USRE49816E1 - Dipeptides as inhibitors of human immunoproteasomes - Google Patents
Dipeptides as inhibitors of human immunoproteasomes Download PDFInfo
- Publication number
- USRE49816E1 USRE49816E1 US16/893,086 US201516893086A USRE49816E US RE49816 E1 USRE49816 E1 US RE49816E1 US 201516893086 A US201516893086 A US 201516893086A US RE49816 E USRE49816 E US RE49816E
- Authority
- US
- United States
- Prior art keywords
- group
- alkyl
- dplg
- amino
- mmol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108010016626 Dipeptides Proteins 0.000 title description 27
- 239000003112 inhibitor Substances 0.000 title description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 133
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 20
- 201000011510 cancer Diseases 0.000 claims abstract description 16
- 208000023275 Autoimmune disease Diseases 0.000 claims abstract description 13
- 208000027866 inflammatory disease Diseases 0.000 claims abstract description 12
- 206010062016 Immunosuppression Diseases 0.000 claims abstract description 11
- 230000001506 immunosuppresive effect Effects 0.000 claims abstract description 11
- 208000035475 disorder Diseases 0.000 claims abstract description 10
- 210000000056 organ Anatomy 0.000 claims abstract description 8
- 230000001900 immune effect Effects 0.000 claims abstract description 7
- 208000015122 neurodegenerative disease Diseases 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 189
- -1 CH2Ar Chemical group 0.000 claims description 90
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 64
- 125000002950 monocyclic group Chemical group 0.000 claims description 48
- 125000000217 alkyl group Chemical group 0.000 claims description 37
- 206010009887 colitis Diseases 0.000 claims description 36
- 125000001424 substituent group Chemical group 0.000 claims description 34
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 33
- 229910052736 halogen Inorganic materials 0.000 claims description 33
- 208000011231 Crohn disease Diseases 0.000 claims description 32
- 150000002367 halogens Chemical class 0.000 claims description 32
- 125000001072 heteroaryl group Chemical group 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 25
- 125000003118 aryl group Chemical group 0.000 claims description 24
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 21
- 125000002619 bicyclic group Chemical group 0.000 claims description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 9
- 125000003566 oxetanyl group Chemical group 0.000 claims description 9
- 125000003386 piperidinyl group Chemical group 0.000 claims description 9
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 7
- 206010052779 Transplant rejections Diseases 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 206010025135 lupus erythematosus Diseases 0.000 claims description 5
- 230000036210 malignancy Effects 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 claims description 5
- 206010003246 arthritis Diseases 0.000 claims description 4
- 230000001613 neoplastic effect Effects 0.000 claims description 4
- 208000002250 Hematologic Neoplasms Diseases 0.000 claims description 3
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical group C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 claims description 3
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical group C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000000527 lymphocytic effect Effects 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 16
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims 2
- 238000011282 treatment Methods 0.000 abstract description 17
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 272
- 239000000047 product Substances 0.000 description 159
- 238000002360 preparation method Methods 0.000 description 152
- 238000005160 1H NMR spectroscopy Methods 0.000 description 147
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 140
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 130
- 238000010168 coupling process Methods 0.000 description 91
- 238000005859 coupling reaction Methods 0.000 description 91
- 230000008878 coupling Effects 0.000 description 89
- 230000001404 mediated effect Effects 0.000 description 89
- 239000007821 HATU Substances 0.000 description 81
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 75
- 239000000203 mixture Substances 0.000 description 75
- 238000006243 chemical reaction Methods 0.000 description 70
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 70
- 238000004128 high performance liquid chromatography Methods 0.000 description 65
- 239000007787 solid Substances 0.000 description 48
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 45
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 45
- 210000004027 cell Anatomy 0.000 description 41
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 40
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 40
- 239000000243 solution Substances 0.000 description 40
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 39
- 241000699670 Mus sp. Species 0.000 description 39
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 39
- 102000050697 Nod2 Signaling Adaptor Human genes 0.000 description 33
- 108700002045 Nod2 Signaling Adaptor Proteins 0.000 description 33
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 32
- 239000011541 reaction mixture Substances 0.000 description 31
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 30
- 238000010511 deprotection reaction Methods 0.000 description 30
- 101001136986 Homo sapiens Proteasome subunit beta type-8 Proteins 0.000 description 29
- 102100035760 Proteasome subunit beta type-8 Human genes 0.000 description 29
- 239000002244 precipitate Substances 0.000 description 27
- 150000001412 amines Chemical class 0.000 description 26
- 239000003795 chemical substances by application Substances 0.000 description 26
- 229940093499 ethyl acetate Drugs 0.000 description 25
- 235000019439 ethyl acetate Nutrition 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 108010065805 Interleukin-12 Proteins 0.000 description 24
- 102000013462 Interleukin-12 Human genes 0.000 description 24
- 239000012044 organic layer Substances 0.000 description 24
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 23
- 150000003839 salts Chemical class 0.000 description 22
- 230000005764 inhibitory process Effects 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 20
- 238000006264 debenzylation reaction Methods 0.000 description 18
- 108010065637 Interleukin-23 Proteins 0.000 description 17
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 16
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 16
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 16
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 16
- 230000004900 autophagic degradation Effects 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 14
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 14
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 14
- 125000004429 atom Chemical group 0.000 description 14
- 125000006239 protecting group Chemical group 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical compound NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 13
- 229960004132 diethyl ether Drugs 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 12
- 102000004127 Cytokines Human genes 0.000 description 12
- 108090000695 Cytokines Proteins 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 125000000623 heterocyclic group Chemical group 0.000 description 12
- 230000002401 inhibitory effect Effects 0.000 description 12
- 229940002612 prodrug Drugs 0.000 description 12
- 239000000651 prodrug Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 230000008506 pathogenesis Effects 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 10
- VICZUEHGMCILLU-KSSFIOAISA-N (2S)-2-amino-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide Chemical compound N[C@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)CC(=O)NOC(C)(C)C VICZUEHGMCILLU-KSSFIOAISA-N 0.000 description 10
- 206010006187 Breast cancer Diseases 0.000 description 10
- 229940079156 Proteasome inhibitor Drugs 0.000 description 10
- 230000037396 body weight Effects 0.000 description 10
- 229960001467 bortezomib Drugs 0.000 description 10
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 10
- 239000012267 brine Substances 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 239000012043 crude product Substances 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 238000003810 ethyl acetate extraction Methods 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 239000003207 proteasome inhibitor Substances 0.000 description 10
- 239000012453 solvate Substances 0.000 description 10
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 10
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 8
- 235000010290 biphenyl Nutrition 0.000 description 8
- 239000004305 biphenyl Substances 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 230000016396 cytokine production Effects 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- FHOAKXBXYSJBGX-YFKPBYRVSA-N (2s)-3-hydroxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CO)C(O)=O FHOAKXBXYSJBGX-YFKPBYRVSA-N 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- XPFUSZJDSDKLLN-ZDUSSCGKSA-N (2S)-4-[(2-methylpropan-2-yl)oxyamino]-4-oxo-2-(3-phenylpropanoylamino)butanoic acid Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)O)NC(CCC1=CC=CC=C1)=O)=O XPFUSZJDSDKLLN-ZDUSSCGKSA-N 0.000 description 6
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 6
- 239000007832 Na2SO4 Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 230000001684 chronic effect Effects 0.000 description 6
- IHZHDSHEYMELJP-ZCMDIHMWSA-N dicyclohexylazanium;(2s)-3-methoxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound C1CCCCC1NC1CCCCC1.COC[C@@H](C(O)=O)NC(=O)OC(C)(C)C IHZHDSHEYMELJP-ZCMDIHMWSA-N 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000001620 monocyclic carbocycle group Chemical group 0.000 description 6
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 6
- NVSYANRBXPURRQ-UHFFFAOYSA-N naphthalen-1-ylmethanamine Chemical compound C1=CC=C2C(CN)=CC=CC2=C1 NVSYANRBXPURRQ-UHFFFAOYSA-N 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 238000010898 silica gel chromatography Methods 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- ODPBRVIGHICWCE-OALUTQOASA-N (2S)-2-amino-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]butanediamide Chemical compound N[C@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)CC(=O)NOC(C)(C)C ODPBRVIGHICWCE-OALUTQOASA-N 0.000 description 5
- SOHLZANWVLCPHK-LBPRGKRZSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxo-4-phenylmethoxybutanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC(=O)OCC1=CC=CC=C1 SOHLZANWVLCPHK-LBPRGKRZSA-N 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 229940124639 Selective inhibitor Drugs 0.000 description 5
- 102000002689 Toll-like receptor Human genes 0.000 description 5
- 108020000411 Toll-like receptor Proteins 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000007812 deficiency Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 5
- 239000002158 endotoxin Substances 0.000 description 5
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 229920006008 lipopolysaccharide Polymers 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 230000017854 proteolysis Effects 0.000 description 5
- 206010039073 rheumatoid arthritis Diseases 0.000 description 5
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 4
- CHXDAHWRBGNLQZ-UHFFFAOYSA-N 3h-oxathiazole 2-oxide Chemical class O=S1NC=CO1 CHXDAHWRBGNLQZ-UHFFFAOYSA-N 0.000 description 4
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 4
- 208000031648 Body Weight Changes Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 208000009386 Experimental Arthritis Diseases 0.000 description 4
- 102000017013 Heterogeneous Nuclear Ribonucleoprotein A1 Human genes 0.000 description 4
- 108010014594 Heterogeneous Nuclear Ribonucleoprotein A1 Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 102000013691 Interleukin-17 Human genes 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 4
- 101150083031 Nod2 gene Proteins 0.000 description 4
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 4
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 230000030741 antigen processing and presentation Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 4
- 230000004579 body weight change Effects 0.000 description 4
- 210000004979 bone marrow derived macrophage Anatomy 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000003394 haemopoietic effect Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 210000004901 leucine-rich repeat Anatomy 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 4
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000005556 structure-activity relationship Methods 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- COMUWNFVTWKSDT-ZETCQYMHSA-N (2,5-dioxopyrrolidin-1-yl) (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CC(C)(C)OC(=O)N[C@@H](C)C(=O)ON1C(=O)CCC1=O COMUWNFVTWKSDT-ZETCQYMHSA-N 0.000 description 3
- MBYBDQXJOALNNP-LTCKWSDVSA-N (2S)-2-amino-3-methoxy-N-(quinolin-8-ylmethyl)propanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.FC(C(=O)O)(F)F.N[C@H](C(=O)NCC=1C=CC=C2C=CC=NC12)COC MBYBDQXJOALNNP-LTCKWSDVSA-N 0.000 description 3
- WQAVPPWWLLVGFK-VTNASVEKSA-N (2s)-3-(4-methoxyphenyl)-n-[(2s)-1-[(2r)-2-methyloxiran-2-yl]-1-oxo-3-phenylpropan-2-yl]-2-[[(2s)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1=CC(OC)=CC=C1C[C@@H](C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)[C@]1(C)OC1)NC(=O)[C@H](C)NC(=O)CN1CCOCC1 WQAVPPWWLLVGFK-VTNASVEKSA-N 0.000 description 3
- VACQQKPAEPLXEA-OALUTQOASA-N (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoic acid Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)O)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC VACQQKPAEPLXEA-OALUTQOASA-N 0.000 description 3
- FFBWKPKOXRMLNP-UHFFFAOYSA-N 4-Aminomethylindole Chemical compound NCC1=CC=CC2=C1C=CN2 FFBWKPKOXRMLNP-UHFFFAOYSA-N 0.000 description 3
- BNMPIJWVMVNSRD-UHFFFAOYSA-N 5-methyl-1,2-oxazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NO1 BNMPIJWVMVNSRD-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 206010009900 Colitis ulcerative Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- JDELNGUXYKBMMQ-SJEIDVEUSA-N FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC Chemical compound FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC JDELNGUXYKBMMQ-SJEIDVEUSA-N 0.000 description 3
- 101001033233 Homo sapiens Interleukin-10 Proteins 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 108010079844 PR-957 Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 102000004389 Ribonucleoproteins Human genes 0.000 description 3
- 108010081734 Ribonucleoproteins Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- AKVQXTFMCPJIMD-ZLLYMXMVSA-N benzyl (3S)-3-amino-4-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoate 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C AKVQXTFMCPJIMD-ZLLYMXMVSA-N 0.000 description 3
- LAEXEFAPMOUOLW-UIOOFZCWSA-N benzyl (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoate Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC LAEXEFAPMOUOLW-UIOOFZCWSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000005621 boronate group Chemical class 0.000 description 3
- 201000008275 breast carcinoma Diseases 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009509 drug development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000003599 food sweetener Nutrition 0.000 description 3
- 231100000221 frame shift mutation induction Toxicity 0.000 description 3
- 230000037433 frameshift Effects 0.000 description 3
- 210000000777 hematopoietic system Anatomy 0.000 description 3
- 102000052620 human IL10 Human genes 0.000 description 3
- 230000037451 immune surveillance Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000015788 innate immune response Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 125000000468 ketone group Chemical group 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- ZBDXGNXNXXPKJI-UHFFFAOYSA-N o-tert-butylhydroxylamine;hydrochloride Chemical compound Cl.CC(C)(C)ON ZBDXGNXNXXPKJI-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000003765 sweetening agent Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- GFMYMAAYTBEAQK-FYZYNONXSA-N (2S)-2-amino-3-(4-fluorophenyl)-N-(naphthalen-1-ylmethyl)propanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F GFMYMAAYTBEAQK-FYZYNONXSA-N 0.000 description 2
- NSYNMMVLURAXFP-MERQFXBCSA-N (2S)-2-amino-3-methoxy-N-[(3-methoxyphenyl)methyl]propanamide 2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.COC[C@H](N)C(=O)NCc1cccc(OC)c1 NSYNMMVLURAXFP-MERQFXBCSA-N 0.000 description 2
- ULALTCJLHDTFFA-RSAXXLAASA-N (2S)-2-amino-3-methyl-N-(naphthalen-1-ylmethyl)butanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C(C)C ULALTCJLHDTFFA-RSAXXLAASA-N 0.000 description 2
- OYISBSQWQWUCFO-HLRBRJAUSA-N (2S)-2-amino-N'-tert-butyl-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)CC(=O)NC(C)(C)C OYISBSQWQWUCFO-HLRBRJAUSA-N 0.000 description 2
- PVDCXODMUUEKEC-QMMMGPOBSA-N (2S)-2-amino-N-(1H-indol-4-ylmethyl)propanamide Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](C)N)=O PVDCXODMUUEKEC-QMMMGPOBSA-N 0.000 description 2
- HZIWJQOWNKRRSW-PPHPATTJSA-N (2S)-2-amino-N-[(2,3-dimethoxyphenyl)methyl]-3-methoxypropanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)NCC1=C(C(=CC=C1)OC)OC)COC HZIWJQOWNKRRSW-PPHPATTJSA-N 0.000 description 2
- KFQZYLBZLPOQBJ-IRXDYDNUSA-N (3S)-3-(methanesulfonamido)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)O)NS(=O)(=O)C)=O KFQZYLBZLPOQBJ-IRXDYDNUSA-N 0.000 description 2
- XRMOFNLWCDNCQL-MBSDFSHPSA-N (3S)-4-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoic acid Chemical compound C1(=CC=CC2=CC=CC=C12)CNC([C@H](C)NC([C@H](CC(=O)O)NC(CCC1=CC=CC=C1)=O)=O)=O XRMOFNLWCDNCQL-MBSDFSHPSA-N 0.000 description 2
- MPKUQVIAMNGDMM-PMACEKPBSA-N (3S)-4-[[(2S)-1-[(2,3-dimethoxyphenyl)methylamino]-3-methoxy-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoic acid Chemical compound COC1=C(CNC([C@H](COC)NC([C@H](CC(=O)O)NC(CCC2=CC=CC=C2)=O)=O)=O)C=CC=C1OC MPKUQVIAMNGDMM-PMACEKPBSA-N 0.000 description 2
- IGIILRMKNHQNNR-GOTSBHOMSA-N (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-[(4-methylphenyl)sulfonylamino]-4-oxobutanoic acid Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)O)NS(=O)(=O)C1=CC=C(C=C1)C)=O IGIILRMKNHQNNR-GOTSBHOMSA-N 0.000 description 2
- XAGAIKBLLIXNQE-ZEQRLZLVSA-N (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoic acid Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)O)NC(CCC1=CC=CC=C1)=O)=O XAGAIKBLLIXNQE-ZEQRLZLVSA-N 0.000 description 2
- VUSWMHDBHGLSAG-VXKWHMMOSA-N (3S)-4-[[(2S)-3-methoxy-1-oxo-1-(1,2,3,4-tetrahydroquinolin-8-ylmethylamino)propan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoic acid Chemical compound COC[C@@H](C(NCC=1C=CC=C2CCCNC12)=O)NC([C@H](CC(=O)O)NC(CCC1=CC=CC=C1)=O)=O VUSWMHDBHGLSAG-VXKWHMMOSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- XDHNQDDQEHDUTM-XJKSCTEHSA-N (3z,5e,7r,8s,9r,11e,13e,15s,16r)-16-[(2s,3r,4s)-4-[(2r,4r,5s,6r)-2,4-dihydroxy-5-methyl-6-propan-2-yloxan-2-yl]-3-hydroxypentan-2-yl]-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one Chemical compound CO[C@H]1\C=C\C=C(C)\C[C@@H](C)[C@H](O)[C@H](C)\C=C(/C)\C=C(OC)\C(=O)O[C@@H]1[C@@H](C)[C@@H](O)[C@H](C)[C@]1(O)O[C@H](C(C)C)[C@@H](C)[C@H](O)C1 XDHNQDDQEHDUTM-XJKSCTEHSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 2
- 238000004293 19F NMR spectroscopy Methods 0.000 description 2
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 2
- ZHDRDZMTEOIWSX-UHFFFAOYSA-N 2-methyl-1,3-thiazole-4-carboxylic acid Chemical compound CC1=NC(C(O)=O)=CS1 ZHDRDZMTEOIWSX-UHFFFAOYSA-N 0.000 description 2
- IIQLCIPKSPJKEJ-UHFFFAOYSA-N 2-naphthalen-1-ylethylazanium;chloride Chemical compound Cl.C1=CC=C2C(CCN)=CC=CC2=C1 IIQLCIPKSPJKEJ-UHFFFAOYSA-N 0.000 description 2
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 2
- PBOADZMUTXWNOR-UHFFFAOYSA-N 3-(2-oxo-3h-[1,2,4]triazolo[1,5-a]pyridin-6-yl)propanoic acid Chemical compound C1=C(CCC(=O)O)C=CC2=NC(O)=NN21 PBOADZMUTXWNOR-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- WWLDJZWYWXWTQC-IADCTJSHSA-N CC1=CC=C(C=C1)S(=O)(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C Chemical compound CC1=CC=C(C=C1)S(=O)(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C WWLDJZWYWXWTQC-IADCTJSHSA-N 0.000 description 2
