WO1980000084A1 - Ductile and solvent resistant polycarbonate compositions having improved flame resistance - Google Patents
Ductile and solvent resistant polycarbonate compositions having improved flame resistance Download PDFInfo
- Publication number
- WO1980000084A1 WO1980000084A1 PCT/US1979/000428 US7900428W WO8000084A1 WO 1980000084 A1 WO1980000084 A1 WO 1980000084A1 US 7900428 W US7900428 W US 7900428W WO 8000084 A1 WO8000084 A1 WO 8000084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- block copolymer
- polycarbonate
- aromatic polycarbonate
- segments
- composition
- Prior art date
Links
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 48
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 48
- 239000000203 mixture Substances 0.000 title claims abstract description 34
- 239000002904 solvent Substances 0.000 title claims abstract description 15
- 229920001400 block copolymer Polymers 0.000 claims abstract description 42
- 125000003118 aryl group Chemical group 0.000 claims abstract description 41
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 14
- -1 polydimethylsiloxan Polymers 0.000 claims description 13
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 claims description 10
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229920001519 homopolymer Polymers 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- BWRJIDMRILXEDW-UHFFFAOYSA-N 2,3,4-trichlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C(Cl)=C1Cl BWRJIDMRILXEDW-UHFFFAOYSA-N 0.000 claims description 2
- 159000000000 sodium salts Chemical class 0.000 claims description 2
- 125000001188 haloalkyl group Chemical group 0.000 claims 1
- 125000005375 organosiloxane group Chemical group 0.000 claims 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 14
- 239000004205 dimethyl polysiloxane Substances 0.000 description 13
- 239000008188 pellet Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000000370 acceptor Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 229920005668 polycarbonate resin Polymers 0.000 description 6
- 239000004431 polycarbonate resin Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 150000001491 aromatic compounds Chemical class 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 229940106691 bisphenol a Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- GJHVEONIFIJEIH-UHFFFAOYSA-N (2-chloronaphthalen-1-yl) (2-chlorophenyl) carbonate Chemical compound ClC1=CC=CC=C1OC(=O)OC1=C(Cl)C=CC2=CC=CC=C12 GJHVEONIFIJEIH-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- JAZQDYXZDBYZMB-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;ethane-1,2-diol Chemical compound OCCO.OCC(C)(C)CO JAZQDYXZDBYZMB-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- JETIJTIWAZHGHS-UHFFFAOYSA-N 6,6-dichloro-4-methylcyclohexa-2,4-diene-1,1-diol Chemical compound CC1=CC(Cl)(Cl)C(O)(O)C=C1 JETIJTIWAZHGHS-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- CJPIDIRJSIUWRJ-UHFFFAOYSA-N benzene-1,2,4-tricarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(C(Cl)=O)=C1 CJPIDIRJSIUWRJ-UHFFFAOYSA-N 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- VCYAMSXIIWQHKV-UHFFFAOYSA-N bis(2,3,4-tribromophenyl) carbonate Chemical compound BrC1=C(Br)C(Br)=CC=C1OC(=O)OC1=CC=C(Br)C(Br)=C1Br VCYAMSXIIWQHKV-UHFFFAOYSA-N 0.000 description 1
- DSEORJACOQDMQX-UHFFFAOYSA-N bis(2,3,4-trichlorophenyl) carbonate Chemical compound ClC1=C(Cl)C(Cl)=CC=C1OC(=O)OC1=CC=C(Cl)C(Cl)=C1Cl DSEORJACOQDMQX-UHFFFAOYSA-N 0.000 description 1
- LUQQDEDMRRRWGN-UHFFFAOYSA-N bis(2-bromophenyl) carbonate Chemical compound BrC1=CC=CC=C1OC(=O)OC1=CC=CC=C1Br LUQQDEDMRRRWGN-UHFFFAOYSA-N 0.000 description 1
- SJWFGMZZMOUDTF-UHFFFAOYSA-N bis(2-chloronaphthalen-1-yl) carbonate Chemical compound C1=CC=C2C(OC(=O)OC3=C4C=CC=CC4=CC=C3Cl)=C(Cl)C=CC2=C1 SJWFGMZZMOUDTF-UHFFFAOYSA-N 0.000 description 1
