WO1980001717A1 - Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed - Google Patents
Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed Download PDFInfo
- Publication number
- WO1980001717A1 WO1980001717A1 PCT/CH1979/000023 CH7900023W WO8001717A1 WO 1980001717 A1 WO1980001717 A1 WO 1980001717A1 CH 7900023 W CH7900023 W CH 7900023W WO 8001717 A1 WO8001717 A1 WO 8001717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gyroscope
- axis
- instead
- earth
- time
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/183—Compensation of inertial measurements, e.g. for temperature effects
- G01C21/188—Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
Definitions
- the content of this patent application is to establish a process for the automatic, cartographic display of the geographic location for vehicles and hikers of all kinds.
- the already existing, technical perfection of electronic computing is accompanied by the high precision of the time measurement, as well as the technical level of the gyroscope and artificial horizon Hessen to realize this project.
- the accuracy made possible by gyroscope data and calculation would allow an earth ordinate setting in values of angular seconds, but the question of whether the two reference directions are adequately observed with the help of an artificial horizon ⁇ m ⁇ ⁇ goal direction gyroscope is still open. However, it would be possible to convey the reference directions to the gyroscopes from transmitters located on earth satellites.
- the method is based on the following fact: As a result of the earth's rotation, a body in its own movement undergoes a change in its angular velocity in proportion to the angular velocity of the earth's rotation ⁇ . It takes either more or less time than Earth to cover a certain angle of earth rotation. This angular velocity change is with the help of a gyroscope axis retained direction of the locally horizontal, geographical latitude.
- the measurement takes place at the end of a measurement phase.
- the time of the eastern gyroscope tip required to pass a prescribed gyroscope drift is measured in seconds according to astronomical time.
- the drift is circularly limited to the radius of 1 degree of the sphere, which describes the axis tip GS of a freely movable gyroscope around its axis center.
- GS can be a mechanical axis tip, the stop of which is mechanically registered on the 1-degree limiting ring, or the axis tip GS can be replaced by a laser beam, the arrival of which is registered photoelectrically.
- the pole or starting position of the gyroscope axis is the west-east horizontal.
- the reading is taken frontally to the starting position with a view from west to east.
- the gyroscope axis must be brought back into its new pole position, i.e. in the locally horizontal west-east direction. In order to bridge the time gap caused by this maneuver / 2 gyroscopes of the same type are used, which replace each other.
- the principle of this measuring method is based on the behavior of the gyroscope axis tip GS without the mobile body E moving on its own.
- GS would display the angular degree of the geographical latitude ⁇ Ref at all locations on earth after passing through 1 degree drift on the scale circle Kr shown in the drawing. If a movement of the mobile body E takes place during the measurement phase, then an angle difference ⁇ Dif , which corresponds to E, is included in the read angle degree ⁇ measurement . In order to identify the angle ⁇ Ref , the following angle difference correction must be carried out: ⁇ Ref corresponds to the latitude lat. The difference between ⁇ Mess and ⁇ Ref corresponds to the geographic longitude interval Int long in degrees.
- the advantage of this measurement method is that the changes in direction on two levels, the west-east direction and the horizontal, can be recorded with the help of a single gyroscope axis.
- the drift angle ⁇ of the freely movable gyroscope axis is regarded as the resultant of these two directional components.
- the west-east direction component alone would rotate without E in the ratio sin lat ⁇ 1 ° / 240 s.
- the horizontal cleaning component alone would rotate without E in the ratio cos lat ⁇ 1 ° / 240 s.
- the total change in direction corresponds to the bisector in the 3rd dimension, each of which is geographical represents width. Knowing the geographical latitude allows the searcher to convert their distance of change of location based on Int long and the geographical latitude reached in kilometers.
- the figure shows the 1 degree radius pole circle Kr of the eastern gyroscope axis tip GS.
- the center 0 of this circle embodies the free pivot point of the gyroscope axis and corresponds to its starting position, the horizontal west-east direction, seen in a frontal view from west to east.
