WO1984003138A1 - Defrosting apparatus for gas cooling device - Google Patents

Defrosting apparatus for gas cooling device Download PDF

Info

Publication number
WO1984003138A1
WO1984003138A1 PCT/JP1984/000031 JP8400031W WO8403138A1 WO 1984003138 A1 WO1984003138 A1 WO 1984003138A1 JP 8400031 W JP8400031 W JP 8400031W WO 8403138 A1 WO8403138 A1 WO 8403138A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
opening
cooling device
branch
branch flow
Prior art date
Application number
PCT/JP1984/000031
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yamamoto
Kesao Katsuyama
Ryoji Kobayashi
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1534283U external-priority patent/JPS59120889U/en
Priority claimed from JP949384U external-priority patent/JPS60121164U/en
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Publication of WO1984003138A1 publication Critical patent/WO1984003138A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • cooling is performed by providing an evaporator in the refrigerant passage formed by connecting a compressor, a condenser, a decompression mechanism, and an evaporator in the gas flow path.
  • Evaporator of gas cooling device The present invention relates to a device for removing frost formed on the surface of an evaporator.
  • Figure 1 shows the first prior art example, where 1 is a compressor 2, a condenser 3, a pressure reducing mechanism consisting of a capillar tube 4, a vaporizer 5, a compressor-a condenser and a pressure reducing mechanism, and a vaporizer.
  • the evaporator 5 is provided in the gas flow path 8, which is a refrigerant circuit composed of a hot gas bypass pipe 7 that communicates with other devices via an electromagnetic valve 6.
  • Reference numeral 9 is a temperature detector mounted on the fin surface of the cooler, and 10 is a defrost controller that controls the blower 11 and the solenoid valve 6 by the signal of the temperature detector 9.
  • the first conventional example that operates as described above has the advantage that the number of parts is small and the structure is simple, it is impossible to keep the cooling air temperature constant because the cooling operation stops during defrosting. There was also a limit to the temperature at which cooling was possible.
  • the gas passage is divided into two, two refrigerant passages are also provided, and each evaporator has its own gas passage.
  • the compressors 2a and 2b, the condensers 3a and 3b, the pressure reducing mechanisms 4a and 4b, and the vaporizers 5a and 5b are provided in the gas flow paths 8a and 8b divided into two parts.
  • 12a and 12b are dampers whose opening and closing are controlled by the defrosting controller 10
  • 13a and 13b are electric heaters which are also controlled by the defrosting controller 10.
  • the present invention is configured so that the gas passage is partitioned by a plurality of partition plates, it is an object of the present invention to defrost without stopping the operation of the cooling device.
  • the present invention relates to a gas cooling device in which a vaporizer of a refrigerant circuit configured by connecting a compressor, a condenser, a decompression mechanism, and an vaporizer is provided in a gas flow path.
  • the body flow path is divided into a large number of branch flow paths, and an opening / closing means for closing and opening each branch flow path is provided, and an evaporator connected after branching the refrigerant circuit into each of the branch flow paths,
  • a means for heating the evaporator and a temperature detector for detecting the temperature of each evaporator are provided, and one branch flow path among the plurality of branch flow paths described above is always opened / closed by the opening / closing means. Is closed, and the evaporator in the closed branch flow passage is defrosted by operating the heating means to complete defrosting. After that, the dividing channel is opened by the opening / closing means.
  • the apparatus of the present invention is provided with a large number of 0-division flow paths, and even if one of the branch flow paths is being defrosted, the evaporators in the other diversion flow paths are controlled so that the cooling operation is performed. Highly accurate temperature control is possible without stopping.
  • FIGS. 1 and 2 are explanatory views of the prior art
  • FIGS. 3 to 8 show the working lines of the apparatus according to the present invention
  • FIGS. 3, 4, and 6 are respectively Front views showing the first, second, and third embodiments
  • FIG. 5 is a timing chart of the first and second embodiments
  • FIG. 7 is a side view showing the branched flow passage of FIG.
  • FIG. 8 is a timing chart showing the function of the defrost controller of the third embodiment.
  • reference numeral 20 denotes a gas flow passage that is divided into a large number of branch flow passages 21a to 21f by partition plates 22a to 22e in the gas cooling section, and 23 denotes a stepper motor or the like at the center.
