WO1984001622A1 - Apparatus for detecting unevenness in thickness of thread - Google Patents

Apparatus for detecting unevenness in thickness of thread Download PDF

Info

Publication number
WO1984001622A1
WO1984001622A1 PCT/JP1983/000343 JP8300343W WO8401622A1 WO 1984001622 A1 WO1984001622 A1 WO 1984001622A1 JP 8300343 W JP8300343 W JP 8300343W WO 8401622 A1 WO8401622 A1 WO 8401622A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light receiving
thickness
detecting device
Prior art date
Application number
PCT/JP1983/000343
Other languages
French (fr)
Japanese (ja)
Inventor
Kimio Nishitani
Original Assignee
Aichi Spinning Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Spinning Co filed Critical Aichi Spinning Co
Publication of WO1984001622A1 publication Critical patent/WO1984001622A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/365Textiles filiform textiles, e.g. yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/06Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
    • B65H63/062Electronic slub detector
    • B65H63/065Electronic slub detector using photo-electric sensing means, i.e. the defect signal is a variation of light energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a device for detecting uneven thickness of a thread body.o
  • the term “thread body” as used herein generally means a sliver, a roving or a thread made of fiber.
  • a device for measuring the thickness unevenness of a thread particularly a shaper
  • a device for detecting a change in the capacitance of the thread or a thread having a predetermined cross-sectional area is passed through the thread.
  • a device for detecting a change in air pressure that occurs at the time is known. In these known devices, the influence of atmospheric humidity on the detected value cannot be ignored.
  • the device that uses the capacitance to detect uneven thickness the moisture content of the fiber changes when the humidity in the atmosphere changes, and the capacitance between the resulting electrodes Fluctuates.
  • Light is used as a device to detect uneven thickness of other filaments.
  • a device using a wire that is, a photoelectric thickness unevenness detecting device is known.
  • this device can remove the effect of humidity by using light, it is said that the light-emitting element of this detector is unstable with respect to changes in the temperature in the spinning room. It has disadvantages. For example, when measuring the thickness of a thread having the same thickness using the same light source, if there is a temperature difference in the environment where the light emitting element is placed, the signal emitted from the light receiving element The values are different. Also, the light-receiving element is affected by temperature, although its value is lower than the light-emitting element.
  • the thickness unevenness is controlled on the textile machine based on the value of the thickness unevenness of the filament detected using the light beam, a new value generated based on the temperature characteristics of the light receiving element and the like is obtained. 3 ⁇ 4Variation may be added to the thread processed by the textile machine.
  • An object of the present invention is to eliminate the disadvantages of the known thread thickness unevenness detection system and to be affected by environmental changes such as humidity and temperature in a spinning room.
  • a device for detecting the thread thickness unevenness detection system is to eliminate the disadvantages of the known thread thickness unevenness detection system and to be affected by environmental changes such as humidity and temperature in a spinning room.
  • An object of the present invention is a device * for detecting uneven thickness of a running filament
  • the device includes a light emitting element having a first light beam emitting port and a second light beam emitting port for emitting light beams in two different directions, respectively, and travels the light beam from the first light beam emitting port as an object to be measured.
  • a first light receiving element for receiving light through the filament, a second light receiving element for directly receiving light from the second light emitting port, and a light receiving element coupled to the first light receiving element and the second light receiving element.
  • a measuring and calculating device for comparing and calculating the signals from the respective light receiving elements and calculating the difference as a variation in the thickness of the filament.
  • the first and second light receiving elements are arranged in the same environment, and the object is achieved by a yarn thickness unevenness detecting device, which is characterized by the following.
  • the first light receiving element receiving light emitted from the light emitting element and arriving via the filament and the second light receiving element receiving light arriving directly from the light emitting element are the same. Since it is located in the environment, the effect of the temperature * applied to the first light receiving element and the temperature applied to the second light receiving element when the temperature of the spinning chamber changes are the same.
  • the thread thickness unevenness is based on a difference between a signal from the first light receiving element and a signal from the second light receiving element. Since it is configured to be calculated as follows, the effect of the temperature applied to the light emitting element is compensated.
  • the arrangement of the three elements may be set at a position distant from the reducer and in the same environment by using an optical fiber.
  • at least the first light receiving element and the second light receiving element need to be kept in the same environment.
  • the other end of each optical fiber having one end connected to the first light receiving element and the second light receiving element arranged at an appropriate place inside the steel machine or outside the steel machine is a steel machine, for example, a kneading machine. Open towards the inside of the reducer of Article 3 ⁇ 4.
  • the length from the first light emitting port of the light emitting element to the first light receiving element and the second light emitting port of the light emitting element are removed.
  • a device that can perform zero point correction for one of the two signals from the light receiving element is added. May be good.
  • FIG. 1 is a diagram showing a thickness unevenness of a thread obtained by a known photoelectric thickness unevenness detecting device.
  • FIG. 2 is a diagram showing an uneven thickness of a thread obtained by the uneven thickness detecting device according to the present invention.
  • FIG. 3 is a schematic diagram showing one embodiment of the thickness unevenness detecting device according to the present invention.
  • FIG. 4 is a longitudinal sectional view of a laser used in the embodiment shown in FIG.
  • FIG. 5 is a perspective view showing the arrangement of the thickness unevenness detecting device of the present invention in the embodiment shown in FIG.
  • FIG. 6 is a schematic diagram showing another embodiment of the thickness unevenness detecting device according to the present invention.
  • FIG. 7 is a perspective view showing the arrangement of the thickness unevenness detecting device of the present invention in the embodiment shown in FIG.
  • the light-emitting element and the light-receiving element are arranged on both sides in the traveling direction of the slider in the reducer. It has been. Therefore, the light emitted from the light emitting element is absorbed by the striper and the remaining light arrives at the light receiving element, and as a result, the thickness of the fiber is increased by the amount of absorbed light. Unevenness is detected.
  • This well-known photoelectric type
  • the temperature of the environment in which the light emitting element and the light receiving element are arranged has changed from 25 to 35 by 1 O :.
  • a temperature change is caused by an increase in temperature due to the operation of the machine base and an increase in temperature due to frictional heat of the slider with the laser.
  • the radiant flux of the light emitting device is-temperature rises by 1 O: Then it will decrease about 14 times.
  • the light receiving element Pin Silicon Photodai S-118, manufactured by Hamamatsu Photonics used in the uneven thickness detection device of the present invention has a light receiving element.
  • Sensitivity increases by about 2% as temperature increases. Therefore, when a detector is manufactured by combining the light emitting element and the light receiving element, the output from the light receiving element decreases by about 10 to 12 for a temperature rise of 1 o: It rises by about 10 to 12 for a 0 degree decrease in the degree of the Phoenix.
  • m 1 the influence of the temperature change in the aforementioned environment on the thickness unevenness diagram of the filament obtained by the conventionally known photoelectric thickness unevenness detecting device * is shown.
  • the signal from the light receiving element is amplified and is shown in mV as a numerical value indicating the uneven thickness. Indicates a time axis.
  • the drawing machine starts at time TQ.
  • First by the Hare Nim et line shown in FIG. FIG drops immediately after the time T 0. This indicates that, as described above, the output from the light receiving element decreases due to an increase in the temperature of the area where the light emitting element and the light receiving element are arranged.
