WO1980000988A1 - A wear-resisting attachment for protection of metallic members against erosion from airborne abrasive particles,and a fan blade provided with such an attachment - Google Patents
A wear-resisting attachment for protection of metallic members against erosion from airborne abrasive particles,and a fan blade provided with such an attachment Download PDFInfo
- Publication number
- WO1980000988A1 WO1980000988A1 PCT/DK1979/000045 DK7900045W WO8000988A1 WO 1980000988 A1 WO1980000988 A1 WO 1980000988A1 DK 7900045 W DK7900045 W DK 7900045W WO 8000988 A1 WO8000988 A1 WO 8000988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wear
- resisting
- erosion
- blade
- attachment
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 79
- 230000003628 erosive effect Effects 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 claims abstract description 42
- 230000000295 complement effect Effects 0.000 claims abstract description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910001347 Stellite Inorganic materials 0.000 claims description 4
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D23/00—Other rotary non-positive-displacement pumps
- F04D23/001—Pumps adapted for conveying materials or for handling specific elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
Definitions
- a wear-resisting attachment for protection of metallic members against erosion from air-born abrasive particles, and a fan blade provided with such an attachment.
- the present invention relates to a wear-resisting attachment for protecting metallic members, particularly the blades of fans or turbines, against erosion caused by air-borne abrasive particles carried by a substantially linear air flow, to which such members are exposed.
- the fan blades are exposed on the surface portion facing the air flow, i.e. particularly the leading edge, to a heavy wear in the form of erosion of the blade material.
- This erosion is caused by the energy conversion taking place when ash particles impact on the blades and, at high loads, it may result in a very short lifetime for the blades.
- the important parameters for the progress of the erosion beyond the characteristics of the blade material are the velocity, the impact angle, the hardness and the magnitude of the particles.
- the progress of the erosion may; in some cases by accelerated by chemical or temperature-related influences.
- the presence of aggressive gases in the air-flow may at small energy conversions result in an accelerated wear for some materials, such as rubber and plastics, may also arise at high temperatures.
- the blade material may be stainless steel with a wear-resisting attachment of a very hard material, such as hard chromium.
- a wear-resistihg attachment of the kind mentioned which comprises at least two wear-resisting layers applied to surface portions of the member to be protected, which face said air-flow, said layers consisting of materials having complementary relationships of the erosion caused by said abrasive par- tides to the impact angle of the particles.
- the invention is based on the recognition of the fact that of all the above mentioned parameters influencing the progress of the erosion, the impact angle of the particles has a particularly general and significant importance in that whereas the remaining parameters, such as the velocity, magnitude and form of the particles, are most frequently associated specifically with the particular installation or application, so that measures to reduce the erosion effect of these parameters must normally be determined for the particular installation on the basis of the knowledge of the composition of the air volume to be conveyed and the velocity. thereof, the influence of the impact angle of the particles on the pro gress of the erosion is more closely related to the characteristics of the wear-resisting attachment itself.
- the invention relates also to a blade for an axial flow fan conveying an air volume carrying air-borne abrasive particles, which is provided with such a wear-resisting attachment.
- a fan blade comprises a wear-resisting attachment applied to the leading edge of the blade and including at least two wear-resisting layers consisting of materials having complementary relationships of the erosion caused by said abrasive particles to the impact angle of the particles.
- Fig. 1 shows a blade profile for an axial flow fan blade having a wear-resisting attachment at the leading edge
- Fig. 2 illustrates the application of an axial flow fan as induced draught fan for a coal-fired boiler in a power station.
- Fig. 3 illustrates local penetrative abrasion of a wear-resisting attachment of a known material
- Fig. 4 is a graphic representation of erosion sensitivity as a function of particle impact angle for complementary wear-resisting materials in a wear-resisting attachment according to the invention.
- Fig. 5 illustrates local penetrative abrasion of a wear-resisting attachment consisting of one of the materials illustrated in Fig. 4,
- Fig. 6 illustrates the principal construction of a wear-resisting attachment according to the invention
- Figs. 7 and 8 -illustrate the wear-resisting attachment shown in Fig. 6 in two different states of erosion.
- Fig. 1 illustrates purely schematically how a blade 1 for an axial flow fan illustrated by the blade profile is striked by air-borne abrasive particles carried by the air volume conveyed by the fan at different fan loads or blade pitch adjustments.
- the air-flow indicated by dot-and-dash lines 3 represents a minimum load, at which the chord of the blade profile indicated by a line 5 forms a very small angle of about 3 with the main flow direction of the air-flow.
- the air-flow indicated by dashed lines 4 repre sents a case of maximum load, at which the chord 5 forms an angle of for example 12° with the main flow direction of the air-flow.
- FIG. 2 shows an example of such an installation, where the flow of flue .gas conveyed by an axial flow fan 8 arranged between a chimney 6 and an ash separation filter 7 may have a considerable content of air-borne ash particles, particularly in case of an insufficient ash separation, which particles strike the fan blades which are exposed to a heavy wear in the form of erosion of the blade material on critical places around the leading edge of the blade.