  • An opening / closing means is provided which has a rotation driving unit 24 composed of an electric motor and a closing plate 25 at the tip end thereof, and which can be rotated and can close each of the dividing flow passages 21.
  • 26a to 26f are evaporators that are divided into a large number by the flow divider 27 and are provided in the dividing flow passages 21a to 21f via the solenoid valves 28a to 28f, respectively, and each of them is used to detect the degree of refraction.
  • Heaters 29a to 29f and heaters 30a to 30f consisting of electric heaters
  • frost will form on the fin surface of the evaporator 26a, for example.
  • the signal from the frost controller 32 closes the solenoid valve 28a to cool it.
  • the heater 30a is energized to start defrosting, and a signal is sent to the rotation driving unit 24 of the opening / closing means 23 to close the windshield.
  • Ventilation to the branch channel 21a is blocked by the closing means 25.
  • Defrosting is performed quickly and the surface temperature of the evaporator 26a
  • Solenoid valve 28a opens when T reaches the preset Tb.
  • the opening / closing means 40 is provided at the inlet of each branch flow passage 21a to 21f, and 40 is provided in each branch flow passage.
  • the opening and closing means 41, 42 are solenoids for opening and closing the opening and closing means.
  • FIG. 6 20 is divided into a large number by partition plates 22a to 22e.
  • the dividing flow passages 21a to 21f are divided into an inlet side and an outlet side by a partition plate 36 in a direction orthogonal to the partition plates 22a to 22e, and the evaporator is provided on the inlet side.
  • 26a to 26f are provided.
  • 23 has a rotary drive unit 24 composed of an electric motor such as a stepping motor in the central portion and a closing plate 25 at the tip end thereof for rotation and opening / closing capable of closing each of the branch flow passages 21a to 21f.
  • the opening / closing plate 25 is divided into an inlet side and an outlet side, but simultaneously opens and closes.
  • the evaporators 26a to 26f are branched into a large number by the flow divider 27 and are provided in the branch flow passages 21a to 21f via the check valves 34a to 34f, respectively, and are equipped with temperature detectors 29a to 29f, respectively.
  • the header 31 After passing through the vaporizers 26a to 26f and the solenoid valves 33a to 33f, the header 31 serves as one refrigerant distribution again.
  • Reference numeral 37 denotes a hot gas bypass pipe, which passes from the compressor 2 to the header 38, and is connected to each of the vaporizers 26a to 26f provided in each of the above-mentioned distribution channels 21a to 21f, and to each solenoid valve 39a. ⁇ 39f are connected, and after passing through the evaporators 26a to 26f, they are returned to the refrigerant channel via the check valves 35a to 35f and the header 40.
  • Reference numeral 32 is a defrost controller that controls the rotation drive unit 24 and solenoid valves 39a to 39f and 33a to 33f based on signals sent from the temperature detectors 29a to 29 ⁇ .
  • solenoid valves 39a to 39f and 33a to 33f To describe the operating states of the solenoid valves 39a to 39f and 33a to 33f, all solenoid valves 39a to 39f are turned off, solenoid valves 33a to 33f are turned on, and the temperature detection is performed during normal cooling operation. If a signal indicating that the temperature of the evaporator has dropped is sent from any of the intellectual devices 29a to 29f, the solenoid valve 39 to the corresponding evaporator turns on, hot gas flows in, and the solenoid valve 33 turns off. Hot gas enters the evaporator and causes frost.
  • the solenoid valve 39 corresponding to that command will be sent. Is turned off, the hot gas is shut off, the refrigerant is supplied to the evaporator through the check valve 34, and the solenoid valve 33 is turned on. If this is done sequentially for evaporators with frost, defrosting is always performed in one evaporator, but the steam generator 26 provided in the other branch passage 21 continues to operate. is there.
  • the defrosting device having the above-mentioned structure can be used to perform other operations. Rotating intermittently, the closing plate 25 is rotated at a predetermined time, and therefore, one of the multiple branch flow passages 21a to 21f is always connected to the inlet and outlet of one branch flow passage 21. It should be closed.
  • the solenoid valve 39 leading to the evaporator 26 in the closed branch flow passage 21 is turned on, the solenoid valve 33 is turned off, and the hot gas bypass pipe 37 is turned on by the timer gas command 37 in accordance with the instruction of the timer. Hot hot gas enters evaporator 26 for defrosting. After defrosting is completed, the temperature sensor 29 will display the temperature of the evaporator 26 concerned. Signal to the Frost Controller 32 that the
  • Solenoid valve 39 is turned off, solenoid valve 33 is turned on, and the refrigerant is
  • the closing plate of the opening / closing means that has closed the
  • the device according to the present invention is capable of continuous operation and