- the arcuate reading scale 0-90 ° from the center to the outside, which is located on the left in the figure, is addressed when the device is operated in the southern hemisphere, while the analog reading scale on the right in the figure , southern half of the circle is reciprocally addressed in the northern hemisphere.
- the angle OC is positive on the northern earth hemisphere + ⁇ and negative on the southern earth hemisphere - ⁇ .
- the half of the circle lying above in the figure, facing away from the earth when using the device, is used for the angular velocities of the mobile body E ⁇ , while the half of the circle facing the earth below for the angular speeds of the mobile body E> ⁇ in Is claimed.
- the points GS 1 , GS 2 and GS 3 represent, for example, reference reading points of the eastern gyroscope axis tip GS.
- the straight lines GS 1 -0, GS 2 -0 and GS 3 -0 divide the respective angle ⁇ .
- the given reference angle ⁇ of the ⁇ 1 - ⁇ 3 drawing NH Northern Earth Hemisphere SH Southern Earth Hemisphere
- the latitude latitude and the longitude longitude Int long go after the end of the first measurement phase and after the end of each subsequent measurement phase. from the trigonometric processing of the drift reading listed below.
- the reading of the respective latitude latitude refers to the fact that their angle ⁇ Ref would not correspond to the latitude latitude without the mobile body's own movement after the reference time t Ref of 240 s.
- a corresponding angle difference correction must be carried out each time:
- ⁇ Dif represents the longitude Int Long, which gives:
- the longitude Z is calculated according to the longitude of Greenwich:
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
The geographical position of a moving body in degrees of earth co-ordinates is obtained by measuring the precession of the gyroscope which the geographical latitude and of is in relation with the speed of the body.
Description
Berechnung des geographischen Standortes eines mobilen Körpers mittels gyroskopischem Visieren seiner Winkelgeschwindigkeitsdifferenz im Vergleich zur ErdrotationCalculation of the geographic location of a mobile body by gyroscopic sighting of its angular velocity difference compared to the earth's rotation
Beschreibungdescription
Das vorliegende Patentgesuch hat .zum Inhalt ein Verfahren zur automatischen, kartographischen Anzeige des geographischen Standortes für Fahrzeuge und Wanderer aller Art zu gründen. Die bereits bestehende, technische Perfektion des elektronischen Rechnens begleitet von der hohen Präzision der Zeitmessung, sowie das technische Niveau von Gyroskop und künstlichem Horizont Hessen die Verwirklichung dieses Projektes zu. Die durch Gyroskopdaten und Rechnung ermöglichte Genauigkeit würde eine Erdordinaten-Einstellung in Werten von Winkelsekunden erlauben, doch steht die Frage einer hiefür ausreichenden Einhaltung der beiden Referenzrichtungen mit Hilfe von künstlichem Horizont τmά ΪTordrichtungsgyroskop noch offen. Es gäbe jedoch die Möglichkeit den Gyroskopen die Referenzrichtungen von auf Erdsatelliten befindlichen Sendern aus zu vermitteln.The content of this patent application is to establish a process for the automatic, cartographic display of the geographic location for vehicles and hikers of all kinds. The already existing, technical perfection of electronic computing is accompanied by the high precision of the time measurement, as well as the technical level of the gyroscope and artificial horizon Hessen to realize this project. The accuracy made possible by gyroscope data and calculation would allow an earth ordinate setting in values of angular seconds, but the question of whether the two reference directions are adequately observed with the help of an artificial horizon τmά Ϊ goal direction gyroscope is still open. However, it would be possible to convey the reference directions to the gyroscopes from transmitters located on earth satellites.
