WO1981003292A1 - Composition for mechanically depositing heavy metallic coatings - Google Patents
Composition for mechanically depositing heavy metallic coatings Download PDFInfo
- Publication number
- WO1981003292A1 WO1981003292A1 PCT/US1981/000642 US8100642W WO8103292A1 WO 1981003292 A1 WO1981003292 A1 WO 1981003292A1 US 8100642 W US8100642 W US 8100642W WO 8103292 A1 WO8103292 A1 WO 8103292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grams
- plating
- plating metal
- metal
- promoter
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 34
- 239000000203 mixture Substances 0.000 title description 26
- 238000000151 deposition Methods 0.000 title description 6
- 238000007747 plating Methods 0.000 claims abstract description 126
- 239000002184 metal Substances 0.000 claims abstract description 83
- 229910052751 metal Inorganic materials 0.000 claims abstract description 83
- 239000000126 substance Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 22
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 31
- 239000002253 acid Substances 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 23
- 229910052725 zinc Inorganic materials 0.000 claims description 21
- 239000011701 zinc Substances 0.000 claims description 21
- 239000002270 dispersing agent Substances 0.000 claims description 20
- 239000003112 inhibitor Substances 0.000 claims description 18
- -1 polyoxyethylene Polymers 0.000 claims description 12
- 238000005260 corrosion Methods 0.000 claims description 9
- 230000007797 corrosion Effects 0.000 claims description 9
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 4
- 229910000510 noble metal Inorganic materials 0.000 claims 1
- 239000011369 resultant mixture Substances 0.000 claims 1
- 230000001464 adherent effect Effects 0.000 abstract description 4
- 238000007792 addition Methods 0.000 description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 239000000843 powder Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 9
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002923 metal particle Substances 0.000 description 8
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 7
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 7
- 239000001119 stannous chloride Substances 0.000 description 7
- 235000011150 stannous chloride Nutrition 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003317 industrial substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- LCALOJSQZMSPHJ-QMMMGPOBSA-N (2s)-2-amino-3-cyclohexa-1,5-dien-1-ylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CCCC=C1 LCALOJSQZMSPHJ-QMMMGPOBSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- JVVXZOOGOGPDRZ-SLFFLAALSA-N [(1R,4aS,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine Chemical compound NC[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 JVVXZOOGOGPDRZ-SLFFLAALSA-N 0.000 description 1
- RGTGNSLGFMHBDM-UHFFFAOYSA-J [Zn++].[Cd++].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O Chemical compound [Zn++].[Cd++].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RGTGNSLGFMHBDM-UHFFFAOYSA-J 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 description 1
- 229910000331 cadmium sulfate Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
- C23C24/045—Impact or kinetic deposition of particles by trembling using impacting inert media
Definitions
- This invention relates to a composition for use in the plating of metals on a substrate by application of mechanical forces to participate malleable metals and mixtures and alloys thereof, typically termed "mechanical plating”.
- the promoter system comprises a flash promoter which comprises, per 100 square feet of plating surface area, up to about 400 grams oF a strong acid or salt thereof, from about 20 to about 80 grams of a soluble salt of a metal which is more noble that the plating metal, an effective amount of a dispersant capable of dispersing the plating metal, and an effective amount of an inhibitor capable of inhibiting corrosion of the plating metal, together with a continuing promoter which comprises, per pound of finely divided mechanical plating metal, from about 60 to about 150 grams of a strong acid or salt thereof, fromabout 5 to about 20 grams of a soluble salt of a metal which is more noble than the plating metal, an effective amount of a dispersant capable of dispersing the plating met al , and an e ffect ive amoun t o f an inh ibi tor capab le of inhibiting corrosion of the plating metal.
- a flash promoter which comprises, per 100 square feet of plating surface area, up to about 400 grams
- the flash promoter during the mechanical plating process, provides a thin adherent flash coating on the articles to be plated, following which the continuing promoter is incrementally added to the process in conjunction with incremental additions of the finely divided mechanical plating metal until a heavy dense metallic coating is built up on the articles to be plated.