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

A defrosting apparatus removes frost formed on an evaporator (26) of a refrigerant circuit consisting of a compressor, a condensor, a pressure-reducing mechanism, and the evaporator connected in sequence. The gas flow path of the apparatus is divided into a plurality of branch flow paths (21) by partition plates (22). Each branch flow path is provided with an opening/closing means (23) which opens and closes it. When frost has formed on one evaporator (26) within one branch flow path, that branch flow path (21) is closed by the corresponding opening/closing means (23), and the evaporator (26) with frost thereon is defrosted by heating means, thereby enabling highly-accurate temperature control without the need of suspending the operation of the cooling device.

Description

明 細 気体冷却装置の除霜装置 技術分野  Defrosting device for fine gas cooling device Technical field
本癸明は、 圧縮機と、 凝縮器と、 減圧璣構と、 蒸癸器 とを接続するこ とによつて構成される冷媒画路の蒸発器 を気体流路内に設けて冷却を行う気体冷却装置の蒸発器 表面に氷結した霜を取り除く装置に関するものである。  In this paper, cooling is performed by providing an evaporator in the refrigerant passage formed by connecting a compressor, a condenser, a decompression mechanism, and an evaporator in the gas flow path. Evaporator of gas cooling device The present invention relates to a device for removing frost formed on the surface of an evaporator.
背景技術  Background technology
一般に、 空気等の気体中に舍まれた水分が蒸発器のフ ィ ンに着霜すると熱交換効率が低下するため気体が所定 温度まで低下しな く なり さらに圧縮璣の運耘時間が县く 、 電力消費量が大きい等の問題が生じる。 このため従来は 次の方法によって鞣決しよう としていた。  In general, when moisture contained in a gas such as air frosts on the fins of the evaporator, the heat exchange efficiency decreases, and the gas does not fall to a predetermined temperature, and the time required to carry the compressed paste is long. However, problems such as large power consumption occur. For this reason, in the past, the following method was used for tanning.
第 1図は第 1 の従来技術例を示し、 1 は、 圧縮機 2 , 凝縮器 3 , キヤ ピラルチューブより なる減圧機構 4 , 蒸 発器 5 , 圧縮機 · 凝縮器間と減圧機構 · 蒸癸器間とを電 磁弁 6を介して連通したホ ッ トガスバイパス管 7 とによ り構成される冷媒回路であって蒸発器 5 は気体流路 8 内 に設けられている。 9 は冷却器のフ ィ ン表面に取付けら れた温度検知器、 10は温度検知器 9 の信号によって送風 機 1 1及び電磁弁 6 の制御を行う除霜コ ン ト ローラである。  Figure 1 shows the first prior art example, where 1 is a compressor 2, a condenser 3, a pressure reducing mechanism consisting of a capillar tube 4, a vaporizer 5, a compressor-a condenser and a pressure reducing mechanism, and a vaporizer. The evaporator 5 is provided in the gas flow path 8, which is a refrigerant circuit composed of a hot gas bypass pipe 7 that communicates with other devices via an electromagnetic valve 6. Reference numeral 9 is a temperature detector mounted on the fin surface of the cooler, and 10 is a defrost controller that controls the blower 11 and the solenoid valve 6 by the signal of the temperature detector 9.
上記のごと く構成される第 1 の従来例に於いては、 蒸 発器 5 に着霜が癸生すると気体との熱交換が行われない ため蒸発器表面は熟交換が正常に行われている時より も 低温になる。 そして、 蒸発器 5 の表面に設けられた温度 検知器 9 によって設定されたより も低温になったことが 確認されると、 除霜コ ン トローラ 10によつて電磁弁 6が 開かれ且つ送風機 11が停止される。 これらにより圧縮機 2から吐出された高温の冷媒が蒸発器 5に流入し除霜す る。 続いて、 蒸癸器 5表面が高温側の設定温度に達する と電磁弁 6を閉じ且つ送風機 11を運耘して通常冷却運転 を再開する。 In the first conventional example configured as described above, if frost forms on the evaporator 5, heat exchange with gas is not performed. Therefore, the surface of the evaporator will be at a lower temperature than it would be if normal exchange was performed normally. Then, when it is confirmed that the temperature becomes lower than that set by the temperature detector 9 provided on the surface of the evaporator 5, the solenoid valve 6 is opened by the defrost controller 10 and the blower 11 is turned on. Be stopped. With these, the high-temperature refrigerant discharged from the compressor 2 flows into the evaporator 5 and defrosts. Then, when the surface of the evaporator 5 reaches the set temperature on the high temperature side, the solenoid valve 6 is closed and the blower 11 is carried to restart the normal cooling operation.
上記のごと く構成 · 作用する第 1 の従来例は部品点数 が少な く構造が簡単という利点は有るが、 除霜時に冷却 運耘が停止するため冷却空気温度を一定に保つことが不 可能であり且つ冷却可能な温度も限られていた。  Although the first conventional example that operates as described above has the advantage that the number of parts is small and the structure is simple, it is impossible to keep the cooling air temperature constant because the cooling operation stops during defrosting. There was also a limit to the temperature at which cooling was possible.