- This wearing action is, in principle, based on the energy conversion taking place at the impact of the abrasive ash particles against the fan blades, whereby a considerable portion of the kinetic energy at these particles is transferred to the blade material as deformation forces resulting in a gradual erosion of the blade material.
- the impact velocity of the particles plays an important role for the rate of erosion expressed by the portion of the blade material removed per time unit.
- the erosion rate E as a func tion of the impact velocity v may be expressed by E ⁇ v ⁇ . in which, however, the power cc depends on the magnitude of the particles and varies typically from about 2.0 for particles having a magnitude of 25 microns to about 2.3 for particles having a magnitude of 200 microns.
- the blade material is exposed solely to primary erosion, whereas at increasing particle magnitude, fragmentation of the particles and, thereby, both primary, and secondary erosion occur.
- the erosion rate stabilizes at a saturation level which is positioned, however, considerably higher than the erosion rates applying to smaller particles which are not fragmented.
- the influence of the total particle content in the air-flow is normally such that proportionality between erosion rate and particle content will exist up to a certain limit, at which ariving particles and particles reflected from the blades begin to impact on each other.
- a further important factor is the hardness of the particles relative to the hardness of the blade: material.
- a wear-resisting attachment As mentioned, also the ratio of particle hardness to hardness of the blade material is considerably important. In view thereof, it is known to counteract the erosion by arranging a wear-resisting attachment around the critical places at the leading edge of the blade, such as shown at 2 in Fig. 1.
- a wear-resisting attachment consists of a thin plate of a hard material, in most cases an alloy of hard chromium and stainless steel 18/8, said plate being formed to follow the blade profile accurately and being bolted or screwed to a cut-out formed for this purpose at the leading edge of the blade, which . is normally made of aluminium, in order to facilitate replacement.
- a weareresisting attachment illustrated in Fig. 3 has been observed by practical experi ments with an axial flow fan arranged in a flow of flue gas, the flow direction of which, as illustrated by arrows 3' formed an angle of 0.6o with the chord direction of the blade profiles and having a content of air-borne ash particles showing the following characteristics:
- a considerably improved wear-resistance is obtained by means of a wear-resisting attachment comprising two superimposed wear-resisting layers consisting of materials having complementary re lationships of the erosion caused by the abrasive particles to the impact angle of the particles.
- a preferred wear-resisting attachment consists of two wear-resisting layers, one of which is made of a relatively ductile mate rial, the maximum erosion sensitivity of which occurs at particle impact angles in the range from 15o to 30o, such as illustrated by the curve 9 in Fig. 4, whereas this material is relatively resistant to erosion for particle impact angles in the range from 45o to 90o, while the other material is a relatively hard and brittle material, the maximum erosion sensitivity of which occurs for particle impact angles in the range from 75o-90o, such as illustrated by the curve 10, said material being relatively resistant to erosion for particle impact angles in the range from 0o to 45o.
- the wear-resisting attachment according to the invention is formed in the same manner as illustrated by the attachment 2 in Fig. 1 as a wearing nose detachably secured in a cut-out around the leading edge of the blade, said wearing nose comprising the wear-resisting layers according to the invention in superimposed relationship.
- the above mentioned conditions in respect to the relationship of erosion sensitivity to particle impact angle will be fulfilled for example by Stellite Haynes Alloy No. 25 as the ductile material constituting one wear-resisting layer, and hard chromium as the hard and brittle material constituting the other wear-resisting layer.
- hard chromium is to be understood as a relatively thick chromium layer of 0.5 to 1.0 mms.
- the wearing nose may be constructed from a bent plate of Haynes Alloy No. 25, the outer side of which is plated with said hard chromium layer .
- FIG. 5 shows how a wear-resisting attachment consisting solely of Stellite Haynes Alloy No. 25 will look after being exposed to a wearing action of the same extent as illustrated in Fig. 3.
- a combined two-layer wear resisting attachment is schematically illustrated for a semi-circular profile corresponding substantially to the leading edge of a fan blade.
- the layer 12 closest to the blade material should preferably be the layer of the ductile ma terial such as Stellite Haynes Alloy No. 25, since this layer will normally have a greater thickness than the overlying layer 13 of a hard and brittle material such as hard chromium.
- the progress of erosion for a profile having such a wear-resisting attachment is illustrated in Fig. 7 under the same conditions, i.e. after exposure to the same extent of wearing action as illustrated in Figs.
- the wear-resisting attachment should preferably be arranged on surface portions of the blade at the leading edge thereof, for which outwardly projecting normal vectors form angles, between 90° and 180° with the main flow direction of the air-flow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A considerable increase of the lifetime of metallic members, particularly the blades of fans or turbines, which are exposed to airborne abrasive particles is obtained by providing such members with a wear-resisting attachment comprising at least two wear-resisting layers (12, 13) consisting of materials having complementary relationships (9, 10) of the erosion caused by said abrasive particles to the impact angle of the particles, said attachment being applied to surface portions of the members to be protected.