- the continuing promoter's function is to provide a proper chemical environment for the mechanical plating process to occur. This includes a proper pH such that the surfaces of the finely divided mechanical plating metal is clean, but there is insubstantial dissolution of the metal in the plating solution, to prevent agglomeration of the finely divided metal to insure a proper plating rate and uniform coating thicknesses. Therefore, the concentration of components in this promoter is dependent upon the quantity of finely divided mechanical plating metal to be deposited.
- Exemplary soluble salts of metals more noble than the finely divided plating metal include cadmium, lead, and preferably, tin, e.g., stannous chloride, stannous sulfate, stannous fluoborate, etc.
- this salt should be included at a concentration level of from about 20 to about 80 grams per 100 square feet of surface area to be plated, with about 30 grams being preferred.
- the concentration thereof should be- from about 5 to about 20 grams per pound of finely divided plating metal charged during the incremental steps of the plating cycle, with about 10 grams being preferred.
- concentration of adhesion of the metallic plating is exhibited.
- the upper concentration limit is maintained in terms of economics, as opposed to functionality, the cost thereof becoming excessive relative to additional benefit provided thereby.
- the next component which is useful in this mechanical plating process is a strong acid or salt thereof.
- This acidity is typically utilized in the processing to remove metal oxides contained on the finely divided mechanical plating metal and the articles to be plated.
- Typical strong acid salts include potassium or ammonium bisulfate, sulfamic acid, etc., with the preferred being sodium bisulfate.
- the concentration of the acid salt or acid component can be included therein up to about 400 grams per 100 square feet of plating surface charged.
- the acid salt or strong acid should be utilized in a range of from about 60 to about 150 grams per pound of finely divided plating metal charged to the plating operation. While an acid salt is preferred, because same can act as a carrier for the other components of the promoter chemistry, sulfuric acid or other strong acids can also be utilized to provide acidity, as necessary, as mechanical plating occurs.
- Materials capable of functioning effectively for dispersing the plating metal powders include polyoxy ethylene glycols having a cloud point in a 1 percent aqueous solution below 100°C, . such as "Carbowax” 20M (available from the Union Carbide Chemicals Company), or “Polyqlycol E50,000” (available from the Dow Chemical Company); quaternary aliphatic ammonium salts such as “Arquad” S-2C (available from the Armour Industrial Chemical Company; protei naceous materials such as "Technical Protein Colloids” No. 185, 169, or 70 (available from Swift & Company); among other materials which are disclosed in U.S. Patent No. 3,531,315.
- additives which function as dispersants are typically related to both the specific acid and the specific finely divided plating metal involved.
- effective dispersants for zinc powder in sulfuric acid include “Carbowax” 20M and “Orzan” AH-3, which is a salt of a polymerized alkyl aryl sulfonic acid, commercially available from the Crown Zellerbach Company;
- dispersants for zinc or tin particles in hydrochloric acid include "Nalquat” G-8-11 (which is a hydrophilic heterocyclic adduct of a hydrophilic alkyl compound containing nitrogen groups, commercially available from Nalco Chemical Company).
- Many other examples could, of course, be cited.
- Whether a given component will function satisfactorily for dispersing specific plating metal particles in a specific acid can be determined by adding from about 0.25 to about 0.5 grams of the material to 250 milliliters of the acid plating solution in a 400 milliliter beaker, adding 10 grams of finely divided plating metal, stirring vigorously, and allowing the beaker and its contents to stand for 5 minutes. An effective dispersant will keep the plating metal in suspension, thereby rendering the acid plating solution opaque.
- the flash promoter can contain up to about 40 grams per 100 square feet of plating charge, with about 20 grams being preferred, while the continuing promoter can contain up to about 8 grams per pound of metal powder charged with about 3.5 grams being preferred.
- the next component having utility in my invention is an inhibitor, same being typically utilized to inhibit corrosion of the plating metal by the acidic component, thereby preventing undesirable gassing and allowing the plating metal to perform its intended function.
- the inhibitor component is capable of functioning itself as a dispersant, and the aforementioned dispersant is not necessary. However, optimum benefits have been found to be achieved by utilizing a dispersant in conjunction with an inhibitor.