  • the graph fluctuates at a low level.
  • the conventionally known photoelectric thickness unevenness detecting device not only does the level of the unevenness diagram decrease at the start of the spinning machine, but also the unevenness of the unevenness diagram due to the change in the environment during operation. When the level fluctuates, it is possible to correctly grasp the thickness unevenness of the resulting filamentous body.
  • the light emitting element and the light receiving element are arranged as shown in FIG. 2 by using the uneven thickness detecting device for the thread body described in claim 1. Even if the temperature of the environment changes, an unevenness diagram can be obtained at the same level.
  • the web 16 sent from the pair of front rollers 17 of the drawing machine is slurried through the top calendar rollers 18.
  • the driver 2 and the driver 2 pass through the laser 1 attached to the laser support plate 24, and are driven by the port and the tom calender roller 19. It is sent down.
  • a light beam passage hole is provided in a cylindrical portion below the laser 1 in a direction substantially perpendicular to the axial direction of the laser 1.
  • the light emitting element 3 is arranged on one side of the laser 1 in the axial direction of the light beam passage hole, and the first light receiving element 6 is arranged on the other side.
  • the light emitting element 3 is provided with two light emitting ports, that is, a first light emitting port 14 and a second light emitting port 15. Then, a second light receiving element 7 is arranged in front of the second light emitting port 15 of the light emitting element 3. Accordingly, the light beam 4 emitted from the first light emitting port 14 of the light emitting element 3 reaches the first light receiving element 6 through the slider 2 of the laser 1 circle. In this case, the light beam 4 is absorbed by the taper 2 of the reducer 1 and its light quantity is reduced. On the other hand, the light beam 5 emitted from the second light beam emitting port 15 of the light emitting element 3 directly reaches the second light receiving element 7.
  • FIG. 4 shows an embodiment of the thickness unevenness detecting apparatus according to the present invention.
  • FIG. 3 is a cross-sectional view of a laser 1 used.
  • the light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 shown in FIG. 3 are housed in a cylindrical portion below the laser 1 as shown in FIG. ing .
  • the size of the laser user 1 shown in FIG. 4 is, for example, a maximum diameter of 50 square meters and a length of 33 m, and is a downstream laser when viewed in the traveling direction of the slideshower indicated by arrow A.
  • the light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 are accommodated in the cylindrical portion (the length is about 10 mm) below the user 1, so that When a temperature change occurs in the laser sensor, the temperatures received by the light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 can be kept substantially the same. .
  • the light emitting element 3, the first light receiving element 6, and the second light receiving element 7 are provided with terminals 31, 61, 71, respectively.
  • the light emitting element 3 is energized by connecting a conductor 20 of a power source (not shown) to a terminal 31.
  • the amount of light received by the first light receiving element 6 is converted into a current, and from the terminal 6 1 to the measurement and calculation device 10 via the conductor 22, and the amount of light received by the second light receiving element 7 is converted into a current and converted into a terminal. From 7 1, it reaches the measurement and calculation device 10 via the conductor 23.
  • the measurement operation device 10 shown in FIG. 3 includes the operation device 11. Arithmetic unit 11 was obtained via lead 22 and light quantity of first light receiving element 6 obtained via lead 22
  • a known display device 12 is connected by a conductor wire 210 to display the calculation result of the calculation device 11.
  • the arithmetic unit 11 and the display unit 12 are arranged separately in the measurement arithmetic unit 10 that is actually used. That is, the arithmetic unit 11 is arranged on the frame 25 of the drawing machine, while the display unit 12 is arranged at an appropriate position in the drawing machine, and the space between the arithmetic unit 11 and the display unit 12 is provided.
  • a current is supplied from a power supply (not shown) to the arithmetic unit connected via the conductor 210 via the conductor 100.
  • a lead wire 200 including the conductors 20, 21, and 23 is disposed between the laser user 3 and the arithmetic device 11.
  • the display device 12 is a device that shows an irregular diagram as a graph with time.
  • the display device 12 is not an essential component, but a numerical value calculated by the device 11 of the uneven thickness detecting device 10. May be transmitted to a mechanism other than the apparatus of the present invention, such as a control mechanism for uneven thickness of the filament, and used for controlling the uneven thickness of the filament.
  • the light receiving element 3, the first light receiving element 6, and the second light receiving element 7 are located in a very close area as shown in FIG. It is arranged so that the temperature change in the spinning room Even if there is a change in the environment such as temperature, etc.
  • the environment such as the temperature received by the three elements 3, 6, 7 is kept substantially the same.
  • the light emitting element 3 and the light receiving elements 6 and 7 various elements can be used.
  • the light emitting element 3 an infrared light emitting diode manufactured by Sharp Corporation
  • the light beam from the light emitting element 3 is transmitted to the first light receiving element by using optical fibers 32, 33, and 34.
  • the configuration is the same as the embodiment shown in FIGS. 3, 4, and 5 except for the configuration guided to 6 and the second light receiving element 7. That is, as shown in FIG. 6, the light beam from the first light beam emitting port 14 of the light emitting element 3 reaches the laser 1 through the optical fiber 32, and is After passing through the slider 2 in the fuser 1, it passes through the optical fiber 33.
  • the light beam from the second light emitting port 15 of the light emitting element 3 directly reaches the second light receiving element 7 through the optical fiber 34.
  • the difference between the amounts of light reaching the first light receiving element 6 and the second light receiving element 7 is electrically calculated by the arithmetic unit 11 in the measurement arithmetic unit 10 in the same manner as in the above-described embodiment, and is a known display device.
  • the photoelectric device housing device 41 and the arithmetic device 11 are connected.
  • Optical fibers 32 and 33 are connected between the processing device 40 and the laser 1.
  • the light emitting element 3 and the second light receiving element 7 are connected by an optical fiber 34 as shown in FIG. However, if the light emitting element 3 and the second light receiving element 7 can be arranged close to each other in the photoelectric element housing device 41, the light emitting element 3 and the second light receiving element 7 can be directly connected without using the optical fiber 34. Is also good.
  • the light emitting element 3, the first light receiving element 6, and the second light receiving element 7 are arranged in a further close positional relation by using an optical fiber. It is possible to place it. If necessary, it can be placed in a specific container as shown in Fig. 7, so that the same environment can be maintained. It is not necessary for the light emitting element 3 to be in the same environment as the first light receiving element 6 and the second light receiving element 7 as the thickness unevenness detecting device of the present invention, but it is dustproof. Considering other conditions, it is preferable to be in the same environment.
  • optical fiber used in the embodiment shown in FIGS. 6 and 7 has a relatively short distance (approximately: lw)
  • various commercially available optical fibers can be used.
  • ST-200H loss 15 dB / Km
  • the lengths of the optical fibers 32 and 33 may be made substantially the same.
  • a device capable of zero-point correction for one of the two signals from the light-receiving element may be added to the measurement and calculation device.
  • the yarn thickness unevenness detecting device is configured as described above, so that the effect of temperature on the light receiving element is compensated, and the yarn is affected by temperature and humidity.
  • This is a device for detecting uneven thickness of the striated body.
  • the device of the present invention requires only a light receiving element and some other devices compared to the conventional photoelectric measuring device, so that the structure is simple and can be manufactured at low cost.
  • an optical fiber for example, an empty space in which the tip of the optical fiber can be placed near the outer wall of the laser.
  • the yarn thickness unevenness detection device of the present invention can be attached to various types of spinning machines without restriction on the installation location.