Description
A wear-resisting attachment for protection of metallic members against erosion from air-born abrasive particles, and a fan blade provided with such an attachment.
TECHNICAL FIELD
The present invention relates to a wear-resisting attachment for protecting metallic members, particularly the blades of fans or turbines, against erosion caused by air-borne abrasive particles carried by a substantially linear air flow, to which such members are exposed. BACKGROUND ART
By installation of axial flow fans in places, where considerable amounts of particles of abrasive materials are carried by the air volume conveyed by the fan, such as in the case of induced draught fans for coal-fired boilers in power stations, where the flow of flue gas passing the fan blades may have a great content of airborne ash particles, the fan blades are exposed on the surface portion facing the air flow, i.e. particularly the leading edge, to a heavy wear in the form of erosion of the blade material.
This erosion is caused by the energy conversion taking place when ash particles impact on the blades and, at high loads, it may result in a very short lifetime for the blades.
In practice, it has been shown that the important parameters for the progress of the erosion beyond the characteristics of the blade material are the velocity, the impact angle, the hardness and the magnitude of the particles. In addition thereto, the progress of the erosion may; in some cases by accelerated by chemical or temperature-related influences. Thus, the presence of aggressive gases in the air-flow may at small energy conversions result in an accelerated wear for some materials, such as rubber and plastics, may also arise at high temperatures.
It is known to provide fan blades for such applications where the blade material may be stainless steel with a wear-resisting attachment of a very hard material, such as hard chromium. In practice, however, local pene trative abrasion of such wear-resisting attachments have appeared to occur at, or symmetrically around the extremity of the leading edge of the blade, whereas the at tachment outside these local penetrative abrasions may be relatively intact. In practice, these problems have particularly been recognized for fan blades. However, it must be assumed that they will also apply to other metallic members, in cluding particularly turbine blades which are exposed to a mainly linear air-flow carrying a considerable content of abrasive particles.
DISCLOSURE OF THE INVENTION
According to the invention, a considerably improved wear-resistance and thereby an increase of the lifetime is obtained by means of a wear-resistihg attachment of the kind mentioned, which comprises at least two wear-resisting layers applied to surface portions of the member to be protected, which face said air-flow, said layers consisting of materials having complementary relationships of the erosion caused by said abrasive par- tides to the impact angle of the particles.
The invention is based on the recognition of the fact that of all the above mentioned parameters influencing the progress of the erosion, the impact angle of the particles has a particularly general and significant importance in that whereas the remaining parameters, such as the velocity, magnitude and form of the particles, are most frequently associated specifically with the particular installation or application, so that measures to reduce the erosion effect of these parameters must normally be determined for the particular installation on the basis of the knowledge of the composition of the air volume to be conveyed and the velocity. thereof, the influence of the impact angle of the particles on the pro
gress of the erosion is more closely related to the characteristics of the wear-resisting attachment itself. As already mentioned, the invention relates also to a blade for an axial flow fan conveying an air volume carrying air-borne abrasive particles, which is provided with such a wear-resisting attachment. According to the invention, such a fan blade comprises a wear-resisting attachment applied to the leading edge of the blade and including at least two wear-resisting layers consisting of materials having complementary relationships of the erosion caused by said abrasive particles to the impact angle of the particles. BRIEF DESCRIPTION OF DRAWINGS
In the following, the invention will be explained in further details with reference to the accompanying schematical drawing, in which
Fig. 1 shows a blade profile for an axial flow fan blade having a wear-resisting attachment at the leading edge, Fig. 2 illustrates the application of an axial flow fan as induced draught fan for a coal-fired boiler in a power station.
Fig. 3 illustrates local penetrative abrasion of a wear-resisting attachment of a known material, Fig. 4 is a graphic representation of erosion sensitivity as a function of particle impact angle for complementary wear-resisting materials in a wear-resisting attachment according to the invention.
Fig. 5 illustrates local penetrative abrasion of a wear-resisting attachment consisting of one of the materials illustrated in Fig. 4,
Fig. 6 illustrates the principal construction of a wear-resisting attachment according to the invention, and Figs. 7 and 8 -illustrate the wear-resisting attachment shown in Fig. 6 in two different states of erosion. DETAILED DESCRIPTION
Fig. 1 illustrates purely schematically how a blade
1 for an axial flow fan illustrated by the blade profile is striked by air-borne abrasive particles carried by the air volume conveyed by the fan at different fan loads or blade pitch adjustments. Thus, the air-flow indicated by dot-and-dash lines 3 represents a minimum load, at which the chord of the blade profile indicated by a line 5 forms a very small angle of about 3 with the main flow direction of the air-flow. The air-flow indicated by dashed lines 4 repre sents a case of maximum load, at which the chord 5 forms an angle of for example 12° with the main flow direction of the air-flow.