次に第 2の従来技術を第 2図について説明すると、 こ の従来例は気体通路を 2個に分割し、 且つ冷媒画路も 2 個設けて各々の気体流路に各々の蒸発器が存し、 圧縮機 2a , 2 b、 凝縮器 3a , 3b、 減圧機構 4a , 4b、 及び蒸癸器 5a , 5 bを 2個に区切られた気体流路 8a , 8 b内に設けたもので あって、 12a , 12b は除霜コ ン ト ローラ 10によって開閉 制御されるダンバ、 13a , 13b は同様に除霜コ ン ト ロー ラ 10によって制御される電気ヒータである。  Next, the second conventional technique will be described with reference to FIG. 2. In this conventional example, the gas passage is divided into two, two refrigerant passages are also provided, and each evaporator has its own gas passage. However, the compressors 2a and 2b, the condensers 3a and 3b, the pressure reducing mechanisms 4a and 4b, and the vaporizers 5a and 5b are provided in the gas flow paths 8a and 8b divided into two parts. 12a and 12b are dampers whose opening and closing are controlled by the defrosting controller 10, and 13a and 13b are electric heaters which are also controlled by the defrosting controller 10.
上記のごと く構成される第 2 の従来技術例では、 2個 の冷媒面路が交互に運耘される。 つまり、 一方が冷却運 転されている時には、 他方の圧縮機 2bの運転が停止され ると共に気体流路 8bはダンバ 12b によって閉じられ且つ 電気ヒータ 13b に通電されることにより蒸癸器 5bが除霜 される。 In the second prior art example configured as described above, two refrigerant surface passages are alternately transported. That is, when one is being cooled, the other compressor 2b is stopped and the gas flow path 8b is closed by the damper 12b. By turning on the electric heater 13b, the evaporator 5b is defrosted.
上記のごと く構成 · 作用する第 2 の従来技術例では、 気体流路の切換時に冷却気体の温度が変動してしまい精 度の高い温度調整が不可能であり、 又、 冷媒回路が 2涸 必要であるため装置価格, 運転費用共に高価となるもの であった。 そこで本発明は、 このような従来の除霜装置 の欠点に鑑み冷却温度の精度が良く しかも運転経費の安 価な気体冷却装置の除霜装置を提供することを目的とし ている。  In the second prior art example that operates as described above, the temperature of the cooling gas fluctuates when the gas flow path is switched, making it impossible to adjust the temperature with high accuracy. Since it was necessary, both the equipment price and operating cost were high. In view of the above-mentioned drawbacks of the conventional defroster, it is an object of the present invention to provide a defroster for a gas cooler having a high cooling temperature accuracy and a low operating cost.
また本発明は、 さらに気体通路を複数の仕切板で仕切 るように構成しているため、 冷却装置の運転を停止させ ることな く除霜することを目的としている。  Further, since the present invention is configured so that the gas passage is partitioned by a plurality of partition plates, it is an object of the present invention to defrost without stopping the operation of the cooling device.
発明の開示  Disclosure of the invention
即ち本発明は、 圧縮機と、 凝縮器と、 減圧機構と、 蒸 発器とを接続することによって構成される冷媒回路の蒸 癸器を気体流路内に設けた気体の冷却装置において、 気 体流路を多数の分岐流路に区画し、 且つ各分岐流路を閉 鑌開放する開閉手段を設けると共に、 各々の前記分岐流 路內に前記冷媒回路を分岐した後に接続した蒸発器と、 該蒸発器を加熱する手段と、 各々の蒸発器の温度を検知 する温度検知器とを設け、 前記した多数の分岐流路の中 の 1 つの分岐流路を常に開閉手段により、 その分岐流路 を閉鑌するようになし、 閉鑌された分岐流路内の蒸発器 には前記加熱手段を作動させて除霜を行い、 除霜が完了 した後に当該分歧流路が開閉手段により開放されるよう にしたものからなる。 That is, the present invention relates to a gas cooling device in which a vaporizer of a refrigerant circuit configured by connecting a compressor, a condenser, a decompression mechanism, and an vaporizer is provided in a gas flow path. The body flow path is divided into a large number of branch flow paths, and an opening / closing means for closing and opening each branch flow path is provided, and an evaporator connected after branching the refrigerant circuit into each of the branch flow paths, A means for heating the evaporator and a temperature detector for detecting the temperature of each evaporator are provided, and one branch flow path among the plurality of branch flow paths described above is always opened / closed by the opening / closing means. Is closed, and the evaporator in the closed branch flow passage is defrosted by operating the heating means to complete defrosting. After that, the dividing channel is opened by the opening / closing means.
従って本発明の装置は、 多数 0分歧流路を設け分岐流 路の一つが除霜中であつても他の分歧流路内の蒸発器が 作斷するよ 搆威しているため冷却運転を停止させるこ となく高精度の温度管理が可能となる。  Therefore, the apparatus of the present invention is provided with a large number of 0-division flow paths, and even if one of the branch flow paths is being defrosted, the evaporators in the other diversion flow paths are controlled so that the cooling operation is performed. Highly accurate temperature control is possible without stopping.
図面の簡単な説明  Brief description of the drawings
第 1図及び第 2図は従来技術の説明図であり第 3図か ら第 8図は本発明にかかる装置の実施钶を示すもので、 第 3図, 第 4図, 第 6図はそれぞれ第 1 , 第 2, 第 3の 実施例を示す正面図、 第 5図は、 第 1及び第 2実施例の タイ ミ ングチャー ト、 第 7図は第 6図の分歧流路を示す 側面図、 第 8図は第 3実施例の除霜コ ン トローラの機能 を示すタィ ミ ングチヤ一 トである。  FIGS. 1 and 2 are explanatory views of the prior art, and FIGS. 3 to 8 show the working lines of the apparatus according to the present invention, and FIGS. 3, 4, and 6 are respectively Front views showing the first, second, and third embodiments, FIG. 5 is a timing chart of the first and second embodiments, and FIG. 7 is a side view showing the branched flow passage of FIG. FIG. 8 is a timing chart showing the function of the defrost controller of the third embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本究明を詳細に説明するために、 以下第 3図乃至第 8 図に示された図面に従って説明する。  In order to explain this investigation in detail, description will be given below with reference to the drawings shown in FIGS. 3 to 8.