- MUCRFDZUHPMASM-UHFFFAOYSA-N bis(2-chlorophenyl) carbonate Chemical compound ClC1=CC=CC=C1OC(=O)OC1=CC=CC=C1Cl MUCRFDZUHPMASM-UHFFFAOYSA-N 0.000 description 1
- POZGCGJFBOZPCM-UHFFFAOYSA-N bis(2-methylphenyl) carbonate Chemical compound CC1=CC=CC=C1OC(=O)OC1=CC=CC=C1C POZGCGJFBOZPCM-UHFFFAOYSA-N 0.000 description 1
- IKWKJIWDLVYZIY-UHFFFAOYSA-M butyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CCCC)C1=CC=CC=C1 IKWKJIWDLVYZIY-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- MOIPGXQKZSZOQX-UHFFFAOYSA-N carbonyl bromide Chemical compound BrC(Br)=O MOIPGXQKZSZOQX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- MIHINWMALJZIBX-UHFFFAOYSA-N cyclohexa-2,4-dien-1-ol Chemical class OC1CC=CC=C1 MIHINWMALJZIBX-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- ZQUZPFYNEARCQO-UHFFFAOYSA-N dinaphthalen-1-yl carbonate Chemical compound C1=CC=C2C(OC(OC=3C4=CC=CC=C4C=CC=3)=O)=CC=CC2=C1 ZQUZPFYNEARCQO-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005067 haloformyl group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- NNYHMCFMPHPHOQ-UHFFFAOYSA-N mellitic anhydride Chemical compound O=C1OC(=O)C2=C1C(C(OC1=O)=O)=C1C1=C2C(=O)OC1=O NNYHMCFMPHPHOQ-UHFFFAOYSA-N 0.000 description 1
- LSEFCHWGJNHZNT-UHFFFAOYSA-M methyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(C)C1=CC=CC=C1 LSEFCHWGJNHZNT-UHFFFAOYSA-M 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 1
- KCSOHLKZTZMKQA-UHFFFAOYSA-M tetraheptylazanium;iodide Chemical compound [I-].CCCCCCC[N+](CCCCCCC)(CCCCCCC)CCCCCCC KCSOHLKZTZMKQA-UHFFFAOYSA-M 0.000 description 1
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- HNJXPTMEWIVQQM-UHFFFAOYSA-M triethyl(hexadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CC HNJXPTMEWIVQQM-UHFFFAOYSA-M 0.000 description 1
- NJMOHBDCGXJLNJ-UHFFFAOYSA-N trimellitic anhydride chloride Chemical compound ClC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 NJMOHBDCGXJLNJ-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/10—Block- or graft-copolymers containing polysiloxane sequences
Definitions
- This invention relates to ductile and solvent resistant aromatic polycarbonate compositions that also have improved flame retardance.
- Polycarbonate polymers are known as being excellent molding materials since products made therefrom exhibit such properties as high impact strength, toughness, high transparen ⁇ cy, wide temperature limits (high impact resistance below -60o C and a UL thermal endurance rating of 115o C with impact), good dimensional stability, good creep resistance, good flame re ⁇ tardance, and the like. It would be desirable to add to this list of properties those of ductility and solvent resistance en ⁇ abling these polycarbonate compositions to be employed to form molded articles that can be used in such applications as air ⁇ craft tray tables and seat backg, aircraft ducting, ski boots, and the like wherein the articles will be required to exhibit high tensile properties and resistance to the corrosive effects of commercial cleaning compounds and other organic chemicals. Summary of the Invention
- aromatic polycarbonate resins by mixing the polycarbonate resin with block copolymers consisting of alterna ⁇ ting segments of polybisphenol carbonates and polyorganosiloxane in amounts of about 1-30% by weight, preferably about 4-10% by weight, of the polycarbonate resin.
- block copolymers consisting of alterna ⁇ ting segments of polybisphenol carbonates and polyorganosiloxane in amounts of about 1-30% by weight, preferably about 4-10% by weight, of the polycarbonate resin.
- any of the aromatic poly ⁇ carbonates can be empolyed that are prepared by reacting a diphenol with a carbonate precursor.