The illustrated exposure of. the fan blades to abrasive particles occurs, for example, in induced draught fans for coal-fired boilers in power stations. Fig. 2 shows an example of such an installation, where the flow of flue .gas conveyed by an axial flow fan 8 arranged between a chimney 6 and an ash separation filter 7 may have a considerable content of air-borne ash particles, particularly in case of an insufficient ash separation, which particles strike the fan blades which are exposed to a heavy wear in the form of erosion of the blade material on critical places around the leading edge of the blade. This wearing action is, in principle, based on the energy conversion taking place at the impact of the abrasive ash particles against the fan blades, whereby a considerable portion of the kinetic energy at these particles is transferred to the blade material as deformation forces resulting in a gradual erosion of the blade material.
Investigations have shown that the wearing action is a complicated process, the progress of which depends, inter alia, on the following erosion parameters which, moreover, interact with each other: a} The impact velocity of the particles plays an important role for the rate of erosion expressed by the portion of the blade material removed per time unit. Experiments have shown that the erosion rate E as a func
tion of the impact velocity v may be expressed by E~vα. in which, however, the power cc depends on the magnitude of the particles and varies typically from about 2.0 for particles having a magnitude of 25 microns to about 2.3 for particles having a magnitude of 200 microns. The reason for this is to be seen in fractionation of greater particles impacting on the fan blades into smaller particles which may again strike the blades, so that both a primary and a secondary erosion will occur. Furthermore, for the importance of the velocity, it is .necessary to distinguish between the impact velocity as such and the relative velocity of the particles to the blade material before. the moment of impact. Investigations have shown that smaller particles showing a greater tendency to follow the air-flow will give a somewhat smaller impact velocity than greater particles. b) The magnitude of the particles has also a considerable importance in that at a given velocity, no erosion will take place for particles below a certain magnitude as a result of the fact that the blade material is only exposed to elastic deformation from such small particles. In a following range of particle magnitudes, the blade material is exposed solely to primary erosion, whereas at increasing particle magnitude, fragmentation of the particles and, thereby, both primary, and secondary erosion occur. For particle magnitude above a certain upper limit, it has appeared that the erosion rate stabilizes at a saturation level which is positioned, however, considerably higher than the erosion rates applying to smaller particles which are not fragmented. c) The influence of the total particle content in the air-flow is normally such that proportionality between erosion rate and particle content will exist up to a certain limit, at which ariving particles and particles reflected from the blades begin to impact on each other. d) A further important factor is the hardness of the particles relative to the hardness of the blade: material. Under equal conditions, it applies that erosion will in
crease considerably when the hardness of the particles exceeds the hardness of the blade material. e) The impact angle of the particles influences the progress of erosion considerably in dependence on the characteristics of the blade material around the critical places at the leading edge of the blade. As mentioned in the foregoing, it has appeared that for ductile materials, maximum erosion occurs for particle impact angles about 30º, whereas maximum erosion for hard and brittle materials occurs at impact angles about 90º.
Due to the interrelationship and mutual dependence of the erosion parameters mentioned in the. foregoing, it is not possible to predict the progress of erosion by considering these parameters individually. However, as a conclusion, it applies that the magnitude of the particles has a considerable importance, since, on one hand, greater particles due to secondary erosion will lead to a higher rate of erosion and, on the other hand, smaller particles will gave a smaller impact velocity for the same relative velocity before impact.
As mentioned, also the ratio of particle hardness to hardness of the blade material is considerably important. In view thereof, it is known to counteract the erosion by arranging a wear-resisting attachment around the critical places at the leading edge of the blade, such as shown at 2 in Fig. 1. Such a wear-resisting attachment consists of a thin plate of a hard material, in most cases an alloy of hard chromium and stainless steel 18/8, said plate being formed to follow the blade profile accurately and being bolted or screwed to a cut-out formed for this purpose at the leading edge of the blade, which . is normally made of aluminium, in order to facilitate replacement.
However, it has appeared that when loading the fan blades with abrasive particles, such a wear-resisting attachment will gradually have an appearance as illustrated in Fig. 3 with pronounced local penetrative abrasion of the wear-resisting attachment 2 at descrete locations
at the leading edge of the blade, whereas the remaining part of the attachment will be substantially intact.
The appearance of a weareresisting attachment illustrated in Fig. 3 has been observed by practical experi ments with an axial flow fan arranged in a flow of flue gas, the flow direction of which, as illustrated by arrows 3' formed an angle of 0.6º with the chord direction of the blade profiles and having a content of air-borne ash particles showing the following characteristics:
Hardness (Vickers)
400-1500 HV
According to the invention, a considerably improved wear-resistance is obtained by means of a wear-resisting attachment comprising two superimposed wear-resisting layers consisting of materials having complementary re lationships of the erosion caused by the abrasive particles to the impact angle of the particles.