Das Verfahren basiert auf folgender Tatsache: Infolge der Erdrotation erleidet ein in Eigenbewegung befindlicher Körper proportionell zur Winkelgeschwindigkeit der Erdrotation ω eine Winkelgeschwindigkeitsveränderung. Er benötigt zur Zurücklegung eines bestimmten Erdrotationswinkels entweder mehr oder weniger Zeit als die Erde. Diese Winkelgeschwindigkeitsveränderung wird mit Hilfe der durch eine Gyroskopachse bei
behaltenen Richtung des örtlich horizontalen, geographischen Breitegrades bestimmt.The method is based on the following fact: As a result of the earth's rotation, a body in its own movement undergoes a change in its angular velocity in proportion to the angular velocity of the earth's rotation ω. It takes either more or less time than Earth to cover a certain angle of earth rotation. This angular velocity change is with the help of a gyroscope axis retained direction of the locally horizontal, geographical latitude.
Die Messung erfolgt jeweils am Ende einer Messphase. Gemessen wird die zur Durchschreitung einer vorgeschriebenen Gyroskopdrift benötigte Zeit der östlichen Gyroskopspitze in Sekunden gemäss astronomischer Zeit. Die Drift Ist kreisförmig begrenzt auf den Radius von 1 Grad der Sphäre, welche die Achsenspitze GS eines frei beweglichen Gyroskopes um ihr Achsenzentrum beschriebt. GS kann eine mechanische Achsenspitze sein, deren Anschlag am 1-Grad-Begrenzungsring mechanisch registriert wird, oder die Achsenspitze GS kann durch einen Laserstrahl ersetzt werden, dessen Eintreffen photoelektrisch registriert wird. Die Pol- oder Ausgangsstellung der Gyroskopachse ist die west-Östliche Horizontale. Die Ablesung erfolgt frontal zur Ausgangsstellung mit Blick von Westen nach Osten. Um dem örientierungsuchenden laufend die neueste Standortsinformation geben zu können, sollten die Messphasen möglichst kurz sein. Im Fall einer 1-Grad-Radius-Drift würde die Phasenzeit für ein Fahrzeug von massiger Geschwindigkeit ungefähr 4 Minuten = 240 Sekunden betragen. Nach erfolter Ablesung muss die Gyroskopachse wieder in ihre neue Polstellung gebracht werden, das heisst in die örtlich horizontale WestOst-Richtung. Um die durch dieses Manöver/entstehende Zeitlücke zu überbrücken, werden 2 gleichartige Gyroskope eingesetzt, die sich gegenseitig ablösen.
Das Prinzip dieses Messverfahrens geht aus vom Verhalten der Gyroskopachsenspitze GS, ohne dass eine Eigenbewegung des mobilen Körpers E stattfindet. In diesem Fall würde GS an allen Orten der Erde nach Durchlauf von 1 Grad Drift auf dem in der Zeichnung dargestellten Skalenkreis Kr den WinkelgracE der geographischen Breite αRef anzeigen. Findet während der Messphase eine Eigenbewegung des mobilen Körpers E statt, so so ist in den abgelesenen Winkelgrad αMess eine Winkeldifferenz αDif mit einbezogen, die E entspricht. Um den Winkel αRef zu identifizieren, muss folgende Winkeldifferenzkorrektur vorgenommen werden:
αRef entspricht der erreichten, geographischen Breite Lat. Die Differenz zwischen αMess und αRef entspricht dem zurückgelegten geographischen Längen-Intervall Int long in Winkelgraden.The measurement takes place at the end of a measurement phase. The time of the eastern gyroscope tip required to pass a prescribed gyroscope drift is measured in seconds according to astronomical time. The drift is circularly limited to the radius of 1 degree of the sphere, which describes the axis tip GS of a freely movable gyroscope around its axis center. GS can be a mechanical axis tip, the stop of which is mechanically registered on the 1-degree limiting ring, or the axis tip GS can be replaced by a laser beam, the arrival of which is registered photoelectrically. The pole or starting position of the gyroscope axis is the west-east horizontal. The reading is taken frontally to the starting position with a view from west to east. The measurement phases should be as short as possible in order to be able to continuously provide the orientation seeker with the latest location information. In the case of a 1 degree radius drift, the phase time for a moderate speed vehicle would be approximately 4 minutes = 240 seconds. After the reading has been taken, the gyroscope axis must be brought back into its new pole position, i.e. in the locally horizontal west-east direction. In order to bridge the time gap caused by this maneuver / 2 gyroscopes of the same type are used, which replace each other. The principle of this measuring method is based on the behavior of the gyroscope axis tip GS without the mobile body E moving on its own. In this case, GS would display the angular degree of the geographical latitude α Ref at all locations on earth after passing through 1 degree drift on the scale circle Kr shown in the drawing. If a movement of the mobile body E takes place during the measurement phase, then an angle difference α Dif , which corresponds to E, is included in the read angle degree α measurement . In order to identify the angle α Ref , the following angle difference correction must be carried out: α Ref corresponds to the latitude lat. The difference between α Mess and α Ref corresponds to the geographic longitude interval Int long in degrees.