第 3図に於いて、 20は、 気体冷却部に於いて仕切板 22a 〜22e によって多数の分岐流路 21a 〜21 f に仕切られて いる気体流路、 23は、 中心部にステツ ビンダモータ等の 電気モータよりなる回転駆動部 24及び先端部に閉鑌板 25 を有して回耘可能且つ各々の分咹流路 21を閉鑌可能な開 閉手段である。 26a 〜26 f は、 分流器 27によって多数に 分歧されて各々電磁弁 28a 〜28 f を介して分歧流路 21a 〜21 f 内に設けられた蒸発器であって、 各々に溫度検知 器 29a 〜29f 及び電気ヒータよりなる加熱器 30a 〜30f In FIG. 3, reference numeral 20 denotes a gas flow passage that is divided into a large number of branch flow passages 21a to 21f by partition plates 22a to 22e in the gas cooling section, and 23 denotes a stepper motor or the like at the center. An opening / closing means is provided which has a rotation driving unit 24 composed of an electric motor and a closing plate 25 at the tip end thereof, and which can be rotated and can close each of the dividing flow passages 21. 26a to 26f are evaporators that are divided into a large number by the flow divider 27 and are provided in the dividing flow passages 21a to 21f via the solenoid valves 28a to 28f, respectively, and each of them is used to detect the degree of refraction. Heaters 29a to 29f and heaters 30a to 30f consisting of electric heaters
を具備しており、 蒸発器通過後にはヘッダー 31内で再び  After passing through the evaporator, the
1本の冷媒配管となる。 32は溫度検知器から送られる信  It becomes one refrigerant pipe. 32 is the signal sent from the temperature detector
号にもとづいて画転駆動部 24, 電磁弁 28a 〜28f , 加熱  Drive unit 24, solenoid valves 28a to 28f, heating
器 30a 〜30f の制御を行う除霜コ ン ト ローラである。  This is a defrost controller that controls the devices 30a to 30f.
作動状態を第 5図に示すタイ ミ ングチャー トにより説  The operating condition is explained by the timing chart shown in Fig. 5.
明すれば、 例えば蒸発器 26a のフ ィ ン表面に着霜が生じ  If exposed, frost will form on the fin surface of the evaporator 26a, for example.
て蒸発器 26a の表面温度が Ta 以下まで低下すると、 除  When the surface temperature of the evaporator 26a drops below Ta,
霜コ ン ト ローラ 32の信号によつて電磁弁 28a を閉じて冷  The signal from the frost controller 32 closes the solenoid valve 28a to cool it.
却を中止すると共に加熱器 30a に通電して除霜を開始し、 且つ開閉手段 23の回耘駆動部 24に信号が送られて閉鑌扳 In addition to stopping the cooling, the heater 30a is energized to start defrosting, and a signal is sent to the rotation driving unit 24 of the opening / closing means 23 to close the windshield.
25を分岐流路 21a を覆う位置まで回転移動する。 Rotate 25 to a position that covers the branch channel 21a.
分岐流路 21a 內への通風は閉鑌手段 25によって遮断さ  Ventilation to the branch channel 21a is blocked by the closing means 25.
れるため除霜は速やかに行われ、 蒸発器 26a の表面温度 Defrosting is performed quickly and the surface temperature of the evaporator 26a
があらかじめ設定された Tb に達すると電磁弁 28a を開 Solenoid valve 28a opens when T reaches the preset Tb.
き加熱器 30a への通電は停止される。 上記の行程を繰り  Power supply to the heater 30a is stopped. Repeat the above process
返して表面温度があらかじめ設定した Ta 以下になった After returning, the surface temperature fell below the preset Ta.
蒸発器の除霜を断続的に行う。 Defrost the evaporator intermittently.
第 4図に示すものは、 開閉手段 40を各々の分岐流路 21a 〜21f の入口に設けたもので、 40は各々の分岐流路に設  In Fig. 4, the opening / closing means 40 is provided at the inlet of each branch flow passage 21a to 21f, and 40 is provided in each branch flow passage.
けられた開閉手段、 41, 42は開閉手段を開閉するソ レノ The opening and closing means 41, 42 are solenoids for opening and closing the opening and closing means.
ィ ドコ イルとスプリ ングであり、 その他の構造は第 3図 It is a coil and a spring, and other structures are shown in Fig. 3.
に示すものと同様である。 Is the same as that shown in.
第 6図において、 20は仕切板 22a 〜22e によって多数の In FIG. 6, 20 is divided into a large number by partition plates 22a to 22e.
分岐流路 21a 〜21f に仕切られている気体通路であり、 It is a gas passage that is partitioned into branch flow paths 21a to 21f,
AT10 この分歧流路 21a 〜21f は、 第 7図に示す側面図のよう に仕切板 22a 〜22e と直交する方向の区画板 36により入 口側と出口側に分割されており、 入口側に蒸発器 26a 〜 26f が設けられている。 23は、 中心部にステッ ピングモ ータ等の電気モータよりなる回転駆動部 24及び先端部に 閉鑌板 25を有して回転^能且つ各々の分岐流路 21a 〜21f を閉鑌可能な開閉手段であり、 開閉板 25は入口側と出口 側に分かれているが、 同時に閉鑌開放を行う ものである。 AT10 As shown in the side view of FIG. 7, the dividing flow passages 21a to 21f are divided into an inlet side and an outlet side by a partition plate 36 in a direction orthogonal to the partition plates 22a to 22e, and the evaporator is provided on the inlet side. 26a to 26f are provided. 23 has a rotary drive unit 24 composed of an electric motor such as a stepping motor in the central portion and a closing plate 25 at the tip end thereof for rotation and opening / closing capable of closing each of the branch flow passages 21a to 21f. The opening / closing plate 25 is divided into an inlet side and an outlet side, but simultaneously opens and closes.
26a 〜26f は分流器 27によって多数に分岐されて各々 逆止弁 34a 〜34f を介して分岐流路 21a 〜21f 內に設け られた蒸発器であって、 各々に温度検知器 29a 〜29f を 具備しており、 蒸癸器 26a 〜26f 及び電磁弁 33a 〜33f 通過後にはへッダー 31內で再び 1本の冷媒配詧となる。  The evaporators 26a to 26f are branched into a large number by the flow divider 27 and are provided in the branch flow passages 21a to 21f via the check valves 34a to 34f, respectively, and are equipped with temperature detectors 29a to 29f, respectively. After passing through the vaporizers 26a to 26f and the solenoid valves 33a to 33f, the header 31 serves as one refrigerant distribution again.