- Typical of some of the diphenols that can be employed are bisphenol-A (2, 2 -bis (4-hydroxy-phenyl)propane), bis(4-hydroxphenyl)methane, 2, 2-bis(4-hydroxy-3-methylphenyl)propane, 4, 4'-bis(4-hydroxphenyl) heptane, 2, 2-(3, 5-3', 5'-tetrachloro-4, 4'-dihydroxydiphenyl) propane, ?, 2-(3, 5, 3', 5' -tetrabromo-4, 4'-dihydroxydiphenyl) propane, (3, 3' -dichloro-4, 4' -dihydroxyphenyl)methane.
- Other halogenated and non-halogenated diphenols of the bisphenol type can also be used such as are disclosed in U. S. Patents 2 2, 999, 835, 3, 028, 365 and 3, 334, 154.
- the carbonate precursor used can be either a carbonyl halide, a carbonate ester or a haloformate.
- the carbonyl halides can be carbonyl bromide, carbonyl chloride and mixtures thereof.
- the carbonate esters can be diphenyl car ⁇ bonate, di-(halophenyl) carbonates such as di-(chlorophenyl) carbonate, di-(bromophenyl) carbonate, di-(trichlorophenyl) carbonate, di-(tribromophenyl) carbonate, etc. di-(alkylphenyl) carbonate such as di(tolyl) carbonate, etc. , di-(naphthyl) carbonate, di-(chloronaphthyl) carbonate, phenyl tolyl carbo ⁇ nate, chlorophenyl chloronaphthyl carbonate, etc. , or mixtures thereof.
- di-(halophenyl) carbonates such as di-(chlorophenyl) carbonate, di-(bromophenyl) carbonate, di-(trichlorophenyl) carbonate, di-(tribromophenyl) carbonate, etc.
- haloformates that can be used include bis ⁇ haloformates of dihydric phenols (bischloroformates of hydroquinone, etc. ) or glycols (bishaloformates of ethylene glycol neopentyl glycol, polyethylene glycol, etc. ). While other carbonate precursors will occur to those skilled in the art, carbonyl chloride, also known as phosgene, is preferred.
- polymeric derivatives of a dihydric phenol, a dicarboxylic acid and carbonic acid such as are disclosed in U. S. Patent 3, 169, 121 which is incorporated herein by reference, and which are particularly preferred.
- This class of compounds is generally referred to as copolyestercarbonates.
- Molecular weight regulators, acid acceptors and catalysts can also be used in obtaining the aromatic polycarbonates of this invention.
- the useful molecular weight regulators include monohydric phenols such as phenol, chroman- I, paratertiarybutylphenol, parabromophenol, primary and secondary amines, etc.
- phenol is employed as the molecular weight regulator.
- a suitable acid acceptor can be either an organic or an inorganic acid acceptor,
- a suitable organic acid acceptor is a tertiary amine such as pyridine, triethylamine, dimethylaniline, tributylamine, etc.
- the inorganic acid acceptor can be either a hydroxide, a carbonate, a bicarbonate, or a phosphate of an alkali or alkaline earth metal.
- the catalysts which can be employed are those that typically aid the polymerization of the diphenol with phosgene.
- Suitable catalysts include tertiary amines such as triethyl ⁇ amine, tripropylamine, N, N-dimethylaniline, quaternary ammonium compounds such as, for example, tetraethyl-ammonium bromide, cetyl triethyl ammonium bromide, tetra-n-heptylammonium iodide, tetra-n-propyl ammonium bromide, tetramethylammonium chloride, tetramethyl ammonium hydroxide, tetra-n-butyl ammonium iodide, benzyltrimethyl ammonium chloride and quaternary phospho -nium compounds such as, for example, n-butyltriphenyl phosphonium bromide and methyltriphenyl phosphonium bromide.
- branched polycarbonates wherein a polyfunctional aromatic compound is reacted with the diphenol and carbonate precursor to provide a thermoplastic randomly branched polycarbonate.
- These polyfunctional aromatic compounds contain at least three functional groups which are carboxyl, carboxylic anhydride, haloformyl, or mixtures thereof.
- the preferred polyfunctional aromatic compounds are trimellitic anhydride and trimellitic acid of their acid halide derivatives. Blends of linear and branched aromatic polycarbonates are also included within the scope of this invention.
- block copolymers that can be employed in the practice of this invention can be prepared by methods known to those skilled in the art, such as are disclosed in U. S Patents 3, 189, 622 and 3, 189, 634 which are incorporated herein by reference.