Der Vorteil dieser Messmethode ist derjenige, dass mit Hilfe einer einzigen Gyroskopachse die Richtungsveränderungen auf 2 Ebenen, der West-Ost-Richtung und der Horizontalen, erfasst werden können. Der Driftwinkel α der frei beweglichen Gyroskopachse wird als Resultante dieser beiden Richtungskomponenten angesehen. Die West-Ost-Richtsungs-Komponente allein würde sich ohne E drehen im Verhältnis sin lat·1º/240 s. Die horizontale Rintungs-Komponente allein würde sich ohne E drehen im Verhältnis cos Lat·1º/240 s.The advantage of this measurement method is that the changes in direction on two levels, the west-east direction and the horizontal, can be recorded with the help of a single gyroscope axis. The drift angle α of the freely movable gyroscope axis is regarded as the resultant of these two directional components. The west-east direction component alone would rotate without E in the ratio sin lat · 1 ° / 240 s. The horizontal cleaning component alone would rotate without E in the ratio cos lat · 1 ° / 240 s.
Die Gesamtrichtungsveränderung entspricht also der Winkelhalbierenden in der 3. Dimension, die jeweils die geographi
sche Breite darstellt. Die Kenntnis des geographischen Breitegrades erlaubt dem Orientierungssuchenden seine Ortsveränderungsdistanz anhand von Int long und dem erreichten geographischen Breitegrad in Kilometer umzurechnen.
The total change in direction corresponds to the bisector in the 3rd dimension, each of which is geographical represents width. Knowing the geographical latitude allows the searcher to convert their distance of change of location based on Int long and the geographical latitude reached in kilometers.
ZeichnungserklärungDeclaration of drawings
Die Figur zeigt den 1-Grad-Radius-Polkreis Kr der östlichen Gyroskopachsenspitze GS. Das Zentrum 0 dieses Kreises verkörpert den freien Drehpunkt der Gyroskopachse und entspricht deren Startstellung, der horizontalen West-Ost-Richtung, in Prontalansicht von Westen nach Osten gesehen.The figure shows the 1 degree radius pole circle Kr of the eastern gyroscope axis tip GS. The center 0 of this circle embodies the free pivot point of the gyroscope axis and corresponds to its starting position, the horizontal west-east direction, seen in a frontal view from west to east.
Die bogenförmige, 0-90° von der Mitte nach aussen betragende, Ableseskala, der sich auf der Figur links befindliehen, nördlichen Kreishälfte wird bei Betrieb des Geräts auf der südlichen Erd-Hemisphäre angesprochen, während die analoge Ableseskala der sich auf der Figur rechts befindlichen, südlichen Kreishälfte reziprok auf der nördlichen Erd-Hemisphäre angesprochen wird. Der Winkel OC ist positiv auf der nördlichen Erd-Hemisphäre +α und negativ auf der südlichen Erd-Hemisphäre -α.The arcuate reading scale, 0-90 ° from the center to the outside, which is located on the left in the figure, is addressed when the device is operated in the southern hemisphere, while the analog reading scale on the right in the figure , southern half of the circle is reciprocally addressed in the northern hemisphere. The angle OC is positive on the northern earth hemisphere + α and negative on the southern earth hemisphere -α.