Abstract

An apparatus photoelectrically detects any unevenness in the thickness of a thread formed of silver, roving or yarn, independently of environmental conditions such as temperature. A light-emitting element is provided with two light-beam outlets, and two light-receiving elements are arranged so as to correspond to the ligh-beam outlets. In this case, the light beams from one of the light-beam outlets reaches the corresponding light-receiving element through a thread, while the light beams from the other light-beam outlet reaches the other light-receiving element directly. The two light-receiving elements are positioned within the same environment, and the difference in the quantity of light received by the two light-receiving elements is employed to detect unevenness in the thickness of the thread.

Description

明 . 細 書 .  Specification .
糸条体の太さむ ら検出装置  Detecting device for uneven thickness of thread
技術分野  Technical field
本発明は糸条体の太さむ らを検出する装置に関す o  The present invention relates to a device for detecting uneven thickness of a thread body.o
背景技術  Background art
こ こに云う 糸条体とは一般的に纖維か ら作られた ス ラ イ パ、 粗糸あ る は糸を意味する。 現在糸条体、 特にス ラ イ パの太さむ らを測定する装置と して、 糸 条体の有する静電容量の変化を検出する装置又は糸 条体を所定の断面積を有する孔を通す時に発生する 空気圧の変化を検出する装置等が知 られている。 こ れら公知の装置に いては検出値に対する大気中の 湿度の影響を無視でき い。 す ¾わち静電容量を用 いる こ と によ つて太さむ らを検出する装 ϋ:では大気 中の湿度が変化する と繊維の含水率が変化 し、 その 結杲電極間の静電容量が変動する 。 一方空気圧を用 いる こ と に よ っ て太さむ らを検出する装置では大気 中の湿度が変化する と糸条体中の鐡維間の間隙を通 過する空気流の抵抗が変化 し、 その結果空気圧が変 動する。 したがっ て静電容量又は空気圧の変動に よ つて糸条体の太さむ らの検出値が正 しい数値から偏 よ る こ と になる 。  The term “thread body” as used herein generally means a sliver, a roving or a thread made of fiber. At present, as a device for measuring the thickness unevenness of a thread, particularly a shaper, a device for detecting a change in the capacitance of the thread or a thread having a predetermined cross-sectional area is passed through the thread. A device for detecting a change in air pressure that occurs at the time is known. In these known devices, the influence of atmospheric humidity on the detected value cannot be ignored. In other words, in the device that uses the capacitance to detect uneven thickness: the moisture content of the fiber changes when the humidity in the atmosphere changes, and the capacitance between the resulting electrodes Fluctuates. On the other hand, in a device that detects uneven thickness by using air pressure, when the humidity in the atmosphere changes, the resistance of the airflow passing through the gap between the iron fibers in the filament changes. As a result, the air pressure fluctuates. Therefore, the detected value of the thickness unevenness of the thread deviates from a correct value due to the fluctuation of the capacitance or the air pressure.
他の糸条体の太さむらを検出する装置と して、 光 線を用いる装置、 すなわち光電式太さむ ら検出装置 が知 られて る。 この装置は光線を用いる こ と によ つ て湿度の影響を除去する こ とができ るけれど も 、 こ の検出装置では発光素子が紡績室内の気温の変化 に対して不安定であ る と い う欠点を有する。 例えば 同一光源を用いて同 じ太さを有する糸条体の太さを 測定する場合に、 も し発光素子のおかれて る環境 に温度の差がある と受光素子か ら発出される信号の 値が異る 。 又受光素子も 発光素子よ J? はその値は低 いけれど も 温度の影響を受ける 。 したがって温度が 変化する条件下では、 光線を用いて糸条体の太さむ らの正 しい値を検出する こ とは不可能である。 又光 線を用いて検出された糸条体の太さむ らの値に よ つ て織維機械上で太さむ らを制御する ¾ らば、 受光素 子等の温度特性に基づいて発生する新た ¾バラ ッ キ が繊維機械で処理される糸条体に付加される可能性 カ ある 。 Light is used as a device to detect uneven thickness of other filaments. A device using a wire, that is, a photoelectric thickness unevenness detecting device is known. Although this device can remove the effect of humidity by using light, it is said that the light-emitting element of this detector is unstable with respect to changes in the temperature in the spinning room. It has disadvantages. For example, when measuring the thickness of a thread having the same thickness using the same light source, if there is a temperature difference in the environment where the light emitting element is placed, the signal emitted from the light receiving element The values are different. Also, the light-receiving element is affected by temperature, although its value is lower than the light-emitting element. Therefore, it is impossible to detect the correct value of the thickness of the filament using a light beam under the condition where the temperature changes. In addition, if the thickness unevenness is controlled on the textile machine based on the value of the thickness unevenness of the filament detected using the light beam, a new value generated based on the temperature characteristics of the light receiving element and the like is obtained. ¾Variation may be added to the thread processed by the textile machine.
発明の開示 Disclosure of the invention
本発明の 目的は前記公知の糸条体の太さむ ら検知 装謐の有する欠点を解消 して紡績室における湿度と 温度等の環境の変化に よ る影響を受けるぃ糸条体の 太さむ らを検出する装置を提供する こ とでるる 。  SUMMARY OF THE INVENTION An object of the present invention is to eliminate the disadvantages of the known thread thickness unevenness detection system and to be affected by environmental changes such as humidity and temperature in a spinning room. A device for detecting the
本発明の 目 的は走行する糸条体の太さむ らを検出 する装 *であ って、  An object of the present invention is a device * for detecting uneven thickness of a running filament,
― CMFI 該装置が異なる 2 方向に夫 々 光線を発出する第 1 光線発出 口 と第 2 光線発出 口 と を具備する発光素子 と 、 前記第 1 光線発出 口からの光線を被測定体であ る走行する糸条体を介 して受光する第 1 受光素子と 、 前記第 2 光線発出 口か らの光線を直接受光する第 2 受光素子と、 前記第 1 受光素子と第 2 受光素子と に 連結されて夫々 の受光素子か らの信号を比較演算 し てその差を糸条体の太さむ ら と して算出する計測演 算装置と を含んで構成され、 ― CMFI The device includes a light emitting element having a first light beam emitting port and a second light beam emitting port for emitting light beams in two different directions, respectively, and travels the light beam from the first light beam emitting port as an object to be measured. A first light receiving element for receiving light through the filament, a second light receiving element for directly receiving light from the second light emitting port, and a light receiving element coupled to the first light receiving element and the second light receiving element. A measuring and calculating device for comparing and calculating the signals from the respective light receiving elements and calculating the difference as a variation in the thickness of the filament.
前記第 1 受光素子と第 2 受光素子とが同一環境下 に配置されている こ と を特徵と する糸条体の太さむ ら検出装置によ つて達成される。  The first and second light receiving elements are arranged in the same environment, and the object is achieved by a yarn thickness unevenness detecting device, which is characterized by the following.