- TVNSXCPRWAIJCU-VXKWHMMOSA-N COC[C@@H](C(NCC1=CC=CC2=CC=CC=C12)=O)NC([C@H](CC(NOC(C)(C)C)=O)NC(OC(C)(C)C)=O)=O Chemical compound COC[C@@H](C(NCC1=CC=CC2=CC=CC=C12)=O)NC([C@H](CC(NOC(C)(C)C)=O)NC(OC(C)(C)C)=O)=O TVNSXCPRWAIJCU-VXKWHMMOSA-N 0.000 description 2
- YZNWNWIMQPDZSE-VXKWHMMOSA-N COC[C@H](NC(=O)[C@H](CC(=O)NC(C)(C)C)NC(=O)OC(C)(C)C)C(=O)NCC1=CC=CC2=CC=CC=C12 Chemical compound COC[C@H](NC(=O)[C@H](CC(=O)NC(C)(C)C)NC(=O)OC(C)(C)C)C(=O)NCC1=CC=CC2=CC=CC=C12 YZNWNWIMQPDZSE-VXKWHMMOSA-N 0.000 description 2
- MXOVMVPMQYSIHR-UWJYYQICSA-N C[C@@H](C(NCC1=CC=CC2=CC=CC=C12)=O)NC([C@H](CC(NOC(C)(C)C)=O)NC(OC(C)(C)C)=O)=O Chemical compound C[C@@H](C(NCC1=CC=CC2=CC=CC=C12)=O)NC([C@H](CC(NOC(C)(C)C)=O)NC(OC(C)(C)C)=O)=O MXOVMVPMQYSIHR-UWJYYQICSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 108700005107 DPLG3 Proteins 0.000 description 2
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000852992 Homo sapiens Interleukin-12 subunit beta Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102000014154 Interleukin-12 Subunit p35 Human genes 0.000 description 2
- 108010011301 Interleukin-12 Subunit p35 Proteins 0.000 description 2
- 102100036701 Interleukin-12 subunit beta Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 229930194542 Keto Natural products 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- VIWZVFVJPXTXPA-UHFFFAOYSA-N N-(2-Carboxymethyl)-morpholine Chemical compound OC(=O)CN1CCOCC1 VIWZVFVJPXTXPA-UHFFFAOYSA-N 0.000 description 2
- 125000003047 N-acetyl group Chemical group 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 201000009594 Systemic Scleroderma Diseases 0.000 description 2
- 206010042953 Systemic sclerosis Diseases 0.000 description 2
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000014456 Trefoil Factor-3 Human genes 0.000 description 2
- 108010078184 Trefoil Factor-3 Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010976 amide bond formation reaction Methods 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- XDHNQDDQEHDUTM-UHFFFAOYSA-N bafliomycin A1 Natural products COC1C=CC=C(C)CC(C)C(O)C(C)C=C(C)C=C(OC)C(=O)OC1C(C)C(O)C(C)C1(O)OC(C(C)C)C(C)C(O)C1 XDHNQDDQEHDUTM-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- RLZXOPIRIBSQBK-UGKGYDQZSA-N benzyl (2S)-2-[[(2S)-4-[(2-methylpropan-2-yl)oxyamino]-4-oxo-2-(3-phenylpropanoylamino)butanoyl]amino]propanoate Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)OCC1=CC=CC=C1)C)NC(CCC1=CC=CC=C1)=O)=O RLZXOPIRIBSQBK-UGKGYDQZSA-N 0.000 description 2
- HQKOKZGWGGAINR-ZEQRLZLVSA-N benzyl (3S)-3-(methanesulfonamido)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoate Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)OCC1=CC=CC=C1)NS(=O)(=O)C)=O HQKOKZGWGGAINR-ZEQRLZLVSA-N 0.000 description 2
- QWCVUHWBOQMVGJ-CPJSRVTESA-N benzyl (3S)-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoate Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C QWCVUHWBOQMVGJ-CPJSRVTESA-N 0.000 description 2
- PCRNSRRMZSJLET-HRIAXCGHSA-N benzyl (3S)-3-amino-4-[[(2S)-3-methoxy-1-oxo-1-(quinolin-8-ylmethylamino)propan-2-yl]amino]-4-oxobutanoate 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(NCC=1C=CC=C2C=CC=NC12)=O)COC PCRNSRRMZSJLET-HRIAXCGHSA-N 0.000 description 2
- FIAWQODMHGHRCC-NGQVCNFZSA-N benzyl (3S)-4-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoate Chemical compound C1(=CC=CC2=CC=CC=C12)CNC([C@H](C)NC([C@H](CC(=O)OCC1=CC=CC=C1)NC(CCC1=CC=CC=C1)=O)=O)=O FIAWQODMHGHRCC-NGQVCNFZSA-N 0.000 description 2
- DFDLQOAHZUPVNL-SVBPBHIXSA-N benzyl (3S)-4-[[(2S)-1-[(2,3-dimethoxyphenyl)methylamino]-3-methoxy-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoate Chemical compound COC1=C(CNC([C@H](COC)NC([C@H](CC(=O)OCC2=CC=CC=C2)NC(CCC2=CC=CC=C2)=O)=O)=O)C=CC=C1OC DFDLQOAHZUPVNL-SVBPBHIXSA-N 0.000 description 2
- YBDGRLJOBZVYCT-CONSDPRKSA-N benzyl (3S)-4-[[(2S)-3-(4-fluorophenyl)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoate Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F YBDGRLJOBZVYCT-CONSDPRKSA-N 0.000 description 2
- NMITWFSOIIJMIX-CONSDPRKSA-N benzyl (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoate Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)OCC1=CC=CC=C1)NC(CCC1=CC=CC=C1)=O)=O NMITWFSOIIJMIX-CONSDPRKSA-N 0.000 description 2
- BEXYGOQHGVJWRW-ZEQRLZLVSA-N benzyl (3S)-4-[[(2S)-3-methoxy-1-oxo-1-(quinolin-8-ylmethylamino)propan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoate Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(NCC=1C=CC=C2C=CC=NC12)=O)COC BEXYGOQHGVJWRW-ZEQRLZLVSA-N 0.000 description 2
- XUCNOBBDUZCQRY-VMPREFPWSA-N benzyl (3S)-4-[[(2S)-3-methoxy-1-oxo-1-(quinolin-8-ylmethylamino)propan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoate Chemical compound COC[C@@H](C(NCC=1C=CC=C2C=CC=NC12)=O)NC([C@H](CC(=O)OCC1=CC=CC=C1)NC(CCC1=CC=CC=C1)=O)=O XUCNOBBDUZCQRY-VMPREFPWSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 238000010322 bone marrow transplantation Methods 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 125000005517 carbenium group Chemical group 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 2
- 108010021331 carfilzomib Proteins 0.000 description 2
- 229960002438 carfilzomib Drugs 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000000039 congener Substances 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 2
- 229940038472 dicalcium phosphate Drugs 0.000 description 2
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 239000003596 drug target Substances 0.000 description 2
- 210000004783 epithelial tight junction Anatomy 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N hydroxylamine hydrochloride Substances Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- 230000004957 immunoregulator effect Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 108010051621 interferon regulatory factor-8 Proteins 0.000 description 2
- 230000019734 interleukin-12 production Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 210000004347 intestinal mucosa Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000010189 intracellular transport Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229960003646 lysine Drugs 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- DBTXKJJSFWZJNS-UHFFFAOYSA-N o-phenylhydroxylamine;hydrochloride Chemical compound Cl.NOC1=CC=CC=C1 DBTXKJJSFWZJNS-UHFFFAOYSA-N 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- PJCFLHUCYONHAS-UHFFFAOYSA-N oxathiazolone Chemical class O=C1OC=NS1 PJCFLHUCYONHAS-UHFFFAOYSA-N 0.000 description 2
- 125000005476 oxopyrrolidinyl group Chemical group 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229960003424 phenylacetic acid Drugs 0.000 description 2
- 239000003279 phenylacetic acid Substances 0.000 description 2
- 229950009215 phenylbutanoic acid Drugs 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- ZSZBVCQVYPCNIF-UHFFFAOYSA-N propanamide;2,2,2-trifluoroacetic acid Chemical compound CCC(N)=O.OC(=O)C(F)(F)F ZSZBVCQVYPCNIF-UHFFFAOYSA-N 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 229960002930 sirolimus Drugs 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- SMXNDUHEVBRJJN-HNNXBMFYSA-N tert-butyl N-[(2S)-1-(1H-indol-4-ylmethylamino)-3-methoxy-1-oxopropan-2-yl]carbamate Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](COC)NC(OC(C)(C)C)=O)=O SMXNDUHEVBRJJN-HNNXBMFYSA-N 0.000 description 2
- KZIVOLSWRHPFJV-ZDUSSCGKSA-N tert-butyl N-[(2S)-1-[(2,3-dimethoxyphenyl)methylamino]-3-methoxy-1-oxopropan-2-yl]carbamate Chemical compound COC1=C(CNC([C@H](COC)NC(OC(C)(C)C)=O)=O)C=CC=C1OC KZIVOLSWRHPFJV-ZDUSSCGKSA-N 0.000 description 2
- ZKEDDFBXIHZDGO-AWEZNQCLSA-N tert-butyl N-[(2S)-3-methoxy-1-[(3-methoxyphenyl)methylamino]-1-oxopropan-2-yl]carbamate Chemical compound COC[C@@H](C(=O)NCC1=CC(=CC=C1)OC)NC(OC(C)(C)C)=O ZKEDDFBXIHZDGO-AWEZNQCLSA-N 0.000 description 2
- KGFXDDDYVGDLSN-HNNXBMFYSA-N tert-butyl N-[(2S)-3-methoxy-1-oxo-1-(quinolin-8-ylmethylamino)propan-2-yl]carbamate Chemical compound COC[C@@H](C(NCC=1C=CC=C2C=CC=NC12)=O)NC(OC(C)(C)C)=O KGFXDDDYVGDLSN-HNNXBMFYSA-N 0.000 description 2
- BRHJXHZWPREWIV-SFHVURJKSA-N tert-butyl N-[(2S)-3-methyl-1-(naphthalen-1-ylmethylamino)-1-oxobutan-2-yl]carbamate Chemical compound CC([C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC(OC(C)(C)C)=O)C BRHJXHZWPREWIV-SFHVURJKSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- LVMPWFJVYMXSNY-UHFFFAOYSA-N (2,3-dimethoxyphenyl)methanamine Chemical compound COC1=CC=CC(CN)=C1OC LVMPWFJVYMXSNY-UHFFFAOYSA-N 0.000 description 1
- QZUIWSVWOVQVOX-PMACEKPBSA-N (2S)-2-(methanesulfonamido)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-(oxetan-3-yl)butanediamide Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)NC1COC1)NS(=O)(=O)C)=O QZUIWSVWOVQVOX-PMACEKPBSA-N 0.000 description 1
- OIRVGJJEMDEGPH-CPJSRVTESA-N (2S)-2-[(4-methylphenyl)sulfonylamino]-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NS(=O)(=O)C1=CC=C(C=C1)C)=O OIRVGJJEMDEGPH-CPJSRVTESA-N 0.000 description 1
- CQHYJYUKFXYOJB-UWJYYQICSA-N (2S)-2-[(5-methyl-1,2-oxazole-3-carbonyl)amino]-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(=O)C1=NOC(=C1)C)=O CQHYJYUKFXYOJB-UWJYYQICSA-N 0.000 description 1
- WTICBNRSKMURIV-VXKWHMMOSA-N (2S)-2-[[(2S)-2-amino-3-methoxypropanoyl]amino]-3-(4-fluorophenyl)-N-(naphthalen-1-ylmethyl)propanamide Chemical compound N[C@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F)COC WTICBNRSKMURIV-VXKWHMMOSA-N 0.000 description 1
- FSLQESGFRZJUSQ-ZFWWWQNUSA-N (2S)-2-[[(2S)-4-[(2-methylpropan-2-yl)oxyamino]-4-oxo-2-(3-phenylpropanoylamino)butanoyl]amino]propanoic acid Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)O)C)NC(CCC1=CC=CC=C1)=O)=O FSLQESGFRZJUSQ-ZFWWWQNUSA-N 0.000 description 1
- WHWJCMYWEWLJKX-UQKRIMTDSA-N (2S)-2-amino-3-methoxy-N-(naphthalen-1-ylmethyl)propanamide 2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.COC[C@H](N)C(=O)NCc1cccc2ccccc12 WHWJCMYWEWLJKX-UQKRIMTDSA-N 0.000 description 1
- WOKAGLFQQPPFHE-MIRNQTQTSA-N (2S)-2-amino-3-methoxy-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]propanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)COC WOKAGLFQQPPFHE-MIRNQTQTSA-N 0.000 description 1
- RNEGKRPDIWYDGB-PPHPATTJSA-N (2S)-2-amino-N-(naphthalen-1-ylmethyl)propanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C RNEGKRPDIWYDGB-PPHPATTJSA-N 0.000 description 1
- IBXFHHNOZVHQJH-IYPAPVHQSA-N (2S)-2-amino-N-[(2S)-1-(1H-indol-4-ylmethylamino)-1-oxopropan-2-yl]propanamide 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N1C=CC2=C(C=CC=C12)CNC([C@H](C)NC([C@H](C)N)=O)=O IBXFHHNOZVHQJH-IYPAPVHQSA-N 0.000 description 1
- VCQUUXMHTLIPBD-CYFREDJKSA-N (2S)-3-methoxy-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-(3-phenylpropanoylamino)propanamide Chemical compound COC[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(CCC1=CC=CC=C1)=O VCQUUXMHTLIPBD-CYFREDJKSA-N 0.000 description 1
- WNVNIQNBXZDOTD-LVXARBLLSA-N (2S)-N',N'-diethyl-2-[(4-methylphenyl)sulfonylamino]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide Chemical compound C(C)N(C(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NS(=O)(=O)C1=CC=C(C=C1)C)=O)CC WNVNIQNBXZDOTD-LVXARBLLSA-N 0.000 description 1
- IFSHPYDBGCJZAJ-CVDCTZTESA-N (2S)-N'-[(2-methylpropan-2-yl)oxy]-2-[(2-morpholin-4-ylacetyl)amino]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(CN1CCOCC1)=O)=O IFSHPYDBGCJZAJ-CVDCTZTESA-N 0.000 description 1
- MGYGILCPCKTDJR-CUNXSJBXSA-N (2S)-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-(4-phenylbutanoylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(CCCC1=CC=CC=C1)=O)=O MGYGILCPCKTDJR-CUNXSJBXSA-N 0.000 description 1
- LAVYTKONBIMBPN-YMNQCSKTSA-N (2S)-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-(oxirane-2-carbonylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(=O)C1OC1)=O LAVYTKONBIMBPN-YMNQCSKTSA-N 0.000 description 1
- GCNJRQNHENAETI-KSSFIOAISA-N (2S)-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-[(2,2,2-trifluoroacetyl)amino]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(C(F)(F)F)=O)=O GCNJRQNHENAETI-KSSFIOAISA-N 0.000 description 1
- IBBUOCVHTMRQOA-CPJSRVTESA-N (2S)-N'-[(2-methylpropan-2-yl)oxy]-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-[(2-phenylacetyl)amino]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(CC1=CC=CC=C1)=O)=O IBBUOCVHTMRQOA-CPJSRVTESA-N 0.000 description 1
- GZFFSQNYXGCHKO-SVBPBHIXSA-N (2S)-N'-tert-butyl-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-(3-phenylpropanoylamino)butanediamide Chemical compound C(C)(C)(C)NC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(CCC1=CC=CC=C1)=O)=O GZFFSQNYXGCHKO-SVBPBHIXSA-N 0.000 description 1
- MPQHJMLLZWUXPV-GMAHTHKFSA-N (2S)-N'-tert-butyl-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-[(5-methyl-1,2-oxazole-3-carbonyl)amino]butanediamide Chemical compound C(C)(C)(C)NC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(=O)C1=NOC(=C1)C)=O MPQHJMLLZWUXPV-GMAHTHKFSA-N 0.000 description 1
- KJHIEWRRKQGUNJ-DQEYMECFSA-N (2S)-N-[(2S)-1-(1H-indol-4-ylmethylamino)-3-methoxy-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-(3-phenylpropanoylamino)butanediamide Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](COC)NC([C@H](CC(=O)NOC(C)(C)C)NC(CCC1=CC=CC=C1)=O)=O)=O KJHIEWRRKQGUNJ-DQEYMECFSA-N 0.000 description 1
- NMXKNAIWDQPGLU-FNZWTVRRSA-N (2S)-N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-(oxetan-3-yl)-2-(3-phenylpropanoylamino)butanediamide Chemical compound C1(=CC=CC2=CC=CC=C12)CNC([C@H](C)NC([C@H](CC(=O)NC1COC1)NC(CCC1=CC=CC=C1)=O)=O)=O NMXKNAIWDQPGLU-FNZWTVRRSA-N 0.000 description 1
- JLCDGABYGRSECN-UIOOFZCWSA-N (2S)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-2-[(4-methylphenyl)sulfonylamino]-N'-[(2-methylpropan-2-yl)oxy]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NS(=O)(=O)C1=CC=C(C=C1)C)=O JLCDGABYGRSECN-UIOOFZCWSA-N 0.000 description 1
- DRIFSYJGABRYAX-SVBPBHIXSA-N (2S)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-(3-phenylpropanoylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(CCC1=CC=CC=C1)=O)=O DRIFSYJGABRYAX-SVBPBHIXSA-N 0.000 description 1
- ZXNVWYWKNOFXSG-NSOVKSMOSA-N (2S)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-(4-phenylbutanoylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(CCCC1=CC=CC=C1)=O)=O ZXNVWYWKNOFXSG-NSOVKSMOSA-N 0.000 description 1
- XKGJNZLOTSNYGK-ZEQRLZLVSA-N (2S)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-[(2-morpholin-4-ylacetyl)amino]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(CN1CCOCC1)=O)=O XKGJNZLOTSNYGK-ZEQRLZLVSA-N 0.000 description 1
- UFOZDDHBJVMDJM-UIOOFZCWSA-N (2S)-N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-[(2-phenylacetyl)amino]butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)COC)NC(CC1=CC=CC=C1)=O)=O UFOZDDHBJVMDJM-UIOOFZCWSA-N 0.000 description 1
- YJKDXPWDNXESBV-ZEQRLZLVSA-N (2S)-N-[(2S)-3-methoxy-1-[(3-methoxyphenyl)methylamino]-1-oxopropan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-(3-phenylpropanoylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC(=CC=C1)OC)COC)NC(CCC1=CC=CC=C1)=O)=O YJKDXPWDNXESBV-ZEQRLZLVSA-N 0.000 description 1
- NGNIQBRJUFBPAE-FIBWVYCGSA-N (2S)-N-[(2S)-3-methyl-1-(naphthalen-1-ylmethylamino)-1-oxobutan-2-yl]-N'-[(2-methylpropan-2-yl)oxy]-2-(3-phenylpropanoylamino)butanediamide Chemical compound C(C)(C)(C)ONC(C[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C(C)C)NC(CCC1=CC=CC=C1)=O)=O NGNIQBRJUFBPAE-FIBWVYCGSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- FNYWDMKESUACOU-JTQLQIEISA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-pyridin-4-ylpropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC1=CC=NC=C1 FNYWDMKESUACOU-JTQLQIEISA-N 0.000 description 1
- GMKFYPQTEHMRJU-AWEZNQCLSA-N (2s)-2-amino-3-methoxy-n-(naphthalen-1-ylmethyl)propanamide Chemical compound C1=CC=C2C(CNC(=O)[C@@H](N)COC)=CC=CC2=C1 GMKFYPQTEHMRJU-AWEZNQCLSA-N 0.000 description 1
- QEBITORLVCJELG-JTQLQIEISA-N (2s)-2-amino-n-(naphthalen-1-ylmethyl)propanamide Chemical compound C1=CC=C2C(CNC(=O)[C@@H](N)C)=CC=CC2=C1 QEBITORLVCJELG-JTQLQIEISA-N 0.000 description 1
- LVRWMESCLOLWAH-UIOOFZCWSA-N (2s)-3-(1h-indol-3-yl)-2-[[1-[(2s)-3-methyl-2-[(4-methylphenyl)sulfonylamino]butanoyl]piperidine-4-carbonyl]amino]propanoic acid Chemical compound N([C@@H](C(C)C)C(=O)N1CCC(CC1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)S(=O)(=O)C1=CC=C(C)C=C1 LVRWMESCLOLWAH-UIOOFZCWSA-N 0.000 description 1
- SZXBQTSZISFIAO-ZETCQYMHSA-N (2s)-3-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)OC(C)(C)C SZXBQTSZISFIAO-ZETCQYMHSA-N 0.000 description 1
- GRRIMVWABNHKBX-UHFFFAOYSA-N (3-methoxyphenyl)methanamine Chemical compound COC1=CC=CC(CN)=C1 GRRIMVWABNHKBX-UHFFFAOYSA-N 0.000 description 1
- WKHABRRJMGVELW-UHFFFAOYSA-N (3-phenylphenyl)methanamine Chemical compound NCC1=CC=CC(C=2C=CC=CC=2)=C1 WKHABRRJMGVELW-UHFFFAOYSA-N 0.000 description 1
- FMKOZKJYWSWSEM-JTSKRJEESA-N (3S)-3-[(4-methylphenyl)sulfonylamino]-4-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound CC1=CC=C(C=C1)S(=O)(=O)N[C@@H](CC(=O)O)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C FMKOZKJYWSWSEM-JTSKRJEESA-N 0.000 description 1
- VYCIPWXBAXWMPA-VMPREFPWSA-N (3S)-4-[[(2S)-3-(4-fluorophenyl)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxo-3-(3-phenylpropanoylamino)butanoic acid Chemical compound FC1=CC=C(C=C1)C[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)O)NC(CCC1=CC=CC=C1)=O)=O VYCIPWXBAXWMPA-VMPREFPWSA-N 0.000 description 1
- RMSPOVPGDBDYKH-UHFFFAOYSA-N (4-phenylphenyl)methanamine Chemical compound C1=CC(CN)=CC=C1C1=CC=CC=C1 RMSPOVPGDBDYKH-UHFFFAOYSA-N 0.000 description 1
- CVZUKWBYQQYBTF-ZDUSSCGKSA-N (4s)-4-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxo-5-phenylmethoxypentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CCC(O)=O)C(=O)OCC1=CC=CC=C1 CVZUKWBYQQYBTF-ZDUSSCGKSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical class CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- NTOIKDYVJIWVSU-UHFFFAOYSA-N 2,3-dihydroxy-2,3-bis(4-methylbenzoyl)butanedioic acid Chemical class C1=CC(C)=CC=C1C(=O)C(O)(C(O)=O)C(O)(C(O)=O)C(=O)C1=CC=C(C)C=C1 NTOIKDYVJIWVSU-UHFFFAOYSA-N 0.000 description 1
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical class OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 1
- DWLVFWDCSFTDOD-UHFFFAOYSA-N 2-(1h-indol-3-yl)-2-oxoacetic acid Chemical compound C1=CC=C2C(C(=O)C(=O)O)=CNC2=C1 DWLVFWDCSFTDOD-UHFFFAOYSA-N 0.000 description 1
- BLDFSDCBQJUWFG-UHFFFAOYSA-N 2-(methylamino)-1,2-diphenylethanol Chemical compound C=1C=CC=CC=1C(NC)C(O)C1=CC=CC=C1 BLDFSDCBQJUWFG-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- UQDNNCZZDBJPIB-UHFFFAOYSA-N 2-methyl-2h-1,3-thiazole-3-carboxylic acid Chemical compound CC1SC=CN1C(O)=O UQDNNCZZDBJPIB-UHFFFAOYSA-N 0.000 description 1
- 125000006088 2-oxoazepinyl group Chemical group 0.000 description 1
- 125000004638 2-oxopiperazinyl group Chemical group O=C1N(CCNC1)* 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- GAGJMOQGABUOBK-UHFFFAOYSA-N 3-aminopropanamide;hydrochloride Chemical compound Cl.NCCC(N)=O GAGJMOQGABUOBK-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- 125000005986 4-piperidonyl group Chemical group 0.000 description 1
- 125000001819 4H-chromenyl group Chemical group O1C(=CCC2=CC=CC=C12)* 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 101710186200 CCAAT/enhancer-binding protein Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YFNFIJVKVZOCBU-DHBRAOIWSA-N FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F Chemical compound FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F YFNFIJVKVZOCBU-DHBRAOIWSA-N 0.000 description 1
- 102100024521 Ficolin-2 Human genes 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101001003142 Homo sapiens Interleukin-12 receptor subunit beta-1 Proteins 0.000 description 1
- 101000853012 Homo sapiens Interleukin-23 receptor Proteins 0.000 description 1
- 101000844245 Homo sapiens Non-receptor tyrosine-protein kinase TYK2 Proteins 0.000 description 1
- 101001125026 Homo sapiens Nucleotide-binding oligomerization domain-containing protein 2 Proteins 0.000 description 1
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 1
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010032036 Interferon Regulatory Factor-7 Proteins 0.000 description 1
- 102000002227 Interferon Type I Human genes 0.000 description 1