37はホ ッ トガスバイパス管であり、 圧縮器 2からヘッダ 一 38を通り、 前記した各分歧流路 21a 〜21f 内に設けら れた各蒸癸器 26a 〜26f に対し、 各々電磁弁 39a 〜39f を介して連結されており、 蒸発器 26a 〜26f を通過した 後は逆止弁 35a 〜35f およびヘッダー 40を介して冷媒画 路に戻るものである。 Reference numeral 37 denotes a hot gas bypass pipe, which passes from the compressor 2 to the header 38, and is connected to each of the vaporizers 26a to 26f provided in each of the above-mentioned distribution channels 21a to 21f, and to each solenoid valve 39a. ˜39f are connected, and after passing through the evaporators 26a to 26f, they are returned to the refrigerant channel via the check valves 35a to 35f and the header 40.
32は温度検知器 29a 〜29ί から送られる信号にもとづ いて回耘駆動部 24, 電磁弁 39a 〜39f , 33a 〜33f の制 御を行う除霜コ トローラである。  Reference numeral 32 is a defrost controller that controls the rotation drive unit 24 and solenoid valves 39a to 39f and 33a to 33f based on signals sent from the temperature detectors 29a to 29ί.
電磁弁 39a 〜39f , および 33a 〜33f の作動状態を述 ベれば、 通常の冷却運転時には電磁弁 39a 〜39f は総て OFF しており、 電磁弁 33a 〜33f は ONしており、 温度検 知器 29a 〜29 f のいづれかから蒸発器の温度低下の信号 が送られれば、 該当する蒸発器に至る電磁弁 39が ONし、 ホッ トガスが流入し、 電磁弁 33は OFF の状慈となり、 蒸 発器に高温のガスが入り、 賒霜が行われる。 To describe the operating states of the solenoid valves 39a to 39f and 33a to 33f, all solenoid valves 39a to 39f are turned off, solenoid valves 33a to 33f are turned on, and the temperature detection is performed during normal cooling operation. If a signal indicating that the temperature of the evaporator has dropped is sent from any of the intellectual devices 29a to 29f, the solenoid valve 39 to the corresponding evaporator turns on, hot gas flows in, and the solenoid valve 33 turns off. Hot gas enters the evaporator and causes frost.
そして、 除霜が行われて、 蒸発器の温度が所定の温度 以上となり、 その信号が温度検知器 29より除霜コ ン ト 口 —ラ 32に送られれば、 その指令により該当する電磁弁 39 は O F F となりホッ トガスは遮断され、 逆止弁 34を通って 冷媒が蒸癸器に供給され、 当該電磁弁 33は ONの状態とな る。 これを順次霜の付着した蒸発器について行えば、 常 に 1 つの蒸発器において除霜が行われるが、 その他の分 岐流路 21內に設けられた蒸穽器 26は運転を継続するもの である。  If defrosting is performed and the temperature of the evaporator rises above the specified temperature, and the signal is sent from the temperature detector 29 to the defrosting controller 32, the solenoid valve 39 corresponding to that command will be sent. Is turned off, the hot gas is shut off, the refrigerant is supplied to the evaporator through the check valve 34, and the solenoid valve 33 is turned on. If this is done sequentially for evaporators with frost, defrosting is always performed in one evaporator, but the steam generator 26 provided in the other branch passage 21 continues to operate. is there.
さらに、 本癸明では上記した構造の除霜装置を用いて 他の作動を行わせることができるもので、 その場合には 開閉手段 23の回転駆勤部 24をタイ マー (図示しない) に より間けつ的に回転し、 閉鑌板 25を所定の時間毎に回転 するようになし、 従って、 多数の分岐流路 21 a 〜21 f の う ち常に 1 つの分岐流路 21の入口および出口を閉鑌する ようにするものである。  Further, in the present paper, the defrosting device having the above-mentioned structure can be used to perform other operations. Rotating intermittently, the closing plate 25 is rotated at a predetermined time, and therefore, one of the multiple branch flow passages 21a to 21f is always connected to the inlet and outlet of one branch flow passage 21. It should be closed.
そして、 この場合には前記タイ マーの指令により、 閉- 鑌された分岐流路 21の中の蒸発器 26に通じる電磁弁 39が O Nし、 電磁弁 33は OFF となり、 ホ ッ トガスバイバス管 37 により高温のホッ トガスが蒸発器 26に入り除霜が行われ る。 除霜が完了し、 温度検知器 29が当該蒸発器 26の温度 が上昇した旨の信号を賒霜コ ン ト ローラ 32に送れば、 前 Then, in this case, the solenoid valve 39 leading to the evaporator 26 in the closed branch flow passage 21 is turned on, the solenoid valve 33 is turned off, and the hot gas bypass pipe 37 is turned on by the timer gas command 37 in accordance with the instruction of the timer. Hot hot gas enters evaporator 26 for defrosting. After defrosting is completed, the temperature sensor 29 will display the temperature of the evaporator 26 concerned. Signal to the Frost Controller 32 that the
記電磁弁 39は OFF となり、 電磁弁 33は ONとなり冷媒がこ Solenoid valve 39 is turned off, solenoid valve 33 is turned on, and the refrigerant is
の蒸発器 26に入り冷却が行われる。 そして予め定められ It enters the evaporator 26 and is cooled. And predetermined
た時間の経過後にタイ マーの指令により、 この分岐流路 This branch flow path is
を閉鑌した開閉手段の閉鑌板が移動し、 次の分岐流路の The closing plate of the opening / closing means that has closed the
入口および出口を閉鎖し、 順次移動するものである。 な The entrance and exit are closed, and they are moved in sequence. Na
お、 タイ マーによる開閉手段を作勤する所定の時間は、 Oh, the specified time to work the opening and closing means by the timer,
充分な除霜と、 その後の冷却が行われる時間であること Sufficient defrost and time for subsequent cooling
は勿論である。 Of course.
産業上の利用可能性  Industrial availability
以上のように本癸明にかかる装置は、 連続運転および  As described above, the device according to the present invention is capable of continuous operation and
冷却温度精度を必要とする気体冷却装置にとって有用で It is useful for gas cooling equipment that requires cooling temperature accuracy.
ある。 is there.
?¾ΕΑΊ ? ¾ΕΑΊ