Thus, a preferred wear-resisting attachment according to the invention consists of two wear-resisting layers, one of which is made of a relatively ductile mate rial, the maximum erosion sensitivity of which occurs at particle impact angles in the range from 15º to 30º, such as illustrated by the curve 9 in Fig. 4, whereas this material is relatively resistant to erosion for particle
impact angles in the range from 45º to 90º, while the other material is a relatively hard and brittle material, the maximum erosion sensitivity of which occurs for particle impact angles in the range from 75º-90º, such as illustrated by the curve 10, said material being relatively resistant to erosion for particle impact angles in the range from 0º to 45º. BEST MODE OF CARRYING OUT THE INVENTION
In a preferred embodiment, the wear-resisting attachment according to the invention is formed in the same manner as illustrated by the attachment 2 in Fig. 1 as a wearing nose detachably secured in a cut-out around the leading edge of the blade, said wearing nose comprising the wear-resisting layers according to the invention in superimposed relationship. The above mentioned conditions in respect to the relationship of erosion sensitivity to particle impact angle will be fulfilled for example by Stellite Haynes Alloy No. 25 as the ductile material constituting one wear-resisting layer, and hard chromium as the hard and brittle material constituting the other wear-resisting layer. In this context, the term "hard chromium" is to be understood as a relatively thick chromium layer of 0.5 to 1.0 mms. The wearing nose may be constructed from a bent plate of Haynes Alloy No. 25, the outer side of which is plated with said hard chromium layer .
In order to illustrate the effect of a wear-resisting attachment consisting of a combination of the above mentioned material. Fig. 5 shows how a wear-resisting attachment consisting solely of Stellite Haynes Alloy No. 25 will look after being exposed to a wearing action of the same extent as illustrated in Fig. 3.
In Fig. 6, a combined two-layer wear resisting attachment is schematically illustrated for a semi-circular profile corresponding substantially to the leading edge of a fan blade. In order to maintain a suitable form of the blade profile, the layer 12 closest to the blade material should preferably be the layer of the ductile ma
terial such as Stellite Haynes Alloy No. 25, since this layer will normally have a greater thickness than the overlying layer 13 of a hard and brittle material such as hard chromium. The progress of erosion for a profile having such a wear-resisting attachment is illustrated in Fig. 7 under the same conditions, i.e. after exposure to the same extent of wearing action as illustrated in Figs. 3 and 5, and it appears therefrom that the wear-resisting attachment consisting of layers 12 and 13 considered as a whole is still intact. The local penetrative abrasion of the wear-resisting attachment illustrated in Fig. 8 will not occur until after exposure to a considerably increased wearing action, or a considerably extended time of operation under the same consitions as in Figs..3, 5 and 7.
The investigations which have been made indicate that the resistance to wear has been substantially doubled relative to the known wear-resisting attachment illustrated in Fig. 3. In order to offer a good protection of the blade, the wear-resisting attachment should preferably be arranged on surface portions of the blade at the leading edge thereof, for which outwardly projecting normal vectors form angles, between 90° and 180° with the main flow direction of the air-flow.
For the range of angular relationships between the main flow direction and the chord direction of the blade profile extending from the rear edge to the leading edge of the. blade illustrated in Fig. 1, this means that the wear-resisting attachment should extend from the leading edge of the blade on the upper side of the blade to a point, in which the outwardly projecting normal vector forms an angle of about 93° with said chord direction, and a similar extension should apply to the underside of the blade.
INDUSTRIAL APPLICABILITY
Although only a wear-resisting attachment for a fan blade has been described. in the foregoing as as embodi
ment of the invention, the invention is not limited to this application, but may also be utilized in case of other metallic members which are exposed to mainly linear air-flows carrying air-borne abrasive particles. As ex amples of such other applications, reference should be made particularly to turbine blades and rotor blades for helicopters, which during start and landing are often exposed to air-blasts containing heavily abrasive sand particles.
Claims
1. A wear-resisting attachment for protection of metallic members, particularly the blades of fans or turbines, against erosion from abrasive particles carried by a substantially linear air flow, to which such members are exposed, characterized by at least two wear-resisting layers (12, 13) applied to surface portions of a member to be protected which face said air flow, said layers consisting of materials having complementary relationships (9, 10) of the erosion caused by said abrasive particles to the impact angle of the particles.
2. A wear-resisting attachment as claimed in claim 1, characterized in that one of said wear-resisting layers (12) consists of a relatively ductile material having its maximum erosion sensitivity for particle impact angles in the range from 15º to 30° and being relatively resistant to erosion for particle impact angles in the range from 45º to 90º , whereas the other wear-resisting layer (13) consists of a relatively brittle material having its maximum erosion sensitivity for particle impact angles in the range from 75º to 90º and being relatively resistant to erosion for particle impact angles in the range from 0° to 45°.
3. A wear-resisting attachment as claimed in claim 1, characterized in that said wear-resisting layers (12, 13) are superimposed on surface portions of said member, for which outwardly projecting normal vectors form angles in the range from 90º to 180° with the main flow direction of said air flow.