- 108010014726 Interferon Type I Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102100038070 Interferon regulatory factor 7 Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 description 1
- 102100036672 Interleukin-23 receptor Human genes 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 208000005777 Lupus Nephritis Diseases 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- GFAGUHCIXABCEQ-RYUDHWBXSA-N N-[(2S)-1-[[(2S)-1-(1H-indol-4-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]-2-methyl-1,3-thiazole-4-carboxamide Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](C)NC([C@H](C)NC(=O)C=1N=C(SC1)C)=O)=O GFAGUHCIXABCEQ-RYUDHWBXSA-N 0.000 description 1
- IYIRTIOVNHDSGZ-STQMWFEESA-N N-[(2S)-1-[[(2S)-1-(1H-indol-4-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]-5-methyl-1,2-oxazole-3-carboxamide Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](C)NC([C@H](C)NC(=O)C1=NOC(=C1)C)=O)=O IYIRTIOVNHDSGZ-STQMWFEESA-N 0.000 description 1
- HBTCCIHZSWZAQG-LIRRHRJNSA-N N-[(2S)-3-methoxy-1-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]-2-methyl-1,3-thiazole-4-carboxamide Chemical compound COC[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(=O)C=1N=C(SC1)C HBTCCIHZSWZAQG-LIRRHRJNSA-N 0.000 description 1
- ZHGSQRFTEQIGKF-YWZLYKJASA-N N-[(2S)-3-methoxy-1-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]-5-methyl-1,2-oxazole-3-carboxamide Chemical compound COC[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(=O)C1=NOC(=C1)C ZHGSQRFTEQIGKF-YWZLYKJASA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 108010020856 N-terminal nucleophile hydrolase Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100032028 Non-receptor tyrosine-protein kinase TYK2 Human genes 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 102100040557 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000037 Polyproline Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100025803 Progesterone receptor Human genes 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000607762 Shigella flexneri Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 210000000068 Th17 cell Anatomy 0.000 description 1
- 241000534944 Thia Species 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 108010060888 Toll-like receptor 2 Proteins 0.000 description 1
- 241000223997 Toxoplasma gondii Species 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 1
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JVVXZOOGOGPDRZ-SLFFLAALSA-N [(1R,4aS,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine Chemical compound NC[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 JVVXZOOGOGPDRZ-SLFFLAALSA-N 0.000 description 1
- YKNZTUQUXUXTLE-UHFFFAOYSA-N [3-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(C(F)(F)F)=C1 YKNZTUQUXUXTLE-UHFFFAOYSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 125000003435 aroyl group Chemical group 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 210000004961 autolysosome Anatomy 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- UPABQMWFWCMOFV-UHFFFAOYSA-N benethamine Chemical compound C=1C=CC=CC=1CNCCC1=CC=CC=C1 UPABQMWFWCMOFV-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000005872 benzooxazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- YGYLYUIRSJSFJS-QMMMGPOBSA-N benzyl (2s)-2-aminopropanoate Chemical compound C[C@H](N)C(=O)OCC1=CC=CC=C1 YGYLYUIRSJSFJS-QMMMGPOBSA-N 0.000 description 1
- RLMHWGDKMJIEHH-QRPNPIFTSA-N benzyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.C[C@H](N)C(=O)OCC1=CC=CC=C1 RLMHWGDKMJIEHH-QRPNPIFTSA-N 0.000 description 1
- MDMGNBRNNXETMJ-HLRBRJAUSA-N benzyl (3S)-3-amino-4-[[(2S)-1-[(2,3-dimethoxyphenyl)methylamino]-3-methoxy-1-oxopropan-2-yl]amino]-4-oxobutanoate 2,2,2-trifluoroacetic acid Chemical compound FC(C(=O)O)(F)F.N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=C(C(=CC=C1)OC)OC)COC MDMGNBRNNXETMJ-HLRBRJAUSA-N 0.000 description 1
- NDOXFIGNVFAUJZ-NSOVKSMOSA-N benzyl (3S)-3-amino-4-[[(2S)-3-(4-fluorophenyl)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-4-oxobutanoate Chemical compound N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)CC1=CC=C(C=C1)F NDOXFIGNVFAUJZ-NSOVKSMOSA-N 0.000 description 1
- VEGLLCUDXAAKFA-VXKWHMMOSA-N benzyl (3S)-4-[[(2S)-1-[(2,3-dimethoxyphenyl)methylamino]-3-methoxy-1-oxopropan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoate Chemical compound C(C)(C)(C)OC(=O)N[C@@H](CC(=O)OCC1=CC=CC=C1)C(=O)N[C@H](C(=O)NCC1=C(C(=CC=C1)OC)OC)COC VEGLLCUDXAAKFA-VXKWHMMOSA-N 0.000 description 1
- CPTBEOANEBOZKZ-KYJUHHDHSA-N benzyl (3S)-4-[[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-[(4-methylphenyl)sulfonylamino]-4-oxobutanoate Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](CC(=O)OCC1=CC=CC=C1)NS(=O)(=O)C1=CC=C(C=C1)C)=O CPTBEOANEBOZKZ-KYJUHHDHSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000005518 carboxamido group Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000037012 chymotrypsin-like activity Effects 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 230000006552 constitutive activation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000007282 cyclocarbonylation reaction Methods 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 125000005507 decahydroisoquinolyl group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000000723 dihydrobenzofuranyl group Chemical group O1C(CC2=C1C=CC=C2)* 0.000 description 1
- 125000005436 dihydrobenzothiophenyl group Chemical group S1C(CC2=C1C=CC=C2)* 0.000 description 1
- 125000005046 dihydronaphthyl group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical class CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- HPTQKSXAQBHFKL-UHFFFAOYSA-N dipyrrolidin-1-ylmethanone Chemical compound C1CCCN1C(=O)N1CCCC1 HPTQKSXAQBHFKL-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000005883 dithianyl group Chemical group 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000009066 down-regulation mechanism Effects 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 108700002672 epoxomicin Proteins 0.000 description 1
- DOGIDQKFVLKMLQ-JTHVHQAWSA-N epoxomicin Chemical compound CC[C@H](C)[C@H](N(C)C(C)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)[C@@]1(C)CO1 DOGIDQKFVLKMLQ-JTHVHQAWSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical class CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000004615 furo[2,3-b]pyridinyl group Chemical group O1C(=CC=2C1=NC=CC2)* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 239000007887 hard shell capsule Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 102000050354 human NOD2 Human genes 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000031261 interleukin-10 production Effects 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 230000003704 interleukin-23 production Effects 0.000 description 1
- 230000017306 interleukin-6 production Effects 0.000 description 1
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 1
- 210000005206 intestinal lamina propria Anatomy 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000001853 liver microsome Anatomy 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000008883 metastatic behaviour Effects 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 230000016379 mucosal immune response Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000023837 negative regulation of proteolysis Effects 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 125000005060 octahydroindolyl group Chemical group N1(CCC2CCCCC12)* 0.000 description 1
- 125000005061 octahydroisoindolyl group Chemical group C1(NCC2CCCCC12)* 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 229940039748 oxalate Drugs 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 108010026466 polyproline Proteins 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- QLRZGOMLTOJDII-UHFFFAOYSA-M potassium 2-(oxiran-2-yl)benzoate Chemical compound O1C(C1)C1=CC=CC=C1C(=O)[O-].[K+] QLRZGOMLTOJDII-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- CBPYOHALYYGNOE-UHFFFAOYSA-M potassium;3,5-dinitrobenzoate Chemical compound [K+].[O-]C(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 CBPYOHALYYGNOE-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000468 progesterone receptors Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- NIPZZXUFJPQHNH-UHFFFAOYSA-N pyrazine-2-carboxylic acid Chemical compound OC(=O)C1=CN=CC=N1 NIPZZXUFJPQHNH-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- MWFIZNMXSPLSJY-UHFFFAOYSA-N quinolin-4-ylmethanamine;dihydrochloride Chemical compound [Cl-].[Cl-].C1=CC=C2C(C[NH3+])=CC=[NH+]C2=C1 MWFIZNMXSPLSJY-UHFFFAOYSA-N 0.000 description 1
- HNTPRADIZKVIMT-UHFFFAOYSA-N quinolin-5-ylmethanamine Chemical compound C1=CC=C2C(CN)=CC=CC2=N1 HNTPRADIZKVIMT-UHFFFAOYSA-N 0.000 description 1
- CJEGDDHHJSFNRS-UHFFFAOYSA-N quinolin-8-ylmethanamine;dihydrochloride Chemical compound Cl.Cl.C1=CN=C2C(CN)=CC=CC2=C1 CJEGDDHHJSFNRS-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 201000002793 renal fibrosis Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000013037 reversible inhibitor Substances 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000007886 soft shell capsule Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- QUJCKYRCRAHISQ-NSHDSACASA-N tert-butyl N-[(2S)-1-(1H-indol-4-ylmethylamino)-1-oxopropan-2-yl]carbamate Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](C)NC(OC(C)(C)C)=O)=O QUJCKYRCRAHISQ-NSHDSACASA-N 0.000 description 1
- HIZCZGXKUPWNLO-ZDUSSCGKSA-N tert-butyl N-[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]carbamate Chemical compound C1(=CC=CC2=CC=CC=C12)CNC([C@H](C)NC(OC(C)(C)C)=O)=O HIZCZGXKUPWNLO-ZDUSSCGKSA-N 0.000 description 1
- KYBMBSXLBNGMGA-STQMWFEESA-N tert-butyl N-[(2S)-1-[[(2S)-1-(1H-indol-4-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]carbamate Chemical compound N1C=CC2=C(C=CC=C12)CNC([C@H](C)NC([C@H](C)NC(OC(C)(C)C)=O)=O)=O KYBMBSXLBNGMGA-STQMWFEESA-N 0.000 description 1
- YZNFZLKMIYBBKV-DQEYMECFSA-N tert-butyl N-[(2S)-1-[[(2S)-3-(4-fluorophenyl)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-3-methoxy-1-oxopropan-2-yl]carbamate Chemical compound FC1=CC=C(C=C1)C[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC([C@H](COC)NC(OC(C)(C)C)=O)=O YZNFZLKMIYBBKV-DQEYMECFSA-N 0.000 description 1
- NGQPGUUKXMCWLG-QFIPXVFZSA-N tert-butyl N-[(2S)-3-(4-fluorophenyl)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]carbamate Chemical compound FC1=CC=C(C=C1)C[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC(OC(C)(C)C)=O NGQPGUUKXMCWLG-QFIPXVFZSA-N 0.000 description 1
- MLXAIRYFOOBVHN-KRWDZBQOSA-N tert-butyl N-[(2S)-3-methoxy-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]carbamate Chemical compound COC[C@@H](C(=O)NCC1=CC=CC2=CC=CC=C12)NC(OC(C)(C)C)=O MLXAIRYFOOBVHN-KRWDZBQOSA-N 0.000 description 1
- SUSZBPCAFLUBIZ-KXBFYZLASA-N tert-butyl N-[(2S)-3-methoxy-1-[[(2S)-1-(naphthalen-1-ylmethylamino)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]carbamate Chemical compound COC[C@@H](C(=O)N[C@H](C(=O)NCC1=CC=CC2=CC=CC=C12)C)NC(OC(C)(C)C)=O SUSZBPCAFLUBIZ-KXBFYZLASA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000006090 thiamorpholinyl sulfone group Chemical group 0.000 description 1
- 125000006089 thiamorpholinyl sulfoxide group Chemical group 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 108020005087 unfolded proteins Proteins 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06104—Dipeptides with the first amino acid being acidic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/06026—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/0606—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/0606—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
- C07K5/06069—Ser-amino acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06086—Dipeptides with the first amino acid being basic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06104—Dipeptides with the first amino acid being acidic
- C07K5/06113—Asp- or Asn-amino acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06139—Dipeptides with the first amino acid being heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06191—Dipeptides containing heteroatoms different from O, S, or N
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0806—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0821—Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to inhibitors of human immunoproteasomes.
- the proteasome is a large, ATP-dependent, multi-subunit, barrel-shaped N-terminal nucleophile hydrolase present in the cytosol and nucleus of eukaryotic cells, and is responsible for the degradation of the majority of cellular proteins (Baumeister et al., “The Proteasome: Paradigm of a Self-Compartmentalizing Protease,” Cell 92:367-380 (1998); Goldberg, A. L., “Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy,” Biochemical Society Transactions 35:12-17 (2007)).
- the proteasome not only controls many critical cellular checkpoints through degradation, but also generates peptides for antigen presentation (Goldberg, A.
- the constitutive proteasome core particle is called 20S (c-20S) because of its sedimentation properties.
- c-20S The constitutive proteasome core particle is called 20S (c-20S) because of its sedimentation properties.
- ⁇ 1 caspase-like
- ⁇ 2 tryptic-like
- ⁇ 5 chymotryptic-like
- lymphocytes and cells that have responded to interferon- ⁇ express a different proteasome, called the immunoproteasome (i-20S), in which the corresponding proteases are the products of different genes: ⁇ 1i, ⁇ 2i and P5i.
- i-20S immunoproteasome
- Intermediate proteasomes that contain mixed ⁇ subunits are found in many cells, for example in the mucosa of the colon and small bowel (Guillaume et al., “Two Abundant Proteasome Subtypes that Uniquely Process Some Antigens Presented by HLA Class I Molecules,” Proc. Nat'l Acad. Sci. USA 107:18599-18604 (2010)).
- the effects of replacement of constitutive subunits by immuno- ⁇ subunits include increased proteolytic activity and altered peptide preferences of the active sites (Rock et al., “Proteases in MHC Class I Presentation and Cross-Presentation,” Journal of Immunology 184:9-15d (2010)).
- the caspase-like ⁇ 1 replacement, ⁇ i preferentially cleaves after small hydrophobic residues rather than after aspartate (Huber et al., “Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity,” Cell 148:727-738 (2012)).
- mice with combined deficiency of ⁇ 1i, ⁇ 2i, and ⁇ 5i are viable, fertile and healthy but express a different antigenic peptide repertoire than wild type mice, as evidenced by their rejection of syngeneic wild type splenocytes (Kincaid et al., “Mice Completely Lacking Immunoproteasomes Show Major Changes in Antigen Presentation,” Nature Immunology 13:129-135 (2012)).
- Hu c-20S and i-20S appear to regulate cytokine production through different pathways (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)).
- Hu c-20S controls the activation of NF- ⁇ B via the degradation of I ⁇ B, the binding partner of NF- ⁇ B in the cytosol (Perkins, N.D., “Integrating Cell-Signalling Pathways with NF[Kappa]B and IKK Function,” Nat. Rev. Mol. Cell Biol.
- i-20S appears to control the co-translocation of TLR9 and Unc93B1, an endoplasmic reticulum (ER)-resident protein, to endosomes (Hirai et al., “Bortezomib Suppresses Function and Survival of Plasmacytoid Dendritic Cells by Targeting Intracellular Trafficking of Toll-Like Receptors and Endoplasmic Reticulum Homeostasis,” Blood 117:500-509 (2011)).
- Proteasomes control diverse cellular functions, among them signal transduction for inflammatory cytokine release, antigen presentation, and the ability of plasma cells to secrete antibodies without dying from accumulation of misfolded immunoglobulins (Goldberg, A.
- ONX 0914 another peptide epoxyketone, has modest selectivity for i-20S ⁇ 5i (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)) and is reported to have efficacy in rheumatoid arthritis (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)), SLE (Ichikawa et al., “Beneficial Effect of Novel Proteasome Inhibitors in Murine Lupus Via Dual Inhibition of Type I Interferon and Autoantibody-Secreting Cells,” Arthritis and Rheumatism 64:493-503 (2012)), experimental colitis (Bas
- the present invention is directed to overcoming these and other deficiencies in the art.
- One aspect of the present invention relates to a compound of Formula (I):
- R 1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and b-iheterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF 3 , C 1-6 alkyl, and C 1-6 alkoxy;
- R 2 is independently selected at each occurrence thereof from the group consisting of H, D, C 1-6 alkyl, —CH 2 OC 1-6 alkyl, —CH 2 Ar, and —CH 2 heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH 2 OC 1-6 alkyl, —(CH 2 ) m C(O)NHR 5 , and —(CH 2 ) m C(O)NR 6 R 7 ;
- R 4 is selected from the group consisting of —C(O)(CH 2 ) 1 Ph, —C(O)CH 2 NR 6 R 7 , —SO 2 Ar, —SO 2 C 1-6 alkyl, —SO 2 C 3-6 cycloalkyl, —C(O)(CH 2 2 n ,Het, —C(O)C(O)Het, —C(O)C 1-6 alkyl, —C(O)OC 1-6 alkyl, —C(O)CF 3 , heteroaryl, —C(O)R 10 , and —(CH 2 ) 1 NR 6 R 7 , wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 5 is selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, non-aromatic heterocycle, —NR 6 R 7 , and —CR 8 R 9 ;
- R 6 , R 7 , R 8 , and R 9 are each independently selected from the group consisting of H, D, C 1-6 alkyl, and (—CH 2 ) k OH;
- R 6 and R 7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
- R 8 and R 9 are taken together with the carbon to which they are attached to form an oxetane ring;
- R 10 is monocyclic carbocycle or fused bicyclic carbocycle
- X is —(CH 2 ) q —, —O—, or —(CD 2 ) q —;
- Y is O or S
- k is 1, 2, or 3;
- n 0, 1, 2, 3, 4, or 5;
- n 0, 1, 2, or 3;
- q 0, 1, or 2;
- s is 0 or 1;
- a second aspect of the present invention relates to a method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject.
- This method includes administering to the subject in need thereof a compound of the Formula (I):
- R 1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF 3 , C 1-6 alkyl, and C 1-6 alkoxy;
- R 2 is independently selected at each occurrence thereof from the group consisting of H, D, C 1-6 alkyl, —CH 2 OC 1-6 alkyl, —CH 2 Ar, and CH 2 heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH 2 OC 1-6 alkyl, —(CH 2 ) m C(O)NHR 5 , and —(CH 2 ) m C(O)NR 6 R 7 ;
- R 4 is selected from the group consisting of —C(O)(CH 2 ) 1 Ph, —C(O)CH 2 NR 6 R 7 , —SO 2 Ar, —SO 2 C 1-6 alkyl, —SO 2 C 3-6 cycloalkyl, —C(O)(CH 2 ) n Het, —C(O)C(O)Het, —C(O)C 1-6 alkyl, —C(O)OC 1-6 alkyl, —C(O)CF 3 , heteroaryl, —C(O)R 10 , and —(CH 2 ) 1 NR 6 R 7 , wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 5 is selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, non-aromatic heterocycle, —NR 6 R 7 , and —CR 8 R 9 ;
- R 6 , R 7 , R 8 , and R 9 are each independently selected from the group consisting of H, D, C 1-6 alkyl, and —(CH 2 ) k OH;
- R 6 and R 7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
- R 8 and R 9 are taken together with the carbon to which they are attached to form an oxetane ring;
- R 10 is monocyclic carbocycle or fused bicyclic carbocycle
- X is —(CH 2 ) q —, —O—, or —(CD 2 ) q —;
- Y is O or S
- k is 1, 2, or 3;
- n 0, 1, 2, 3, 4, or 5;
- n 0, 1, 2, or 3;
- q 0, 1, or 2;
- s is 0 or 1.
- inhibitors could open a new path to the treatment of immunologic, autoimmune, inflammatory, neurodegenerative, and certain neoplastic disorders such as: systemic lupus erythematosis, chronic rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), atherosclerosis, scleroderma, systemic sclerosis, autoimmune hepatitis, Sjogren Syndrome, lupus nephritis, glomerulonephritis, rheumatoid arthritis, psoriasis, Myasthenia Gravis, Imunoglobuline A nephropathy, atherosclerosis, vasculitis, renal fibrosis, lung fibrosis, liver fibrosis, transplant rejection, idiopathic pulmonary fibrosis, asthma, and inflammation driven cancers such as: triple negative breast cancers.
- ALS amyotroph
- FIGS. 1 A-B show N,C-capped dipeptides.
- FIG. 1 A shows schematic illustration of N,C-capped dipeptide.
- CapN represents the chemical cap on the amine terminus of the dipeptide.
- CapC represents the chemical cap on the carboxyl terminus of the dipeptide.
- P1-P4 refer to the moieties of an inhibitor, while S1-S4 refer to the subsites of the proteasome active site at which C-Cap, P2, P3 and N-Cap moieties bind, respectively.