- cationic amine inhibitors such as "Armohib” 25 (available from the Armour Industrial Chemical Company); cationic inhibitors such as Inhibitor GC (.available from the Sinclair Mineral and Chemical Company); and other materials as are described in U.S. Patent No. 3,531,315.
- a preferred inhibitor is designated Additive "R"*.
- Additive "R” up to about 12 grams per 100 square feet of plating charge can be included in the flash promoter, with about 8 grams being preferred, and up to about 1.0 gram per pound of plating metal charged, with about 0.35 gram being preferred, has been found to provide satisfactory results in the continuing promoter.
- the optimum amount of a given dispersant or inhibitor is, of course, related to the specific system in which it is used. In general, however, large volumes of liquid, open barrels, or highly acidic conditions, typically require more inhibitor than small volumes of liquid, closed barrels, or less acidic conditions. Similarly, the optimum concentration of dispersant decreases as the pH rises or as the weight of plating metal particles decreases.
- the promoter chemistry as well as the plating metal additions are added at appropriate intervals during the plating cycle.
- the amount of plating metal added and the frequency of such additions are dependent upon the ultimate coating thickness desired and the size, weight, and geometry of the articles to be plated. Additionally, the ratio of articles to impact media, the size of the plating barrel, and rotational speed thereof can have an affect upon the number and frequency of such
- a sufficient quantity of plating metal to provide a predetermined thickness can be added to the plating mixture.
- the introduction rate of the metal powder to the plating mixture which is again dependent upon the aforementioned factors, will typically be 1/30 of the total plating metal quantity required, with an addition being e ve ry 1 to 1.5 minutes. With each addition of metal, the appropriate quantity of continuing promoter is added simultaneously therewith.
- the quantity of plating metal can be increased to about 1/12 the total amount thereof required, and each increment can be added at approximately 3 to 4 minute intervals, again with the corresponding quantity of necessary chemistry.
- the plating cycle can be continued for an additional 3 to 5 minutes at which time the plated articles can be rinsed, separated from the impact media and dried.
- Example 1 A 1,160 pound load of 3/4 by 2-1/2 inch bolts (232 square feet of plating surface) was precleaned in an inhibited sulfuric acid-based cleaner containing surfactants and placed in a 60 cubic foot multi-sided barrel having an angle of approximately 20° above horizontal rotating at 10 RPM's, together with an equal volume of glass beads of various sizes (4 parts 3.5 to 5 mesh, 2 parts 8-10 mesh, 1 part 14-30 mesh, and 1 part 40-70 mesh), the glass beads functioning as impact media. To the mixture, sufficient 24°C (75°F) water was added such that a puddle was formed having a width of 6 to 12 inches while the barrel was rotating, thereby providing a free flowing mixture.
- the metallic coating was found to have a uniform thickness by magnetic thickness testing, good appearance and excellent adhesion by conventional tape peel testing. The thickness was from 2.4 to 2.6 mils (60 to 65 ⁇ ).
- Example 1 was duplicated with the exception that the following mixture was added incrementally with the zinc powder:
- the thickness was measured and determined to be from 2.9 to 3.1 mils (72 to 78 ⁇ ).
- Example 3 Example 1 was duplicated with the exception that the folloiwng mixture was utilized in incremental addition with the metallic zinc powder:
- the resultant coating exhibited excellent adhesion and uniform appearance.
- the thickness, as measured, was found to be 2.8 to 3.3 mils (70 to 82 ⁇ ).