- block copolymers typically comprise alternating segments of polycarbonate and polyorganosiloxane; i. e. , block A and block B, as represented by the general formula
- R 1 -R 8 can each be independently selected from the group consisting of hydrogen, halogen, alkyl having 1 to 6carbon atoms and aryl; R 9 and R 1 0 can each be independently selected from the group consisting of hydrogen, alkyl having
- the polycarbonate segment of the block copolymer is derived from the same diphenol homopolymer as is the polycarbonate resin with which the block copolymer is to be blended.
- the polycarbonate resin is derived from the diphenol, bisphenol-A; i. e.
- the polycarbonate segment of the block copolymer is preferably derived from the same diphenol; i. e. , BPA.
- the polycarbonate resin is derived from the diphenol 2, 2-bis(4-hydroxy-3-methylphenyl) propane, then the polycarbonate segment of the block copolymer is derived from the same diphenol; i. e. , 2, 2-bis(4-hydroxy- 3-methylphenyl)propane, and so forth.
- the polyorganosiloxane segment of the block copolymer is preferably polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- One hundred (100) parts of an aromatic polycarbonate was prepared by reacting BPA (2, 2-bis(4-hydroxyphenyl) propane) and phosgene in the presence of an acid acceptor and a molecular weight regulator.
- the resultant high molecular weight aromatic polycarbonate had an intrinsic viscosity (IV) of 0. 50.
- This aromatic polycarbonate was subsequently mixed with the various block copolymers described in the ensuing examples by tumbling the ingredients together in a laboratory tumbler. In each instance, the resulting mixture was then fed through an extruder which was operated at about 285o C and the extrudate was comminuted into pellets.
- the pellets were then injection molded at about 315o C into test bars of about (5 in. ) 12. 7cm by 1 ⁇ 2 in. by about (1/ 16- 1/8 in. ) 0. 16 -0. 32cm thick and into test squares of about 5x5cm (2 in. by 2 in. ) by about (1/8 in. ) 0. 32cm thick.
- a block copolymer consisting of a polycarbonate segment derived from BPA and polydimethylsiloxane (PDMS) in the polyorganosiloxane segment was prepared in accordance with the method disclosed in U. S. Patent 3, 189, 622. That is the block copolymer was prepared by forming a mixture of
- the resultant block copolymer consisted of 50% by weight polycarbonate segments and 50% by weight PDMS segments.
- Example 2 The block copolymer of Example 2 was mixed with the aromatic polycarbonate of Example 1 at the weight percentages shown below and each of the mixtures was then extruded into pellets which were then molded into test bars and test squares following the procedure described in Example 1.
- Example 2 Following the procedure of Example 2, a block copolymer was obtained consisting of 35% by weight polycarbonate segments and 65% by weight PDMS segments.
- Example 8 Following the procedure of Example 1, 5% by weight of the block copolymer of Example 7 was mixed with 95% by weight of the aromatic polycarbonate of Example 1 whereupon the mixture was extruded into pellets and the pellets molded into test bars and test squares as described in Example 1.
- Example 9 The procedure of Example 2 was used to prepare a block copolymer consisting of 95% by weight polycarbonate segments and 5% by weight PDMS segments. This block copolymer was then extruded into pellets and the pellets molded into test bars and test squares as described in Example 1.
- Example 10 A mixture of 97% by weight of the polycarbonate of Example 1 and 3% by weight PDMS was prepared, which was then extruded into pellets and the pellets molded into test bars and test squares following the proceedu of Example 1.
- test bars and test squares obtained from mixtures of the aromatic polycarbonate of Example 1 with the block copolymers of Examples 3-6 and 8 had a mottled, laminar appearance which could not be used as a commercially acceptable product.
- test bars and test squares of Examples 1, 3-6 and 8-10 were subject to various tests to determine various properties of the compositions.
- the test results wherein 5 tests bars and 5 test squares were used for each test are set forth in Tables. I and II below wherein the various tests were determined in accordance with the following methods:
- V-O Average flaming and/or glowing after removal of the igniting flame shall not exceed 5 seconds and none of the specimens shall drip flaming particles which ignite absorbent cotton.
- V-I Average flaming and/or glowing after removal of the igniting flame shall not exceed 25 seconds and the glowing does not travel vertically for more than 1/8" of the specimen after flaming ceases and glowing is incapable of igniting absorbent cotton.
- V-II Average flame and or glowing after removal of the igniting flame shall not exceed 25 seconds and the speciments drip flaming particles which ignite absorbent cotton.