- FIG. 1 B shows the structure of DPLG-3.
- FIGS. 2 A-D reports results demonstrating that NOD2 deficiency in the hematopoietic system regulates experimental colitis.
- FIG. 2 A is a graph showing % body weight change relative to days post induction. For FIGS.
- FIG. 2 B is a graph showing % body weight change relative to days post induction.
- FIG. 2 C shows hematoxylin and eosin-stained images of the colon at day 3 after induction of colitis. Bar, 200 ⁇ m.
- FIG. 2 D is a bar graph showing results of the histological scoring. Histological scoring showed increased colitis in the hematopoietic NOD2-deficient chimeras. Error bars show SEM.
- FIGS. 3 A-C are graphs showing results that relate to the essential role of interleukin (IL)-12/IL-23 in TNBS-induced colitis and the effectiveness of DPLG-3 in improving the outcome in this colitis model.
- C57BL/6 mice (4/group) were injected with TNBS (or 50% ethanol) intrarectally (3.5 mg/mouse) on day 0. Body weight was monitored daily for four days.
- FIG. 3 A shows % body weight changes relative to days post TNBS.
- Neutralizing anti-IL-12/IL-23 [rat anti-mouse p40 monoclonal antibody (mAb) (C17.8)] was given intraperitoneally (i.p.) on days 0, 1, 2, and 3.
- FIG. 3 B shows p40 levels in sera.
- WT mice (4/group) were presensitized with TNBS (0.15 mg) at day ⁇ 7, and treated with TNBS (3.0 mg) at day 0 intrarectally, and given one intravenous (i.v.) injection of DPLG-3 (6 mg/kg) at the same time.
- FIG. 3 C shows % body weight change relative to days post TNBS with and without DPLG-3.
- FIGS. 4 A-D are bar graphs showing results demonstrating that DPLG-3 differentially regulates cytokine production.
- Mouse bone marrow derived macrophages (BMDMs) were stimulated or not with bacterial lipopolysaccharide (LPS) (1 ⁇ g/ml) in the presence or absence of DPLG-3 at the indicated concentrations.
- Culture supernatants were harvested 24 hours (h) after LPS stimulation and analyzed for cytokine production by enzyme-linked immunosorbent assay (ELISA).
- Total RNA was isolated 4 h after LPS stimulation and analyzed by real time quantitative polymerase chain reaction (PCR) for IL-12p35 and IL-12/IL-23p40 genes.
- PCR real time quantitative polymerase chain reaction
- FIGS. 4 A-B show that production of TNFa, P40, and IL12 was inhibited by DPLG-3 in a dose-dependent manner.
- FIG. 4 C shows that the transcription of P35 and P40 was reduced by DPLG-3 in a dose-dependent manner.
- FIG. 4 D shows DPLG-3 mitigated trinitrobenzene sulfonic acid (TNBS)-induced colitis in a dose-dependent manner.
- TNBS trinitrobenzene sulfonic acid
- FIGS. 5 A-C show experimental results relating to SAR studies and target engagement inside the cells.
- FIG. 5 A is a graph showing experimental results relating to inhibition of i-20S ⁇ 5i and c-20S ⁇ 5c by selected dipeptides.
- FIG. 5 B is a graph showing inhibition of 20S inside the human Karpas lymphoma cell line assayed with cell-based ProteasomegloTM after compound removal.
- FIG. 5 C is an image of an SDS-page gel showing accumulation of poly-ubiquitinylated (ub) proteins.
- Karpas cells were treated with dipeptides, or with bortezomib as a control, at indicated concentrations for 24 hours, and the poly-ub proteins in the lysates were blotted with anti-ub antibody and visualized with a second antibody directed against the first antibody and tagged with a dye that absorbs infrared light (Odyssey® CLx imaging system, LICOR).
- Odyssey® CLx imaging system LICOR
- FIG. 6 is a graph showing results which demonstrate that cytotoxicities of the N,C-capped dipeptides correlate with the IC50s of the inhibitors against human constitutive proteasome other than with their IC50s against human immunoproteasome.
- FIGS. 7 A-C are fluorescent images showing results which demonstrate that N,C-capped dipeptides induce autophagy in RAW264 GFP-LC3 cells.
- Cells of the mouse macrophage-like cell line RAW264 transformed with light chain 3 (LC3) fused to green fluorescent protein (GFP) (RAW264 GFP-LC3 cells) were incubated with vehicle control (dimethylsulfoxide (DMSO)), DPLG-3 (10 nM), or an inactive congener of DPLG-3 called DPLG-2032 (1 ⁇ M) at 37° C. overnight. Prior to fixation with 4% paraformaldehyde, the cells were treated with bafilomycin A (20 nM), an inhibitor of the late phase of autophagy, for 4 hours. Fluorescent images were recorded digitally with a multiphoton microscope.
- FIGS. 8 A-B are graphs showing results that demonstrate that DPLG-3 strongly restricts the growth of established 4T1 mammary tumor in mice.
- BALB/c mice bearing established 4T1 mammary carcinoma were treated daily with i.p. injection of DPLG-3 at 3 mg/kg, 12 mg/kg in 30 ⁇ l of DMSO or DMSO alone.
- Primary tumors were measured every other day by their surface areas. On Day 19, mice were sacrificed and tumors excised, and measured by weight (mg). The tumor areas were shown as average ⁇ SD ( FIG. 8 A ) and average tumor weights ⁇ SD ( FIG. 8 B ) and P ⁇ 0.05 at the end of experiment.
- One aspect of the present invention relates to a compound of Formula (I):
- R 1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF 3 , C 1-6 alkyl, and C 1-6 alkoxy;
- R 2 is independently selected at each occurrence thereof from the group consisting of H, D, C 1-6 alkyl, —CH 2 OC 1-6 alkyl, —CH 2 Ar, and —CH 2 heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH 2 OC 1-6 alkyl, —(CH 2 ) m C(O)NHR 5 , and —(CH 2 ) m C(O)NR 6 R 7 ;
- R 4 is selected from the group consisting of —C(O)(CH 2 ) 1 Ph, —C(O)CH 2 NR 6 R 7 , —SO 2 Ar, —SO 2 C 1-6 alkyl, —SO 2 C 3-6 cycloalkyl, —C(O)(CH 2 ) n Het, —C(O)C(O)Het, —C(O)C 1-6 alkyl, —C(O)OC 1-6 alkyl, —C(O)CF 3 , heteroaryl, —C(O)R 10 , and —(CH 2 ) 1 NR 6 R 7 , wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 5 is selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, non-aromatic heterocycle, —NR 6 R 7 , and —CR 8 R 9 ;
- R 6 , R 7 , R 8 , and R 9 are each independently selected from the group consisting of H, D, C 1-6 alkyl, and —(CH 2 ) k OH;
- R 6 and R 7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
- R 8 and R 9 are taken together with the carbon to which they are attached to form an oxetane ring;
- R 10 is monocyclic carbocycle or fused bicyclic carbocycle
- X is —(CH 2 ) q —, —O—, or —(CD 2 ) q —;
- Y is O or S
- k is 1, 2, or 3;
- n 0, 1, 2, 3, 4, or 5;
- n 0, 1, 2, or 3;
- q 0, 1, or 2;
- s is 0 or 1;
- alkyl means an aliphatic hydrocarbon group which may be straight or branched having about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. Exemplary alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, and 3-pentyl.
- cycloalkyl means a non-aromatic mono- or multicyclic ring system of about 3 to about 7 carbon atoms, preferably of about 5 to about 7 carbon atoms.
- exemplary monocyclic cycloalkyls include cyclopentyl, cyclohexyl, cycloheptyl, and the like.
- monocyclic carbocycle means a monocyclic ring system of 5 to about 8 ring carbon atoms, preferably 5 or 6.
- the ring is nonaromatic, but may contain one or more carbon-carbon double bonds.
- Representative monocyclic carbocycles include cyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, and the like.
- fused bicyclic carbocycle means a bicyclic ring system consisting of about 8 to 11 ring carbon atoms, preferably 9 or 10. One or both of the rings is/are aromatic.
- Representative fused bicyclic carbocycles include indenyl, indanyl, naphthyl, dihydronaphthyl, tetrahydronaphthyl, benzocycloheptenyl, dihydrobenzocycloheptenyl, tetrahydrobenzocycloheptenyl, and the like.
- aryl means an aromatic monocyclic or multicyclic ring system of 6 to about 14 carbon atoms, preferably of 6 to about 10 carbon atoms.
- Representative aryl groups include phenyl and naphthyl.
- heteroaryl means an aromatic monocyclic or multicyclic ring system of about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is/are element(s) other than carbon, for example, nitrogen, oxygen, or sulfur.
- element(s) other than carbon for example, nitrogen, oxygen, or sulfur.
- heteroaryl only one of the rings needs to be aromatic for the ring system to be defined as “Heteroaryl”.
- Preferred heteroaryls contain about 5 to 6 ring atoms.
- aza, oxa, thia, or thio before heteroaryl means that at least a nitrogen, oxygen, or sulfur atom, respectively, is present as a ring atom.
- a nitrogen atom of a heteroaryl is optionally oxidized to the corresponding N-oxide.
- Representative heteroaryls include pyridyl, 2-oxopyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, furanyl, pyrrolyl, thiophenyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, indolyl, isoindolyl, benzofuranyl, benzothiophenyl, indolinyl, 2-oxoindolinyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, indazolyl, benzimidazolyl, benzooxazolyl, benzothiazoly
- biheteroaryl or “bi-heteroaryl” refers to a heteroaryl group substituted by another heteroaryl group.
- heterocyclyl or “heterocycle” refers to a stable 3- to 18-membered ring (radical) which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur.
- the heterocycle may be a monocyclic, or a polycyclic ring system, which may include fused, bridged, or spiro ring systems; and the nitrogen, carbon, or sulfur atoms in the heterocycle may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the ring may be partially or fully saturated.
- heterocycles include, without limitation, azepinyl, azocanyl, pyranyl dioxanyl, dithianyl, 1,3-dioxolanyl, tetrahydrofuryl, dihydropyrrolidinyl, decahydroisoquinolyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxoazepinyl, oxazolidinyl, oxiranyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, thiazolidinyl, tetrahydropyranyl, thiamorpholinyl
- biheterocyclyl or “bi-heterocyclyl” refers to a heterocyclyl group substituted by another heterocyclyl or heterocycle group.
- non-aromatic heterocycle means a non-aromatic monocyclic system containing 3 to 10 atoms, preferably to about 7 carbon atoms, in which one or more of the atoms in the ring system is/are element(s) other than carbon, for example, nitrogen, oxygen, or sulfur.
- Non-aromatic heterocycle groups include pyrrolidinyl, 2-oxopyrrolidinyl, piperidinyl, 2-oxopiperidinyl, azepanyl, 2-oxoazepanyl, 2-oxooxazolidinyl, morpholino, 3-oxomorpholino, thiomorpholino, 1,1-dioxothiomorpholino , piperazinyl, tetrohydro-2H-oxazinyl, and the like.
- polycyclic or “multi-cyclic” used herein indicates a molecular structure having two or more rings, including, but not limited to, fused, bridged, or spiro rings.
- a protecting group refers to a group which is used to mask a functionality during a process step in which it would otherwise react, but in which reaction is undesirable.
- the protecting group prevents reaction at that step, but may be subsequently removed to expose the original functionality. The removal or “deprotection” occurs after the completion of the reaction or reactions in which the functionality would interfere.
- alkoxy means groups of from 1 to 8 carbon atoms of a straight, branched, or cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy, and the like. Lower-alkoxy refers to groups containing one to four carbons.
- alkoxy also includes methylenedioxy and ethylenedioxy in which each oxygen atom is bonded to the atom, chain, or ring from which the methylenedioxy or ethylenedioxy group is pendant so as to form a ring.
- phenyl substituted by alkoxy may be, for example,
- a compound with a hydroxy group drawn next to a nitrogen on a heterocycle can exist as the “keto” form.
- 3-(2-hydroxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)propanoic acid can exist as 3-(2-oxo-2,3-dihydro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)propanoic acid.
- halo or halogen means fluoro, chloro, bromo, or iodo.
- substituted or “substitution” of an atom means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded.
- a group may have a substituent at each substitutable atom of the group (including more than one substituent on a single atom), provided that the designated atom's normal valency is not exceeded and the identity of each substituent is independent of the others.
- Up to three H atoms in each residue are replaced with alkyl, halogen, haloalkyl, hydroxy, loweralkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, heteroaryl, phenoxy, benzyloxy, or heteroaryloxy. “Unsubstituted” atoms bear all of the hydrogen atoms dictated by their valency.
- method of treating means amelioration or relief from the symptoms and/or effects associated with the disorders described herein.
- treatment means amelioration or relief from the symptoms and/or effects associated with the disorders described herein.
- reference to “treatment” of a patient is intended to include prophylaxis.
- pharmaceutically acceptable salts means the relatively non-toxic, inorganic, and organic acid addition salts, and base addition salts, of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds. In particular, acid addition salts can be prepared by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed.
- Exemplary acid addition salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactiobionate, sulphamates, malonates, salicylates, propionates, methylene-bis-b-hydroxynaphthoates, gentisates, isethionates, di-p-toluoyltartrates, methane-sulphonates, ethanesulphonates, benzenesulphonates, p-toluenesulphonates, cyclohexylsulphamates and quinateslaurylsulphon
- Base addition salts can also be prepared by separately reacting the purified compound in its acid form with a suitable organic or inorganic base and isolating the salt thus formed.
- Base addition salts include pharmaceutically acceptable metal and amine salts. Suitable metal salts include the sodium, potassium, calcium, barium, zinc, magnesium, and aluminum salts. The sodium and potassium salts are preferred.
- Suitable inorganic base addition salts are prepared from metal bases which include, for example, sodium hydride, sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide, lithium hydroxide, magnesium hydroxide, and zinc hydroxide.
- Suitable amine base addition salts are prepared from amines which have sufficient basicity to form a stable salt, and preferably include those amines which are frequently used in medicinal chemistry because of their low toxicity and acceptability for medical use, such as ammonia, ethylenediamine, N-methyl-glucamine, lysine, arginine, ornithine, choline, N,N′-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)aminomethane, tetramethylammonium hydroxide, triethylamine, dibenzylamine, ephenamine, dehydr
- prodrugs as used herein means those prodrugs of the compounds useful according to the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commen- surate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.
- prodrug means compounds that are rapidly transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. Functional groups which may be rapidly transformed, by metabolic cleavage, in vivo form a class of groups reactive with the carboxyl group of the compounds of this invention.
- alkanoyl such as acetyl, propionyl, butyryl, and the like
- unsubstituted and substituted aroyl such as benzoyl and substituted benzoyl
- alkoxycarbonyl such as ethoxycarbonyl
- trialkylsilyl such as trimethyl- and triethysilyl
- monoesters formed with dicarboxylic acids such as succinyl
- the compounds bearing such groups act as pro-drugs.
- the compounds bearing the metabolically cleavable groups have the advantage that they may exhibit improved bioavailability as a result of enhanced solubility and/or rate of absorption conferred upon the parent compound by virtue of the presence of the metabolically cleavable group.
- prodrugs A thorough discussion of prodrugs is provided in the following: Design of Prodrugs, H. Bundgaard, ed., Elsevier (1985); Methods in Enzymology, K. Widder et al, Ed., Academic Press, 42, p. 309-396 (1985); A Textbook of Drug Design and Development, Krogsgaard-Larsen and H. Bundgaard, ed., Chapter 5; “Design and Applications of Prodrugs” p.
- prodrugs include, but are not limited to, acetate, formate, and benzoate derivatives of alcohol and amine functional groups in the compounds of the invention.
- solvate refers to a compound of Formula I in the solid state, wherein molecules of a suitable solvent are incorporated in the crystal lattice.
- a suitable solvent for therapeutic administration is physiologically tolerable at the dosage administered.
- suitable solvents for therapeutic administration are ethanol and water. When water is the solvent, the solvate is referred to as a hydrate.
- solvates are formed by dissolving the compound in the appropriate solvent and isolating the solvate by cooling or using an antisolvent. The solvate is typically dried or azeotroped under ambient conditions.
- terapéuticaally effective amounts is meant to describe an amount of compound of the present invention effective in increasing the levels of serotonin, norepinephrine, or dopamine at the synapse and thus producing the desired therapeutic effect. Such amounts generally vary according to a number of factors well within the purview of ordinarily skilled artisans given the description provided herein to determine and account for. These include, without limitation: the particular subject, as well as its age, weight, height, general physical condition, and medical history; the particular compound used, as well as the carrier in which it is formulated and the route of administration selected for it; and, the nature and severity of the condition being treated.
- composition means a composition comprising a compound of Formula (I) and at least one component comprising pharmaceutically acceptable carriers, diluents, adjuvants, excipients, or vehicles, such as preserving agents, fillers, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifingal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.
- pharmaceutically acceptable carriers such as preserving agents, fillers, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifingal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.
- suspending agents examples include ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances.
- Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like.
- Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monosterate and gelatin.
- suitable carriers, diluents, solvents, or vehicles include water, ethanol, polyols, suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate.
- excipients include lactose, milk sugar, sodium citrate, calcium carbonate, and dicalcium phosphate.
- disintegrating agents include starch, alginic acids, and certain complex silicates.
- lubricants include magnesium stearate, sodium lauryl sulphate, talc, as well as high molecular weight polyethylene glycols.
- pharmaceutically acceptable means it is, within the scope of sound medical judgement, suitable for use in contact with the cells of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable dosage forms means dosage forms of the compound of the invention, and includes, for example, tablets, dragees, powders, elixirs, syrups, liquid preparations, including suspensions, sprays, inhalants tablets, lozenges, emulsions, solutions, granules, capsules, and suppositories, as well as liquid preparations for injections, including liposome preparations. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., latest edition.
- Compounds described herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms.
- Each chiral center may be defined, in terms of absolute stereochemistry, as (R)- or (S)-. This technology is meant to include all such possible isomers, as well as mixtures thereof, including racemic and optically pure forms.
- Optically active (R)- and (S)-, ( ⁇ )- and (+)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.
- the basic nitrogen can be quaternized with any agents known to those of ordinary skill in the art including, for example, lower alkyl halides, such as methyl, ethyl, propyl and butyl chloride, bromides and iodides; dialkyl sulfates including dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; and aralkyl halides including benzyl and phenethyl bromides. Water or oil-soluble or dispersible products may be obtained by such quaternization.
- lower alkyl halides such as methyl, ethyl, propyl and butyl chloride, bromides and iodides
- dialkyl sulfates including dimethyl, diethyl, dibutyl and diamyl sulfates
- Coupling of the carboxylic acid (1) with the amine (2) leads to formation of the compound (3).
- the coupling reaction can be carried out in a variety of solvents, for example in methylene chloride (CH 2 Cl 2 ), tetrahydrofuran (THF), dimethylformamide (DMF), or other such solvents or in the mixture of such solvents.
- CH 2 Cl 2 methylene chloride
- THF tetrahydrofuran
- DMF dimethylformamide
- the non-participating carboxylic acids or amines on the reacting set of amino acids or peptide fragments can be protected by a suitable protecting group which can be selectively removed at a later time if desired.
- a detailed description of these groups and their selection and chemistry is contained in “The Peptides, Vol.
- useful protective groups for the amino group are benzyloxycarbonyl (Cbz), t-butyloxycarbonyl (t-BOC), 2,2,2-trichloroethoxycarbonyl (Trot), t-amytoxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-(trichlorosilyl)ethoxycarbonyl, 9-fluorenylmethoxycarbonyl (Fmoc), phthaloyl, acetyl (Ac), formyl, trifluoroacetyl, and the like.
- carboxylic acid bearing protecting group (PG) (4) can be coupled with the amine (2) to form compound (5).
- compound (6) can be reacted with compound (11), R 4 -LG (wherein LG is a suitable leaving group), to form final product (3).
- the compounds of the present invention may be prepared by stepwise coupling of the amino acids.
- the coupling reactions are conducted in solvents such as methylene chloride (CH 2 Cl 2 ), tetrahydrofuran (THF), dimethylformamide (DMF), or other such solvents.
- solvents such as methylene chloride (CH 2 Cl 2 ), tetrahydrofuran (THF), dimethylformamide (DMF), or other such solvents.
- the non-participating carboxylic acids or amines on the reacting set of amino acids or peptide fragments can be protected by a suitable protecting group which can be selectively removed at a later time if desired.
- a suitable protecting group which can be selectively removed at a later time if desired.
- useful protective groups for the amino group are benzyloxycarbonyl (Cbz), t-butyloxycarbonyl (t-BOC), 2,2,2-trichloroethoxycarbonyl (Troc), t-amyloxycarbonyl, t-methoxybenzyloxycarbonyl, 2-(trichlorosilyl)ethoxycarbonyl, 9-fluorenylmethoxycarbonyl (Fmoc), phthaloyl, acetyl (Ac), formyl, trifluoroacetyl, and the like.
- Carboxylic acid bearing protecting group (PG) (4) is coupled with the amine (2) to form compound (5). Following the deprotection the reaction, compound (6) is coupled with another acid (7) to form final product (8).
- carboxylic acid bearing protecting group (PG) (4) can be coupled with the amine (6) to form compound (9).
- compound (10) can be reacted with compound (11), R 4 -LG (wherein LG is a suitable leaving group), to form final product. (8).