- Example 4 A precleaned, as in Example 1, 200 pound load of
- Example 5 A precleaned, as in Example 1, 6 pound load of 5/16 by 3/4 inch bolts (500 square inches of plating surface) was placed in a 0.3 cubic foot open end multisided barrel having an angle of approximately 20° above horizontal rotating at 60 RPM's, together with an equal volume of glass beads of various sizes, as in Example 1. Then 24°C water was added to the mixture with 3.0 grams of an inhibited acid solution containing 99.7 parts 66°
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Chemically Coating (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU71762/81A AU541221B2 (en) | 1980-05-12 | 1981-05-08 | Composition for mechanically depositing heavy metallic coatings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14873280A | 1980-05-12 | 1980-05-12 | |
US148732 | 1980-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1981003292A1 true WO1981003292A1 (en) | 1981-11-26 |
Family
ID=22527104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1981/000642 WO1981003292A1 (en) | 1980-05-12 | 1981-05-08 | Composition for mechanically depositing heavy metallic coatings |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0040090B1 (enrdf_load_stackoverflow) |
JP (1) | JPS57500568A (enrdf_load_stackoverflow) |
CA (1) | CA1171605A (enrdf_load_stackoverflow) |
DE (1) | DE3172411D1 (enrdf_load_stackoverflow) |
WO (1) | WO1981003292A1 (enrdf_load_stackoverflow) |
ZA (1) | ZA813160B (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276568B1 (en) * | 1986-12-29 | 1992-04-22 | Alcan International Limited | Lubricant emulsion |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4724168A (en) * | 1986-07-17 | 1988-02-09 | Macdermid, Incorporated | Mechanical galvanizing coating resistant to chipping, flaking and, cracking |
JPH01501071A (ja) * | 1986-10-22 | 1989-04-13 | マクダーミッド,インコーポレーテッド | 酸化し易い金属の機械的メツキ |
DE19547786A1 (de) | 1995-12-20 | 1997-06-26 | Basf Lacke & Farben | Aufbau von modifizierten Epoxidharzen für die kathodische Elektrotauchlackierung mit Katalysator-Desaktivierung und Diolmodifizierung |
DE19618379A1 (de) | 1996-05-08 | 1997-11-13 | Basf Lacke & Farben | Mit Copolymeren des Vinylacetats modifizierte in Wasser dispergierbare Epoxidharze |
DE19930060A1 (de) | 1999-06-30 | 2001-01-11 | Basf Coatings Ag | Elektrotauchlackbad mit wasserlöslichem Polyvinylalkohol(co)polymeren |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2976169A (en) * | 1958-02-12 | 1961-03-21 | Du Pont | Immersion deposition of tin |
US3268356A (en) * | 1959-01-28 | 1966-08-23 | Minnesota Mining & Mfg | Metal plating by successive addition of plating ingredients |
US3328197A (en) * | 1965-02-08 | 1967-06-27 | Minnesota Mining & Mfg | Mechanical plating |
US3400012B1 (enrdf_load_stackoverflow) * | 1964-06-10 | 1968-09-03 | ||
US3460977A (en) * | 1965-02-08 | 1969-08-12 | Minnesota Mining & Mfg | Mechanical plating |
US3531315A (en) * | 1967-07-17 | 1970-09-29 | Minnesota Mining & Mfg | Mechanical plating |
EP0012399A1 (de) * | 1978-12-15 | 1980-06-25 | Bernd Tolkmit | Verfahren zum Aufbringen metallischer Überzüge auf metallische Werkstücke durch mechanisch-chemisches Behandeln der Werkstücke |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3425946A (en) * | 1966-08-26 | 1969-02-04 | William M Emons Jr | Electroless plating composition |
US3627558A (en) * | 1968-11-27 | 1971-12-14 | Technograph Printed Circuits L | Sensitization process for electroless plating |
US4287253A (en) * | 1975-04-08 | 1981-09-01 | Photocircuits Division Of Kollmorgen Corp. | Catalytic filler for electroless metallization of hole walls |