Die in der Figur oben liegende, bei Einsatz des Gerätes der Erde abgewandte Kreishälfte wird für Eigenwinkelgeschwindigkeiten des mobilen Körpers E < ω in Anspruch genommen,, während die in der Figur unten liegende, der Erde zugewandte Kreishälfte für Eigenwinkelgeschwindigkeiten des mobilen Körpers E > ω in Anspruch genommen wird. Die Punkte GS1, GS2 tmd GS3 stellen beispielsweise angeführte Referenz-Ablesepunkte der östlichen Gyroskopachsenspitze GS dar. Die Verbindungsgeraden GS1-0, GS2-0 und GS3-0 teilen den jeweiligen Winkel α ab.The half of the circle lying above in the figure, facing away from the earth when using the device, is used for the angular velocities of the mobile body E <ω, while the half of the circle facing the earth below for the angular speeds of the mobile body E> ω in Is claimed. The points GS 1 , GS 2 and GS 3 represent, for example, reference reading points of the eastern gyroscope axis tip GS. The straight lines GS 1 -0, GS 2 -0 and GS 3 -0 divide the respective angle α.
Die Figur bezieht sich ausschliesslich auf Referenzgrössen.
Erläuterung der AbkürzungenThe figure refers exclusively to reference sizes. Abbreviations explained
Kr Kreisförmige 1-Grad-Radius-Gyroskopsphären-AbleseskalaKr Circular 1 degree radius gyroscopic sphere reading scale
N Nord S Süd GS Beispielsweise e der 1-GS3 angeführte Referenz-Ablesepunkt Gyroskopachsenspitze der ZeichnungN North S South GS For example, the 1-GS 3 reference reading point gyroscope axis tip of the drawing
Beispielsweise angeführte Referenzwinkel α der α1-α3 Zeichnung NH Nördliche Erd-Hemisphäre SH Südliche Erd-HemisphäreFor example, the given reference angle α of the α 1 -α 3 drawing NH Northern Earth Hemisphere SH Southern Earth Hemisphere
+α Breitenwinkel auf der nördlichen Hemisphäre+ α latitude angle in the northern hemisphere
-α Breitenwihkel auf der südlichen Hemisphäre-α Breitenwihkel in the southern hemisphere
E Eigenwinkelgeschwindigkeit des mobilen Körpers ω Rotationswinkelgeschwindigkeit der Erde:E natural angular velocity of the mobile body ω rotational angular velocity of the earth:
Cosinus Breitengrad ° 240 SekundenCosine latitude ° 240 seconds
Lat Geographische BreiteLat latitude
Long = Geographische länge Int Long= Geographischer längen-Intervall tMess Messzeit in Sekunden tRef Referenzzeit in SekundenLong = longitude Int Long = longitude interval tMeasuring time in seconds t Ref reference time in seconds
αMess Gyroskopischer Mess-Breitenwinkel α measurement Gyroscopic measurement latitude angle
αRef Gyroskopischer Referenz-Breitenwinkel S Start α Ref Gyroscopic reference latitude angle S Start
Z Ziel
BerechnungsformelnZ target Calculation formulas
Beim Start des mobilen Körpers genügt es dem Gerät die geographische Start-länge long S mitzuteilen. Die geographische Breite lat sowie der geographische längen-Intervall Int long geht nach Beendigung der ersten Messphase und nach Beendigung jeder folgenden Messphase. aus der nachfolgend aufgeführten trigonometrischen Verarbeitung der Driftablesung hervor. Die Ablesung der jeweiligen geographischen Breite lat bezieht sich auf die Tatsache, dass deren WinkelαRef ohne Eigenbewegung des mobilen Körpers nach Ablauf der Referenzzeit tRef von 240 s der geographischen Breite lat entsprechen würde. Um αRef aus der Messzeit tMess entnehmen zu können, muss also jedesmal eine entsprechende Winkel-Differenz-Korrektur vorgenommen werden:At the start of the mobile body, it is sufficient to tell the device the geographic start length long S. The latitude latitude and the longitude longitude Int long go after the end of the first measurement phase and after the end of each subsequent measurement phase. from the trigonometric processing of the drift reading listed below. The reading of the respective latitude latitude refers to the fact that their angle α Ref would not correspond to the latitude latitude without the mobile body's own movement after the reference time t Ref of 240 s. In order to be able to take α Ref from the measurement time t measurement , a corresponding angle difference correction must be carried out each time:
Die Winkeldifferenz zwischen αMess und αRef wird αDiffe¬ renz αDif benannt. αDif stellt den geographischen LängenIntervall Int Long dar, und zwar ergibt: The angular difference between α and α measuring Ref is named α Diffe¬ Renz α Dif. α Dif represents the longitude Int Long, which gives:
αRef - αMess = αDif = Int longα Ref - α Mess = α Dif = Int long
+ αDif = + Inf Long = östlich - α Dif = -Int long = westlich+ α Dif = + Inf Long = east - α Dif = -Int long = west
Gemäss der geographischen Längengradseinteilung von Greenwich wird die Ziel-Länge Long Z errechnet:The longitude Z is calculated according to the longitude of Greenwich:
+ Int long+ Int long
± Long S = ± Long Z± Long S = ± Long Z
Claims
1 Geographische Standortskenntnis durch gyroskopische Breitengradsablesung und längen-Intervalls-Bestimmung anhand trigonometrischer Auswertung des Winkelgrades der 1-Grad-Sphäfendrift zweier, alternativ funktionierender, frei beweglicher Gyroskope, die pausenlos abgelöst werden. Während eines der beiden Gyroskope von der Referenzrichtung abdriftet, wird das andere Gyroskop in die ständig angepasste Referenzrichtung zurückgeleitet. Als Referenzrichtung dient die horizontale West-Ost-Richtung unter Bezugnahme auf künstlichen Horizont begleitet von Magnetkompass oder Nordrichtungs-Gyroskop. Die Gyroskopachsendrift wird im Verhältnis zur Zeitspanne global abgelesen und trigonometrisch auf 2 Dimensionen, auf die Horizontale und auf die Vertikale, umgelegt. Die von der
Spitze einer mechanischen oder einer laserstrahl-Gyroskopachse beschriebene Drift beträgt 1 Winkelgrad der Gyroskopsphäre, wobei die Gyroskop-Startstellung jedesmal der Polstellung der Gyroskopachse entspricht.1 Geographic location knowledge through gyroscopic latitude reading and length interval determination based on trigonometric evaluation of the angular degree of the 1-degree port drift of two, alternatively functioning, freely movable gyroscopes that are continuously replaced. While one of the two gyroscopes drifts from the reference direction, the other gyroscope is returned to the constantly adjusted reference direction. The reference direction is the horizontal west-east direction with reference to an artificial horizon accompanied by a magnetic compass or north-direction gyroscope. The gyroscopic axis drift is read globally in relation to the time span and trigonometrically shifted to two dimensions, the horizontal and the vertical. The of the The tip of a mechanical or a laser beam gyroscope axis described drift is 1 angular degree of the gyroscope sphere, the gyroscope starting position each time corresponding to the pole position of the gyroscope axis.
Das Verfahren ist dadurch gekennzeichnet, als dass es für jede Messphase die von dem mobilen Körper eingenommene, um die Erdachse rotierende Winkelgeschwindigkeit mit deren eigener Rotationswinkelgeschwindigkeit in Bezug bringt, um aus der festgestellten Wihkelgeschwindigkeits differenz den neuen, geographischen Standort des mobilen Körpers zu errechnen.The method is characterized in that for each measurement phase it relates the angular velocity taken by the mobile body, rotating about the earth's axis, to its own rotational angular velocity in order to calculate the new, geographical location of the mobile body from the determined angular velocity difference.