- compound has the Formula (Ia):
- R 1a is selected from the group consisting of monocyclic and bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 2a is selected from the group consisting of C 1-6 alkyl, —CH 2 OC 1-6 alkyl, —CH 2 Ar, and heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 1a s selected from the group consisting of —CH 2 OC 1-6 alkyl, —CH 2 C(O)NHR 5a , and —CH 2 C(O)R 5a ;
- R 4a is selected from the group consisting of —C(O)(CH 2 ) 1 Ph, —C(O)CH 2 NR 6a R 7a , —SO 2 Ar, —SO 2 C 1-6 alkyl, —C(O)(CH 2 ) n Het, —C(O)C 1-6 alky, —C(O)CF 3 , heteroaryl, and —(CH 2 ) 1 NR 6a R 7a , wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 akoxy;
- R 5a is selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, non-aromatic heterocycle, —NR 6a R 7a , and —CR 8a R 9a ;
- R 6a , R 7a , R 8a , and R 9a are each independently selected from the group consisting of H, C 1-6 alkyl, and —(CH 2 ) k OH;
- R 6a and R 7a are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, azepane, azetidine, or morpholine ring;
- R 8a and R 9a are taken together with the carbon to which they are attached to form an oxetane ring;
- n 0, 1, 2, or 3;
- k is 1, 2, or 3.
- R 1 is selected from the group consisting of
- R 11 is selected from the group consisting of halogen, cyano, —CF 3 , C 1-6 alkyl, and C 1-6 alkoxy.
- R 2 is selected from the group consisting of Me, —CH(Me) 2 , —CH 2 OMe,
- R 3 is selected from the group consisting of —CH 2 OMe
- R 4 is selected from the group consisting of trifluoroacetyl
- p 0, 1, 2, or 3;
- r is 0, 1, 2, 3, 4, or 5;
- t 0, 1, 2, 3, or 4;
- R is selected from the group consisting of H, halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy.
- Another embodiment relates to the compound of Formulae (I) where the compound has a structure selected from the group consisting of:
- a second aspect of the present invention relates to a method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject.
- This method includes administering to the subject in need thereof a compound of the Formula (I):
- R 1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF 3 , C 1-6 alkyl, and C 1-6 alkoxy;
- R 2 is independently selected at each occurrence thereof from the group consisting of H, D, C 1-6 alkyl, 'CH 2 OC 1-6 alkyl, —CH 2 Ar, and —CH 2 heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH 2 OC 1-6 alkyl, —(CH 2 ) m C(O)NHR 5 , and —(CH 2 ) m C(O)NR 6 R 7 ;
- R 4 is selected from the group consisting of —C(O)(CH 2 ) 1 Ph, —C(O)CH 2 NR 6 R 7 , —SO 2 Ar, —SO 2 C 1-6 alkyl, —SO 2 C 3-6 cycloalkyl, —C(O)(CH 2 ) n Het, —C(O)C(O)Het, —C(O)C 1-6 alkyl, C(O)OC 1-6 alkyl, —C(O)CF 3 , heteroaryl, —C(O)R 10 , and —(CH 2 ) 1 NR 6 R 7 , wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C 1-6 alkyl, and C 1-6 alkoxy;
- R 5 is selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, non-aromatic heterocycle, —NR 6 R 7 , and CR 8 R 9 ;
- R 6 , R 7 , R 8 , and R 9 are each independently selected from the group consisting of H, D, C 1-6 alkyl, and —(CH 2 ) k OH;
- R 6 and 7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
- R 8 and R 9 are taken together with the carbon to which they are attached to form an oxetane ring;
- R 10 is monocyclic carbocycle or fused bicyclic carbocycle
- X is —(CH 2 ) q —, —O—, or —(CD 2 ) q —;
- Y is O or S
- k is 1, 2, or 3;
- n 0, 1, 2, 3, 4, or 5;
- n 0, 1, 2, or 3;
- q 0, 1, or 2;
- s is 0 or 1.
- an autoimmune disorder is treated.
- the autoimmune disorder is selected from the group consisting of arthritis, colitis, multiple sclerosis, lupus, systemic sclerosis, and sjögren syndrome.
- immunosuppression is provided for transplanted organs or tissues.
- the immunosuppression is used to prevent transplant rejection and graft-verse-host disease.
- an inflammatory disorder is treated.
- the inflammatory disorder is Crohn's disease or ulcerative colitis.
- cancer is treated.
- the cancer is selected from the group consisting of neoplastic disorders, hematologic malignancies, and lymphocytic malignancies.
- compositions containing a therapeutically effective amount of the compound of Formula (I), or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- the carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- agents suitable for treating a subject can be administered using any method standard in the art.
- the agents in their appropriate delivery form, can be administered orally, intradermally, intramuscularly, intraperitoneally, intravenously, subcutaneously, or intranasally.
- the compositions of the present invention may be administered alone or with suitable pharmaceutical carriers, and can be in solid or liquid form, such as tablets, capsules, powders, solutions, suspensions, or emulsions.
- the agents of the present invention may be orally administered, for example, with an inert diluent, or with an assimilable edible carrier, or it may be enclosed in hard or soft shell capsules, or it may be compressed into tablets, or they may be incorporated directly with the food of the diet.
- Agents of the present invention may also be administered in a time release manner incorporated within such devices as time-release capsules or nanotubes. Such devices afford flexibility relative to time and dosage.
- the agents of the present invention may be incorporated with excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, and the like.
- Such compositions and preparations should contain at least 0.1% of the agent, although lower concentrations may be effective and indeed optimal.
- the percentage of the agent in these compositions may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit.
- the amount of an agent of the present invention in such therapeutically useful compositions is such that a suitable dosage will be obtained
- oral dosage forms of the agents of the present invention are also contemplated.
- the agents may be chemically modified so that oral delivery of the derivative is efficacious.
- the chemical modification contemplated is the attachment of at least one moiety to the component molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine.
- the increase in overall stability of the component or components and increase in circulation time in the body examples include: polyethylene glycol, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline.
- the tablets, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, sucrulose, or saccharin.
- a binder such as gum tragacanth, acacia, corn starch, or gelatin
- excipients such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, lactose, sucrulose, or saccharin.
- a liquid carrier such as a fatty oil.
- tablets may be coated with shellac, sugar, or both.
- a syrup may contain, in addition to active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor.
- the agents of the present invention may also be administered parenterally.
- Solutions or suspensions of the agent can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils.
- Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil.
- water, saline, aqueous dextrose and related sugar solution, and glycols, such as propylene glycol or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
- agents of the present invention When it is desirable to deliver the agents of the present invention systemically, they may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- Intraperitoneal or intrathecal administration of the agents of the present invention can also be achieved using infusion pump devices such as those described by Medtronic, Northridge, Calif. Such devices allow continuous infusion of desired compounds avoiding multiple injections and multiple manipulations.
- the agents may also be formulated as a depot preparation.
- Such long acting formulations may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- the agents of the present invention may also be administered directly to the airways in the form of an aerosol.
- the agent of the present invention in solution or suspension may be packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants.
- suitable propellants for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants.
- the agent of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.
- Effective doses of the compositions of the present invention, for the treatment of cancer or pathogen infection vary depending upon many different factors, including type and stage of cancer or the type of pathogen infection, means of administration, target site, physiological state of the patient, other medications or therapies administered, and physical state of the patient relative to other medical complications. Treatment dosages need to be titrated to optimize safety and efficacy.
- the percentage of active ingredient in the compositions of the present invention may be varied, it being necessary that it should constitute a proportion such that a suitable dosage shall be obtained. Obviously, several unit dosage forms may be administered at about the same time.
- the dose employed will be determined by the physician, and depends upon the desired therapeutic effect, the route of administration and the duration of the treatment, and the condition of the patient.
- the doses are generally from about 0.01 to about 100 mg/kg body weight, preferably about 0.01 to about 10 mg/kg body weight per day by inhalation, from about 0.01 to about 100 mg/kg body weight, preferably 0.1 to 70 mg/kg body weight, more especially 0.1 to 10 mg/kg body weight per day by oral administration, and from about 0.01 to about 50 mg/kg body weight, preferably 0.01 to 10 mg/kg body weight per day by intravenous administration.
- the doses will be determined in accordance with the factors distinctive to the subject to be treated, such as age, weight, general state of health, and other characteristics which can influence the efficacy of the medicinal product.
- the products according to the present invention may be administered as frequently as necessary in order to obtain the desired therapeutic effect. Some patients may respond rapidly to a higher or lower dose and may find much weaker maintenance doses adequate. For other patients, it may be necessary to have long-term treatments at the rate of 1 to 4 doses per day, in accordance with the physiological requirements of each particular patient. Generally, the active product may be administered orally 1 to 4 times per day. It goes without saying that, for other patients, it will be necessary to prescribe not more than one or two doses per day.
- Carboxylic acid (1.0 eq.), O-(7-Azabenzotriazol-1-yl)-N, N,N,N′-tetramethyluronium hexafluorophosphate (HATU) (1.2 eq.) and 1-Hydroxy-7-Azabenzotriazole (HOAt) 0.6M in DMF (1.0 eq.) were dissolved in DMF under argon atmosphere. The solution was cooled to 0° C. and amine (1.1 eq.) was added. After stirring for 5 minutes at 0° C., Hünig's base (3-4 eq.) was added. The reaction mixture was stirred at 0° C. After completion of reaction (1 h; monitored by LCMS), water was added to reaction mixture and stirred 30 minutes. Product was isolated either by filtration or ethyl acetate extraction.
- Carboxylic acid (1.0 eq.), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) (1.2 eq.) and 1-Hydroxybenzotriazole (HOBt) (1.3 eq.) were dissolved in DMF under argon atmosphere. The solution was cooled to 0° C. and amine (1.1 eq.) was added. After stirring for 5 minutes at 0° C., Hünig's base (2-3 eq.) was added. The reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature overnight.
- EDC N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
- HBt 1-Hydroxybenzotriazole
- the substrate was dissolved in dichloromethane and the solution was cooled to 0° C.
- Trifluoroacetic acid (20% v/v with respect to dichloromethane) was added to the solution drop wise at 0° C. with constant stirring.
- the mixture was allowed to warm to room temperature slowly (over a period of 1 hour), and stirred until the completion of reaction (monitored by LCMS). Excess trifluoroacetic acid and dichloromethane were evaporated and crude was dried under vacuum.
- the substrate was dissolved in methanol. Palladium on carbon (10%) was added carefully. Residual air from the flask was removed and flushed with hydrogen. The mixture was stirred at room temperature under hydrogen atmosphere using a hydrogen balloon. After completion of reaction (3-4 hours; monitored by LCMS), the mixture was filtered through celite. Filtrate was evaporated and dried under vacuum to give product.
- DPLG-2122 was prepared following the general procedure for HATU mediated coupling of Boc-4-F-Phe-OH (2.00 g, 7.06 mmol) and 1-naphthylmethylamine (1.17 mL, 7.77 mmol). After completion of reaction (1 h), 100 mL water was added to the reaction mixture. A precipitate was formed. The mixture was stirred for 15 minutes and filtered. The precipitate was washed with water and dried to give 2.96 g (99%) product.
- DPLG-2123 was prepared by following the general procedure for Boc-deprotection of DPLG-21046 (2.96 g, 7.00 mmol). The crude was triturated with diethyl ether and filtered to give product as a white solid (2.54 g, 83%).
- DPLG-2134 was prepared following the general procedure for HATU mediated coupling of Boc-Asp(OBn)OH (356 mg, 1.1 mmol) and (S)-2-amino-3-(4-fluorophenyl)-N-(naphthalen-1-ylmethyl)propanamide 2,2,2-trifluoroacetate (436 mg, 1.0 mmol). After completion of reaction (3 h), the mixture was precipitated by the addition of 100 mL water. The mixture was stirred for 15 minutes and filtered. The precipitate was dried to give 627 mg (quant.) product.
- DPLG-2135 was synthesized by following the general procedure for Boc-deprotection of (S)-benzyl 3-((tert-butoxycarbonyl)amino)-4-(((S)-3-(4-fluorophenyl)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (627 mg, 1 mmol). After completion of reaction dichloromethane and excess trifluoroacetic acid were evaporated. The crude was washed with diethyl ether to give product (628 mg, 98%).
- DPLG-2138 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (162 mg, 1.08 mmol) and (S)-benzyl 3-amino-4-(((S)-3-(4-fluorophenyl)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (628 mg, 0.98 mmol). After completion of reaction (3 h), the mixture was precipitated by the addition of 100 mL water. The mixture was stirred for 15 minutes and filtered. The precipitate was dried to give 600 mg (93%) product.
- DPLG-2141 was synthesized by following the general procedure for O-debenzylation of DPLG-2138 (600 mg, 0.91 mmol). The product (518 mg, quant.) was isolated as a white solid.
- DPLG-21054 was synthesized by following the general protocol for HATU mediated coupling of Boc-Asp-OBn (2.00 g, 6.19 mmol) with O-tert-butyl hydroxylamine hydrochloride (855.2 mg, 6.81 mmol). After completion of reaction, water was added. Mixture was extracted with ethyl acetate twice. Combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. Organic layer was evaporated to give product as colorless paste (2.40 g, 98%). The crude was used in next step without further purification.
- DPLG-21055 was synthesized by following the general procedure for Boc-deprotection of DPLG-21054 (2.40 g, 6.08 mmol). Crude was dried under vacuum to give colorless paste (2.48 g, quant.). Product was used in next step without further purification.
- DPLG-21056 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (991.1 mg, 6.60 mmol) with DPLG-21055 (2.45 g, 6.00 mmol). After completion of reaction, water was added. A white precipitate was formed. White precipitate was filtered, washed with water, and dried to give product (2.02 g, 79%). Product was used in the next step without further purification. Complex NMR due to presence of 90:10 rotamers.
- DPLG-21059 was synthesized by following the general procedure for O-debenzylation of DPLG-21056 (1.98 g, 4.64 mmol). Product (1.55 g, 99%) was isolated as a white solid.
- DPLG3 was prepared following the general procedure for HATU mediated coupling of PhCH 2 CH 2 C(O)-Asp(CON-HOtBu)-OH (1.35 g, 4.00 mmol) and H-4F-Phe-CH 2 -naphth TFA salt (1.92 g, 4.40 mmol). After completion of reaction, 100 mL water was added. A white precipitate was formed. Precipitate was filtered and washed with ethanol. The precipitate was triturated with methanol and filtered. Precipitate was dried to give 1.73 g (67%) pure product as a white solid.
- Example 16 Preparation of tert-butyl ((S)-1-(((S)-3-(4-fluorophenyl)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-methoxy-1-oxopropan-2-yl)carbamate (Boc-Ser(OMe)-4F-Phe-naphth, DPLG-2049)
- Boc- ⁇ -methoxyalanine dicyclohexylamine (80 mg, 0.2 mmol) was dissolved in DMF (4 mL). The solution was cooled to 0° C. and dipyrrolidino(N-succinimidyloxy)carbenium hexafluorophosphate (90.5 mg, 0.22 mmol) was added in one portion. 30 ⁇ L triethylamine was added and mixture was stirred at 0° C. for 15 minutes. A solution of amine (TFA.H-4F-Phe-naphth) (87.3 mg, 0.2 mmol) in 1 mL DMF and 30 ⁇ L Et 3 N was added to the reaction mixture.
- reaction mixture was allowed to warm to room temperature and stirred overnight.
- the reaction mixture was diluted with chloroform and washed with 1N HCl, water, aq. NaHCO 3 , water and brine.
- the organic layer was evaporated and purified by column chromatography to give product with traces of urea (dipyrrolidin-1 -ylmethanone) byproduct.
- the crude was used in next step without further purification.
- DPLG-2050 was synthesized by following the general procedure for Boc-deprotection of Boc-Ser(OMe)-4F-Phe-naphth (from previous step). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude product was washed with diethyl ether and dried to give product 70.0 mg (65% for 2 steps).
- DPLG-2054 was prepared by following the general procedure for EDCI coupling of TFA.H-Ser(OMe)-4F-Phe-naphth (16 mg, 0.03 mmol) and 3-phenylpropanoic acid (5.4 mg, 0.036 mg). The product was purified by HPLC to give 5.8 mg (29%) of product.
- TFA.H-Ser(OMe)-4F-Phe-naphth (13.4 mg, 0.025 mmol) was dissolved in dichloromethane and the solution was cooled to 0° C. Triethylamine (28 ⁇ L) followed by TsCl (6 mg+20 mg) were added to the reaction mixture. The reaction mixture was allowed to warm to room temperature and stirred overnight. Dichloromethane was evaporated and the crude was dissolved in ethylacetate. The solution was washed with water, 1N HCl followed by brine. The product was purified by HPLC to give 7.8 mg (54%) of product.
- Boc-Ala-OSu (286 mg, 1.0 mmol) and 1-naphthylmethylamine (160 ⁇ l, 1.1 mmol) were dissolved in dichloromethane (10 mL). The solution was cooled to 0° C. and triethylamine (100 ⁇ L) was added. Reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature. After completion of reaction, dichloromethane was evaporated and crude was suspended in water. Water layer was extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO 3 , water, 1N HCl and brine.
- DPLG-2026 was synthesized by following the general procedure for Boc-deprotection of Boc-Ala-naphth (158 mg, 0.48 mmol). After completion of reaction (3 h), dichloromethane and excess TFA were evaporated. The crude product was dried under vacuum to give product (164 mg, quant.).
- Example 22 Preparation of tert-butyl ((S)-3-methoxy-1-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (Boc-Ser(OMe)-Ala-naphth, DPLG-2032)
- H-Ala-naphth TFA salt (0.24 mmol) was dissolved in 3 mL dimethylformamide and basified with N-methylmorpholine. Boc-Ser(OMe)-OH (96 mg, 0.24 mmol) was added to the solution. The mixture was cooled to 0° C. and dipyrrolidino(N-succinimidyloxy)carbenium hexafluorophosphate (103 mg, 0.25 mmol) were added in one portion. The reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature overnight. The reaction mixture was diluted with water and extracted twice with ethyl acetate. The organic layer was dried over anhydrous Na 2 SO 4 and evaporated.
- DPLG-2038 was synthesized by following the general procedure for Boc-deprotection of Boc-Ser(OMe)-Alanaphth (95 mg, 0.22 mmol). After completion of reaction, dichloromethane and excess trifluoroacetic acid were evaporated and crude was triturated with diethylether. The mixture was filtered to give corresponding amine TFA salt (60 mg, 61%) as a white powder.
- DPLG-2048 was prepared following the general procedure for EDC coupling of 3-phenylpropianic acid (16.5 mg, 0.11 mmol) with TFA.H-Ser(OMe)-Ala-naphth (44.3 mg, 0.1 mmol). The crude was purified by silica gel column chromatography to give 44.1 mg (87%) of product.
- Example 25 Preparation of N—((S)-3-methoxy-1-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)-5-methylisoxazole-3-carboxamide (5-methylisoxazole-3-carbamide-Ser(OMe)-Ala-naphth, DPLG-2040)
- DPLG-2040 was prepared following the general procedure for EDC mediated coupling of 5-methyl-iso-oxazole-3-carboxylic acid (9.2 mg, 0.072 mmol) with TFA.H-Ser (OMe)-Ala-naphth (28.0 mg, 0.06 mmol). The product was purified by HPLC to give 16.3 mg (62%) of product.
- DPLG-2039 was prepared following the general procedure for EDCI coupling of 2-methylthiazole-4-carboxylic acid (10.3 mg, 0.072 mmol) and TFA.H-Ser(OMe)-Ala-naphth (28.0 mg, 0.06 mmol). The product was purified by HPLC to give 14.3 mg (52%) mg of product.
- Boc-Ala-OSu (515 mg, 1.8 mmol) was dissolved in 10 mL dry dichloromethane. The solution was cooled to 0° C. and a solution of 4-(aminomethyl)indole (263 mg, 1.8 mmol) in DMF (2 mL) was added. The reaction mixture was warmed to room temperature and stirred overnight. After completion of reaction, dichloromethane was evaporated. The crude solid was dissolved in ethyl acetate and washed with water followed by brine. The organic layer was dried over anhydrous sodium sulfate and evaporated to give product (560 mg, 98%), which was pure by NMR.
- DPLG-2025 was synthesized by following the general procedure for Boc-deprotection of Boc-Ala-Indole (276 mg, 0.87 mmol). After completion of reaction (2 h) dichloromethane and excess TFA were evaporated. The crude product was dissolved in water and washed with dichloromethane. The water layer was frozen and lyophilized to give solid product (213 mg 74%).
- Example 29 Preparation of tert-butyl ((S)-1-(((S)-1-(((1H-indol-4 -yl)methyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (Boc-Ala-Ala-Indole, DPLG-2028)
- DPLG-2033 was synthesized by following the general procedure for Boc-deprotection of tert-butyl ((S)-1-4(S)-1-4(1H-indol-4-yl)methyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (240 mg, 0.618 mmol). After completion of reaction (4 h), excess trifluoroacetic acid and dichloromethane were evaporated and the crude was washed twice with diethyl ether to give product (193 mg, 78%).
- DPLG-2042 was prepared following the general procedure for EDC mediated coupling of 2-methylthiazole-4-carboxylic acid (21 mg, 0.144 mmol) and (S)—N-((1H-indol-4-yl)methyl)-2-((S)-2-aminopropanamido) propanamide 2,2,2-trifluoroacetate (50.0 mg, 0.12 mmol). The crude was purified by HPLC to give 16.0 mg (32%) of product.