本発明に よ る太さむ ら検出装置では、 発光素子か ら発出 され且つ糸条体を経て到達する光を受ける第 1 受光素子と発光素子から直接到達する光を受ける 第 2 受光素子とが同一環境に配置されているの で、 紡績室の温度が変化 した場合に第 1 受光素子に加え られる温度の影 * と第 2 受光素子に加え られる温度 の影響は同一である。 又本発明に よ る糸条体の太さ む'らの検出装量では、 糸条体の太さむ らは第 1 受光 素子か らの信号と第 2 受光素子からの信号と の差を 基に して算定される よ う に構成されている ので、 発 光素子.に加え られる温度の影響は補償される。  In the thickness unevenness detection device according to the present invention, the first light receiving element receiving light emitted from the light emitting element and arriving via the filament and the second light receiving element receiving light arriving directly from the light emitting element are the same. Since it is located in the environment, the effect of the temperature * applied to the first light receiving element and the temperature applied to the second light receiving element when the temperature of the spinning chamber changes are the same. In addition, in the detection amount of the thread thickness unevenness according to the present invention, the thread thickness unevenness is based on a difference between a signal from the first light receiving element and a signal from the second light receiving element. Since it is configured to be calculated as follows, the effect of the temperature applied to the light emitting element is compensated.
本発明に よ る糸'条体の太さむ ら検出装置での発光  Light emission from the device for detecting unevenness in the thickness of the thread's strip according to the present invention
_ OMFI wi?o 素子、 第 1 受光素子およ び第 2 受光素子の配置には い ぐ つかの方法がある。 それ らの方法の中の 1 つは 前記 3 つの素子を練条機等の繊維機械の レ デ ュ ーサ の外壁近傍に配置する方法である。 こ の場合には走 行する糸条体、 例えばス ラ イ バを経て発光素子の第 1光線発出口か ら発出する光線を受ける第 1 受光素 子が取付け られる位置は レヂユ ーサ上で発光素子が 取付け られる位置の反対側である。 _ OMFI wi? O There are several methods for disposing the element, the first light receiving element, and the second light receiving element. One of these methods is a method in which the above three elements are arranged near the outer wall of a reducer of a textile machine such as a drawing machine. In this case, the position where the first light-receiving element, which receives the light beam emitted from the first light-emitting / emitting port of the light-emitting element through the running thread, for example, the driver, is mounted on the laser, Opposite the location where the element is mounted.
前記 3 つの素子の配置を光フ ァ ィ パを用いる こ と に よ って レデュ ーサから離れた位置であっ て且つ同 一環境である位置に設定して も よ 。 この場合少 く とも第 1 受光素子と第 2 受光素子とは同一環境下に 保たれる こ とが必要である。 鐡維機械内又は鐵維機 械外の適当な場所に配置された第 1 受光素子と第 2 受光素子に一端が連結されたそれぞれの光フ ァ ィ バ の他端は鐡維機械、 例えば練条 ¾の レデ ュ ーサ の 内 側に向けて開口する。 この場合光フ ァ イ バの長さ万 向に生ずる光量減少の影響を除去するために、 発光 素子の第 1 光線発出 口から第 1 受光素子迄の長さ と 発光素子の第 2 光線発出口か ら第 2 受光素子迄の長 さ を実質的に同 じにするか、 あるいほ 光フ 7 ィ パの 長さの差によ っ て生ずる影響を除去する手段、 例え ば演算装置の 中に受光素子か らの 2 つの信号の内の 1 つの信号に対 して零点補正のでき る装置を付加 し て も 良い。 The arrangement of the three elements may be set at a position distant from the reducer and in the same environment by using an optical fiber. In this case, at least the first light receiving element and the second light receiving element need to be kept in the same environment. The other end of each optical fiber having one end connected to the first light receiving element and the second light receiving element arranged at an appropriate place inside the steel machine or outside the steel machine is a steel machine, for example, a kneading machine. Open towards the inside of the reducer of Article ¾. In this case, in order to eliminate the effect of the decrease in the amount of light that occurs throughout the length of the optical fiber, the length from the first light emitting port of the light emitting element to the first light receiving element and the second light emitting port of the light emitting element are removed. A means for substantially equalizing the length from the first light-receiving element to the second light-receiving element, or for eliminating the effect caused by the difference in the length of the optical fiber, for example, in an arithmetic unit. In addition, a device that can perform zero point correction for one of the two signals from the light receiving element is added. May be good.
図面の簡単る説明  BRIEF DESCRIPTION OF THE DRAWINGS
第 1 図は公知の光電式太さむ ら検出装置に よ っ て 得 られた糸条体の太さむ ら線図であ る。  FIG. 1 is a diagram showing a thickness unevenness of a thread obtained by a known photoelectric thickness unevenness detecting device.
第 2 図は本発明によ る太さむ ら検出装置に よ っ て 得られた糸条体の太さむ ら線図である 。  FIG. 2 is a diagram showing an uneven thickness of a thread obtained by the uneven thickness detecting device according to the present invention.
第 3 図は本発明に よ る太さむ ら検出装置の一実施 例を示す略示線図である。  FIG. 3 is a schematic diagram showing one embodiment of the thickness unevenness detecting device according to the present invention.
第 4 図は第 3 図に示 した実施例において用い られ る レヂ ュ 一サの縦断面図である。  FIG. 4 is a longitudinal sectional view of a laser used in the embodiment shown in FIG.
第 5 図は第 3 図に示した実施例における本発明の 太さむ ら検出装置の配置を示す斜視図であ る 。  FIG. 5 is a perspective view showing the arrangement of the thickness unevenness detecting device of the present invention in the embodiment shown in FIG.
第 6 図は本発明に よ る太さむ ら検出装置の他の実 施例を示す略示線図である 。  FIG. 6 is a schematic diagram showing another embodiment of the thickness unevenness detecting device according to the present invention.
第 7 図は第 6 図に示 した実施例における本発明の 太さむ ら検出装置の配置を示す斜視図である 。  FIG. 7 is a perspective view showing the arrangement of the thickness unevenness detecting device of the present invention in the embodiment shown in FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
従来公知の光電式太さむ ら検出装 *を鍊条 fe;に用 いる場合には、 発光素子と受光素子と が レデ ュ ーサ の中で互いにス ラ ィ パの進行方向で両側に配》され ている。 したがって発光素子か ら された光線は ス ラ ィ パに よ って吸収されて残 ]? の光線が受光素子に 到達 し、 その結果吸収される光線の量に よ ってス ラ ィ バの太さむ らが検出される。 この公知の光電式太  In the case where a conventionally known photoelectric thickness unevenness detecting device * is used for the strip, the light-emitting element and the light-receiving element are arranged on both sides in the traveling direction of the slider in the reducer. It has been. Therefore, the light emitted from the light emitting element is absorbed by the striper and the remaining light arrives at the light receiving element, and as a result, the thickness of the fiber is increased by the amount of absorbed light. Unevenness is detected. This well-known photoelectric type
C PI さむ ら検出装置では装置の使用開始から温度が変化 する と同 じ太さのス ラ イ パを用いた時であ って も 受 光素子の出力が変動する。 C PI In the detection device, when the temperature changes from the start of use of the device, the output of the light receiving element fluctuates even when a slicer of the same thickness is used.
