performance of said close-mated surfaces.
14. The machine of claim 13 the form of a rotary machine, wherein said moving element is a rotor and said fixed surface is a bore surface, said rotor and bore surface being arranged to interact to cyclically define a fluid chamber during rotation of said rotor.
15. The machine of claim 13 wherein the gap between the close-mated surface of said moving element and said fixed surface is of the order of between about .004 to .007 inches (.010 to 0.18 mm).
PCT/US1984/000873 1983-06-06 1984-06-05 Rotary machine WO1984004943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50132483A 1983-06-06 1983-06-06
PCT/US1983/001244 WO1984000993A1 (en) 1982-08-26 1983-08-15 Rotary machine

Publications (1)

Publication Number Publication Date
WO1984004943A1 true WO1984004943A1 (en) 1984-12-20

Family

ID=26768517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/000873 WO1984004943A1 (en) 1983-06-06 1984-06-05 Rotary machine

Country Status (2)

Country Link
EP (1) EP0146612A4 (en)
WO (1) WO1984004943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20160900A1 (en) * 2016-05-26 2017-11-27 Trimotech As Combustion engine with rotors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845909A (en) * 1955-02-18 1958-08-05 Pitkanen Gilbert Rotary piston engine
US2856120A (en) * 1954-10-16 1958-10-14 Fawzi Mohamed Ibrahim Rotary piston machine, especially for use as a compressor
US3174274A (en) * 1961-12-13 1965-03-23 Reinhold A Frye Rotary engine
US3637332A (en) * 1970-07-28 1972-01-25 United Aircraft Corp Variable compression means for a rotary engine
US3707340A (en) * 1969-10-23 1972-12-26 Saviem Device for reducing leakage in rotary engines at low running speeds
US3965697A (en) * 1974-03-14 1976-06-29 Beierwaltes Richard R Compressor and air cooling system employing same
US3994266A (en) * 1975-09-09 1976-11-30 Curtiss-Wright Corporation Rotary diesel engine
US4087099A (en) * 1976-03-01 1978-05-02 Toyo Kogyo Co., Ltd. Oil seal means for rotary piston engines
SU909231A1 (en) * 1980-01-18 1982-02-28 Волгоградский Политехнический Институт End-face seal of rotary machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE333307C (en) * 1915-08-13 1921-02-21 Albert Mordt Control device for capsule works with sickle-shaped work spaces and radially or axially displaceable pistons
FR1258654A (en) * 1960-06-01 1961-04-14 Svenska Rotor Maskiner Ab Helical rotor regulator, reversing
US3151806A (en) * 1962-09-24 1964-10-06 Joseph E Whitfield Screw type compressor having variable volume and adjustable compression
US4336004A (en) * 1979-12-26 1982-06-22 The Bendix Corporation Movable end plate for a vacuum pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856120A (en) * 1954-10-16 1958-10-14 Fawzi Mohamed Ibrahim Rotary piston machine, especially for use as a compressor
US2845909A (en) * 1955-02-18 1958-08-05 Pitkanen Gilbert Rotary piston engine
US3174274A (en) * 1961-12-13 1965-03-23 Reinhold A Frye Rotary engine
US3707340A (en) * 1969-10-23 1972-12-26 Saviem Device for reducing leakage in rotary engines at low running speeds
US3637332A (en) * 1970-07-28 1972-01-25 United Aircraft Corp Variable compression means for a rotary engine
US3965697A (en) * 1974-03-14 1976-06-29 Beierwaltes Richard R Compressor and air cooling system employing same
US3994266A (en) * 1975-09-09 1976-11-30 Curtiss-Wright Corporation Rotary diesel engine
US4087099A (en) * 1976-03-01 1978-05-02 Toyo Kogyo Co., Ltd. Oil seal means for rotary piston engines
SU909231A1 (en) * 1980-01-18 1982-02-28 Волгоградский Политехнический Институт End-face seal of rotary machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0146612A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20160900A1 (en) * 2016-05-26 2017-11-27 Trimotech As Combustion engine with rotors
NO341788B1 (en) * 2016-05-26 2018-01-22 Trimotech As Combustion engine with rotors

Also Published As

Publication number Publication date
EP0146612A4 (en) 1987-09-02
EP0146612A1 (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US5224850A (en) Rotary device with vanes composed of vane segments
US7305963B2 (en) Blade-thru-slot combustion engine, compressor, pump and motor
US4390328A (en) Machine with rotary piston including a flexible annular member
US7472677B2 (en) Energy transfer machine
US8539930B2 (en) Rotary combustion apparatus
US6036461A (en) Expansible chamber device having rotating piston braking and rotating piston synchronizing systems
US4666383A (en) Rotary machine
US3863611A (en) Rotary engine
US5992371A (en) Rotary piston machine usable particularly as a thermal engine
US5681156A (en) Piston machine having a piston mounted on synchronously rotating crankshafts
US6139290A (en) Method to seal a planetary rotor engine
EP1617040A2 (en) Vane-type rotary apparatus with split vanes
AU678666B2 (en) Rotary engine
US5944499A (en) Rotor-type pump having a communication passage interconnecting working-fluid chambers
WO1984004943A1 (en) Rotary machine
WO1984000993A1 (en) Rotary machine
CA2624997C (en) Energy transfer machine
US4009690A (en) Rotary internal combustion engine
JPH11501095A (en) Power plant
US6503072B2 (en) Pressure articulated positive displacement, single expansion rotary engine
GB2438859A (en) Toroidal fluid machine
GB2249139A (en) Seal arrangement for a rotary engine
US6065874A (en) Linear bearing
CA2685089C (en) Energy transfer machine with inner rotor
US3796527A (en) Sealing device for rotary mechanisms

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR DK JP SU

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1984902419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1984902419

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1984902419

Country of ref document: EP