- Example 32 Preparation of N—((S)-1-(((S)-1-(((1H-indol-4-yl)methyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)-5-methylisoxazole-3-carboxamide (5-methylisoxazole-3-carboxamide-Ala-Ala-Indole, DPLG-2041)
- DPLG-2041 was prepared following the general procedure for EDC mediated coupling of 5-methyl-iso-oxazole-3-carboxylic acid (18.3 mg, 0.144 mmol) and (S)—N-((1H-indol-4-yl)methyl)-2-((S)-2-aminopropanamido) propanamide 2,2,2-trifluoroacetate (50.0 mg, 0.12 mmol).
- the product was purified by HPLC to give 6.1 mg (13%) of product.
- DPLG-2076 was synthesized by following the general procedure for O-debenzylation of benzyl N 4 -(tert-butoxy)-N 2 -(tert-butoxycarbonyl)-L-asparaginate (592 mg, 1.5 mmol). After completion of reaction (5 h), the mixture was filtered through celite and filterate was evaporated to give product (450 mg, 98%).
- DPLG-2081 was prepared by following the general procedure for HATU mediated coupling of N 4 -(tert-butoxy)-N 2 -(tert-butoxycarbonyl)-L-asparagine (304 mg, 1 mmol) and O-benzylalanine hydrochloride (237 mg, 1.1 mmol). After completion of reaction (4 h), water was added to the reaction mixture and extracted twice with ethyl acetate. The combined organic layer was evaporated and the crude product was purified by recrystallization with ethanol-water to give pure product (276 mg, 59%).
- DPLG-2092 was synthesized by following the general procedure for O-debenzylation of benzyl N 4 -(tert-butoxy)-N 2 -(tert-butoxycarbonyl)-L-asparaginyl-L-alaninate (150 mg, 0.32 mmol). After completion of reaction, mixture was filtered through celite and evaporated to give product (120 mg, quant.).
- DPLG-2095 was prepared following the general procedure for HATU mediated coupling of N 4 -(tert-butoxy)-N 2 -(tert-butoxycarbonyl)-L-asparaginyl-L-alanine (120 mg, 0.32 mmol) and 1-naphthylmethylamine (56 ⁇ l, 0.38 mmol). After completion of reaction (6 h), the mixture was precipitated with water. The precipitate was filtered and dried to give product (153 mg, 93%).
- DPLG-2097 was synthesized by following the general procedure for Boc-deprotection of tert-butyl ((4S,7S)-4,12,12-trimethyl-1-(naphthalen-1-yl)-3,6,9-trioxo-11-oxa-2,5,10-triazatridecan-7-yl)carbamate (118 mg, 0.23 mmol). After completion of reaction, excess trifluoroacetic acid and dichloromethane were evaporated. The crude was triturated with diethyl ether to give product (120 mg, 98%).
- DPLG-2098 was prepared by following the general procedure for HATU mediated coupling of pyrazine-2-carboxylic acid (2.5 mg, 0.02 mmol) and (S)-2-amino-N 4 -(tertbutoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.3 mg (99%) of product.
- DPLG-2099 was prepared by following the general procedure for HATU mediated coupling of morpholine-4-acetic acid (3.0 mg, 0.02 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.6 mg (98%) of product.
- DPLG-2102 was prepared by following the general pro-cedure for HATU mediated coupling of 2-methylthiazole-3-carboxylic acid (2.9 mg, 0.02 mmol) and (S)-2-amino-N 4 (tert-butoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 8.4 mg (77%) of product.
- DPLG-2105 was prepared by following the general procedure for HATU mediated coupling of 5-methylisoxazole-3-carboxylic acid (2.5 mg, 0.02 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.2 mg (97%) of product.
- DPLG-2103 was prepared by following the general procedure for HATU mediated coupling of potassium oxirane-2-benzoate (2.5 mg, 0.02 mmol) and (S)-2-amino-N 4 -(tertbutoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 8.0 mg (82%) of product.
- DPLG-2127 was prepared by following the general procedure for HATU mediated coupling of 4-phenylbutanoic acid (5.4 mg, 0.033 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (17.3 mg, 0.033 mmol). The crude was purified by HPLC to give 15.7 mg (85%) of product.
- DPLG-2142 was prepared by following the general procedure for HATU mediated coupling of phenylacetic acid (4.9 mg, 0.036 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (17.3 mg, 0.033 mmol). The crude was purified by HPLC to give 12.1 mg (68%) of product.
- DPLG-2074 was prepared following the general procedure for HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (217 mg, 0.67 mmol) and (S)-2-amino-N-(naphthalen-1-ylmethyl)propanamide (230 mg, 0.67 mmol).
- DPLG-2114 was synthesized by following the general procedure for Boc-deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (50 mg, 0.094 mmol). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated and the crude was dried under vacuum. The crude product (51 mg, quant.) was used in next step without further purification.
- DPLG-2115 was prepared following the general procedure for HATU mediated coupling of 3-phenylproapanoic acid (15.5 mg, 0.103 mmol) and benzyl (S)-3-amino-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate 2,2,2-trifluoroacetate (51 mg, 0.094 mmol). After completion of reaction (4 h), the mixture was precipitated by the addition of 50 mL water. The white precipitate was filtered and dried to give product (50 mg, 94%).
- DPLG-2130 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 -oxo-3-(3-phenylpropanamido)butanoic acid (12.4 mg, 0.026 mmol) and 3-aminoxetane (2.2 ⁇ L, 0.031 mmol). The mixture was purified by HPLC to give product (12.0 mg, 87%).
- DPLG-2088 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-3-((4-methylphenyl)sulfonamido)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (21 g, 0.0357 mmol).
- the isolated crude was purified by HPLC to give product (12.1 mg, 68%).
- DPLG-2090 was prepared following the general procedure for HATU mediated coupling of (S)-3-((4-methylphenyl)sulfonamido)-4-((((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (5.0 mg, 0.01 mmol) and diethyl amine hydrochloride (1.6 mg, 0.015 mmol). The mixture was purified by HPLC to give the product (4.0 mg, 73%).
- DPLG-2091 was prepared following the general procedure for HATU mediated coupling of (S)-3-((4-methylphenyl)sulfonamido)-4-((((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (5.0 mg, 0.01 mmol) and O-tert-butyl hydroxylamine hydrochloride (2 mg, 0.015 mmol). The mixture was purified by HPLC to give the product (3.3 mg, 56%).
- DPLG-2063 was prepared by following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (33.6 mg, 0.1 mmol) and H-Ala-OBn.HCl (21.5 mg, 0.1 mmol). After completion of the reaction, the mixture was precipitated by the addition of cold water. The precipitate was filtered and dried to give the product (27 mg, 54%).
- DPLG-2067 was synthesized by following the general procedure for O-debenzylation of (S)-benzyl 2-((S)-4-(tertbutoxylamino)-4-oxo-2-(3-phenylpropanamido)butanamido)propanoate (25.0 mg, 0.05 mmol). After completion of the reaction (5 h), the mixture was filtered through celite. The filtrate was evaporated and dried under vacuum to give the product (20 mg, quant.).
- DPLG-2068 was prepared by following the general procedure for HATU mediated coupling of N 4 -(tert-butoxy)-N 2 -(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and quinolin-4-ylmethylamine dihydrochloride (2.8 mg, 0.0123 mmol). The crude was purified by HPLC to give 2.0 mg (30%) of product.
- DPLG-2073 was prepared by following the general procedure for HATU mediated coupling of N 4 -(tert-butoxy)-N 2 -(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and quinolin-5-ylmethylamine (2.0 mg, 0.0123 mmol). The crude was purified by HPLC to give 4.7 mg (70%) of product.
- DPLG-2083 was prepared by following the general procedure for HATU mediated coupling of N 4 -(tert-butoxy)-N 2 -(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and 4-(aminomethyl)indole (1.8 mg, 0.0123 mmol). The crude was purified by HPLC to give 5.8 mg (88%) of product.
- DPLG-2078 was prepared following the general procedure for HATU coupling. Reaction was carried using Boc- ⁇ -methoxyalanine dicyclohexylamine (1.202 g, 3.0 mmol) and 1-naphthylmethylamine (484 mL, 3.3 mmol). After completion of the reaction 150 mL water was added to the reaction mixture and extracted twice with ethyl acetate (2 ⁇ 150 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and evaporated. The crude product was purified by silica gel column chromatography using a gradient of 20%-40% ethyl acetatehexane to give 1.05 g (98%) of pure product.
- DPLG-2082 was synthesized by following the general procedure for Boc deprotection of DPLG-2120 (72 mg, 0.02 mmol). After completion of the reaction (4 h), dichloromethane and excess TFA were evaporated and dried under high vacuum. The paste was soluble in diethyl ether. Diethyl ether solution was extracted with water. The water layer was frozen and lyophilized to give product (67 mg, 90%).
- DPLG-2126 was prepared following the general procedure of HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (378 mg, 1.17 mmol) and (S)-2-amino-3-methoxy-N-(naphthalen-1-ylmethyl)propanamide (435.6 mg, 1.17 mmol). After completion of the reaction (2 h), the mixture was diluted with water and extracted twice with ethyl acetate. The organic layer was evaporated and the crude was recrystallized from ethanol-water mixture to give 576 mg (88%) pure product.
- DPLG-2131 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (113 mg, 0.2 mmol). After completion of the reaction (4 h), the mixture was filtered through celite. The filtrate was evaporated and dried under vacuum to give the product (94 mg, 99%).
- Example 65 Preparation of tert-butyl ((4S,7S)-4-(methoxymethyl)-12,12-dimethyl-1-(naphthalen-1-yl)-3,6,9-trioxo-11-oxa-2,5,10-triazatridecan-7 -yl)carbamate (DPLG-2133)
- DPLG-2133 was prepared following the general procedure of HATU mediated coupling of (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (710 mg, 1.5 mmol) and 0-tert-butyl hydroxylamine hydrochloride (226 mg, 1.8 mmol). After completion of the reaction the mixture was precipitated by the addition of 100 mL water. The precipitate was filtered and dried to give 692 mg (85%) pure product.
- DPLG-2137 was synthesized by following the general procedure for Boc deprotection of tert-butyl ((4S,7S)-4-(methoxymethyl)-12,12-dimethyl-1-(naphthalen-1-yl)-3,6,9-trioxo-11-oxa-2,5,10-triazatridecan-7-yl)carbamate (692 mg, 1.27 mmol).
- the isolated crude was triturated with diethyl ether to give pure product (691 mg, 97%).
- DPLG-2086 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (11.0 mg, 0.033 mmol) and [(S)-2-amino-3-methoxy-N-(naphthalen-1-ylmethyl)propanamide] (H-Ser(OMe)-naphth) (11.0 mg, 0.03 mmol). The product was purified by HPLC (yield 15.3 mg, 88%).
- DPLG-2143 was prepared following the general procedure for HATU mediated coupling of morpholin 4-yl-acetic acid (3.2 mg, 0.022 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-3 -methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (11.2 mg, 0.02 mmol). The product was purified by HPLC (yield 9.5 mg, 83%).
- DPLG-2144 was prepared following the general procedure for HATU mediated coupling of 5-methylisoxazole-3-carboxylic acid (2.8 mg, 0.022 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (11.2 mg, 0.02 mmol). The product was purified by HPLC (yield 10.2 mg, 92%).
- DPLG-2222 was prepared following the general procedure for HATU mediated coupling of phenylacetic acid (4.5 mg, 0.033 mmol) and (S)-2-amino-N 4 -(tert-butoxy)-N 1 —((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (16.8 mg, 0.03 mmol). The product was purified by HPLC (yield 9.8 mg, %).
- DPLG-2223 was prepared following the general procedure for HATU mediated coupling of 4-phenylbutyric acid (5.4 mg, 0.033 mmol) and (S)-2-amino-1V4-(tert-butoxy)-N 1 -((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (16.8 mg, 0.03 mmol). The product was purified by HPLC (yield 10.5 mg, 59%).
- DPLG-2203 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-(methyl sulfonamido)-4 -oxobutanoate (16.5 mg, 0.03 mmol). The reaction mixture was filtered through celite and evaporated to give the product (11.0 mg, 80%).
- DPLG-2219 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-(methylsulfonamido)-4-oxobutanoic acid (6.8 g, 0.015 mmol) and 3-aminoxetane (1.2 ⁇ L, 0.0165 mmol). The crude was purified by HPLC to give product (5.2 mg, 68%).
- DPLG-2153 was prepared following the general procedure of HATU mediated coupling of Boc- ⁇ -methoxyalanine dicyclohexylamine (50 mg, 0.125 mmol) and 4-(aminomethyl)indole (20 mL, 0.138 mmol). The product was isolated by ethyl acetate extraction and purified by silica-gel column chromatography (yield 40 mg, 93%).
- DPLG-2154 was prepared following the general procedure of HATU mediated coupling of Boc- ⁇ -methoxyalanine dicyclohexylamine (100 mg, 0.25 mmol) and 3-methoxybenzyl amine (36 mL, 0.275 mmol). The product was isolated by ethyl acetate extraction and purified by silica-gel column chromatography (yield 74 mg, 87%).
- DPLG-2158 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methoxy-1-((3-methoxybenzyl)amino)-1-oxopropan-2-yl)carbamate (74 mg, 0.219 mmol). After 2 h, dichloromethane and excess TFA were evaporated and crude was dried under vacuum to give product (70 mg, 91%).
- DPLG-2160 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (15.8 mg, 0.047 mmol) and (S)-2-amino-3-methoxy-N-(3-methoxybenzyl)propanamide 2,2,2 trifluoroacetate (18.4 mg, 0.052 mmol). The product was purified by HPLC (yield 16.2 mg, 62%).
- DPLG-2190 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(1-((2, 3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)carbamate (180 mg, 0.49 mmol). Crude product was dried under vacuum to give viscous paste, which upon standing turned solid.
- DPLG-2191 was prepared following the general procedure of HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (159 mg, 0.49 mmol) and (S)-2-amino-N-(2,3-dimethoxybenzyl)-3-methoxypropanamide 2,2,2-trifluoroacetate (0.49 mmol, from previous step).
- DPLG-2197 was synthesized by following the general procedure for Boc-deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-1-((2,3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)amino)-4-oxobutanoate (115 mg, 0.2 mmol). The crude was used in next step without further purification.
- DPLG-2200 was prepared following the general procedure of HATU mediated coupling of 3-phenylpropanoic acid (33 mg, 0.22 mmol) and benzyl (S)-3-amino-4-(((S)-1-((2,3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)amino)-4-oxobutanoate 2,2,2-trifluoroacetate (0.2 mmol, from previous step). The reaction mixture was precipitated with water and the precipitate was filtered and dried to give product (110 mg, 91% for 2 steps).
- DPLG-2211 was prepared following the general procedure for HATU mediated coupling of 0-tert-butyl hydroxylamine hydrochloride (6.6 mg, 0.0525 mmol) and (S)-4-(((S)-1-((2,3 -dimethoxybenzyl)amino)-3 -methoxy-1-oxopropan-2-yl)amino)-4-oxo -3-(3 -phenylpropanamido)butanoic acid (18.0 mg, 0.035 mmol). After completion of reaction (1 h), the mixture was diluted with water and extracted with ethyl acetate. The organic layer was evaporated and purified by HPLC to give the product (11.0 mg, 54%).
- DPLG-2175 was prepared following the general procedure for HATU coupling of Boc- ⁇ -methoxyalanine dicyclohexylamine (80 mg, 0.02 mmol) and quinolin-8-ylmethylamine dihydrochloride (46 mg, 0.2 mmol) in 2 mL dimethylformamide. (Note: reaction mixture was not soluble in dimethylformamide) After completion of the reaction (3 h), water was added to the reaction mixture (the reaction mixture turned transparent) and extracted twice with chloroform. The combined organic layer was washed with water followed by brine, dried over anhydrous sodium sulfate, and evaporated. The crude product was purified by HPLC to give 68.5 mg (95%) of pure product.
- DPLG-2181 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methoxy-1-oxo -1-((quinolin-8-ylmethyl)amino)propan-2-yl)carbamate (68.5 mg, 0.19 mmol). The crude was used in next step.
- DPLG-2188 was prepared following the general procedure for HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (61.4 mg, 0.19 mmol) and (S)-2-amino-3-methoxy-N-(quinolin-8-ylmethyl)propanamide bis(2,2,2-trifluoroacetate) (0.19 mmol, from previous step). After completion of reaction (1 h), reaction mixture was diluted with water and extracted twice with ethyl acetate. Ethyl acetate layer was dried over anhydrous Na 2 SO 4 and evaporated.
- DPLG-2198 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (26.4 mg, 0.176 mmol) and benzyl (S)-3-amino-4-(((S)-3-methoxy-1-oxo-1-((quinolin-8-ylmethyl)amino)propan-2-yl)amino)-4-oxobutanoate bis(2,2,2-trifluoroacetate) (111 mg, 0.16 mmol). After completion of the reaction (3 h), the mixture was precipitated with water. The precipitate was filtered and dried to give the product (77 mg, 81%).
- DPLG-2226 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-oxo-1-(((1,2,3,4 -tetrahydroquinolin-8-yl)methyl)amino)propan-2-yl)amino)-4-oxo-3-(3-phenylpropanamido)butanoic acid (19.0 mg, 0.037 mmol) and O-tert-butylhydroxylamine hydrochloride (5.1 mg, 0.041 mmol). The product was purified by HPLC (17.9 mg, 83%).
- DPLG-2218 was prepared following the general procedure for HATU mediated coupling of Boc-Val-OH (217 mg, 1 mmol) and 1-naphthylmethylamine (161 ⁇ L, 1.1 mmol). The product was isolated by ethyl acetate extraction and purified by recrystallization with ethanol/water (322 mg, 90%).
- DPLG-2221 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methyl-1-((naphthalen-1-ylmethyl)amino)-1-oxobutan-2-yl)carbamate (107 mg, 0.3 mmol). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated to give a paste. The paste was treated with hexane and left overnight. A white solid appeared, which was isolated by decantation of hexane. The solid was dried under vacuum to give pure product (97 mg, 87%).
- DPLG-2195 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (50 mg, 0.33 mmol) and DPLG-2192 (173 mg, 0.3 mmol). Reaction mixture was precipitated by the addition of 5 water. The precipitate was filtered and dried to give pure product (149 mg, 83%).
- DPLG-2230 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 -oxo-3-(3-phenylpropanamido)butanoic acid (15.2 mg, 0.03 mmol) and tert-butylamine (9.5 ⁇ L, 0.09 mmol). The product was purified by HPLC to give pure product (8.7 mg, 52%).
- Example 106 Preparation of tert-butyl ((S)-4-(tertbutylamino)-1-(((S)-3 -methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-1,4-dioxobutan-2-yl)carbamate (DPLG-2237)
- DPLG-2244 was synthesized following the general procedure for HATU mediated coupling of (S)-2-amino-N 4 -(tert-butyl)-N 1 —((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide 2,2,2-trifluoroacetate (21.7 mg, 0.04 mmol) and 5-methylisoxazole-3-carboxylic acid (5.6 mg, 0.044 mmol). The product was purified by HPLC to give pure product (18.6 mg, 87%).
- DPLG-2231 was synthesized by following the general procedure of EDC mediated coupling of Boc-Glu-OBn (5.06 g, 15.0 mmol) with tert-butylamine (2.37 mL, 22.5 mmol). After completion of the reaction, water was added to the mixture. The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO 3 , water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na 2 SO 4 and evaporated to give product (5.78 g, 98%) as white solid. The product was used in next step without further purification.
- DPLG-2233 was synthesized by following the general procedure for Boc-deprotection of DPLG-21002 (3.68 g, 9.38 mmol). After completion of the reaction (5 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give product (3.81 g, quant.) as a colorless paste. Product was used in the next step without further purification.
- DPLG-2234 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (82.6 mg, 0.55 mmol) and DPLG-21008 (203.2 mg, 0.5 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with ethyl acetate. Combined organic layer was washed with aq. NaHCO 3 , water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na 2 SO 4 and evaporated. Crude was purified by column chromatography to give product (193 mg, 91%) as a white solid.
- DPLG-2239 was synthesized by following the general procedure for O-debenzylation of DPLG-2234 (180 mg, 0.34 mmol). The product was isolated as a white solid (140 mg, 99%).
- DPLG-2243 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2239 (20.1 mg, 0.06 mmol) and H-Ser(OMe)-CH 2 -naphth TFA salt (22.3 mg, 0.06 mmol). The crude was purified by HPLC to give product (18.8 mg, 54%) as a white solid.
- DPLG-2255 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2239 (18.4 mg, 0.055 mmol) and H-Ala-CH2-naphth TFA salt (17.1 mg, 0.05 mmol). The crude was purified by HPLC to give product (20.2 mg, 74%) as a white solid.
- DPLG-2254 was prepared by following the general procedure for O-debenzylation of DPLG-2238 (170 mg, 0.38 mmol). The product (135 mf, quant.) was isolated as a white solid.
- 1 H NMR 500 MHz, Chloroform-d
- DPLG-2256 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2254 (29.0 mg, 0.08 mmol) and H-Ala-CH2-naphth TFA salt (27.4 mg, 0.08 mmol). The crude was purified by HPLC to give product (32.8 mg, 74%) as a white solid.
- DPLG-3010 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2254 (42.8 mg, 0.12 mmol) with 3-aminopropanamide hydrochloride (22.4 mg, 0.18 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with dichloromethane. The combined organic layer was evaporated and purified by HPLC to give product (21.9 mg, 43%) as a white solid.