例えば発光素子と受光素子とが配置された環境の 温度が 2 5 から 3 5 に 1 O :変化 したと仮定す る 。 この よ う ¾温度変化は機台の運転によ る温度上 昇と ス ラ イ パの レヂユ ーサ と の摩擦熱に よ る温度上 昇から生ずる。 本発明の糸条体の太さむ ら検出装置 に用い られた発光素子 ( シ ャ ープ株式会社製赤外発 光ダイ ォー ド ) では、 発光素子の放射束は - 温度が 1 O :上昇する と約 1 4 減少する。 一方本 発明の糸条体の太さむ ら検出装置に用い られた受光 素子 ( 浜松ホ ト ニ ク ス社製 P I N シ リ コ ン ホ ト ダ イ 才 一 ド S - 1 1 8 8 ) では受光素子の感度は温度が上昇 する と約 2 %上昇する。 したがっ て前記発光素子と 受光素子と を組合せる こ と に よ つて検出装置を作る と、 受光素子からの出力は 1 o : の温度上昇に対 し て約 1 0 〜 1 2 低下 し、 一方 1 0 の瘟度低下に 対 して約 1 0 〜 1 2 上昇する。  For example, suppose that the temperature of the environment in which the light emitting element and the light receiving element are arranged has changed from 25 to 35 by 1 O :. Such a temperature change is caused by an increase in temperature due to the operation of the machine base and an increase in temperature due to frictional heat of the slider with the laser. In the light emitting device (infrared emitting diode manufactured by Sharp Corporation) used in the uneven thickness detection device of the filament of the present invention, the radiant flux of the light emitting device is-temperature rises by 1 O: Then it will decrease about 14 times. On the other hand, the light receiving element (Pin Silicon Photodai S-118, manufactured by Hamamatsu Photonics) used in the uneven thickness detection device of the present invention has a light receiving element. Sensitivity increases by about 2% as temperature increases. Therefore, when a detector is manufactured by combining the light emitting element and the light receiving element, the output from the light receiving element decreases by about 10 to 12 for a temperature rise of 1 o: It rises by about 10 to 12 for a 0 degree decrease in the degree of the Phoenix.
m 1 には従来公知の光電式太さむ ら検出装 *に よ っ て得 .られた糸条体の太さむ ら線図の前述の環境 に ける温度変化に よ る影響が示されている。 弟 1 図において、 縦 ¾には受光素子からの信号が増幅さ れて太さむ らを示す数値と して mVで示される 。 は時間軸を示す。 第 1 図において時間 T Q で練条機 が始動する。 第 1 図に示す よ う にむ ら線図は時間 Τ 0 の直後に降下する。 これは前述の よ う に発光素 子と受光素子が配置されている区域が温度上昇する こと に よ つ て受光素子か らの出力が低下する こ と を 示す。 時間 で。 か ら約 1 0 後には前記環境は高い 温度で安定するので、 それ以降はむ ら線図は低い レ ベ ル で変動する 。 In m 1, the influence of the temperature change in the aforementioned environment on the thickness unevenness diagram of the filament obtained by the conventionally known photoelectric thickness unevenness detecting device * is shown. In FIG. 1, in the vertical axis, the signal from the light receiving element is amplified and is shown in mV as a numerical value indicating the uneven thickness. Indicates a time axis. In Fig. 1, the drawing machine starts at time TQ. First by the Hare Nim et line shown in FIG. FIG drops immediately after the time T 0. This indicates that, as described above, the output from the light receiving element decreases due to an increase in the temperature of the area where the light emitting element and the light receiving element are arranged. In time. About 10 days after, the environment stabilizes at a high temperature, and thereafter, the graph fluctuates at a low level.
—方環境の温度が時間 τ か ら逆に約 1 0 低下 する とする。 こ の場合には第 1 図で時間 から時 間 τ 2 のむ ら線図で示すよ う に高い レ ベ ル で変動す る こ とになる。 こ の よ う ¾温度変化は紡績工場の操 業中に常に存在する 。 -Assume that the temperature of the environment drops by about 10 from time τ. If this becomes the this change a high-les bell Remind as al diagram drink time between tau 2 from the time the first FIG. Such temperature changes are always present during the operation of a spinning mill.
したがっ て従来公知の光電式太さむ ら検出装置で は紡績機の始動時においてむ ら線図の レ ベ ル が低下 するだけで く 操業中の前記環境の変化によ っ てむ ら線図の レ ベ ル が変動する こ と にな 、 その結杲糸 条体の太さむ らを正 し く 把握する こ と がで き ¾い。  Therefore, with the conventionally known photoelectric thickness unevenness detecting device, not only does the level of the unevenness diagram decrease at the start of the spinning machine, but also the unevenness of the unevenness diagram due to the change in the environment during operation. When the level fluctuates, it is possible to correctly grasp the thickness unevenness of the resulting filamentous body.
本発明は請求の範囲第 1 項に記 ¾された糸条体の 太さむ ら検出装置を用いる こ と に よ っ て、 第 2 図に 示 したよ う に、 発光素子と受光素子とが配置されて い る環境の温度が変化 した場合で も 同一レ ベ ル で の むら線図が得 られる。  According to the present invention, the light emitting element and the light receiving element are arranged as shown in FIG. 2 by using the uneven thickness detecting device for the thread body described in claim 1. Even if the temperature of the environment changes, an unevenness diagram can be obtained at the same level.
第 3 図 , 第 4 図およ び第 5 図を参照 して本発明に  The present invention will be described with reference to FIGS. 3, 4, and 5.
Ο ΡΙ よ る糸条体の太さむ ら検出装置の一実施例を練条機 に用いた場合について説明する 。 Ο ΡΙ An example in which an embodiment of the apparatus for detecting unevenness in the thickness of a thread body used in a drawing machine will be described.
第 5 図に示すよ う に練条機の 1 対の フ ロ ン ト ロ ー ラ 1 7 から送出された ウ ェ ブ 1 6 は ト ッ プ カ レ ン ダ ロ ー ラ 1 8 を経てス ラ イ パ 2 と ¾ j? 、 ス ラ イ バ 2 は レヂ サ支持板 2 4 に取付けられた レヂ サ 1 を通過 し、 ポ、 ト ム カ レ ン ダ ロ ー ラ 1 9 によ って下方 へ送られる。 レヂ サ 1 の下方の円筒部分には第 3 図に示すよ う に レヂ サ 1 の軸線方向に実質的 垂直方向に光線通過用孔が設け られている 。 こ の光 線通過用孔の軸線方向で レヂ ュ 一サ 1 の片側には発 光素子 3 が配置され、 他方には第 1 受光素子 6 が配 置される 。 発光素子 3 には第 3 図に示すよ う に 2 つ の光線発出口、 すなわ ち第 1 光線発出 口 1 4 と第 2 光線発出 口 1 5 が設けられている 。 そ して発光素子 3 の第 2 光線発出 口 1 5 の前面には第 2 受光素子 7 が配置される。 したがっ て発光素子 3 の第 1 光巌発 出 口 1 4 から発出する光線 4 は レヂ ュ 一サ 1 円のス ラ イ パ 2 を貫通 して第 1 受光素子 6 に達する。 こ の 場合光線 4 は レデュ ーサ 1 のス ラ ィ パ 2 に吸収さ れて光量を滅少する。 一方発光素子 3 の第 2 光線発 出 口 1 5 か ら発出する光線 5 は直接第 2 受光素子 7 に達する。  As shown in FIG. 5, the web 16 sent from the pair of front rollers 17 of the drawing machine is slurried through the top calendar rollers 18. The driver 2 and the driver 2 pass through the laser 1 attached to the laser support plate 24, and are driven by the port and the tom calender roller 19. It is sent down. As shown in FIG. 3, a light beam passage hole is provided in a cylindrical portion below the laser 1 in a direction substantially perpendicular to the axial direction of the laser 1. The light emitting element 3 is arranged on one side of the laser 1 in the axial direction of the light beam passage hole, and the first light receiving element 6 is arranged on the other side. As shown in FIG. 3, the light emitting element 3 is provided with two light emitting ports, that is, a first light emitting port 14 and a second light emitting port 15. Then, a second light receiving element 7 is arranged in front of the second light emitting port 15 of the light emitting element 3. Accordingly, the light beam 4 emitted from the first light emitting port 14 of the light emitting element 3 reaches the first light receiving element 6 through the slider 2 of the laser 1 circle. In this case, the light beam 4 is absorbed by the taper 2 of the reducer 1 and its light quantity is reduced. On the other hand, the light beam 5 emitted from the second light beam emitting port 15 of the light emitting element 3 directly reaches the second light receiving element 7.