Bei der Berechnung kommen folgende Eormeln zur Anwendung:The following formulas are used in the calculation:
2. Längen-Intervall = Referenzbreite - Messbreite2. Length interval = reference width - measuring width
2 Geographische Standortskenntnis wie im Patentanspruch 1, doch somit abgeändert, als dass das Verhältnis von Gyroskopsphärendrift und Referenzzeit anstatt 1°/240 s zu betragen ein Produkt oder einen Quotienten dieses Verhältnisses beträgt, 3 Geographische Standortskenntnis wie in den Patentansprüchen 1 und 2, doch dadurch gekennzeichnet, als dass die exakte Richtungsgebung der horizontalen West-Ost-Referenz nicht von Bordinstrumenten übernommen wird, sondern dass die exakte Richtungsgebung von auf Erdsatelliten befindlichen Sendern übernommen wird.
Geographische Standortskenntnis wie in den Patentansprüchen 1-3, doch dadurch gekennzeichnet, als dass anstatt des vorgeschriebenen Ableseradius der Gyroskopachsensphärendrift und der freien Ablesezeit freie Gyroskopachsensphärendrift und vorgeschriebene Ablesezeit angewendet werden.2 Geographic location knowledge as in claim 1, but modified so that the ratio of gyroscope spherical drift and reference time instead of 1 ° / 240 s is a product or a quotient of this ratio, 3 Geographic location knowledge as in claims 1 and 2, but thereby characterized as that the exact direction of the horizontal west-east reference is not taken over by on-board instruments, but that the exact direction is taken from transmitters located on earth satellites. Geographic location knowledge as in claims 1-3, but characterized in that instead of the prescribed reading radius of the gyroscope axis spherical drift and the free reading time, free gyroscope axis spherical drift and prescribed reading time are used.
Geographische Standortskenntnis wie in den Patentansprüchen 1-4, doch dadurch unterschieden, dass an Stelle der west-östlichen Horizontalen als Gyroskopachsen-Referenzrichtung eine andere Gyrpskopachsen-Referenzrichtung angewendet wird.Geographical location knowledge as in claims 1-4, but distinguished by the fact that instead of the west-east horizontal is used as the gyroscope axis reference direction another gyrpscope axis reference direction.
Geographische Standortskenntnis wie in den Patentansprüchen 1-5, doch dadurch abgeändert, dass an Stelle vonGeographic location knowledge as in claims 1-5, but modified by the fact that instead of
2 Gyroskopen nur 1 Gyroskop oder eine beliebige Anzahl von Gyroskopen verwendet wird.2 gyroscopes only 1 gyroscope or any number of gyroscopes is used.
Geographische Standortskenntnis wie in den Patentansprüchen 1-6, doch dadurch abgeändert, dass an Stelle des Erdordinatensystems von Greenwich ein anderes Erdordinatensystem zu Grunde gelegt wird.Geographic location knowledge as in claims 1-6, but modified by the fact that a different earth coordinate system is used instead of the Earth coordinate system of Greenwich.
Geographische Standortskenntnis wie in den Patentansprüchen 1-7, doch dadurch unterschieden, dass an Stelle der Kreiseinteilung in 360° mit Unterteilung in Dezimalwerte ein anderes Kreiswinkelmass angewendet wird.
Geographische Standortskenntnis wie in den Patentansprüchen 1-8, doch dadurch unterschieden, dass an Stelle der astronomischen Zeitsekunde mit Unterteilung in Dezinalwerte ein anderes Zeitmass angewendet wird.