- a test bar which continues to burn for more than 25 seconds after removal of the igniting flame is classified, not by UL-94, but by the standards of the instant invention, as "burns".
- Flexural modulus was determined in accordance with ASTM D-790; flexural yield was determined in accordance with ASTM D-790; unnotched and notched Izod impact strengths were determined in accordance with ASTM D-256; flammability oxygen ratio (Fenimore/Martin) was determined in accordance with ASTM D-2863; solvent resistance was evaluated by measuring the percent strain necessary to cause crazing in test samples exposed to one drop of solvent for a period of 3 minutes; and RDT (Retention of Ductility Time) denotes the maximum number of hours for which a test bar can be aged at a temperature before the mode of failure in the notched Izod impact test (ASTM-256) changes from ductile to brittle, Unless otherwise specified, the KDT refers to heat aging at 125°C of test bars
- Example 4 block copolymer
- Example 5 raised the resistance to 1% strain, which is about the maximum generally encountered in most practical situations.
- Table -I also reveals that, at higher levels of block copolymer, oxygen index and UL-94 ratings are improved (for instance Example 1 vs. Example 6). From Table II it can be seen that use of the block copolymers of the invention results in a larger positive effect on ductility and a smaller negative effect on molded properties of the test samples as shown by Examples 3-6 and 8.
- Example 6 consisting of the aromatic polycarbonate-block copolymer mixture retained its impact strength and ductility after two weeks of aging at 125°C whereas Example 9, consisting of only the block copolymer, did not.
- Example 11 The procedure of Example 1 was repeated except that 0,5% by weight of the sodium salt of trichlorobenzene sulfonic acid (STB) and 0.1% by weight polytetrafluoroethylene (PTFE) were mixed with the aromatic polycarbonate. The mixture was extruded into pellets as in Example 1, but instead of injection molding the pellets into test bars and test squares, the pellets were extruded into sheets measuring 4 feet square by 0.318 cm (0.125”) thick.
- STB trichlorobenzene sulfonic acid
- PTFE polytetrafluoroethylene
- Example 12 The procedure of Example 2 was repeated to obtain a block copolymer consisting of 57% by weight polycarbonate segments and 43% by weight PDMS.
- Example 13 The procedure of Example 2 was repeated to obtain a block copolymer consisting of 57% by weight polycarbonate segments and 43% by weight PDMS.
- Example 11 The procedure of Example 11 was repeated except that 4% by weight of the block copolymer of Example 12 was mixed with the other ingredients of Example 11 to obtain the aromatic polycarbonate sheets.
- Example 13 containing the additional 4% by weight of the block copolymer required higher stress levels to induce stress-crazing than did Example 11.
- Example 13 was also more durable than Example 11 when exposed to carbon tetrachloride as shown in Table IV.
- Tables III and IV indicate that improved solvent resistance is obtained when the aromatic polycarbonate is further modified with the block copolymer.
- Example 1 The procedure of Example 1 was followed to prepare aromatic polycarbonate test bars and test squares comprising 70% by weight of the polycarbonate of Example 1 and 30% by weight of the block copolymer of Example 12.