- DPLG-3023 was synthesized by following the general procedure for EDC mediated coupling of Boc-Asp(OH)-OBn (5.01 g, 15.49 mmol) with tert-butyl amine (2.44 mL, 23.24 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO 3 , water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na 2 SO 4 and evaporated to give product (5.80 g, 99%) as a white solid. The product was used in next step without further purification.
- DPLG-3047 was synthesized by following the general procedure for Boc-deprotection of DPLG-21009 (3.84 g, 10.15 mmol). After completion of the reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give a colorless paste. The compound was used in next step without further purification.
- DPLG-21012 was synthesized by following the general procedure for the HATU mediated coupling of 3-phenylpropanoic acid (1.68 g, 11.17 mmol) with DPLG-21011 (3.98 g, 10.15 mmol). After completion of the reaction, water was added. A white precipitate was formed. The precipitate was filtered and washed with water. The precipitate was dried in air to give product (3.92 g, 94%) as a white solid.
- DPLG-21013 was synthesized by following the procedure for O-debenzylation of DPLG-21012 (1.44 g, 3.50 mmol). The product (1.11 g, 99%) was isolated as a white solid.
- DPLG-2294 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Glu(CONHtBu)-OH (46.8 mg, 0.14 mmol) and H-Ala-OBn HCl salt (33.0 mg, 0.154 mmol). After completion of the reaction, water was added to the reaction mixture and extracted twice ethyl acetate. The combined organic layer was washed 1N HCl followed by brine and dried over anhydrous sodium sulfate. Ethyl acetate was evaporated, and the crude was recrystallized from ethanol-water to give product (37.3 mg, 54%) as white solid.
- DPLG-2297 was synthesized by following the general procedure for O-debenzylation of DPLG-2294 (37.3 mg, 0.075 mmol). The product (30.0 mg, quant.) was isolated as white solid.
- DPLG-3012 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2297 (14.2 mg, 0.035 mmol) with 2-(1-naphthyl)ethylamine hydrochloride (8.0 mg, 0.0385 mmol). The crude was purified by HPLC to give product (15.6 mg, 80%) as a white solid.
- DPLG-3013 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2297 (14.2 mg, 0.035 mmol) with O-phenylhydroxylamine hydrochloride (5.6 mg, 0.0385 mmol). The crude was purified by HPLC to give product (7.6 mg, 44%) as a white solid. Complex NMR due to presence of 71:29 rotamers.
- DPLG-2293 was synthesized by following the general procedure for HATU mediated coupling of Ts-Glu (CONHtBu)-OH (64.0 mg, 0.18 mmol) and H-Ala-OBn HCl salt (43.0 mg, 0.20 mmol). After completion of the reaction, water was added to the reaction mixture to give a white precipitate. The precipitate was filtered, washed with water, and dried to give product (76.0 mg, 82%).
- DPLG-2296 was synthesized by following the general procedure for O-debenzylation of DPLG-2293 (76.0 mg, 0.147 mmol). The product (63.0 mg, quant.) was isolated as white solid.
- DPLG-3014 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with 3-(trifluoromethyl)benzylamine (5.5 ⁇ L, 0.0385 mmol). The crude was purified by HPLC to give product (13.5 mg, 66%) as a white solid.
- DPLG-3015 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with iso-butylamine (4 ⁇ l, 0.0385 mmol). The crude was purified by HPLC to give product (11.2 mg, 66%) as a white solid.
- DPLG-3016 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with 2-(1-naphthyl)ethylamine hydrochloride (8.0 mg, 0.0385 mmol). The crude was purified by HPLC to give product (16.0 mg, 78%) as white solid.
- DPLG-3017 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with O-phenylhydroxylamine hydrochloride (5.6 mg, 0.0385 mmol). The crude was purified by HPLC to give product (12.0 mg, 66%) as white solid. Complex NMR due to 86:14 rotamers.
- DPLG-3066 was prepared by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Asp(CONHtBu)-OH (16.0 mg, 0.05 mmol) and H-4F-Phe-CH 2 -naphth TFA salt (21.8 mg, 0.05 mmol). The mixture was purified by HPLC to give product (26.0 mg, 83%) as a white solid.
- DPLG-3083 was prepared by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Glu(CONHtBu)-OH (23.4 mg, 0.07 mmol) and H-4F-Phe-CH 2 -naphth TFA salt (36.7 mg, 0.084 mmol). The mixture was purified by HPLC to give product (32.6 mg, 73%) as a white solid.
- DPLG-3084 was prepared by following the general procedure for HATU mediated coupling of Ind-oxal-Asp (CONHtBu)-OH (18 mg, 0.05 mmol) and H-4F-Phe-CH 2 -naphth TFA salt (24 mg, 0.055 mmol). The mixture was purified by HPLC to give product (18.0 mg, 55%) as a white solid.
- DPLG-3040 was synthesized by following the general procedure for HATU mediated coupling of Boc-4F-Phe-OH (283 mg, 1.0 mmol) with iso-butylamine (100 ⁇ L, 1.0 mmol). After completion of the reaction, water was added to precipitate the product. The precipitate was filtered, washed with water, and dried to give product (230 mg, 68%).
- DPLG-3043 was synthesized by following the general procedure for Boc-deprotection of Boc-4F-Phe-Ibu (220 mg, 0.65 mmol). The crude product (230 mg, quant.) was used in next step without further purification.
- 1 H NMR 500 MHz, Chloroform-d
- DPLG-3046 was synthesized by following the general procedure for HATU mediated coupling of Ts-Glu (COHtBu)-OH (35.6 mg, 0.1 mmol) with H-4F-Phe-Ibu TFA salt (38.8 mg, 0.11 mmol). The mixture was purified by HPLC to give product (27.4 mg) as white solid.
- DPLG-3049 was synthesized by following the general protocol for HATU mediated coupling of Indole-3-glyoxylic acid (189 mg, 1.0 mmol) and H-Asp(CONHtBu)-OBn TFA salt (432 mg, 1.1 mmol). After completion of the reaction, water was added to the reaction mixture. A white precipitated appeared which was filtered, washed with water, and dried to give product (270 mg, 60%).
- DPLG-3052 was prepared by following the general procedure for O-debenzylation of Ind-oxal-Asp(CONHtBu)OBn (265 mg, 0.59 mmol). Crude was purified by HPLC to give product (112 mg, 53%) as a white solid.
- DPLG-3053 was prepared by following the general procedure for HATU mediated coupling of Ind-oxal-Asp (CONHtBu)-OH (7.2 mg, 0.02 mmol) and H-Ala-CH2-naphth TFA salt (7.5 mg, 0.022 mmol). The mixture was purified by HPLC to give product (6.4 mg, 56%) as a white solid.
- DPLG-21001 was synthesized by following the general procedure for HATU mediated coupling of Boc- ⁇ -(4-pyridyl)-L-alanine (55.48 mg, 0.2 mmol) and 1-naphthylmethylamine (32 mL, 0.22 mmol). After completion of the reaction, water was added. A white precipitate was formed. Mixture was extracted with ethyl acetate twice. The combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The organic layer was evaporated and dried to give a colorless paste. Crude was purified by HPLC to give pure product as a white solid (57 mg, 70%).
- DPLG-21023 was synthesized by following the procedure for Boc-deprotection of DPLG-21001 (50 mg, 0.123 mmol). After completion of the reaction, excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give colorless paste. The paste was triturated with diethyl ether to give a white solid. Diethyl ether was decanted, and white solid was dried under vacuum to give product (65 mg, 99%). The product was used in the next step without further purification.
- DPLG-21033 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21013 (12.8 mg, 0.04 mmol) and DPLG-21023 (25.6 mg, 0.048 mmol). After completion of the reaction, the mixture was purified by HPLC to give product (20.1 mg, 83%) as a white solid.
- Boc-4F-Phe-OH (849.87 mg, 3.00 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (690.12 mg, 3.60 mmol) were dissolved in dichloromethane (15.00 mL) under argon atmosphere.
- Benzyl alcohol (389.30 mg, 3.60 mmol) was added to the mixture at 23° C.
- the solution was cooled to 0° C. and triethylamine (0.5 mL, 3.60 mmol) was added. Reaction mixture was allowed to warm to room temperature (23° C.) slowly and stirred at room temperature overnight.
- DPLG-21037 was synthesized by following the general procedure for Boc-deprotection of DPLG-21035 (485.5 mg, 1.3 mmol). After completion of the reaction, excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under vacuum to give colorless paste. Crude was dissolved in diethyl ether to give a clear solution. The solution was kept at ⁇ 20° C. overnight to crystallize the product. Product was filtered and dried (yield 467 mg, 93%).
- DPLG-21040 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21013 (193 mg, 0.06 mmol) with DPLG-21037 (233 mg, 0.06 mmol). After completion of the reaction, water was added. A white precipitate was formed. Precipitate was filtered and dried in air to give product (310 mg, 89%) as white solid. The product was used in next step without further purification.
- DPLG-21042 was synthesized by following the general procedure for O-debenzylation of DPLG-21040 (300 mg, 0.52 mmol). The product (248 mg, 98%) was isolated as an off-white solid.
- DPLG-21049 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21042 (19.4 mg, 0.04 mmol) with 4-phenylbenzylamine (8.1 mg, 0.044 mmol). After completion of the reaction, the mixture was purified by HPLC to give pure product (14.0 mg, 54%) as a white solid.
- DPLG-21050 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21042 (19.4 mg, 0.04 mmol) with 3-phenylbenzylamine (8.1 mg, 0.044 mmol). After completion of the reaction, the mixture was purified by HPLC to give pure product (13.2 mg, 51%) as a white solid.
- All inhibitory assays for N,C capped dipeptides were performed in a black solid-bottom 96-well plate.
- compound plates were prepared starting from 10 mM in 3 ⁇ series dilution to 15 ⁇ M.
- 1 ⁇ l of DMSO stock was transferred to a black 96-well plate and 100 ⁇ L of reaction mixture were added 15 ⁇ M N-acetyl-Alanine-Asparagine-Tryptophan-7-amino-4-methylcourmarin (Ac-ANW-AMC) or 25 ⁇ M succinyl-Leucine-Leucine-Valine-Tyrosine-7-amino-4-methyl-courmarin (succ-LLVY-AMC), 0.4 nM hu i-20S ⁇ 5i-subunit or 0.2 nM hu c-20S ⁇ 5c-subunit, 0.02% SDS, 1% BSA, 0.5 mM EDTA in 20 mM HEPES buffer at pH
- the slopes of the initial linear range of the time course were used to calculate the velocity, and relative activities were normalized to the velocities of the DMSO control.
- the data were fit dose-response equation with restriction of 0% activity and 100% activity in PRISM to avoid the possible miscalculation of IC 50 s when complete inhibition was not achieved. For compounds with IC 50 s lower than 5 nM, further dilutions were used.
- beta 2c beta 2i (N-acetyl-Leucine-Leucine-Arginine-7-amino-4-methylcourmarin [Ac-LLR-AMC], beta 1c (N-acetyl-Leucine-Leucine-glutamate-7-amino-4-methylcourmarin [Ac-LLE-AMC]) and betali (N-acetyl-Proline-Alanine-Leucine-7-amino-4-methylcourmarin [Ac-PAL-AMC]) inhibition, only one concentration of compounds at 100 ⁇ M was tested.
- RAW264 GFP-LC3 cells were incubated with vehicle DMSO control, DPLG-3 (10 nM), or the inactive congener DPLG-2032 (1 ⁇ M) at 37° C. overnight. Prior to fixation with 4% paraformaldehyde, the cells were treated with bafilomycin A (20 nM), an inhibitor of the late phase of autophagy, for 4 hours. The fluorescent images taken of these different sample treatments ( FIGS. 7 A-C ) indicated that the DPLG-3 induces autophagy.
- Autophagy is a highly conserved process in eukaryotic cells that degrades a large proportion of cytosolic proteins and organelles. It involves the formation of double membrane complexes that fuse with lysosomes to form autolysosomes, where engulfed proteins or organelles are degraded by lysosomal proteases (Fleming et al., “Chemical Modulators of Autophagy as Biological Probes and Potential Therapeutics,” Nature Chemical Biology 7:9-17 (2011), which is hereby incorporated by reference in its entirety).
- Autophagy also protects against neurodegeneration, as it is the main clearance route for aggregation-prone proteins and unfolded proteins that are not polyubiquitinated (Rubinsztein, D., “The Roles of Intracellular Protein-Degradation Pathways in Neurodegeneration,” Nature 443:780-786 (2006), which is hereby incorporated by reference in its entirety). Up-regulation of autophagy is hence considered to have potential therapeutic value in a variety of diseases.
- Trinitrobenzene sulfonic acid (TNBS)-induced colitis exhibits a heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similarly to human Crohn's disease (CD).
- TNBS Trinitrobenzene sulfonic acid
- IL-12/IL-23 fully rescued mice from the disease-associated body weight loss. This is consistent with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12/IL-23 p40 induced in TNBS-treated mice (not shown).
- 4T1 is a tumor cell line isolated from a single spontaneously arising mammary tumor from a BALB/BfC3H mouse (mouse mammary tumor virus-positive) (Miller et al., “Characterization of Metastatic Heterogeneity among Sub-populations of a Single Mouse Mammary Tumor: Heterogeneity in Phenotypic Stability,” Invasion Metastasis 33:22 (1983), which is hereby incorporated by reference in its entirety). It is an excellent model system for breast cancer research, because its tumor development is well characterized both oncologically and immunologically.
- the 4T1 mammary tumor which is triple-negative (TN) for the expression of estrogen receptor alpha, progesterone receptor, and Her2, closely mimics human breast cancer in its anatomical site, immunogenicity, growth characteristics, and metastatic properties (Pulaski et al., “Reduction of Established Spontaneous Mammary Carcinoma Metastases ollowing Immunotherapy with Major Histocompatibility Complex Class II and B7.1 Cell-Based Tumor Vaccines,” Cancer Res 58:1486 (1998), which is hereby incorporated by reference in its entirety).
- 4T1 mammary carcinoma cells (1 ⁇ 10 5 ) were injected subcutaneously into the abdominal mammary gland area of recipient mice in 0.1 ml of a single-cell suspension in PBS on day 0 as described previously (Zhang et al., “A Novel Role of Hematopoietic CCL5 in Promoting Triple-Negative Mammary Tumor Progression by Regulating Generation of Myeloid-Derived Suppressor Cells,” Cell Res. 23(3):394-408 (2013), which is hereby incorporated by reference in its entirety). Primary tumors were measured by their surface areas every other day. On Day 10, DPLG-3 in 30 ml of DMSO or DMSO alone was injected into mice by i.p.
- mice were sacrificed and tumors excised, measured by volume (ml) or by weight (mg).
- the difference between the control group and the DPLG-3 treatment group is highly significant (*, p ⁇ 0.05 by Student T test). This study indicates that these inhibitors will likely be useful in reducing inflammation-induced cancers.
- Example 156 Discussion of Examples 1-155
- Oxathiazolones inhibit the Mtb proteasome via a competitive, irreversible mechanism that results in cyclocarbonylation of the ⁇ -OH and ⁇ -NH 2 of the active site Thr 1N of the Mtb proteasome. This is accompanied by a marked conformational change in the loop around the active site that was implicated in favoring suicide-substrate inhibition vs. hydrolysis of the reaction intermediate.
- 6 pairs of amino acids that are critical for species selectivity only two pairs are conserved in human ⁇ 2c, one pair in hu ⁇ 1c, ⁇ 1i, and ⁇ 2i, and none in hu ⁇ 5c or ⁇ 5i.
- Substrate preferences for proteasomes from bacteria, yeast, and cows were profiled, using a library of 6000 N-acetyl-P3-P2-P1-AMCs (Lin et al., “Distinct Specificities of Mycobacterium Tuberculosis and Mammalian Proteasomes for N-acetyl Tripeptide Substrates,” J. Biol. Chem. 283:34423-34431 (2008), which is hereby incorporated by reference in its entirety), and a library of 1,600 N,C-capped dipeptides for screening ( FIG.
- DPLG-3 was designed by introducing a naphthyl group in the P1 position and N-( t BuO)—As in the P3 position ( FIG. 1 B ).
- the structure of DPLG-3 (purity>95%) was confirmed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Its competitive inhibition and selectivity for hu i-20S ⁇ 5i versus hu c-20S ⁇ 5c (Table 3) and its selectivity for ⁇ 5i over ⁇ 2i and ⁇ 1i were also confirmed.
- ONX 0914 potently and relatively selectively inhibited human and mouse i-20S over human and mouse c-20S, respectively (Huber et al., “Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity,” Cell 148:727-738 (2012), which is hereby incorporated by reference in its entirety).
- DPLG-3 was not cytotoxic against HepG2 human hepatoma cells, mouse bone marrow derived macrophages (BMDMs), human peripheral blood mononuclear cells (purchased from New York Blood Bank), or a human B-lymphoma cell line.
- CD Crohn's disease
- IBD inflammatory bowel disease
- CD has a strong genetic basis (Ogura et al., “A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn's Disease,” Nature 411:603-606 (2001); Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which are hereby incorporated by reference in their entirety).
- Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular bacterial sensor and an important regulator of host resistance to microbial challenge as well as tissue homeostasis.
- the gene encoding NOD2, CARD15 was the first CD susceptibility gene identified (Ogura et al., “A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn's Disease,” Nature 411:603-606 (2001); Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which are hereby incorporated by reference in their entirety).
- NOD2 Three main variants of NOD2, R702W, G908R, and 1007fs, together account for ⁇ 80% of NOD2 mutations independently associated with susceptibility to CD (Lesage et al., “CARD15/NOD2 Mutational Analysis and Genotype-Phenotype Correlation in 612 Patients with Inflammatory Bowel Disease,” Am. J. Hum. Genet. 70:845-857 (2002); Hugot et al., “Prevalence of CARD15/NOD2 Mutations in Caucasian Healthy People,” Am. J. Gastroenterol. 102:1259-1267 (2007), which are hereby incorporated by reference in their entirety).
- IL-12 and IL-23 are crucial cytokines with respect to IBD that are involved in the development and effector functions of Th1 and Th17 cells, respectively (Shih et al., “Recent Advances in IBD Pathogenesis: Genetics and Immunobiology,” Curr. Gastroenterol. Rep. 10:568-575 (2008), which is hereby incorporated by reference in its entirety).
- TNBS-induced experimental colitis studies showed that hematopoietic NOD2 is required to control experimental colitis and that the pathogenesis of this model is dependent on IL-12/IL-23 and is rescued by DPLG-3.
- TNBS trinitrobenzene sulfonic acid
- TNBS-induced colitis exhibited heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similar to this progression in human CD (Mashimo et al., “Impaired Defense of Intestinal Mucosa in Mice Lacking Intestinal Trefoil Factor,” Science 274:262-265 (1996); Al-Sadi et al., “Mechanism of Cytokine Modulation of Epithelial Tight Junction Barrier,” Front Biosci.
- mice also showed that administration of muramyl dipeptide (MDP), the natural ligand of NOD2, protected mice from colitis by downregulating multiple Toll-like receptor (TLR)-mediated innate responses (TLR2, 4, and 9), including the production of IL-12 and IFN- ⁇ (Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which is hereby incorporated by reference in its entirety).
- MDP muramyl dipeptide
- TLR2 Toll-like receptor
- C/EBPa CCAAT/enhancer-binding protein a
- WT mice FIG. 3 A
- C/EBPa KO mice like NOD2-deficient mice, are more susceptible to colitis-associated weight loss than WT mice ( FIG. 3 A ).
- C/EBPa KO mice completely lose responsiveness to MDP-mediated rescue of colitis pathogenesis.
- Use of a neutralizing monoclonal antibody against the p40 subunit shared by IL-12/IL-23 fully rescued WT and C/EBPa KO mice from the disease ( FIG.
- FIG. 3 A consistently with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12 induced in TNBS-treated mice ( FIG. 3 B ).
- FIG. 3 C administration of the immune proteasome inhibitor DPLG-3 to TNBS-treated WT mice via i.v. injection strongly inhibited colitis-associated pathogenesis ( FIG. 3 C ).
- TNBS-induced experimental colitis Pathogenesis of TNBS-induced experimental colitis is dependent on IL-12/IL-23 and is rescued by DPLG-3.
- Trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice exhibits a heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similarly to human CD (Noguchi et al., “A Crohn's Disease-Associated NOD2 Mutation Suppresses Transcription of Human IL10 by Inhibiting Activity of the Nuclear Ribonucleoprotein hnRNP-A1,” Nat. Immunol.
- FIG. 2 A consistent with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12/IL-23 p40 induced in TNBS-treated mice ( FIG. 2 B ).
- FIG. 2 C treatment of TNBS-injected mice with DPLG-3 via one-time i.v. injection at the time of TNBS challenge strongly inhibited colitis-induced weight loss ( FIG. 2 C ).
- FIG. 4 A shows that in LPS-activated macrophages, DPLG-3 dose-dependently inhibited the production of TNF- ⁇ , IL-12/IL-23p40 and IL-12. Noticeably, production of IL-12 and IL-23 was more sensitive to the inhibitory effects of DPLG-3 than that of TNF- ⁇ by a factor of 10-20. In contrast, DPLG-3 dose-dependently induced IL-6 production on its own, while having no significant effects on IL-10 production ( FIG.
- the compounds were incubated in an 11-point series of dilutions with the Karpas lymphoma cell line, which expresses i-20S constitutively (Blackburn et al., “Characterization of a New Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S BetaS-Subunit,” Biochem. J. 430:461-476 (2010), which is hereby incorporated by reference in its entirety), for 4 hours, and the IC50s of the inhibitors were determined using a cell-based Proteasome-GloTM assay (Promega, Cat. No.