Geographical location knowledge as in claims 1-7, but differentiated in that instead of dividing the circle into 360 ° with subdivision into decimal values, another circular angle measure is used. Geographical location knowledge as in claims 1-8, but differentiated in that instead of the astronomical time second with subdivision into decimal values a different time measure is used.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CH1979/000023 WO1980001717A1 (en) | 1979-02-12 | 1979-02-12 | Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed |
EP79900168A EP0023900A1 (en) | 1979-02-12 | 1980-08-25 | Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CH1979/000023 WO1980001717A1 (en) | 1979-02-12 | 1979-02-12 | Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed |
WOCH79/00023 | 1979-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1980001717A1 true WO1980001717A1 (en) | 1980-08-21 |
Family
ID=4536895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1979/000023 WO1980001717A1 (en) | 1979-02-12 | 1979-02-12 | Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0023900A1 (en) |
WO (1) | WO1980001717A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR355739A (en) * | 1905-06-27 | 1905-11-10 | Filippo Vanzini | Apparatus for constantly and automatically determining the geographical coordinates of a ship at any point |
US1891856A (en) * | 1929-08-29 | 1932-12-20 | Eugene B Williams | Gyroscopic instrument |
US2046890A (en) * | 1931-11-07 | 1936-07-07 | Michael C Casserly | Gyroscopic position finder |
US3293923A (en) * | 1960-01-21 | 1966-12-27 | Aga Ab | Arrangement for inertia navigation by means of gyroscopes |
-
1979
- 1979-02-12 WO PCT/CH1979/000023 patent/WO1980001717A1/en unknown
-
1980
- 1980-08-25 EP EP79900168A patent/EP0023900A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR355739A (en) * | 1905-06-27 | 1905-11-10 | Filippo Vanzini | Apparatus for constantly and automatically determining the geographical coordinates of a ship at any point |
US1891856A (en) * | 1929-08-29 | 1932-12-20 | Eugene B Williams | Gyroscopic instrument |
US2046890A (en) * | 1931-11-07 | 1936-07-07 | Michael C Casserly | Gyroscopic position finder |
US3293923A (en) * | 1960-01-21 | 1966-12-27 | Aga Ab | Arrangement for inertia navigation by means of gyroscopes |
Non-Patent Citations (1)
Title |
---|
P. Savet: "Gyroscopes: Theory and Design" 1961, McGraw-Hill, New York (US) 'siehe Absatze 5,6; Seiten 81-84: "Effect of Earth's Rotation on Gyro". * |
Also Published As
Publication number | Publication date |
---|---|
EP0023900A1 (en) | 1981-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2545025A1 (en) | NAVIGATION DEVICE FOR NAVIGATION OF LAND VEHICLES | |
WO1980001717A1 (en) | Calculation of the geographical position of a moving body by means of the gyroscopic sight of its angular speed with respect to the earth rotation speed | |
Rasson | About absolute geomagnetic measurements in the observatory and in the field | |
US3673710A (en) | Apparatus for providing a representation of celestial bodies | |
DE3028649C2 (en) | Device for determining the north direction | |
US2887783A (en) | Azimuth reference device | |
Lambert | Geodetic applications of eclipses and occultations | |
DE3923506C2 (en) | ||
Pratt | American prime meridians | |
WO1996021139A1 (en) | Device for finding geographical targets and its use | |
DE19737902A1 (en) | Autonomous precision geographical position location method and device | |
Berkovich et al. | Using inertial navigation systems to monitor the motion of a train | |
US1640328A (en) | Nautical instrument | |
US1067716A (en) | Nautical indicating device. | |
US2839921A (en) | Position indicator | |
DE10004017A1 (en) | Global autonomous determination method of meridian locations involves determining meridian of unknown location by changing known meridian congruent at specified angle in clockwise direction | |
AT301221B (en) | Astronomical measuring device, in particular for geographic location determination | |
Stenberg | Errors and Accuracy of Position, LOPs, and Fixes | |
Gunther | The astrolabe: Its uses and derivatives | |
WIGHT | Direct Methods of Latitude and Longitude Determination by Mini‐Computer | |
EP0762269B1 (en) | Transformation method of UTM coordinates | |
DE2510484A1 (en) | Instrument determining geographical coordinates - has elements depicting space as well as earths sphere | |
Hall | A simple method of navigating in deserts | |
DE2211063C3 (en) | Device for determining the position of a vehicle | |
DE19852490A1 (en) | Autonomous global positioning method using gyroscopic characteristics by comparing output of three orthogonal rotation rate sensors with components of maximum amplitude of rotation rate of earth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Designated state(s): CH DE FR GB LU SE |