- the properties of Example 1 were compared with those of this example (14) and the results are set forth in Table V below wherein tensile strength (psi), elongation (%), and modulus (psi) results were determined in accordance with ASTM D-638.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91786778A | 1978-06-22 | 1978-06-22 | |
US917867 | 1986-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1980000084A1 true WO1980000084A1 (en) | 1980-01-24 |
Family
ID=25439439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1979/000428 WO1980000084A1 (en) | 1978-06-22 | 1979-06-19 | Ductile and solvent resistant polycarbonate compositions having improved flame resistance |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0016791A4 (enrdf_load_stackoverflow) |
JP (1) | JPS55500687A (enrdf_load_stackoverflow) |
WO (1) | WO1980000084A1 (enrdf_load_stackoverflow) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2454453A1 (fr) * | 1979-04-20 | 1980-11-14 | Gen Electric | Compositions de polycarbonates charges comprenant comme additif un copolymere sequence polyorganosiloxane-polycarbonate |
EP0162245A1 (de) * | 1984-04-14 | 1985-11-27 | Bayer Ag | UV-stabilisierte Polycarbonatformkörper |
EP0164477A1 (en) * | 1984-06-14 | 1985-12-18 | General Electric Company | Polycarbonates exhibiting improved heat resistance |
EP0225454A3 (en) * | 1985-12-09 | 1987-11-25 | International Business Machines Corporation | Positive resist system having high resistance to oxygen reactive ion etching |
EP0254054A1 (en) * | 1986-07-22 | 1988-01-27 | General Electric Company | Mixtures based on polycarbonates having improved physical and chemical properties |
US4788252A (en) * | 1987-07-22 | 1988-11-29 | General Electric Company | Mixtures based on polycarbonates having improved physical and chemical properties |
EP0245683A3 (de) * | 1986-05-10 | 1989-02-15 | Bayer Ag | Thermoplastische Formmassen mit flammwidrigen Eigenschaften |
EP0283776A3 (en) * | 1987-03-23 | 1989-02-22 | General Electric Company | Composition of polycarbonate |
EP0258689A3 (en) * | 1986-08-20 | 1989-03-15 | Bayer Ag | Blends of polydiorganosiloxane-polycarbonate blockcocondensates, and polyisobutylene |
EP0261382A3 (de) * | 1986-08-26 | 1989-07-26 | Bayer Ag | Schlagzähe, flammwidrige Polycarbonatformmassen |
US4880864A (en) * | 1987-12-29 | 1989-11-14 | Mobay Corporation | Thermoplastic polycarbonates and blends with enhanced flame retardant properties |
EP0376052A3 (en) * | 1988-12-26 | 1991-09-04 | Idemitsu Petrochemical Co., Ltd. | Polycarbonate-based resin composition |
EP0386511A3 (de) * | 1989-03-03 | 1991-09-18 | Bayer Ag | Flammwidrige Polydiorganosiloxan-Polycarbonat-Blockcopolymere |
US5109045A (en) * | 1990-11-19 | 1992-04-28 | Miles Inc. | Flame retardant polycarbonate compositions |
EP0625547A1 (en) * | 1993-05-18 | 1994-11-23 | Idemitsu Petrochemical Co. Ltd. | Flame retardative polycarbonate resin composition |
WO2003050176A1 (en) * | 2001-12-10 | 2003-06-19 | General Electric Company | Translucent flame retardant polycarbonate compositions |
US7169859B2 (en) | 1999-05-18 | 2007-01-30 | General Electric Company | Weatherable, thermostable polymers having improved flow composition |
US7223804B2 (en) | 2003-12-30 | 2007-05-29 | General Electric Company | Polycarbonate composition |
US7232865B2 (en) | 2003-03-11 | 2007-06-19 | General Electric Company | Transparent and high-heat polycarbonate-polysiloxane copolymers and transparent blends with polycarbonate and a process for preparing same |
US7321014B2 (en) | 2004-12-29 | 2008-01-22 | General Electric Company | Transparent compositions, methods for the preparation thereof, and articles derived therefrom |
US7365125B2 (en) | 2004-08-16 | 2008-04-29 | General Electric Company | Polycarbonate compositions, articles, and method of manufacture |
US7432327B2 (en) | 2004-12-30 | 2008-10-07 | Sabic Innovative Plastics Ip B.V. | Transparent polymeric compositions comprising polysiloxane-polycarbonate copolymer, articles made therefrom and methods of making same |
US7498401B2 (en) | 2005-03-03 | 2009-03-03 | Sabic Innovative Plastics Ip B.V. | Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture |
US7605221B2 (en) | 1999-05-18 | 2009-10-20 | Sabic Innovative Plastics Ip B.V. | Weatherable, thermostable polymers having improved flow composition |
US8552096B2 (en) | 2009-07-31 | 2013-10-08 | Sabic Innovative Plastics Ip B.V. | Flame-retardant reinforced polycarbonate compositions |
US9127155B2 (en) | 2012-04-11 | 2015-09-08 | Sabic Global Technologies B.V. | Phosphorus free flame retardant composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3686355A (en) * | 1970-05-08 | 1972-08-22 | Gen Electric | Shaped composition of polymer and surface modifying block copolymer additive and method |
US3742085A (en) * | 1970-04-15 | 1973-06-26 | Gen Electric | Thermally stable polycarbonate composition |
US4073768A (en) * | 1973-12-28 | 1978-02-14 | General Electric Company | Non-opaque flame retardant polycarbonate composition |
-
1979
- 1979-06-19 JP JP50106079A patent/JPS55500687A/ja active Pending
- 1979-06-19 WO PCT/US1979/000428 patent/WO1980000084A1/en unknown
-
1980
- 1980-01-29 EP EP19790900751 patent/EP0016791A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742085A (en) * | 1970-04-15 | 1973-06-26 | Gen Electric | Thermally stable polycarbonate composition |
US3686355A (en) * | 1970-05-08 | 1972-08-22 | Gen Electric | Shaped composition of polymer and surface modifying block copolymer additive and method |
US4073768A (en) * | 1973-12-28 | 1978-02-14 | General Electric Company | Non-opaque flame retardant polycarbonate composition |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2454453A1 (fr) * | 1979-04-20 | 1980-11-14 | Gen Electric | Compositions de polycarbonates charges comprenant comme additif un copolymere sequence polyorganosiloxane-polycarbonate |
EP0162245A1 (de) * | 1984-04-14 | 1985-11-27 | Bayer Ag | UV-stabilisierte Polycarbonatformkörper |
EP0164477A1 (en) * | 1984-06-14 | 1985-12-18 | General Electric Company | Polycarbonates exhibiting improved heat resistance |
WO1986000083A1 (en) * | 1984-06-14 | 1986-01-03 | General Electric Company | Polycarbonates exhibiting improved heat resistance |
EP0225454A3 (en) * | 1985-12-09 | 1987-11-25 | International Business Machines Corporation | Positive resist system having high resistance to oxygen reactive ion etching |
EP0245683A3 (de) * | 1986-05-10 | 1989-02-15 | Bayer Ag | Thermoplastische Formmassen mit flammwidrigen Eigenschaften |
EP0254054A1 (en) * | 1986-07-22 | 1988-01-27 | General Electric Company | Mixtures based on polycarbonates having improved physical and chemical properties |
EP0258689A3 (en) * | 1986-08-20 | 1989-03-15 | Bayer Ag | Blends of polydiorganosiloxane-polycarbonate blockcocondensates, and polyisobutylene |
US4912165A (en) * | 1986-08-20 | 1990-03-27 | Bayer Aktiengesellschaft | Mixtures of polydiorganosiloxane-polycarbonate block co-condensates and polyisobutylenes |
EP0261382A3 (de) * | 1986-08-26 | 1989-07-26 | Bayer Ag | Schlagzähe, flammwidrige Polycarbonatformmassen |
EP0283776A3 (en) * | 1987-03-23 | 1989-02-22 | General Electric Company | Composition of polycarbonate |
US4788252A (en) * | 1987-07-22 | 1988-11-29 | General Electric Company | Mixtures based on polycarbonates having improved physical and chemical properties |
US4880864A (en) * | 1987-12-29 | 1989-11-14 | Mobay Corporation | Thermoplastic polycarbonates and blends with enhanced flame retardant properties |
US5322882A (en) * | 1988-12-26 | 1994-06-21 | Idemitsu Petrochemical Co., Ltd. | Polycarbonate/polyorganosiloxane composition |
EP0376052A3 (en) * | 1988-12-26 | 1991-09-04 | Idemitsu Petrochemical Co., Ltd. | Polycarbonate-based resin composition |
EP0386511A3 (de) * | 1989-03-03 | 1991-09-18 | Bayer Ag | Flammwidrige Polydiorganosiloxan-Polycarbonat-Blockcopolymere |
US5109045A (en) * | 1990-11-19 | 1992-04-28 | Miles Inc. | Flame retardant polycarbonate compositions |
EP0625547A1 (en) * | 1993-05-18 | 1994-11-23 | Idemitsu Petrochemical Co. Ltd. | Flame retardative polycarbonate resin composition |
US5449710A (en) * | 1993-05-18 | 1995-09-12 | Idemitsu Petrochemical Co., Ltd. | Flame retardative polycarbonate resin composition |
US7169859B2 (en) | 1999-05-18 | 2007-01-30 | General Electric Company | Weatherable, thermostable polymers having improved flow composition |