Claims

請求の範囲 The scope of the claims
(1) 圧縮璣と、 凝縮器と、 減圧機構と、 蒸発器とを接続 するこ とによって構成される冷媒画路の蒸発器を気体 流路内に設けた気体の冷却装置において、 気体流路を 多数の分岐流路に区画し、 且つ各分歧流路を閉鑌開放 する開閉手段を設けると共に、 各々の前記分歧流路内 に前記冷媒回路を分岐した後に接続した蒸発器と、 該 蒸発器を加熱する手段と、 各々の蒸癸器の温度を検知 する温度検知器とを設け、 前記した多数の分岐流路の 中の 1 つの分岐流路を常に開閉手段により、 その分岐 流路を閉鎮するようになし、 閉鑌された分岐流路内の 蒸発器には前記加熱手段を作動させて除霜を行い、 除 霜が完了した後に当該分岐流路が開閉手段により開放 されるようにしたことを特徴とする気体冷却装置の除  (1) In a gas cooling device provided with an evaporator of a refrigerant channel formed by connecting a compression nozzle, a condenser, a decompression mechanism, and an evaporator in the gas channel, Is divided into a large number of branch channels, and an opening / closing means for closing and opening each branch channel is provided, and an evaporator connected to each of the branch channels after branching the refrigerant circuit, and an evaporator. And a temperature detector for detecting the temperature of each vaporizer are provided, and one branch flow path among the aforementioned multiple branch flow paths is always closed by the opening / closing means. The evaporator in the closed branch flow passage is defrosted by operating the heating means so that the branch flow passage is opened by the opening / closing means after the defrosting is completed. The removal of the gas cooling device characterized by
(2) 開閉手段が各分岐通路の入口を閉鑌開放するように 構成されていることを特徴とする請求の範囲第 1 項記 載の気体冷却装置の除霜装置。 (2) The defroster for a gas cooling device according to claim 1, wherein the opening / closing means is configured to open and close the inlet of each branch passage.
(3) 開閉手段が各分岐通路の入口及び出口を閉鑌開放す るように構成されていることを特徴とする請求の範囲 第 1項記載の気体冷却装置の除霜装置。  (3) The defroster for a gas cooling device according to claim 1, wherein the opening / closing means is configured to open and close the inlet and outlet of each branch passage.
(4) 蒸発器を加熱するための手段がヒーター等加熱器で 構成されていることを特徴とする請求の範囲第 2項又 は第 3項記載の気体冷却装置の除霜装置。  (4) The defroster for a gas cooling device according to claim 2 or 3, wherein the means for heating the evaporator comprises a heater such as a heater.
ほ) 蒸発器を加熱するための手段が蒸発器と、 該蒸発器 と電磁弁を介して圧縮機と閉鑌回路を形成するホッ ト ガスバイバス管とからなることを特徵とする請求の範 囲第 2項又は第 3項記戴の気体冷却装置の除霜装置。 E) means for heating the evaporator and the evaporator, And a compressor and a hot gas by-pass pipe that forms a closed circuit via a solenoid valve, the defrosting device for a gas cooling device according to claim 2 or 3.
PCT/JP1984/000031 1983-02-03 1984-02-01 Defrosting apparatus for gas cooling device WO1984003138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1534283U JPS59120889U (en) 1983-02-03 1983-02-03 Defrosting device for gas cooling equipment
JP949384U JPS60121164U (en) 1984-01-26 1984-01-26 Defrosting device for gas cooling equipment