第 4 図は本発明の太さむ ら検出装置の一実施例に 用い られる レヂ ュ 一 サ 1 の断面図である 。 第 3 図に 示された発光素子 3 、 第 1 受光素子 6 およ び第 2 受 光素子 7 は、 第 4 図に示すよ う に、 レヂ ユ ーサ 1 の 下方の円筒部分に収容されている 。 第 4 図に示した レ ヂ ユ ー サ 1 の大き さは例えば最大径 5 0 鵬 、 長さ 3 3 m であ 、 矢印 Aで示すス ラ イ ハ,の進行方向で 見て下流のレ ヂ ユ ーサ 1 の下方部分の円筒部分 ( そ の長さは約 1 0 舰である ) に発光素子 3 、 第 1 受光 素子 6 およ び第 2 受光素子 7 が収容されているの で, も しレヂ ュ 一サに温度変化が生 じた場合に、 発光素 子 3 、 第 1 受光素子 6 およ び第 2 受光素子 7 の受け る温度を実質的に同一に保つこ と がで き る 。 発光素 子 3 、 第 1 受光素子 6 およ び第 2 受光素子 7 にはそ れぞれ端子 3 1 , 6 1 , 7 1 が設け られて る 。 FIG. 4 shows an embodiment of the thickness unevenness detecting apparatus according to the present invention. FIG. 3 is a cross-sectional view of a laser 1 used. The light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 shown in FIG. 3 are housed in a cylindrical portion below the laser 1 as shown in FIG. ing . The size of the laser user 1 shown in FIG. 4 is, for example, a maximum diameter of 50 square meters and a length of 33 m, and is a downstream laser when viewed in the traveling direction of the slideshower indicated by arrow A. The light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 are accommodated in the cylindrical portion (the length is about 10 mm) below the user 1, so that When a temperature change occurs in the laser sensor, the temperatures received by the light-emitting element 3, the first light-receiving element 6, and the second light-receiving element 7 can be kept substantially the same. . The light emitting element 3, the first light receiving element 6, and the second light receiving element 7 are provided with terminals 31, 61, 71, respectively.
前記発光素子 3 には図示 して い電源 よ ]? の導 線 2 0 を端子 3 1 に接続する こ と に よ って通電され る 。 一方第 1 受光素子 6 で受けた光量は電流に変換 されて端子 6 1 から導線 2 2 を経て計測演算装置 1 0 に達 し、 第 2 受光素子 7 で受けた光量は電流に 変換されて端子 7 1 か ら導線 2 3 を経て計測演算装 置 1 0 に達する 。 第 3 図に示 した計測演算装置 1 0 は演算装置 1 1 を含んで構成される。 演算装置 1 1 は導線 2 2 を経 て得た第 1 受光素子 6 の光量と導線 2 3 を経て得た  The light emitting element 3 is energized by connecting a conductor 20 of a power source (not shown) to a terminal 31. On the other hand, the amount of light received by the first light receiving element 6 is converted into a current, and from the terminal 6 1 to the measurement and calculation device 10 via the conductor 22, and the amount of light received by the second light receiving element 7 is converted into a current and converted into a terminal. From 7 1, it reaches the measurement and calculation device 10 via the conductor 23. The measurement operation device 10 shown in FIG. 3 includes the operation device 11. Arithmetic unit 11 was obtained via lead 22 and light quantity of first light receiving element 6 obtained via lead 22
OMPI OMPI
、 > V/IFO 第' 2受光素子 7 の光量の差を電気的に演算する。 必 要あれば公知の表示装置 1 2 を導線 2 1 0 に よ って 違結 し、 前記演算装置 1 1 の演算結果を表示する 。 実際に用い られる計測演算装置 1 0 では第 5 図に示 すよ う に演算装置 1 1 と表示装置 1 2 と を別箇に配 置する と よい。 すなわち演算装置 1 1 は練条機の フ レ ー ム 2 5 上に配置され、 一方表示装置 1 2 は練条 機における適当 な位置に配置され、 演算装置 1 1 と 表示装置 1 2 の間は導線 2 1 0 に よ って接続される 演算装置には図示 しない電源か ら導線 1 0 0 を経て 電流が供給される。 なおレ ヂ ユ ーサ 3 と演算装置 1 1 と の間には前記導線 2 0 , 2 1 , 2 3 をま とめ た リ ー ド線 2 0 0 が配置される 。 ,> V / IFO The difference between the light amounts of the second light receiving element 7 is electrically calculated. If necessary, a known display device 12 is connected by a conductor wire 210 to display the calculation result of the calculation device 11. As shown in FIG. 5, it is preferable to arrange the arithmetic unit 11 and the display unit 12 separately in the measurement arithmetic unit 10 that is actually used. That is, the arithmetic unit 11 is arranged on the frame 25 of the drawing machine, while the display unit 12 is arranged at an appropriate position in the drawing machine, and the space between the arithmetic unit 11 and the display unit 12 is provided. A current is supplied from a power supply (not shown) to the arithmetic unit connected via the conductor 210 via the conductor 100. Note that a lead wire 200 including the conductors 20, 21, and 23 is disposed between the laser user 3 and the arithmetic device 11.
前記表示装置 1 2 はむ ら線図を時間と共にグ ラ フ と して示す装置である 。 ただ し本発明に よ る糸条体 の太さむ ら検出装置では前記表示装盧 1 2 は必須の 構成器材ではな く 、 太さむ ら検出装置 1 0 の 弇装 置 1 1 で演算された数値を糸条体の太さむ ら制御機 構等の本発明の装置以外の機構に伝達 して糸条体の 太さむ ら制御に用いて も よ い。  The display device 12 is a device that shows an irregular diagram as a graph with time. However, in the uneven thickness detecting device of the thread according to the present invention, the display device 12 is not an essential component, but a numerical value calculated by the device 11 of the uneven thickness detecting device 10. May be transmitted to a mechanism other than the apparatus of the present invention, such as a control mechanism for uneven thickness of the filament, and used for controlling the uneven thickness of the filament.
本発明によ る太さむ ら検出装置の前述の 1 実施例 では受光素子 3 、 第 1 受光素子 6 およ び第 2 受光素 子 7 とが第 4 図に示す如 く 非常に接近した区域に配 置されて るので紡績室での温度の変化等に よ つ て レ ヂ ユ ーサ 1 に温度等の環境の変化があ って も 前記 In the above-described embodiment of the uneven thickness detecting apparatus according to the present invention, the light receiving element 3, the first light receiving element 6, and the second light receiving element 7 are located in a very close area as shown in FIG. It is arranged so that the temperature change in the spinning room Even if there is a change in the environment such as temperature, etc.
3 個の素子 3 , 6 , 7 の受ける温度等の環境は実質 的に同一に保たれる。 且つ本発明に よ る太さむ ら検 出装置は第 1 受光素子 6 の受ける光量と第 2 受光素 子 7 の受ける光量の差を用いて太さむ らを検出する ので、 光素子 3 = の受ける温度の影響を補償す る こ とカ で き る 。  The environment such as the temperature received by the three elements 3, 6, 7 is kept substantially the same. In addition, since the uneven thickness detection device according to the present invention detects uneven thickness using the difference between the amount of light received by the first light receiving element 6 and the amount of light received by the second light receiving element 7, the light element 3 = It can compensate for the effects of temperature.
発光素子 3 およ び受光素子 6 およ び 7 と しては各 種の素子を用いる こ と がで きる 。 例えば発光素子 3 と して、 シ ャ ープ株式会社製赤外発光ダイ オー ド  As the light emitting element 3 and the light receiving elements 6 and 7, various elements can be used. For example, as the light emitting element 3, an infrared light emitting diode manufactured by Sharp Corporation
G L - 4 5 0 を用 、 第 1 受光素子 6 お よ び第 2 受光 素子 7 と して浜松ホ ト ニク ス 社製 P I Nシ リ コ ン ホ ト ダイ 才ー P S - 1 1 8 8を用いる こ と カ で き る 。  Use the GL-450 and use the Hamamatsu Photonics PIN Silicon Photo Die PS-118 as the first and second light receiving elements 6 and 7. And mosquitoes.