US7838602B2 (en) | 1999-05-18 | 2010-11-23 | Sabic Innovative Plastics Ip B.V. | Weatherable, thermostable polymers having improved flow composition |
US7605221B2 (en) | 1999-05-18 | 2009-10-20 | Sabic Innovative Plastics Ip B.V. | Weatherable, thermostable polymers having improved flow composition |
CN100366668C (zh) * | 2001-12-10 | 2008-02-06 | 通用电气公司 | 阻燃聚碳酸酯组合物 |
WO2003050176A1 (en) * | 2001-12-10 | 2003-06-19 | General Electric Company | Translucent flame retardant polycarbonate compositions |
US7232865B2 (en) | 2003-03-11 | 2007-06-19 | General Electric Company | Transparent and high-heat polycarbonate-polysiloxane copolymers and transparent blends with polycarbonate and a process for preparing same |
US7223804B2 (en) | 2003-12-30 | 2007-05-29 | General Electric Company | Polycarbonate composition |
US7365125B2 (en) | 2004-08-16 | 2008-04-29 | General Electric Company | Polycarbonate compositions, articles, and method of manufacture |
US7321014B2 (en) | 2004-12-29 | 2008-01-22 | General Electric Company | Transparent compositions, methods for the preparation thereof, and articles derived therefrom |
US7432327B2 (en) | 2004-12-30 | 2008-10-07 | Sabic Innovative Plastics Ip B.V. | Transparent polymeric compositions comprising polysiloxane-polycarbonate copolymer, articles made therefrom and methods of making same |
US7498401B2 (en) | 2005-03-03 | 2009-03-03 | Sabic Innovative Plastics Ip B.V. | Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture |
US8552096B2 (en) | 2009-07-31 | 2013-10-08 | Sabic Innovative Plastics Ip B.V. | Flame-retardant reinforced polycarbonate compositions |
US9127155B2 (en) | 2012-04-11 | 2015-09-08 | Sabic Global Technologies B.V. | Phosphorus free flame retardant composition |
Also Published As
Publication number | Publication date |
---|---|
EP0016791A1 (en) | 1980-10-15 |
EP0016791A4 (en) | 1980-10-15 |
JPS55500687A (enrdf_load_stackoverflow) | 1980-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1980000084A1 (en) | Ductile and solvent resistant polycarbonate compositions having improved flame resistance | |
US4110299A (en) | Flame-retardant polycarbonate composition | |
US4981898A (en) | Polycarbonate-polyester blends | |
EP0067853B1 (en) | Flame retardant aromatic polycarbonates made from fluorinated diphenols | |
US4123436A (en) | Polycarbonate composition plasticized with esters | |
US6031036A (en) | Flame resistant thermoplastic blends having reduced drippage | |
EP1713863B1 (en) | Polycarbonate compositions with thin-wall flame retardance | |
US4923933A (en) | Polycarbonate/polyphthalate carbonate blends exhibiting good flame resistance | |
US4224215A (en) | Filled polycarbonate compositions | |
US4130530A (en) | Cyclic siloxane plasticized polycarbonate composition | |
EP0224696A2 (en) | Flame retardant polyetherimide-polycarbonate blends | |
US4093582A (en) | Organo phosphorus ester plasticized polycarbonate composition | |
US4129546A (en) | Plasticized with a minor amount of an oligomeric polymeric polycarbonate | |
EP0067850B1 (en) | Blends of copoly (ester-carbonate) with polysulfone | |
JPH0670175B2 (ja) | 難燃性カーボネートポリマーブレンド | |
US5229443A (en) | Flame-retardant polycarbonate composition | |
US4195157A (en) | Polycarbonate compositions having improved barrier properties | |
US4148773A (en) | Polycarbonate composition containing siloxane plasticizer | |
EP4247898A1 (en) | Polycarbonate composition, method for the manufacture thereof, and articles formed therefrom | |
CA1141061A (en) | Ductile and solvent resistant polycarbonate compositions having improved flame retardance | |
WO2022107028A1 (en) | Polycarbonate composition, method for the manufacture thereof, and articles formed therefrom | |
WO1982000468A1 (en) | Flame retardant polycarbonate compositions | |
CN114144472B (zh) | 在0.6mm下具有v0的透明超低卤素阻燃聚碳酸酯组合物 | |
WO1980000154A1 (en) | Low melt viscosity polycarbonate compositions having improved impact strength | |
GB2039503A (en) | Flame retardant thermoplastic compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Designated state(s): DE FR GB Kind code of ref document: A1 Designated state(s): DE FR GB |