US4181760A (en) * | 1977-06-06 | 1980-01-01 | Surface Technology, Inc. | Method for rendering non-platable surfaces platable |
-
1981
- 1981-05-08 JP JP56501797A patent/JPS57500568A/ja active Pending
- 1981-05-08 WO PCT/US1981/000642 patent/WO1981003292A1/en unknown
- 1981-05-11 EP EP81302092A patent/EP0040090B1/en not_active Expired
- 1981-05-11 DE DE8181302092T patent/DE3172411D1/de not_active Expired
- 1981-05-12 CA CA000377432A patent/CA1171605A/en not_active Expired
- 1981-05-12 ZA ZA00813160A patent/ZA813160B/xx unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2976169A (en) * | 1958-02-12 | 1961-03-21 | Du Pont | Immersion deposition of tin |
US3268356A (en) * | 1959-01-28 | 1966-08-23 | Minnesota Mining & Mfg | Metal plating by successive addition of plating ingredients |
US3400012B1 (enrdf_load_stackoverflow) * | 1964-06-10 | 1968-09-03 | ||
US3400012A (en) * | 1964-06-10 | 1968-09-03 | Minnesota Mining & Mfg | Process of plating metal objects |
US3328197A (en) * | 1965-02-08 | 1967-06-27 | Minnesota Mining & Mfg | Mechanical plating |
US3460977A (en) * | 1965-02-08 | 1969-08-12 | Minnesota Mining & Mfg | Mechanical plating |
US3531315A (en) * | 1967-07-17 | 1970-09-29 | Minnesota Mining & Mfg | Mechanical plating |
EP0012399A1 (de) * | 1978-12-15 | 1980-06-25 | Bernd Tolkmit | Verfahren zum Aufbringen metallischer Überzüge auf metallische Werkstücke durch mechanisch-chemisches Behandeln der Werkstücke |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276568B1 (en) * | 1986-12-29 | 1992-04-22 | Alcan International Limited | Lubricant emulsion |
Also Published As
Publication number | Publication date |
---|---|
DE3172411D1 (en) | 1985-10-31 |
ZA813160B (en) | 1982-08-25 |
CA1171605A (en) | 1984-07-31 |
JPS57500568A (enrdf_load_stackoverflow) | 1982-04-01 |
EP0040090A1 (en) | 1981-11-18 |
EP0040090B1 (en) | 1985-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4389431A (en) | Process for mechanically depositing heavy metallic coatings | |
US3531315A (en) | Mechanical plating | |
US3328197A (en) | Mechanical plating | |
EP0040090B1 (en) | Process for mechanically depositing heavy metallic coatings | |
US5597975A (en) | Mechanical plating of small arms projectiles | |
US3141780A (en) | Copper coating compositions | |
US4880132A (en) | Process for plating adherent co-deposit of aluminum, zinc, and tin onto metallic substrates, and apparatus | |
US5587006A (en) | Composition and process for mechanical plating of nickel-containing coatings on metal substrates | |
JPH0613753B2 (ja) | 無電解メッキに使用する微細な金属体を含む溶液の製造方法 | |
JP2006525424A (ja) | リン酸処理溶液で金属製の物体を被覆する方法およびリン酸処理溶液 | |
EP0295754B1 (en) | Surface technique that accelerates the mass grinding and polishing of metal articles in roto finish equipment | |
US4618513A (en) | Tin plating immersion process | |
CN106498455B (zh) | 一种机械镀锌-铜过程沉积铜用添加剂 | |
EP0276256B1 (en) | Mechanical galvanizing coating resistant to chipping, flaking and cracking | |
Loshkaryov et al. | Some trends in the influence of surface-active substances on electrode processes | |
CN108677182A (zh) | 一种机械沉积镉及镉合金镀层用活化剂 | |
CN115094507A (zh) | 一种挂具退镀工艺用的退镀液及其退镀方法、检测方法 | |
US3164448A (en) | Preparation of metallic surfaces for cladding with comminuted metals and the products so clad | |
US20020182337A1 (en) | Mechanical plating of zinc alloys | |
KR20210024706A (ko) | 도금강판용 도금액, 도금강판 및 그 제조방법 | |
RU2783624C2 (ru) | Способ селективного фосфатирования комбинированной металлической конструкции | |
CN108754483A (zh) | 一种机械沉积镉用促进剂 | |
CN106637317A (zh) | 一种机械镀用铜金粉浆料及其配制方法 | |
CN118932271A (zh) | 一种喷射沉积镀锌铝镁镀层的酸性喷射料及其制备方法 | |
KR850001441B1 (ko) | 강, 아연, 알루미늄 또는 이들이 기재로 된 합금의 금속표면을 피복하기 위한 전처리용 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): AU JP |