次に第 6 図および第 7 図を参照 して本発明に よ る 糸条体の太さむ ら検出装置の他の実施例を練条機に 用いた場合について説明する。 この他の実施例の構 成は、 第 6 図に示すよ う に、 発光素子 3 か らの光線 が光フ ァ イ バ 3 2 , 3 3 およ び 3 4 を用いて第 1 受 光素子 6 およ び第 2 受光素子 7 に導かれる構成を除 いて、 第 3 図 , 第 4 図およ び第 5 図に示 した実施例 と 同一である。 す ¾わち第 6 図に示すよ う に、 発光 素子 3 の第 1 光線発出口 1 4 か ら の光線は光フ ア イ パ 3 2 を通っ てレ ヂ ユ ーサ 1 に達 し、 レデ ュ ーサ 1 内のス ラ イ パ 2 を通過 した後光フ ァ イ バ 3 3 を通つ  Next, with reference to FIGS. 6 and 7, a description will be given of a case where another embodiment of the apparatus for detecting uneven thickness of a thread according to the present invention is used in a drawing machine. In the configuration of this other embodiment, as shown in FIG. 6, the light beam from the light emitting element 3 is transmitted to the first light receiving element by using optical fibers 32, 33, and 34. The configuration is the same as the embodiment shown in FIGS. 3, 4, and 5 except for the configuration guided to 6 and the second light receiving element 7. That is, as shown in FIG. 6, the light beam from the first light beam emitting port 14 of the light emitting element 3 reaches the laser 1 through the optical fiber 32, and is After passing through the slider 2 in the fuser 1, it passes through the optical fiber 33.
O PI O PI
、 WIPO  , WIPO
' て第 1 受光素子 6 に達する。 一方発光素子 3 の第 2 光線発出 口 1 5 からの光線は光フ ァ イ バ 3 4 を通つ て直接第 2 受光素子 7 に達する。 第 1 受光素子 6 お よ び第 2 受光素子 7 に到達 した光量の差は前述の実 施例と同様に計測演算装置 1 0 内の演算装置 1 1 で 電気的に演算されて公知の表示装置 1 2 に表示され なお第 6 図に示した実施例の装置が鍊条機に用い られる場合には、 第 7 図に示すよ う に、 光電素子収 容装置 4 1 と演算装置 1 1 とが練条機の機台 2 5 上 に配置された処理装置 4 0 に収容されている と よ い。 そ して処理装置 4 0 と レヂユ ーサ 1 との間を光フ ァ ィ パ 3 2 , 3 3 が連結 して る 。 な 発光素子 3 と 第 2 受光素子 7 と の間は第 6 図に示すよ う に光フ ァ ィ パ 3 4 に よ って連結される 。 しか し発光素子 3 と 第 2 受光素子 7 を光電素子収容装置 4 1 内に近接 し て配置する こ とができ る場合には、 光フ ァ イ バ 3 4 を用いずに直接違結 して も よ い。 ' To the first light receiving element 6. On the other hand, the light beam from the second light emitting port 15 of the light emitting element 3 directly reaches the second light receiving element 7 through the optical fiber 34. The difference between the amounts of light reaching the first light receiving element 6 and the second light receiving element 7 is electrically calculated by the arithmetic unit 11 in the measurement arithmetic unit 10 in the same manner as in the above-described embodiment, and is a known display device. In the case where the device of the embodiment shown in FIG. 12 and used in the embodiment shown in FIG. 6 is used for a stripping machine, as shown in FIG. 7, the photoelectric device housing device 41 and the arithmetic device 11 are connected. It is said that it is housed in the processing device 40 arranged on the machine stand 25 of the drawing machine. Optical fibers 32 and 33 are connected between the processing device 40 and the laser 1. The light emitting element 3 and the second light receiving element 7 are connected by an optical fiber 34 as shown in FIG. However, if the light emitting element 3 and the second light receiving element 7 can be arranged close to each other in the photoelectric element housing device 41, the light emitting element 3 and the second light receiving element 7 can be directly connected without using the optical fiber 34. Is also good.
第 6 図 よ び第 7 図に示した実施例では、 光フ ァ ィ パを用いる こ と よ つて更に近 位置関係で発光 素子 3 、 第 1 受光素子 6 およ び第 2 受光素子 7 を配 置する こ とが可能である。 必要あれば第 7 図に示す よ う に特定の容器の中に險接 して配置する こ とがで き る のでよ 以上同一の環境に保つこ とがで き る。 お発光素子 3 を第 1 受光素子 6 およ び第 2 受光素 子 7 と 同一環境下にお く こ とは本発明の太さむ ら検 出装置と して必須の要件では ¾いが、 防塵その他の 条件か ら見て同一環境下にお く 方が好ま しい。 In the embodiment shown in FIGS. 6 and 7, the light emitting element 3, the first light receiving element 6, and the second light receiving element 7 are arranged in a further close positional relation by using an optical fiber. It is possible to place it. If necessary, it can be placed in a specific container as shown in Fig. 7, so that the same environment can be maintained. It is not necessary for the light emitting element 3 to be in the same environment as the first light receiving element 6 and the second light receiving element 7 as the thickness unevenness detecting device of the present invention, but it is dustproof. Considering other conditions, it is preferable to be in the same environment.
第 6 図お よび第 7 図に示 した実施例で用い られる 光フ ア イ パは光フ ア イ パの用い られる距離が比較的 短いので ( 約 : l w ) 、 市販の各種の光フ ァ イ バを用 いる こ と がで き る 。 例えば日 本板ガ ラ ス社製 S T - 2 0 0 H ( 損失 1 5 dB /Km ) を用いる こ とがで き る 。 も し損失の大きい光 フ ァ イ バを用いる場合には光フ ア イ パ 3 2 およ び 3 3 の長さを実質的に同一にする と よ い。 又必要あれば前記計測演算装置の中に受光 素子からの 2 つの信号の内の 1 つの信号に対 して零 点補正ので き る装置を付加 して も よ い。  Since the optical fiber used in the embodiment shown in FIGS. 6 and 7 has a relatively short distance (approximately: lw), various commercially available optical fibers can be used. Can be used. For example, ST-200H (loss 15 dB / Km) manufactured by Nippon Sheet Glass can be used. If an optical fiber having a large loss is used, the lengths of the optical fibers 32 and 33 may be made substantially the same. If necessary, a device capable of zero-point correction for one of the two signals from the light-receiving element may be added to the measurement and calculation device.
産業上の利用可能性 Industrial applicability
本発明によ る糸条体の太さむ ら検出装置は前述の よ う に構成されているので、 受光素子に対する温度 の影響が補償される こ と に 、 温度や湿度の影響 を受け ¾ぃ糸条体の太さむ ら検出装置である 。 又本 発明の装置は従来の光電的測定装置に比 し、 受光素 子およ び他の若干の器具を付加するだけでよ いので 構造も簡単であ 且つ安価に製作する こ とがで き る さ らに又光フ ァ ィ パを用いる場合には例えばレ ヂ ュ ーサの外壁近傍に光フ ア イ パの先端を配置でき る空  The yarn thickness unevenness detecting device according to the present invention is configured as described above, so that the effect of temperature on the light receiving element is compensated, and the yarn is affected by temperature and humidity. This is a device for detecting uneven thickness of the striated body. Also, the device of the present invention requires only a light receiving element and some other devices compared to the conventional photoelectric measuring device, so that the structure is simple and can be manufactured at low cost. In addition, when an optical fiber is used, for example, an empty space in which the tip of the optical fiber can be placed near the outer wall of the laser.
_Ο ?Ι 間さえあればよ いので、 本発明の糸条体の太さむ ら 検出装置を取付場所の制限を受けずに各種の紡機に 取付けて用いる こ とがで き る 。 _Ο? Ι As long as there is enough space, the yarn thickness unevenness detection device of the present invention can be attached to various types of spinning machines without restriction on the installation location.
U o— U o—