4. A blade for an axial flow fan intended for conveying an air volume carrying abrasive particles, characterized by a wear-resisting attachment applied to the leading edge of the blade (1) and including at least two wear- resisting layers (12, 13) consisting of materials having complementary relationships (9, 10) of the erosion caused by said abrasive particles to the impact angle of the particles.
5. A fan blade as claimed in claim 4, characterized in that said wear-resisting attachment covers a region around the leading edge of the blade (1) and adjoining portions of both blade sides, for which outwardly projecting normal vectors to the. blade surface in any point forms an angle between 90° and 180º with the chord direction of the blade profile extending from the leading edge to the rear edge of the blade.
6. A fan blade as claimed in claim 4, characterized in that one of said wear-resisting layers (12) consists of a relatively ductile material having its maximum erosion sensitivity for particle impact angles in the range from 15º to 30º and being relatively resistant to erosion particle impact angles in the range from 45° to 90º, whereas the other wear-resisting layer (13) consists of a relatively brittle material, having its maximum erosion sensitivity for particle impact angles in the range from 75º to 90º and being relatively resistant to erosion for particle impact angles in the range from 0° to 45°.
7. A fan blade as claimed in claim 6, characterized in that said one layer (12) consists of Stellite Haynes alloy No. 25, and said other layer (13) consists of hard chromium.
8. A fan blade as claimed in claim 4, characterized in that said wear-resisting attachment is formed as a wearing nose (2) detachably secured around the leading edge of the blade (1) and comprising said wear-resisting layers (12, 13) in superimposed relationship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK279680A DK279680A (en) | 1978-11-06 | 1980-06-27 | WEAR REINFORCEMENT FOR PROTECTING METAL OBJECTS AGAINST EROSION OF AIR EFFICIENT WASTING PARTICLES AND VENTILAR WINGS WITH SUCH REINFORCEMENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US958327 | 1978-11-06 | ||
US05/958,327 US4318672A (en) | 1978-11-06 | 1978-11-06 | Particle erosion resistant covering for fan blade leading edge |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1980000988A1 true WO1980000988A1 (en) | 1980-05-15 |
Family
ID=25500858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK1979/000045 WO1980000988A1 (en) | 1978-11-06 | 1979-10-30 | A wear-resisting attachment for protection of metallic members against erosion from airborne abrasive particles,and a fan blade provided with such an attachment |
Country Status (5)
Country | Link |
---|---|
US (1) | US4318672A (en) |
EP (1) | EP0020585A1 (en) |
JP (1) | JPS55500876A (en) |
AU (1) | AU537589B2 (en) |
WO (1) | WO1980000988A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4563801A (en) * | 1982-09-24 | 1986-01-14 | Klein, Schanzlin & Becker Aktiengesellschaft | Method of reinforcing the edges of impeller vanes or the like |
US4832252A (en) * | 1986-12-20 | 1989-05-23 | Refurbished Turbine Components Limited | Parts for and methods of repairing turbine blades |
FR2662742A1 (en) * | 1990-05-31 | 1991-12-06 | Gen Electric | COOLING DEVICE FOR OVERFLOWING NOZZLE. |
EP0625641A2 (en) * | 1993-05-13 | 1994-11-23 | Eastman Kodak Company | Use of stellite to prevent silver plateout |
WO2008054340A2 (en) * | 2005-08-16 | 2008-05-08 | Honeywell International Inc. | Multilayered erosion resistant coating for gas turbines |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3151413A1 (en) * | 1981-12-24 | 1983-07-14 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | "SHOVEL OF A FLUID MACHINE, IN PARTICULAR GAS TURBINE" |
US4565495A (en) * | 1983-08-11 | 1986-01-21 | Electric Power Research Institute, Inc. | Armoring system for an airfoil centrifugal fan |
US4819884A (en) * | 1985-01-31 | 1989-04-11 | Microfuel Corporation | Means of pneumatic comminution |
US4923124A (en) * | 1985-01-31 | 1990-05-08 | Microfuel Corporation | Method of pneumatic comminution |
US4819885A (en) * | 1985-01-31 | 1989-04-11 | Microfuel Corporation | Means of pneumatic comminution |
US4824031A (en) * | 1985-01-31 | 1989-04-25 | Microfuel Corporation | Means of pneumatic comminution |
FR2581708B1 (en) * | 1985-05-09 | 1989-04-28 | Snecma | COVER FOR TURBOREACTOR BLADE BLADE ATTACK EDGE |