Publications (1)

Publication Number Publication Date
WO1984003138A1 true WO1984003138A1 (en) 1984-08-16

Family

ID=26344237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000031 WO1984003138A1 (en) 1983-02-03 1984-02-01 Defrosting apparatus for gas cooling device

Country Status (1)

Country Link
WO (1) WO1984003138A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU636062B1 (en) * 1991-10-01 1993-04-08 Goldstar Co., Ltd. Frost removing control circuit for an air conditioner using a heat pump
US5520006A (en) * 1994-08-02 1996-05-28 Northfield Freezing Systems, Inc. Airflow and defrosting system for refrigeration systems and apparatus
US5584437A (en) * 1993-05-31 1996-12-17 Samsung Electronics Co., Ltd. Air flow control apparatus in an air conditioner
US5839292A (en) * 1996-08-31 1998-11-24 Lg Electronics, Inc. Defroster for heat pump
CN107421206A (en) * 2017-06-30 2017-12-01 青岛海尔特种电冰箱有限公司 Refrigerating device and its control method
CN108917419A (en) * 2018-08-16 2018-11-30 大连海事大学 Aerial cooler control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427819A (en) * 1966-12-22 1969-02-18 Pet Inc High side defrost and head pressure controls for refrigeration systems
US3499295A (en) * 1968-06-17 1970-03-10 Emhart Corp Refrigeration system
US3501925A (en) * 1967-12-26 1970-03-24 Emhart Corp Refrigerated equipment
GB1244579A (en) * 1969-05-15 1971-09-02 Streater Ind Inc Ducted refrigeration unit
JPS54165364U (en) * 1978-05-12 1979-11-20
JPS55105161A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427819A (en) * 1966-12-22 1969-02-18 Pet Inc High side defrost and head pressure controls for refrigeration systems
US3501925A (en) * 1967-12-26 1970-03-24 Emhart Corp Refrigerated equipment
US3499295A (en) * 1968-06-17 1970-03-10 Emhart Corp Refrigeration system
GB1244579A (en) * 1969-05-15 1971-09-02 Streater Ind Inc Ducted refrigeration unit
JPS54165364U (en) * 1978-05-12 1979-11-20
JPS55105161A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU636062B1 (en) * 1991-10-01 1993-04-08 Goldstar Co., Ltd. Frost removing control circuit for an air conditioner using a heat pump
US5584437A (en) * 1993-05-31 1996-12-17 Samsung Electronics Co., Ltd. Air flow control apparatus in an air conditioner
US5520006A (en) * 1994-08-02 1996-05-28 Northfield Freezing Systems, Inc. Airflow and defrosting system for refrigeration systems and apparatus
US5839292A (en) * 1996-08-31 1998-11-24 Lg Electronics, Inc. Defroster for heat pump
CN107421206A (en) * 2017-06-30 2017-12-01 青岛海尔特种电冰箱有限公司 Refrigerating device and its control method
CN107421206B (en) * 2017-06-30 2019-10-01 青岛海尔特种电冰箱有限公司 Refrigerating device and its control method
CN108917419A (en) * 2018-08-16 2018-11-30 大连海事大学 Aerial cooler control system

Similar Documents

Publication Publication Date Title
EP0306587B1 (en) Heat pump system with hot water device
US3638444A (en) Hot gas refrigeration defrost structure and method
JPH0124677Y2 (en)
US7171817B2 (en) Heat exchanger liquid refrigerant defrost system
US4332137A (en) Heat exchange apparatus and method having two refrigeration circuits
US4964281A (en) Low-temperature showcase
EP0279143B1 (en) Integrated heat pump system
US20110167846A1 (en) Method and system for dehumidification and refrigerant pressure control
US2801524A (en) Heat pump including hot gas defrosting means
CN107588474A (en) Conditioner
US2481348A (en) Air-conditioning apparatus with defrosting means
US2522484A (en) Method of and apparatus for conditioning air
US20090044557A1 (en) Vapor compression system
WO1984003138A1 (en) Defrosting apparatus for gas cooling device
US3107499A (en) Control apparatus
JPH01107055A (en) Method and device for controlling defrostation of temperature conditioning humidity conditioning facility
US3126712A (en) Defrost control for refrigeration systems
US2280425A (en) Air conditioning apparatus
US2301725A (en) Apparatus for conditioning air
US2486908A (en) Air conditioning
US11668482B2 (en) Air conditioning system with pipe search
JPH0519722Y2 (en)
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JP2771887B2 (en) Constant temperature and humidity device
JPH10148416A (en) Dehumidifier

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB