WO1980002016A1 - Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur - Google Patents

Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur Download PDF

Info

Publication number
WO1980002016A1
WO1980002016A1 PCT/FR1980/000042 FR8000042W WO8002016A1 WO 1980002016 A1 WO1980002016 A1 WO 1980002016A1 FR 8000042 W FR8000042 W FR 8000042W WO 8002016 A1 WO8002016 A1 WO 8002016A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
oxygen
pressure
diver
plunger
Prior art date
Application number
PCT/FR1980/000042
Other languages
English (en)
Inventor
Y Masson
Original Assignee
Lama Lab Mecaniques Appliquees
Y Masson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7907137A external-priority patent/FR2451858A1/fr
Priority claimed from FR7924850A external-priority patent/FR2466392A2/fr
Application filed by Lama Lab Mecaniques Appliquees, Y Masson filed Critical Lama Lab Mecaniques Appliquees
Priority to DE8080900493T priority Critical patent/DE3064470D1/de
Publication of WO1980002016A1 publication Critical patent/WO1980002016A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1842Ambient condition change responsive
    • Y10T137/2036Underwater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the invention relates to regulating the partial pressure of oxygen in the gas mixture of the respiratory circuit of a diver, said plunger being equipped with a breathing apparatus operating in closed circuit and being connected to a standby chamber located at a distance and where a pressure equal to or close to atmospheric pressure prevails.
  • Respiratory systems of this type are "closed circuits" where the partial pressure of oxygen is measured in order to control the admission of oxygen.
  • the devices known to date are from compact type.
  • the pressure and humidity conditions impose on the electronic measurement device, a complexity and a quality of the components such as these systems are expensive and require special supervision and skill of the diver.
  • the primary function of the diver is to do an efficient job. It is penalizing to impose a respiratory concern on him when he is in a situation of pressure which affects his reflexes, his spirit of decision and initiative.
  • the present invention aims to free the diver from all respiratory concerns by entrusting this monitoring to personnel who are nearby in the atmospheric observation chamber of the submarine.
  • this sample is sent to the standby chamber, the partial oxygen pressure of the sample is measured there and an electrical control signal is produced there if the measured pressure falls below a set value, and
  • the command signal is used to initiate an injection of a defined quantity of a gas mixture rich in oxygen into the respiratory circuit of the diver.
  • the sample from the respiratory circuit is sent to the standby chamber by a capillary conduit so that the variation in the partial pressure of oxygen at the outlet of the capillary reproduces the variation in this pressure at the inlet of the capillary, therefore in the respiratory circuit, with a delay, the section of the capillary being chosen to limit the duration of the transfer of the sample along the capillary.
  • the interval between two injections is used to prepare said defined quantity.
  • said defined quantity is prepared by loading a capacity with the oxygen-rich mixture under a determined differential pressure.
  • said injection is carried out by discharging, in a simple conduit terminating in the respiratory circuit, a capacity previously filled with the mixture rich in oxygen under a determined differential pressure. The invention is not limited to this application.
  • the respiratory system which equips the diver to provide him with the gaseous mixture which he must breathe, instead of being carried by the diver, can be a chamber or a chamber in which the diver is located and in which reigns an atmosphere that is breathed by the diver.
  • the respiratory system is a chamber in which the diver is located and which contains a gas mixture breathed by the diver.
  • this room is a hyperbar room placed in a room constituting the standby room and intended to simulate the diving depth.
  • the chamber is a working box submerged at the working depth.
  • the plunger moves in the water from a submerged chamber constituting a plunger chamber connected to a watch chamber located on board a surface vessel, and the gas mixture is prepared in this submerged room.
  • Figure 1 is a general diagram of the device;
  • Figure 2 is a diagram of the diver's breathing circuit;
  • Figure 3 is a diagram of part of the device
  • Figure 4 is a diagram of a device according to the invention in the case of a hyperbar chamber
  • Figure 5 is a variant of the device of Figure 4.
  • Figure 6 is a diagram of a device according to the invention in the case of a working box
  • Figure 7 is a variant of the device of Figure 6.
  • Figure 8 is a diagram of a device according to the invention in the case of a turret diving.
  • Figure 1 shows a "spit-diver" submarine 1 which includes a watch chamber 2 where atmospheric pressure prevails and where the surveillance personnel are held and a compartment 3 at bottom pressure where the divers stand. It is assumed that a diver 4 has left this compartment and is moving in deep water, say at 100-300 meters.
  • the plunger 4 is equipped with a breathing device ( Figures 1 and 2) which constitutes a closed breathing circuit comprising a mouthpiece or mask 5 connected by two tubes 6, 7 to a flexible bag 8 of four to five liters.
  • Check valves 9 ensure the circulation of gases in the direction indicated by the arrows, in a manner known per se.
  • the circuit includes a cartridge 10 for fixing the exhaled carbon dioxide and a valve 11 for discharging an overflow of gas, if necessary.
  • this circuit (for example in the region of the bag 8) is connected to the submarine by an umbilical 12 which contains two conduits 13, 14 communicating with the interior of the circuit.
  • the conduit 13 is a capillary conduit of very small section (of the order of 0.5 mm in diameter) which connects the circuit to a measuring device 15 located in the standby chamber 2 of the submarine.
  • the apparatus 15 continuously measures the partial pressure of oxygen of the gas sampled by the capillary 13 and supplies, as a function of this measurement, an electrical signal which controls by a Season 16 a three-way electro-pneumatic distributor 17 located in the diving room.
  • the electro-pneumatic distributor 17 ( Figures 1 and 3) has an outlet 17a to which the other conduit 14 of the umbilical leads, has a inlet 17b connected to an external reservoir 18 of breathable gas, via a pressure reducer 19 and, another inlet 17c connected to a capacity 20 of volume C located for example in the diving compartment 3.
  • the distributor 17 puts the capacity 20 in relation either with the regulator 19 or with the conduit 14.
  • the capacity 20 is in relation to the pressure reducer and is timed at a stabilized differential pressure ⁇ p.
  • the dispenser is connected with the conduit 14 in which it discharges by supplying the plunger with a quantity C ⁇ p of breathable gas.
  • the value of ⁇ p is preset and defined according to the oxygen content of the gas mixture used. Thus, at each discharge, the quantity of oxygen supplied to the diver is perfectly defined. Between two injections, the plunger breathing circuit is closed.
  • the measuring device 15 is adjusted to provide an electrical signal which controls the distributor in order to discharge the capacity 20 in the conduit 14 as soon as the detected partial pressure of oxygen is lower than a minimum set value.
  • the conditions are set so that each discharge the partial pressure of oxygen of the gas mixture breathed by the plunger is raised by a constant value of 200 mb. Between two injections, the plunger circuit is closed and this pressure changes between the minimum setpoint value (for example 300 mb) and this value increased by 200 mb (i.e. 500 mb).
  • the frequency of injections depends on the work provided. At rest, it is about one injection every 2.5 minutes.
  • oxygen content of the injected rich mixture is chosen so that at the working depth, its partial oxygen pressure is close to 1000 mb. If necessary, the diver can then use this mixture freely thanks to a direct supply link 21 which connects the respiratory circuit of the plunger to the regulator 19 under the control of a manual control 22. In particular, this manually controlled supply allows to adjust, if necessary, the respiratory tidal volume.
  • the "oxygen rich" gas mixture is a mixture which is richer than the set value. Ultimately, this mixture can be pure oxygen.
  • the device is best suited for diving depths of 20 to 300 meters, with the capillary providing insufficient flow at less than 20 meters and excessive response time at more than 300 meters. In the embodiments of Figures 4 to 7, the device comprises:
  • a capillary gas conduit 13 between this chamber and an apparatus for measuring the partial pressure of oxygen 15 located in a monitoring chamber where a pressure close to atmospheric pressure prevails, this apparatus being capable of measuring the partial pressure of oxygen of the gas mixture of said chamber where the plunger is located and providing a control signal when this pressure becomes less than a set value;
  • the means G represent all of the means 17 (distributor), 19 (regulator), and 20 (capacity) of the device of FIG. 1 or equivalent means.
  • the chamber D is a hyperbar chamber and the means G are located outside the chamber, this exterior constituting the standby chamber.
  • the regulator 19 is piloted by the pressure inside the chamber D, this piloting link being represented by the link in dotted lines in the drawing.
  • the means G are placed inside the hyperbar chamber D (decompression chamber or saturation chamber).
  • the chamber D constitutes a work box directly placed on the work site and the diver works there dry, without a respiratory mask so that it directly breathes the atmosphere of the room.
  • the pneumatic system is located in a standby chamber forming part of a surface vessel N. This chamber is connected to the working chamber by the capillary conduit 13 leading to the measuring device 15 and by the supply duct 14 connecting the interior of the working box to the pneumatic system G.
  • the pneumatic system G is placed in the box itself and the standby chamber contains only the measuring device 15.
  • the device comprises:
  • a watch chamber located on board a surface ship N and in which there is a pressure close to atmospheric pressure;
  • a submerged plunger chamber P provided with means G for preparing a defined quantity of an oxygen-rich gas and for injecting said quantity into a gas supply duct 12 connecting the plunger chamber to the respiratory circuit of the plunger, under the control of said control signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Regulation de la pression partielle d'oxygene dans le circuit respiratoire en circuit ferme d'un plongeur. On preleve en continu un echantillon du melange gazeux du circuit; on l'envoie dans la chambre de veile (2) ou l'on mesure sa pression partielle d'oxygene et ou l'on produit un signal electrique de commande si la pression mesuree devient inferieure a une valeur de consigne, et on utilise ce signal pour declencher une injection au plongeur (4) d'une quantite definie d'un melange gazeux riche en oxygene. Application aux plongees en eau profonde.

Description

Procédés et dispositifs pour réguler la pression partielle d'oxygène du mélange gazeux du circuit respiratoire d'un plongeur
L'invention concerne la régulation de la pression partielle d'oxygène du mélange gazeux du circuit respiratoire d'un plongeur, ledit plongeur étant équipé d'un appareil respiratoire fonctionnant en circuit fermé et étant relié à une chambre de veille située à distance et où règne une pression égale ou voisine de la pression atmosphérique.
Elle s'applique notamment au cas des plongeurs reliés à un sous-marin du type "crache-plongeur" et évoluant à une profondeur pouvant atteindre 300 mètres.
L'intervention à grande profondeur de plongeurs à partir de sous-marin nécessite l'utilisation de systèmes respiratoires à faible consommation, la quantité de gaz stockable à bord des submersibles étant limitée.
Les systèmes respiratoires de ce type sont des "circuits fermés" où la pression partielle d'oxygène est mesurée en vue de commander l'admission d'oxygène. Les dispositifs connus à ce jour sont de type compact. De ce fait, les conditions de pression et d'humidité imposent au dispositif électronique de mesure, une complexité et une qualité des composants tels que ces systèmes sont onéreux et réclament une surveillance et compétence particulière du plongeur. Or, il est certain que la fonction première du plongeur est d'effectuer un travail efficace. Il est pénalisant de lui imposer une préoccupation respiratoire alors qu'il est dans une situation de pression qui affecte ses réflexes, son ^esprit de décision et d'initiative.
La présente invention vise à libérer le plongeur de toutes préoccupations respiratoires en confiant cette surveillance au personnel qui se trouve à proximité dans la chambre atmosphérique d'observation du sous-marin.
On y parvient, selon l'invention, grâce à un procédé dans lequel :
(a) on prélève en continu un échantillon du mélange gazeux du circuit respiratoire du plongeur,
(b) on envoie cet échantillon dans la chambre de veille, on y mesure la pression partielle d'oxygène de l'échantillon et on y produit un signal électrique de commande si la pression mesurée devient inférieure à une valeur de consigne, et
(c) on utilise le signal de commandé pour déclencher une injection d'une quantité définie d'un mélange gazeux riche en oxygène au circuit respiratoire du plongeur. En transférant tout le dispositif de mesure et de régulation dans la chambre atmosphérique, non seulement l'électronique fonctionne dans des conditions standards de pression et d'humidité, mais l'appareil respiratoire porté par le plongeur se réduit à un dispositif simple et peu encombrant. Dans un exemple typique, le prélèvement est constitué par un débit compris dans la gamme 0,2 à 0,6 litre normal par minute.
Dans une réalisation préférée, on envoie l'échantillon du circuit respiratoire à la chambre de veille par un conduit capillaire en sorte que la variation de la pression partielle d'oxygène à la sortie du capillaire reproduise la variation de cette pression à l'entrée du capillaire, donc dans le circuit respiratoire, avec un retard, la section du capillaire étant choisie pour limiter la durée du transfert de l'échantillon le long du capillaire.
Dans une réalisation préférée, on utilise l'intervalle entre deux injections pour préparer ladite quantité définie.
Dans une réalisation préférée, on prépare ladite quantité définie en chargeant une capacité avec le mélange riche en oxygène sous une pression différentielle déterminée. Dans une réalisation préférée, on réalise ladite injection en déchargeant, dans un simple conduit aboutissant au circuit respiratoire, une capacité préalablement remplie du mélange riche en oxygène sous une pression différentielle déterminée. L'invention n'est pas limité à cette application.
Ainsi, l'appareil respiratoire qui équipe le plongeur pour lui fournir le mélange gazeux qu'il doit respirer, au lieu d'être porté par le plongeur, peut, être une chambre ou un caisson dans lequel se trouve le plongeur et dans lequel règne une atmosphère qui est respirée par le plongeur.
Selon une application, l'appareil respiratoire est une chambre dans laquelle se trouve le plongeur et qui contient un mélange gazeux respiré par le plongeur.
Dans un cas, cette chambre est une chambre hyperbar placée dans un local constituant la chambre de veille et destinée à simuler la profondeur de plongée.
Dans un autre cas, la chambre est un caisson de travail immergé à la profondeur de travail.
Dans une autre application, le plongeur évolue dans l'eau à partir d'une chambre immergée constituant une chambre de plongeur reliée à une chambre de veille située à bord d'un navire de surface, et l'on prépare le mélange gazeux dans cette chambre immergée. On décrira ci-après ces diverses applications, en référence aux figures du dessin joint sur lequel :
. La Figure 1 est un schéma général du dispositif ; . La Figure 2 est un schéma du circuit respiratoire du plongeur ;
. La Figure 3 est un schéma d'une partie du dispositif ;
. La Figure 4 est un schéma d'un dispositif conforme à l'invention dans le cas d'une chambre hyperbar ;
. La Figure 5 est une variante du dispositif de la Figure 4 ;
. La Figure 6 est un schéma d'un dispositif conforme à l'invention dans le cas d'un caisson de travail ;
. La Figure 7 est une variante du dispositif de la Figure 6 ; et
. La Figure 8 est un schéma d'un dispositif conforme à l'invention dans le cas d'une tourelle de plongée.
La Figure 1 montre un sous-marin "crache-plongeur" 1 qui comprend une chambre de veille 2 où règne la pression atmosphérique et où se tient le personnel de surveillance et un compartiment 3 à la pression du fond où se tiennent les plongeurs. On suppose qu'un plongeur 4 est sorti de ce compartiment et évolue en eau profonde, disons à 100-300 mètres. Le plongeur 4 est équipé d'un dispositif respiratoire (Figures 1 et 2) qui constitue un circuit respiratoire fermé comprenant un embout ou masque 5 relié par deux tubulures 6, 7 à un sac souple 8 de quatre à cinq litres. Des clapets anti-retour 9 assurent la circulation des gaz dans le sens indiqué par les flèches, de façon en soi connue. Le circuit comprend une cartouche 10 pour la fixation du gaz carbonique expiré et un clapet 11 pour la décharge d'un trop-plein de gaz, s'il y a lieu.
Selon l'invention, ce circuit (par exemple dans la région du sac 8) est relié au sous-marin par un ombilical 12 qui contient deux conduits 13, 14 communiquant avec l'intérieur du circuit.
Le conduit 13 est un conduit capillaire de très faible section (de l'ordre de 0,5 mm de diamètie) qui relie le circuit à un appareil de mesure 15 situé dans la chambre de veille 2 du sous-marin. L'appareil 15 mesure en continu la pression partielle d'oxygène du gaz prélevé par le capillaire 13 et fournit, en fonction de cette mesure, un signal électrique qui commande par une Saison 16 un distributeur électro-pneumatique à trois voies 17 situé dans la chambre de plongée.
Le distributeur électro-pneumatique 17 (Figures 1 et 3) a une sortie 17a à laquelle aboutit l'autre conduit 14 de l'ombilical, comporte une entrée 17b reliée à un réservoir extérieur 18 de gaz respirable, par l'intermédiaire d'un détendeur 19 et, une autre entrée 17c reliée à une capacité 20 de volume C située par exemple dans le compartiment de plongée 3. Le distributeur 17 met la capacité 20 en relation soit avec le détendeur 19 soit avec le conduit 14.
Au repos du distributeur, la capacité 20 est en relation avec le détendeur et se chrge à une pression différentielle stabilisée Δp. Au fonctionnement du distributeur, elle est mise en relation avec le conduit 14 dans laquelle elle se décharge en fournissant au plongeur une quantité CΔp de gaz respirable. La valeur de Δ p est préréglée et définie en fonction du taux en oxygène du mélange gazeux utilisé. Ainsi, à chaque décharge, la quantité d'oxygène fournie au plongeur est parfaitement définie. Entre deux injections, le circuit respiratoiœ du plongeur est fermé.
Le dispositif de mesure 15 est réglé pour fournir un signal électrique qui commande le distributeur afin de décharger la capacité 20 dans le conduit 14 dès que la pression partielle d'oxygène détectée est inférieure à une valeur de consigne minimale. Par exemple, selon l'invention, les conditions sont réglées pour qu'à chaque déchargement la pression partielle d'oxygène du mélange gazeux respiré par le plongeur soit élevée d'une valeur constante de 200 mb. Entre deux injections, le circuit du plongeur est fermé et cette pression évolue entre la valeur de consigne minimale (par exemple 300 mb) et cette valeur majorée de 200 mb (soit 500 mb). La fréquence des injections dépend du travail fourni. Au repos, elle est d'environ une injection toutes les 2, 5 minutes. Afin d'éliminer tout risque d'hyperoxie, .e taux d'oxygène du mélange riche injecté est choisi pour qu'à la profondeur de travail, sa pression partielle d'oxygène soit proche de 1000 mb. En cas de besoin, le plongeur peut alors utiliser ce mélange librement grâce à une liaison d'alimentation directe 21 qui relie le circuit respiratoire du plongeur au détendeur 19 sous le contrôle d'une commande manuelle 22. En particulier, cette alimentation à commande manuelle permet d'ajuster, si besoin est, le volume courant respiratoire.
Le mélange gazeux "riche en oxygène" est un mélange qui est plus riche que la valeur de consigne. A la limite, ce mélange peut être de l'oxygène pur. Le dispositif convient le mieux pour des profondeurs de plongée de 20 à 300 mètres, le capillaire offrant un débit insuffisant à moins de 20 mètres et un temps de réponse excessif à plus de 300 mètres. Dans les réalisations des Figures 4 à 7, le dispositif comprend :
. une chambre D où se trouve le plongeur ;
. un conduit capillaire de gaz 13 entre cette chambre et un appareil de mesure de la pression partielle d'oxygène 15 situé dans une chambre deveille où règne une pression voisine de la pression atmosphérique, cet appareil étant apte à mesurer la pression partielle d'oxygène du mélange gazeux de ladite chambre où se trouve le plongeur et à fournir un signal de commande lorsque cette pression devient inférieure à une valeur de consigne ;
. un conduit d'alimentation en gaz 14 débouchant dans la chambre où se trouve le plongeur ; et · des moyens G pour préparer une quantité définie d'un gaz riche en oxygène et injecter ladite quantité dans ledit conduit d'alimentation sous la commande dudit signal de commande.
Les moyens G représentent l'ensemble des moyens 17 (distributeur), 19 (détendeur), et 20 (capacité) du dispositif de la Figure 1 ou des moyens équivalents.
Dans la réalisation de la Figure 2, la chambre D est une chambre hyperbar et les moyens G se trouvent à l'extérieur de la chambre, cet extérieur constituant la chambre de veille.
De préférence, le détendeur 19 est piloté par la pression à l'intérieur de la chambre D, cette liaison de pilotage étant représentée par la liaison en traits pointillés sur le dessin.
Dans la réalisation de la Figure 5, les moyens G sont placés à l'intérieur de la chambre hyperbar D (caisson de décompression ou chambre de saturation). Dans la réalisation des Figures 6 et 7, la chambre D constitue un caisson de travail directement posé sur le site de travail et le plongeur y travaille au sec, sans masque respiratoire en sorte qu'il respire directement l'atmosphère de la chambre. Dans la réalisation de la Figure 6, le système pneumatique est situé dans une chambre de veille faisant partie d'un navire de surface N. Cette chambre est reliée au caisson de travail par le conduit capillaire 13 aboutissant à l'appareil de mesure 15 et par le conduit d'alimentation 14 reliant l'intérieur du caisson de travail au système pneumatique G.
Dans la réalisation de la Figure 7, le système pneumatique G est placé dans le cai sson lui-même et la chambre de veille ne contient que l'appareil de mesure 15.
Dans la réalisation de la Figure 8, le dispositif comprend :
. un dispositif respiratoire en circuit fermé 8 porté par le plongeur ;
. une chambre de veille située à bord d'un navire de surface N et dans laquelle règne une pression voisine de la pression atmosphérique ;
. un conduit capillaire de gaz 13 entre ledit circuit et un appareil de mesure de la pression partielle d'oxygène 15 situé dans la chambre de veille, cet appareil étant apte à mesurer la pression partielle d'oxygène du mélange gazeux dudit circuit et à fournir un signal de commande lorsque cette pression devient inférieure à une valeur de consigne ;
. une chambre de plongeur immpergée P munie de moyens G pour préparer une quantité définie d'un gaz riche en oxygène et pour injecter ladite quantité dans un conduit d'alimentation en gaz 12 reliant la chambre du plongeur au circuit respiratoire du plongeur, sous la commande dudit signal de commande.

Claims

R E V E N D I C A T I O N S
1. Procédé pour réguler la pression partielle d'oxygène du mélange gazeux du circuit respiratoire d'un plongeur, le plongeur étant équipé d'un appareil respiratoire fonctionnant en circuit fermé et étant relié à une chambre de veille située à distance et où règne une pression égale ou voisine de la pression atmosphérique, caractérisé en ce que :
(a) on prélève en continu un échantillon du mélange gazeux du circuit respiratoire du plongeur; (h) on envoie cet échantillon dans la chambre de veille, on y mesure la pression partielle d'oxygène de l'échantillon et on y produit un signal électrique de commande si la pression mesurée devient inférieure à une valeur de consigne ; et (c) on utilise le signal de commande pour déclencher une injection d'une quantité définie d'un mélange gazeux riche en oxygène au circuit respiratoire du plongeur.
2. Procédé selon la revendication 1, caractérisé en ce qu'on envoie l'échantillon du circuit respiratoire à la chambre de veille par un conduit capillaire en sorte que la variation de la pression partielle d'oxygène à la sortie du capillaire reproduise la variation de cette pression à l'entrée du capillaire, donc dans le circuit respiratoire, avec un retard, la section du capillaire étant choisie pour limiter la durée du transfert de l'échantillon le long du capillaire.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on utilise l'intervalle entre deux injections pour préparer ladite quantité définie.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on prépare ladite quantité définie en chargeant une capacité avec le mélange riche en oxygène sous une pression différentielle déterminée.
5. Procédé selon l'une des revendications
1 à 4, caractérisé en ce qu'on réalise ladite injection en déchargeant, dans un simple conduit aboutissant au circuit respiratoire, une capacité préalablement remplie du mélange riche en oxygène sous une pression différentielle déterminée.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on maintient le circuit respiratoire du. plongeur fermé entre deux injections.
7. Procédé selon la revendication 1, caractérisé en ce que l'appareil respiratoire du plongeur comporte une chambre où se trouve le plongeur et qui contient un mélange gazeux respiré par le plongeur.
8. Procédé selon la revendication 7, caractérisé en ce que ladite chambre est une chambre hyperbar placée dans un local constituant la chambre de veille et destinée à simuler la profondeur de plongée.
9. Procédé selon la revendication 7, caractérisé en ce qu'on réalise ladite injection en déchargeant, dans un simple conduit aboutissant dans la chambre hyperbar, une capacité préalablement remplie du mélange riche en oxygène sous une pression différentielle déterminée.
10. Procédé selon la revendication 9, caractérisé en ce qu'on remplit ladite capacité à partir d'une source dudit mélange gazeux riche en oxygène par l'intermédiaire d'un détendeur piloté par la pression dans la chambre hyperbar.
11. Procédé selon la revendication 7, caractérisé en ce que ladite chambre est un caisson de travail immergé à la profondeur de travail.
12. Procédé selon la revendication 1, caractérisé en ce qu'on prépare ledit mélange gazeux dans une chambre immergée constituant une chambre de plongeur reliée à une chambre de veille située à bord d'un navire de surface.
13. Dispositif pour l'application d'un procédé selon l'une des revendications 1 à 6 au cas d'un plongeur relié à un sous-marin comprenant une chambre de veille où règne une pression voisine de la pression atmosphérique, caractérisé en ce qu'il comporte :
. un dispositif respiratoire en circuit fermé porté par le plongeur ;
. un conduit capillaire de gaz entre ce circuit et un appareil de mesure de la pression partielle d'oxygène situé dans la chambre de veille, cet appareil étant apte à mesurer la pression partielle d'oxygène du mélange gazeux du circuit respiratoire et à fournir un signal de commande lorsque cette pression devient inférieure à une valeur de consigne ;
. des moyens à bord du sous-marin pour préparer une quantité définie d'un gaz riche en oxygène ; . un conduit d'alimentation en gaz reliant le circuit respiratoire du plongeur au sous-marin ; et
. des moyens associés à l'appareil de mesure pour injecter ladite quantité dans ledit conduit d'alimentation sous la commande dudit signal de commande.
14. Dispositif selon la revendication 13, caractérisé en ce qu'il comprend à bord du sous-marin un dispositif pneumatique relié à une réserve de gaz respirable riche en oxygène, à une capacité et audit conduit d'alimentation, ce dispositif pneumatique étant commandé par l'appareil de mesure pour établir une communication, soit entre la réserve et la capacité pour charger cette dernière, soit entre la capacité et ledit conduit pour décharger la capacité dans le conduit.
15. Dispositif selon l'une des revendications 13 ou 14, caractérisé en ce que le dispositif pneumatique est situé dans un compartiment du sousmarin qui constitue une chambre de plongeur.
16. Dispositif pour la mise en oeuvre d'un procédé selon la revendication 7, caractérisé en ce qu'il comprend :
. une chambre où se trouve le plongeur ; . un conduit capillaire de gaz entre cette chambre et un appareil de mesure de la pression partielle d'oxygène situé dans une chambre de veille où règne une pression voisine de la pression atmosphérique, cet appareil étant apte à mesurer la pression partielle d'oxygène du mélange gazeux de ladite chambre où se trouve le plongeur et à fournir un signal de commande lorsque cette pression devient inférieure à une valeur de consigne ;
. un conduit d'alimentation en gaz débouchant dans la chambre où se trouve le plongeur ; et
. des moyens pour préparer une quantité définie d'un gaz riche en oxygène et injecter ladite quantité dans ledit conduit d'alimentation sous la commande dudit signal de commande.
17. Dispositif selon la revendication 16, pour la mise en oeuvre d'un procédé selon l'une des revendications 2 à 4, caractérisé en ce que ladite chambre où se trouve le plongeur est une chambre hyperbar.
18. Dispositif selon la revendication 16, pour la mise en oeuvre d'un procédé selon la revendication 5, caractérisé en ce que ladite chambré où se trouve le plongeur, est un caisson de travail immergé à la profondeur de travail.
19. Dispositif pour la mise en oeuvre d'un procédé selon la revendication 12, caractérisé en ce qu'il comprend :
. un dispositif respiratoire en circuit fermé porté par le plongeur ; . une chambre de veille située à bord d'un navire de surface et dans laquelle règne une pression voisine de la pression atmosphérique ;
. un conduit capillaire de gaz entre ledit circuit et un appareil de mesure de la pression partielle d'oxygène situé dans la chambre de veille, cet appareil étant apte à mesurer la pression partielle d'oxygène du mélange gazeux dudit circuit et à fournir un signal de commande lorsque cette pression devient inférieure à une valeur de consigne ; . une chambre de plongeur immergée munie de moyens pour préparer une quantité définie d'un gaz riche en oxygène et pour injecter ladite quantité dans un conduit d'alimentation en gaz reliant la chambre du plongeur au circuit respiratoire du plongeur sous la commande dudit signal de commande.
PCT/FR1980/000042 1979-03-21 1980-03-21 Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur WO1980002016A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8080900493T DE3064470D1 (en) 1979-03-21 1980-03-21 Processes and devices for regulating the partial pressure of oxygen of the gas mixture in a respiratory circuit of a diver

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR7907137A FR2451858A1 (fr) 1979-03-21 1979-03-21 Procede et dispositif pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur
FR7907137 1979-03-21
FR7924850A FR2466392A2 (fr) 1979-10-05 1979-10-05 Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur

Publications (1)

Publication Number Publication Date
WO1980002016A1 true WO1980002016A1 (fr) 1980-10-02

Family

ID=26221071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1980/000042 WO1980002016A1 (fr) 1979-03-21 1980-03-21 Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur

Country Status (5)

Country Link
US (1) US4362154A (fr)
EP (1) EP0025444B1 (fr)
DE (1) DE3064470D1 (fr)
IT (1) IT1130983B (fr)
WO (1) WO1980002016A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000335A1 (fr) * 1992-06-26 1994-01-06 Strom Einar Procede d'alimentation d'un navire immerge en air et en carburant, et dispositif d'equilibrage du sous-marin en fonction de la profondeur d'eau

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454878A (en) * 1982-01-26 1984-06-19 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Oxygen accumulator for constant partial pressure semi-closed breathing apparatus
US4494537A (en) * 1982-06-08 1985-01-22 Gottlieb Mark P Breathing apparatus for supplying fluid to a user on demand
US4501270A (en) * 1982-10-27 1985-02-26 Whittaker Corporation Breathing air conservation system
DE3625016A1 (de) * 1986-07-24 1988-02-04 Deutsche Forsch Luft Raumfahrt Tieftauch-atemgarnitur
DE3732167A1 (de) * 1987-09-24 1989-04-13 Haux Life Support Gmbh Taucherdruckkammern, medizinische behandlungsueber- und unterdruckkammern, sowie unterdruckkammern fuer pilotentests in modulbauweise in verbindung mit der flachbodentechnik
US4986267A (en) * 1988-07-12 1991-01-22 Doss Stephen F Underwater breathing apparatus
US5193530A (en) * 1989-12-15 1993-03-16 Undersea Technology, Inc. Underwater breathing apparatus
US5320093A (en) * 1990-12-21 1994-06-14 Brigham And Women's Hospital Rapid anesthesia emergence system using closed-loop PCO2 control
US5471976A (en) * 1993-06-09 1995-12-05 Smith; Raymond K. Mini diving system
US5411018A (en) * 1994-05-26 1995-05-02 Rinehart; Laney T. Underwater oxygen supply system
FR2723909A1 (fr) * 1994-08-26 1996-03-01 Comex Compagnie Maritime D Exp Procede et installation de plongee sous-marine en melange respiratoire a l'hydrogene
US5906200A (en) * 1997-05-28 1999-05-25 Tohgun Kigyo Co., Ltd. Method for a sea-bottom walking experience and apparatus for a sea-bottom walking experience
US7263995B2 (en) 2001-02-28 2007-09-04 Hyperbaric Technology, Inc. Hyperbaric oxygen therapy system controls
SE526233C2 (sv) * 2003-03-28 2005-08-02 Interspiro Ab System för att förse en dykare med andningsgas
WO2005006279A1 (fr) * 2003-07-09 2005-01-20 Innovation Maritime Simulateur et procede servant a effectuer un entrainement a l'evacuation d'un sous-marin sous l'eau
GB2528025B (en) * 2014-05-02 2019-03-06 Fathom Systems Ltd Determining the partial pressure of a gas in a pressure vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1572062A (fr) * 1967-08-30 1969-06-20
US3593735A (en) * 1968-09-04 1971-07-20 Dick Evans Inc Method and apparatus for maintaining a preselected partial pressure
US4026283A (en) * 1973-12-28 1977-05-31 Taylor Diving & Salvage Co., Inc. Closed circuit, free-flow underwater breathing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217730A (en) * 1956-02-03 1965-11-16 Jr Thomas A Banning Multiple supply balanced valve, pressure reducing valves, and the like
US3524444A (en) * 1966-03-11 1970-08-18 Air Reduction Underwater gas supply system and method of operation
US3688770A (en) * 1970-10-08 1972-09-05 Westinghouse Electric Corp High pressure gas pressurization system
DE2648141C2 (de) * 1976-10-23 1983-03-31 Drägerwerk AG, 2400 Lübeck Tieftaucheinrichtung mit geschlossenem Atemgaskreislauf

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1572062A (fr) * 1967-08-30 1969-06-20
US3593735A (en) * 1968-09-04 1971-07-20 Dick Evans Inc Method and apparatus for maintaining a preselected partial pressure
US4026283A (en) * 1973-12-28 1977-05-31 Taylor Diving & Salvage Co., Inc. Closed circuit, free-flow underwater breathing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mechanical Engineering, no. 12, volume 97, décembre 1975, New York (US) P.S. Riegel "Portable One-Man Recompression Chamber", voir pages 26 à 31. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000335A1 (fr) * 1992-06-26 1994-01-06 Strom Einar Procede d'alimentation d'un navire immerge en air et en carburant, et dispositif d'equilibrage du sous-marin en fonction de la profondeur d'eau

Also Published As

Publication number Publication date
EP0025444A1 (fr) 1981-03-25
US4362154A (en) 1982-12-07
DE3064470D1 (en) 1983-09-08
IT8020735A0 (it) 1980-03-18
EP0025444B1 (fr) 1983-08-03
IT1130983B (it) 1986-06-18

Similar Documents

Publication Publication Date Title
EP0025444B1 (fr) Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur
US5127398A (en) Breathing apparatus mouthpiece
US4273120A (en) Underwater breathing apparatus
US4423723A (en) Closed cycle respirator with emergency oxygen supply
US2428425A (en) Self-contained emergency oxygen breather
US4068657A (en) Constant volume buoyancy compensation system
WO2016113560A1 (fr) Détermination de pression partielle de gaz, étalonnage de capteur de pression
US3111946A (en) Breathing equipment particularly for divers
US4998499A (en) Underwater pneumatic horn
ATE26823T1 (de) Vorrichtung zur erhoehung der sauerstoffkonzentration in den schichten unter der wasseroberflaeche einer thermisch stratifizierten wassermasse.
CN109720524B (zh) 一种水下舱室环境远程调控系统及方法
US4106504A (en) Portable recompression chamber with air scrubber
US4951660A (en) Diver's rescue apparatus
ATE64129T1 (de) Autonomes unterwasseratmungsgeraet.
US2893386A (en) Gas demand equipment
EP0861188B1 (fr) Appareillage de plongee autonome
JPS6240239B2 (fr)
FR2466392A2 (fr) Procedes et dispositifs pour reguler la pression partielle d'oxygene du melange gazeux du circuit respiratoire d'un plongeur
GB964788A (en) Improvements in or relating to underwater breathing apparatus
EP0203133A1 (fr) Equipement de respiration auxiliaire.
EP0274868A1 (fr) Appareil de mesure
NO165533B (no) Pusteutstyr for dypvannsdykking.
HK1004594A1 (en) System for extinguishing of fires
US2693179A (en) Apparatus for underwater immersion
US5778876A (en) Self-contained oxygen rebreather with semi-permeable membrane to vent excess helium

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE GB SE

WWE Wipo information: entry into national phase

Ref document number: 1980900493

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1980900493

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1980900493

Country of ref document: EP