Claims

請 求 の 範 囲 The scope of the claims
1. 走行する糸条体の太さむ らを検出する装置で ¾) つ ヽ  1. A device that detects uneven thickness of the running thread body.
該装置が異 る 2 方向に夫 々光線を発出する第 1 光線発出 口 と第 2 光線発出 口 と を具備する発光素子 と、 前記第 1 光線発出 口から の光線を被測定体であ る走行する糸条体を介 して受光する第 1 受光素子と 、 前記第 2 光線発出口か らの光線を直接受光する第 2 受光素子と、 前記第 1 受光素子と第 2 受光素子と に 連結されて夫 々 の受光素子から の信号を比較演算 し てその差を♦ ^糸条体の太さむ ら と して算出する計 測演算装置 と を含んで構成され、  A light-emitting element including a first light-emitting port and a second light-emitting port for emitting light in two different directions, and a device that emits light from the first light-emitting port as an object to be measured. A first light receiving element for receiving light through a thread body, a second light receiving element for directly receiving a light ray from the second light ray exit, and the first light receiving element and the second light receiving element. And a measuring and calculating device for comparing and calculating the signals from the respective light receiving elements and calculating the difference as a variation in the thickness of the filament.
前記第 1 受光素子と第 2 受光素子と が同一環境下 に配置されている こ と を特徵 とする糸条体の太さむ ら 出装 。  The uneven thickness of the thread body, wherein the first light receiving element and the second light receiving element are arranged in the same environment.
2. 前記糸条体がス ラ ィ パであ る請求の範囲第 1 項記載の太さむ ら検出装置。  2. The uneven thickness detecting device according to claim 1, wherein the thread is a sliper.
3. 前記発光素子と 前記 2 つの受光素子とが紡機 の レ ヂ ユ ー ザ の外壁近傍に配置され、 前記第 1 受光 素子がス ラ ィ パー 対 して前記発光素子の第 1 光線 発出 口の反対側の位置に配置されている請求の範囲 第 2 項記載の太さむ ら検出装置。  3. The light emitting element and the two light receiving elements are arranged near an outer wall of a spinning user, and the first light receiving element is a first light emitting port of the light emitting element with respect to a sliper. 3. The thickness unevenness detecting device according to claim 2, wherein the thickness unevenness detecting device is arranged at a position on an opposite side.
4. 前記太さむ ら検出装置における 3 つの光線通 路、 すなわち前記発光素子の第 1 光線発出 口か ら レ  4. From the three light paths in the thickness unevenness detecting device, that is, from the first light emitting port of the light emitting element
_〇M?I デ ュ ー サの内側に達する第 1 光線通路、 該 レヂ ユ ー サの内側から第 1 受光素子に達する第 2 光線通路お よ び前記発光素子の第 2 光線発出口か ら第 2 受光素 子に達する第 3 光線通路の中で少 く と も 前記第 1 光 線通路と第 2 光線通路と に光フ ァ イ バを用い、 それ に よ つて第 1 受光素子と第 2 受光素子が近接 して配 置される請求の範囲第 2項記載の太さむ ら検出装置 5. 前記計測演算装置が糸条体の太さむ ら と して 算出 した数値をむ ら 曲線と して表示する表示器を含 んで構成されている請求の範囲第 1 項か ら第 4 項迄 の何れかの項に記載の太さむ ら検出装置。 _〇M? I A first light path that reaches the inside of the laser, a second light path that reaches the first light receiving element from the inside of the laser, and a second light receiving element that passes from the second light emitting and emitting port of the light emitting element An optical fiber is used in at least the first light path and the second light path in the third light path that reaches the optical element, so that the first light receiving element and the second light receiving element are close to each other. 3. The unevenness detecting device according to claim 2, wherein the numerical value calculated as the unevenness in the thickness of the filament is displayed as an unevenness curve. The thickness unevenness detecting device according to any one of claims 1 to 4, wherein the thickness unevenness detecting device is configured to include:
PCT/JP1983/000343 1982-10-13 1983-10-13 Apparatus for detecting unevenness in thickness of thread WO1984001622A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17851482A JPS5968606A (en) 1982-10-13 1982-10-13 Detector for thickness variance of fiber thready material

Publications (1)

Publication Number Publication Date
WO1984001622A1 true WO1984001622A1 (en) 1984-04-26

Family

ID=16049800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000343 WO1984001622A1 (en) 1982-10-13 1983-10-13 Apparatus for detecting unevenness in thickness of thread

Country Status (2)

Country Link
JP (1) JPS5968606A (en)
WO (1) WO1984001622A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322471A1 (en) * 1987-12-24 1989-07-05 Barco Automation, Naamloze Vennootschap Device for measuring thread
EP0322470A1 (en) * 1987-12-24 1989-07-05 Barco Automation, Naamloze Vennootschap Device for measuring thread
CN107010474A (en) * 2016-01-28 2017-08-04 村田机械株式会社 Yarn monitoring device, Yarn winding machine and automatic bobbin winder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843655A (en) * 1971-09-29 1973-06-23
JPS50115854A (en) * 1974-02-14 1975-09-10
JPS52134466A (en) * 1976-05-05 1977-11-10 Zumbach Electronic Automatic Apparatus for measuring at least one dimensiom of object and method of operating the same
JPS5317513B2 (en) * 1974-02-25 1978-06-08
JPS556163B2 (en) * 1971-11-26 1980-02-14

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843655A (en) * 1971-09-29 1973-06-23
JPS556163B2 (en) * 1971-11-26 1980-02-14
JPS50115854A (en) * 1974-02-14 1975-09-10
JPS5317513B2 (en) * 1974-02-25 1978-06-08
JPS52134466A (en) * 1976-05-05 1977-11-10 Zumbach Electronic Automatic Apparatus for measuring at least one dimensiom of object and method of operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322471A1 (en) * 1987-12-24 1989-07-05 Barco Automation, Naamloze Vennootschap Device for measuring thread
EP0322470A1 (en) * 1987-12-24 1989-07-05 Barco Automation, Naamloze Vennootschap Device for measuring thread
US4963757A (en) * 1987-12-24 1990-10-16 W. Schlafhorst & Co. Apparatus for sensing a characteristic of a traveling yarn
CN107010474A (en) * 2016-01-28 2017-08-04 村田机械株式会社 Yarn monitoring device, Yarn winding machine and automatic bobbin winder

Also Published As

Publication number Publication date
JPS5968606A (en) 1984-04-18

Similar Documents

Publication Publication Date Title
US5099504A (en) Thickness/density mesuring apparatus
US7324201B2 (en) Yarn sensor
US5489784A (en) Method and device for monitoring an edge of a moving web with a bar of radiation
EP1051595A1 (en) A method of determining the thickness and/or the homogeneity of a moving linear textile formation and a device for carrying out the method
JPH04259851A (en) Method and apparatus for photoelectically identifying material web
JPH05139623A (en) Take-up device of fiber machine
WO1984001622A1 (en) Apparatus for detecting unevenness in thickness of thread
US3679808A (en) Method and apparatus for measuring yarn tension
US20080148823A1 (en) Microwave resonator for or on a textile machine, especially a card, draw frame, combing machine or the like
US3611342A (en) Method and apparatus for detecting transport disturbances in a continuous material
JPH01282409A (en) Apparatus for detecting measured value equivalent to thickness of fiber sliver to be supplied to spinning preparatory equipment such as card sliver
US2950508A (en) Method and apparatus for automatically controlling the weight per unit length of textile materials
US4755127A (en) Apparatus for regulating the operation of a plant for the making of extruded products
US3592400A (en) Electronic yarn guard for yarn-winding devices
GB2200756A (en) Monitoring yarn quality
Alikhonov Determination of linear density of cotton ribbons by photoelectric method
JPS63209575A (en) Method and apparatus for forming continuous body from tobacco
US3751893A (en) Strand detection
US4112665A (en) Plural sensor ends down detecting apparatus
JPH01280210A (en) Apparatus for measuring string
JP3171153B2 (en) Yarn tension detector
CN215328469U (en) Position detection and automatic tool to unreel silk stopping device for sensor on high-humidity environment sensing frame
US5705817A (en) Apparatus for optical monitoring of a thread for irregularities
CZ299647B6 (en) Device for contactless measurement of a linear textile formation, such as a yarn, thread, textile fiber, sliver and the like
EP1225149A3 (en) Winder for collecting a roving of newly formed filaments with a device for detecting the current diameter of the bobbin, such a detecting device, a method for controlling a roving winder and a method for controlling a spinning apparatus

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): CH DE GB US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642