US4839245A (en) * | 1985-09-30 | 1989-06-13 | Union Carbide Corporation | Zirconium nitride coated article and method for making same |
US4929322A (en) * | 1985-09-30 | 1990-05-29 | Union Carbide Corporation | Apparatus and process for arc vapor depositing a coating in an evacuated chamber |
US4738594A (en) * | 1986-02-05 | 1988-04-19 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Blades for axial fans |
US4720244A (en) * | 1987-05-21 | 1988-01-19 | Hudson Products Corporation | Fan blade for an axial flow fan and method of forming same |
DE3816148A1 (en) * | 1988-05-11 | 1989-11-23 | Kloeckner Humboldt Deutz Ag | Cooling fan |
USRE34173E (en) * | 1988-10-11 | 1993-02-02 | Midwest Research Technologies, Inc. | Multi-layer wear resistant coatings |
US4904542A (en) * | 1988-10-11 | 1990-02-27 | Midwest Research Technologies, Inc. | Multi-layer wear resistant coatings |
US5174024A (en) * | 1990-09-17 | 1992-12-29 | Sterrett Terry L | Tail rotor abrasive strip |
JPH0596668A (en) * | 1991-10-11 | 1993-04-20 | Mitsubishi Heavy Ind Ltd | Automatic setting device of single facer |
GB2267733A (en) * | 1992-05-13 | 1993-12-15 | Gen Electric | Abrasion protective and thermal dissipative coating for jet engine component leading edges. |
US5344235A (en) * | 1993-01-21 | 1994-09-06 | General Signal Corp. | Erosion resistant mixing impeller |
US5694683A (en) * | 1993-04-20 | 1997-12-09 | Chromalloy Gas Turbine Corporation | Hot forming process |
US5782607A (en) * | 1996-12-11 | 1998-07-21 | United Technologies Corporation | Replaceable ceramic blade insert |
AUPR373901A0 (en) * | 2001-03-14 | 2001-04-12 | Leach Aero Services Pty Ltd | An article having an erodynamic surface |
GB0412915D0 (en) * | 2004-06-10 | 2004-07-14 | Rolls Royce Plc | Method of making and joining an aerofoil and root |
ITMI20060340A1 (en) * | 2006-02-27 | 2007-08-28 | Nuovo Pignone Spa | SHOVEL OF A ROTOR OF A SECOND STAGE OF A COMPRESSOR |
ITMI20060341A1 (en) * | 2006-02-27 | 2007-08-28 | Nuovo Pignone Spa | SHOVEL OF A ROTOR OF A NON-STAGE OF A COMPRESSOR |
GB0906850D0 (en) * | 2009-04-22 | 2009-06-03 | Rolls Royce Plc | Method of manufacturing an aerofoil |
US20120067054A1 (en) * | 2010-09-21 | 2012-03-22 | Palmer Labs, Llc | High efficiency power production methods, assemblies, and systems |
EP2964895A4 (en) * | 2013-03-07 | 2016-12-28 | United Technologies Corp | Hybrid fan blades for jet engines |
US9970303B2 (en) | 2014-05-13 | 2018-05-15 | Entrotech, Inc. | Erosion protection sleeve |
CN115111192B (en) * | 2021-03-23 | 2024-05-14 | 中国航发商用航空发动机有限责任公司 | Fan blade and aeroengine |
CN115111191B (en) * | 2021-03-23 | 2024-05-14 | 中国航发商用航空发动机有限责任公司 | Fan blade and aeroengine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB360230A (en) * | 1929-12-04 | 1931-11-05 | Gen Electric | Improvements in and relating to methods of preventing the erosion of metallic objects |
GB432386A (en) * | 1934-05-25 | 1935-07-25 | English Electric Co Ltd | Method of protecting turbine blading |
US2431184A (en) * | 1943-09-23 | 1947-11-18 | United Aireraft Corp | Composite blade |
GB656503A (en) * | 1947-10-27 | 1951-08-22 | Snecma | Improvements in or relating to members to be used in heat engines |
US3301530A (en) * | 1965-08-03 | 1967-01-31 | Gen Motors Corp | Damped blade |
SE358206B (en) * | 1969-02-07 | 1973-07-23 | Gen Electric | |
US4123595A (en) * | 1977-09-22 | 1978-10-31 | General Electric Company | Metallic coated article |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1364197A (en) * | 1918-10-07 | 1921-01-04 | Heath Spencer | High-speed propeller |
DE671505C (en) * | 1930-03-28 | 1939-02-08 | Gustav Schwarz Kom Ges | Wooden propeller |
DE697159C (en) * | 1934-11-14 | 1940-10-07 | Fritz Huth Dr | Protective edge, especially for wood propellers |
US2312219A (en) * | 1941-04-21 | 1943-02-23 | Sensenich Brothers | Aircraft propeller |
US3041040A (en) * | 1955-12-23 | 1962-06-26 | Gen Electric | Metal clad blade |
US3748110A (en) * | 1971-10-27 | 1973-07-24 | Gen Motors Corp | Ductile corrosion resistant coating for nickel base alloy articles |
-
1978
- 1978-11-06 US US05/958,327 patent/US4318672A/en not_active Expired - Lifetime
-
1979
- 1979-10-30 WO PCT/DK1979/000045 patent/WO1980000988A1/en unknown
- 1979-10-30 JP JP50199779A patent/JPS55500876A/ja active Pending
- 1979-11-06 AU AU52541/79A patent/AU537589B2/en not_active Ceased
-
1980
- 1980-05-20 EP EP79901537A patent/EP0020585A1/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB360230A (en) * | 1929-12-04 | 1931-11-05 | Gen Electric | Improvements in and relating to methods of preventing the erosion of metallic objects |
GB432386A (en) * | 1934-05-25 | 1935-07-25 | English Electric Co Ltd | Method of protecting turbine blading |
US2431184A (en) * | 1943-09-23 | 1947-11-18 | United Aireraft Corp | Composite blade |
GB656503A (en) * | 1947-10-27 | 1951-08-22 | Snecma | Improvements in or relating to members to be used in heat engines |
US3301530A (en) * | 1965-08-03 | 1967-01-31 | Gen Motors Corp | Damped blade |
SE358206B (en) * | 1969-02-07 | 1973-07-23 | Gen Electric | |
US4123595A (en) * | 1977-09-22 | 1978-10-31 | General Electric Company | Metallic coated article |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4563801A (en) * | 1982-09-24 | 1986-01-14 | Klein, Schanzlin & Becker Aktiengesellschaft | Method of reinforcing the edges of impeller vanes or the like |
US4832252A (en) * | 1986-12-20 | 1989-05-23 | Refurbished Turbine Components Limited | Parts for and methods of repairing turbine blades |
FR2662742A1 (en) * | 1990-05-31 | 1991-12-06 | Gen Electric | COOLING DEVICE FOR OVERFLOWING NOZZLE. |
US5197852A (en) * | 1990-05-31 | 1993-03-30 | General Electric Company | Nozzle band overhang cooling |
EP0625641A2 (en) * | 1993-05-13 | 1994-11-23 | Eastman Kodak Company | Use of stellite to prevent silver plateout |
EP0625641A3 (en) * | 1993-05-13 | 1994-12-14 | Eastman Kodak Co | Use of stellite to prevent silver plateout. |
WO2008054340A2 (en) * | 2005-08-16 | 2008-05-08 | Honeywell International Inc. | Multilayered erosion resistant coating for gas turbines |
WO2008054340A3 (en) * | 2005-08-16 | 2008-07-24 | Honeywell Int Inc | Multilayered erosion resistant coating for gas turbines |
US7744986B2 (en) | 2005-08-16 | 2010-06-29 | Honeywell International Inc. | Multilayered erosion resistant coating for gas turbines |
Also Published As
Publication number | Publication date |
---|---|
EP0020585A1 (en) | 1981-01-07 |
US4318672A (en) | 1982-03-09 |
AU537589B2 (en) | 1984-07-05 |
AU5254179A (en) | 1980-05-15 |
JPS55500876A (en) | 1980-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4318672A (en) | Particle erosion resistant covering for fan blade leading edge | |
US5240375A (en) | Wear protection system for turbine engine rotor and blade | |
US5785498A (en) | Composite fan blade trailing edge reinforcement | |
EP0495586B1 (en) | Turbine blade wear protection system with multilayer shim | |
US5306120A (en) | System to protect against erosion a body subjected to an airflow | |
US7001152B2 (en) | Shrouded turbine blades with locally increased contact faces | |
EP0470763B1 (en) | Protective coating for rotor blades | |
US10619486B2 (en) | Blade, associated fan and turbojet engine | |
EP2256228A2 (en) | Layered coating for erosion protection | |
JPS58113503A (en) | Blade of fluid machine and its manufacture | |
EP0677645A1 (en) | A gas turbine engine fan blade assembly | |
GB2064667A (en) | Turbofan rotor blades | |
EP1004750A2 (en) | Contoured abradable shroud structure | |
US20130247586A1 (en) | Blade Wedge Attachment | |
US20160008846A1 (en) | Substrates coated with wear resistant layers and methods of applying wear resistant layers to same | |
EP3456928B1 (en) | Blade outer air seal for gas turbine engines in high erosion environment | |
JP2003082476A (en) | Corrosion and wear resistant turbine member and manufacturing method | |
Leithead et al. | Enhanced experimental testing of new erosion-resistant compressor blade coatings | |
US10844725B2 (en) | Leading edge shield | |
CN107725116A (en) | A kind of TRT turbines with wear-resistant anti-corrosion nano coating | |
RU52104U1 (en) | PROTECTED COVER FOR THE WET STEAM STEP OF THE STEAM TURBINE | |
US6913839B2 (en) | Coated article having a quasicrystalline-ductile metal layered coating with high particle-impact damage resistance, and its preparation and use | |
JPH10259799A (en) | Centrifugal pump | |
KR102063760B1 (en) | Turbomachine component with a functional coating | |
CN207660649U (en) | A kind of TRT turbines with wear-resistant anti-corrosion nano coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): DE DK GB JP NL SE |
|
AL | Designated countries for regional patents |
Designated state(s): DE FR GB NL SE |