- DPLG-3 did not cause accumulation of poly-ubiquitinylated (poly-Ub proteins, in contrast to Bortezomib and DPLG-2086).
- DPLG-2086 is partly selective for i-20S over c-20S, it is still a relatively potent inhibitor of c-20S; thus the accumulation of poly-Ub proteins during treatment with DPLG-2086 is likely due to its inhibition of c-20S.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Transplantation (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The compounds of the present invention are represented by the following compounds having Formula (I) where the substituents R1-R10, X, Y, k, m, n, q, and s are as defined herein. These compounds are used in the treatment of cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders or for providing immunosuppression for transplanted organs or tissues.
Description
This application is an application for reissue of U.S. Pat. No. 9,988,421, issued Jun. 5, 2018, filed as U.S. patent application Ser. No. 15/110,000, which is a national stage application under 35 U.S.C. § 371 of PCT Application No. PCT/US2015/011022, filed Jan. 12, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/926,062, filed Jan. 10, 2014, which are hereby incorporated by reference in their entirety.
The present invention relates to inhibitors of human immunoproteasomes.
The proteasome is a large, ATP-dependent, multi-subunit, barrel-shaped N-terminal nucleophile hydrolase present in the cytosol and nucleus of eukaryotic cells, and is responsible for the degradation of the majority of cellular proteins (Baumeister et al., “The Proteasome: Paradigm of a Self-Compartmentalizing Protease,” Cell 92:367-380 (1998); Goldberg, A. L., “Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy,” Biochemical Society Transactions 35:12-17 (2007)). The proteasome not only controls many critical cellular checkpoints through degradation, but also generates peptides for antigen presentation (Goldberg, A. L., “Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy,” Biochemical Society Transactions 35:12-17 (2007); Rock et al., “Inhibitors of the Proteasome Block the Degradation of Most Cell Proteins and the Generation of Peptides Presented on MHC Class I Molecules,” Cell 78:761-771 (1994)). Highly specific proteasome inhibitors can markedly limit the overall supply of peptides for MHC class I molecules and thus block antigen presentation (Rock et al., “Protein Degradation and the Generation of MHC Class I-Presented Peptides,” Advances in Immunology 80:1-70 (2002)). The constitutive proteasome core particle is called 20S (c-20S) because of its sedimentation properties. Inside the c-20S core reside two copies of each of three proteases with distinct specificities, β1 (caspase-like), β2 (tryptic-like) and β5 (chymotryptic-like) (Bedford et al., “Ubiquitin-Like Protein Conjugation and the Ubiquitin-Proteasome System as Drug Targets,” Nature Reviews. Drug Discovery 10:29-46 (2011)). However, lymphocytes and cells that have responded to interferon-γ express a different proteasome, called the immunoproteasome (i-20S), in which the corresponding proteases are the products of different genes: β1i, β2i and P5i. Intermediate proteasomes that contain mixed β subunits are found in many cells, for example in the mucosa of the colon and small bowel (Guillaume et al., “Two Abundant Proteasome Subtypes that Uniquely Process Some Antigens Presented by HLA Class I Molecules,” Proc. Nat'l Acad. Sci. USA 107:18599-18604 (2010)). The effects of replacement of constitutive subunits by immuno-β subunits include increased proteolytic activity and altered peptide preferences of the active sites (Rock et al., “Proteases in MHC Class I Presentation and Cross-Presentation,” Journal of Immunology 184:9-15d (2010)). For example, the caspase-like β1 replacement, βi, preferentially cleaves after small hydrophobic residues rather than after aspartate (Huber et al., “Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity,” Cell 148:727-738 (2012)). This results in altered peptide products, such that mice with combined deficiency of β1i, β2i, and β5i are viable, fertile and healthy but express a different antigenic peptide repertoire than wild type mice, as evidenced by their rejection of syngeneic wild type splenocytes (Kincaid et al., “Mice Completely Lacking Immunoproteasomes Show Major Changes in Antigen Presentation,” Nature Immunology 13:129-135 (2012)). Hu c-20S and i-20S appear to regulate cytokine production through different pathways (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)). Hu c-20S controls the activation of NF-κB via the degradation of IκB, the binding partner of NF-κB in the cytosol (Perkins, N.D., “Integrating Cell-Signalling Pathways with NF[Kappa]B and IKK Function,” Nat. Rev. Mol. Cell Biol. 8:49-62 (2007)), and inhibition of c-20S blocks the activation of NF-κB (Meng et al., “Epoxomicin, a Potent and Selective Proteasome Inhibitor, Exhibits In Vivo Antiinflammatory Activity,” Proc. Nat'l Acad. Sci. USA 96:10403-10408 (1999)). For its part, among other potential pathways, i-20S appears to control the co-translocation of TLR9 and Unc93B1, an endoplasmic reticulum (ER)-resident protein, to endosomes (Hirai et al., “Bortezomib Suppresses Function and Survival of Plasmacytoid Dendritic Cells by Targeting Intracellular Trafficking of Toll-Like Receptors and Endoplasmic Reticulum Homeostasis,” Blood 117:500-509 (2011)). Proteasomes control diverse cellular functions, among them signal transduction for inflammatory cytokine release, antigen presentation, and the ability of plasma cells to secrete antibodies without dying from accumulation of misfolded immunoglobulins (Goldberg, A. L., “Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy,” Biochemical Society Transactions 35:12-17 (2007); Bedford et al., “Ubiquitin-Like Protein Conjugation and the Ubiquitin-Proteasome System as Drug Targets,” Nature Reviews. Drug Discovery 10:29-46 (2011); Neubert et al., “The Proteasome Inhibitor Bortezomib Depletes Plasma Cells and Protects Mice with Lupus-Like Disease from Nephritis,” Nature Medicine 14:748-755 (2008)). Thus the proteasome could be a target for treating autoimmune and inflammatory diseases. For example, inhibition of the proteasome in plasmacytoid dendritic cells (pDCs) prevents the trafficking of TLRs, resulting in a block of nuclear translocation of IRF-7, consequently suppressing the production of IFNα (Hirai et al., “Bortezomib Suppresses Function and Survival of Plasmacytoid Dendritic Cells by Targeting Intracellular Trafficking of Toll-Like Receptors and Endoplasmic Reticulum Homeostasis,” Blood 117:500-509 (2011)), a cytokine implicated in systemic lupus erythematosus (SLE). However, by the same token, widespread inhibition of proteasomes can be expected to be toxic and has proven toxic in the clinic.
Two proteasome inhibitors approved by the FDA for treatment of malignancy, Bortezomib and Carfilzomib, inhibit both the c-20S β5c and the i-20S β5i (Huber et al., “Inhibitors for the Immuno- and Constitutive Proteasome: Current and Future Trends in Drug Development,” Angewandte Chemie 51:8708-8720 (2012)). Bortezomib, a dipeptidyl boronate, is a slow-binding, covalent but reversible inhibitor, whereas Carfilzomib is a peptide with an epoxyketone warhead that inhibits proteasomes irreversibly. In addition to treatment of malignancy, Bortezomib has been reported to be effective in inflammatory bowel disease (IBD), SLE, graft-versus-host disease, antibody-mediated graft rejection, rheumatoid arthritis (RA), and other immunologic, autoimmune and/or inflammatory conditions. However, such a broad-spectrum inhibitor is too toxic for chronic treatment of non-malignant diseases. ONX 0914, another peptide epoxyketone, has modest selectivity for i-20S β5i (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)) and is reported to have efficacy in rheumatoid arthritis (Muchamuel et al., “A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nature Medicine 15:781-787 (2009)), SLE (Ichikawa et al., “Beneficial Effect of Novel Proteasome Inhibitors in Murine Lupus Via Dual Inhibition of Type I Interferon and Autoantibody-Secreting Cells,” Arthritis and Rheumatism 64:493-503 (2012)), experimental colitis (Basler et al., “Prevention of Experimental Colitis by a Selective Inhibitor of the Immunoproteasome,” Journal of Immunology 185:634-641 (2010)), and multiple sclerosis (Basler et al., “Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis,” EMBO Mol. Med. 6:226-238 (2014)). Nonetheless, it, too, acts irreversibly and has considerable toxicity.
The present invention is directed to overcoming these and other deficiencies in the art.
One aspect of the present invention relates to a compound of Formula (I):
R1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and b-iheterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF3, C1-6 alkyl, and C1-6 alkoxy;
R2 is independently selected at each occurrence thereof from the group consisting of H, D, C1-6 alkyl, —CH2OC1-6 alkyl, —CH2Ar, and —CH2heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH2OC1-6 alkyl, —(CH2)mC(O)NHR5, and —(CH2)mC(O)NR6R7;
R4 is selected from the group consisting of —C(O)(CH2)1Ph, —C(O)CH2NR6R7, —SO2Ar, —SO2C1-6 alkyl, —SO2C3-6cycloalkyl, —C(O)(CH 2 2 n,Het, —C(O)C(O)Het, —C(O)C1-6 alkyl, —C(O)OC1-6 alkyl, —C(O)CF3, heteroaryl, —C(O)R10, and —(CH2)1NR6R7, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5 is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6R7, and —CR8R9;
R6, R7, R8, and R9 are each independently selected from the group consisting of H, D, C1-6 alkyl, and (—CH2)kOH;
or R6 and R7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
or R8 and R9 are taken together with the carbon to which they are attached to form an oxetane ring;
R10 is monocyclic carbocycle or fused bicyclic carbocycle;
X is —(CH2)q—, —O—, or —(CD2)q—;
Y is O or S;
k is 1, 2, or 3;
m is 0, 1, 2, 3, 4, or 5;
n is 0, 1, 2, or 3;
q is 0, 1, or 2; and
s is 0 or 1;
or an oxide thereof, a pharmaceutically acceptable salt thereof, a solvate thereof, or a prodrug thereof.
A second aspect of the present invention relates to a method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject. This method includes administering to the subject in need thereof a compound of the Formula (I):
R1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF3, C1-6 alkyl, and C1-6 alkoxy;
R2 is independently selected at each occurrence thereof from the group consisting of H, D, C1-6 alkyl, —CH2OC1-6 alkyl, —CH2Ar, and CH2heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH2OC1-6 alkyl, —(CH2)mC(O)NHR5, and —(CH2)mC(O)NR6R7;
R4 is selected from the group consisting of —C(O)(CH2)1Ph, —C(O)CH2NR6R7, —SO2Ar, —SO2C1-6 alkyl, —SO2C3-6cycloalkyl, —C(O)(CH2)nHet, —C(O)C(O)Het, —C(O)C1-6 alkyl, —C(O)OC1-6 alkyl, —C(O)CF3, heteroaryl, —C(O)R10, and —(CH2)1NR6R7, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5 is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6R7, and —CR8R9;
R6, R7, R8, and R9 are each independently selected from the group consisting of H, D, C1-6 alkyl, and —(CH2)kOH;
or R6 and R7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
or R8 and R9 are taken together with the carbon to which they are attached to form an oxetane ring;
R10 is monocyclic carbocycle or fused bicyclic carbocycle;
X is —(CH2)q—, —O—, or —(CD2)q—;
Y is O or S;
k is 1, 2, or 3;
m is 0, 1, 2, 3, 4, or 5;
n is 0, 1, 2, or 3;
q is 0, 1, or 2; and
s is 0 or 1.
Selective inhibition of the i-20S is believed to impact the immune system but would otherwise be far less toxic than combined inhibition of both constitutive and immunoproteasomes. Here are presented the first inhibitors that act both with high selectivity and full reversibility on hu i-20S β5i over hu c-20S Inhibitors that are selective for the i-20S β5i are expected to be equally if not more efficacious in treating autoimmune disease, with less toxicity. These inhibitors could open a new path to the treatment of immunologic, autoimmune, inflammatory, neurodegenerative, and certain neoplastic disorders such as: systemic lupus erythematosis, chronic rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), atherosclerosis, scleroderma, systemic sclerosis, autoimmune hepatitis, Sjogren Syndrome, lupus nephritis, glomerulonephritis, rheumatoid arthritis, psoriasis, Myasthenia Gravis, Imunoglobuline A nephropathy, atherosclerosis, vasculitis, renal fibrosis, lung fibrosis, liver fibrosis, transplant rejection, idiopathic pulmonary fibrosis, asthma, and inflammation driven cancers such as: triple negative breast cancers.
One aspect of the present invention relates to a compound of Formula (I):
R1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF3, C1-6 alkyl, and C1-6 alkoxy;
R2 is independently selected at each occurrence thereof from the group consisting of H, D, C1-6 alkyl, —CH2OC1-6 alkyl, —CH2Ar, and —CH2heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy; R3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH2OC1-6 alkyl, —(CH2)mC(O)NHR5, and —(CH2)mC(O)NR6R7;
R4 is selected from the group consisting of —C(O)(CH2)1Ph, —C(O)CH2NR6R7, —SO2Ar, —SO2C1-6 alkyl, —SO2C3-6cycloalkyl, —C(O)(CH2)nHet, —C(O)C(O)Het, —C(O)C1-6 alkyl, —C(O)OC1-6 alkyl, —C(O)CF3, heteroaryl, —C(O)R10, and —(CH2)1NR6R7, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5 is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6R7, and —CR8R9;
R6, R7, R8, and R9 are each independently selected from the group consisting of H, D, C1-6 alkyl, and —(CH2)kOH;
or R6 and R7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
or R8 and R9 are taken together with the carbon to which they are attached to form an oxetane ring;
R10 is monocyclic carbocycle or fused bicyclic carbocycle;
X is —(CH2)q—, —O—, or —(CD2)q—;
Y is O or S;
k is 1, 2, or 3;
m is 0, 1, 2, 3, 4, or 5;
n is 0, 1, 2, or 3;
q is 0, 1, or 2; and
s is 0 or 1;
or an oxide thereof, a pharmaceutically acceptable salt thereof, a solvate thereof, or a prodrug thereof.
As used above, and throughout the description herein, the following terms, unless otherwise indicated, shall be understood to have the following meanings. If not defined otherwise herein, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this technology belongs. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
The term “alkyl” means an aliphatic hydrocarbon group which may be straight or branched having about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. Exemplary alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, and 3-pentyl.
The term “cycloalkyl” means a non-aromatic mono- or multicyclic ring system of about 3 to about 7 carbon atoms, preferably of about 5 to about 7 carbon atoms. Exemplary monocyclic cycloalkyls include cyclopentyl, cyclohexyl, cycloheptyl, and the like.
The term “monocyclic carbocycle” means a monocyclic ring system of 5 to about 8 ring carbon atoms, preferably 5 or 6. The ring is nonaromatic, but may contain one or more carbon-carbon double bonds. Representative monocyclic carbocycles include cyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, and the like.
The term “fused bicyclic carbocycle” means a bicyclic ring system consisting of about 8 to 11 ring carbon atoms, preferably 9 or 10. One or both of the rings is/are aromatic. Representative fused bicyclic carbocycles include indenyl, indanyl, naphthyl, dihydronaphthyl, tetrahydronaphthyl, benzocycloheptenyl, dihydrobenzocycloheptenyl, tetrahydrobenzocycloheptenyl, and the like.
The term “aryl” means an aromatic monocyclic or multicyclic ring system of 6 to about 14 carbon atoms, preferably of 6 to about 10 carbon atoms. Representative aryl groups include phenyl and naphthyl.
The term “heteroaryl” means an aromatic monocyclic or multicyclic ring system of about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is/are element(s) other than carbon, for example, nitrogen, oxygen, or sulfur. In the case of multicyclic ring system, only one of the rings needs to be aromatic for the ring system to be defined as “Heteroaryl”. Preferred heteroaryls contain about 5 to 6 ring atoms. The prefix aza, oxa, thia, or thio before heteroaryl means that at least a nitrogen, oxygen, or sulfur atom, respectively, is present as a ring atom. A nitrogen atom of a heteroaryl is optionally oxidized to the corresponding N-oxide. Representative heteroaryls include pyridyl, 2-oxopyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, furanyl, pyrrolyl, thiophenyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, indolyl, isoindolyl, benzofuranyl, benzothiophenyl, indolinyl, 2-oxoindolinyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, indazolyl, benzimidazolyl, benzooxazolyl, benzothiazolyl, benzoisoxazolyl, benzoisothiazolyl, benzotriazolyl, benzo[1,3]dioxolyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, pthalazinyl, quinoxalinyl, 2,3-dihydro-benzo[1,4]dioxinyl, benzo[1,2,3]triazinyl, benzo[1,2,4]triazinyl, 4H-chromenyl, indolizinyl, quinolizinyl, 6aH-thieno[2,3-d]imidazolyl, 1H-pyrrolo[2,3-b]pyridinyl, imidazo[1,2-a]pyridinyl, pyrazolo[1,5-a]pyridinyl, [1,2,4]triazolo[4,3-a]pyridinyl, [1,2,4]triazolo[1,5-a]pyridinyl, thieno[2,3-b]furanyl, thieno[2,3-b]pyridinyl, thieno[3,2-b]pyridinyl, furo[2,3-b]pyridinyl, furo[3,2-b]pyridinyl, thieno[3,2-d]pyrimidinyl, furo[3,2-d]pyrimidinyl, thieno[2,3-b]pyrazinyl, imidazo[1,2-a]pyrazinyl, 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazinyl, 6,7dihydro-4H-pyrazolo[5,1-c][1,4]oxazinyl, 2-oxo-2,3-dihydrobenzo[d]oxazolyl, 3,3-dimethyl-2-oxoindolinyl, 2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, benzo[c][1,2,5]oxadiazolyl, benzo[c][1,2,5]thiadiazolyl, 3,4-dihydro-2H-benzo[b][1,4]oxazinyl, 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazinyl, [1,2,4]triazolo[4,3-a]pyrazinyl, 3-oxo-[1,2,4]triazolo[4,3-a]pyridin-2(3H)-yl, and the like.
As used herein, “biheteroaryl” or “bi-heteroaryl” refers to a heteroaryl group substituted by another heteroaryl group.
As used herein, “heterocyclyl” or “heterocycle” refers to a stable 3- to 18-membered ring (radical) which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. For purposes of this application, the heterocycle may be a monocyclic, or a polycyclic ring system, which may include fused, bridged, or spiro ring systems; and the nitrogen, carbon, or sulfur atoms in the heterocycle may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the ring may be partially or fully saturated. Examples of such heterocycles include, without limitation, azepinyl, azocanyl, pyranyl dioxanyl, dithianyl, 1,3-dioxolanyl, tetrahydrofuryl, dihydropyrrolidinyl, decahydroisoquinolyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxoazepinyl, oxazolidinyl, oxiranyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, thiazolidinyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinyl sulfoxide, and thiamorpholinyl sulfone. Further heterocycles and heteroaryls are described in Katritzky et al., eds., Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Use of Heterocyclic Compounds, Vol. 1-8, Pergamon Press, N.Y. (1984), which is hereby incorporated by reference in its entirety.
As used herein, “biheterocyclyl” or “bi-heterocyclyl” refers to a heterocyclyl group substituted by another heterocyclyl or heterocycle group.
The term “non-aromatic heterocycle” means a non-aromatic monocyclic system containing 3 to 10 atoms, preferably to about 7 carbon atoms, in which one or more of the atoms in the ring system is/are element(s) other than carbon, for example, nitrogen, oxygen, or sulfur. Representative non-aromatic heterocycle groups include pyrrolidinyl, 2-oxopyrrolidinyl, piperidinyl, 2-oxopiperidinyl, azepanyl, 2-oxoazepanyl, 2-oxooxazolidinyl, morpholino, 3-oxomorpholino, thiomorpholino, 1,1-dioxothiomorpholino , piperazinyl, tetrohydro-2H-oxazinyl, and the like.
The term “monocyclic” used herein indicates a molecular structure having one ring.
The term “polycyclic” or “multi-cyclic” used herein indicates a molecular structure having two or more rings, including, but not limited to, fused, bridged, or spiro rings.
Terminology related to “protecting”, “deprotecting,” and “protected” functionalities occurs throughout this application. Such terminology is well understood by persons of skill in the art and is used in the context of processes which involve sequential treatment with a series of reagents. In that context, a protecting group refers to a group which is used to mask a functionality during a process step in which it would otherwise react, but in which reaction is undesirable. The protecting group prevents reaction at that step, but may be subsequently removed to expose the original functionality. The removal or “deprotection” occurs after the completion of the reaction or reactions in which the functionality would interfere. Thus, when a sequence of reagents is specified, as it is in the processes described herein, the person of ordinary skill can readily envision those groups that would be suitable as “protecting groups.” Suitable groups for that purpose are discussed in standard textbooks in the field of chemistry, such as Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, New York (1991), which is hereby incorporated by reference in its entirety.
The term “alkoxy” means groups of from 1 to 8 carbon atoms of a straight, branched, or cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy, and the like. Lower-alkoxy refers to groups containing one to four carbons. For the purposes of the present patent application, alkoxy also includes methylenedioxy and ethylenedioxy in which each oxygen atom is bonded to the atom, chain, or ring from which the methylenedioxy or ethylenedioxy group is pendant so as to form a ring. Thus, for example, phenyl substituted by alkoxy may be, for example,
A compound with a hydroxy group drawn next to a nitrogen on a heterocycle can exist as the “keto” form. For example, 3-(2-hydroxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)propanoic acid can exist as 3-(2-oxo-2,3-dihydro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)propanoic acid.
The term “halo” or “halogen” means fluoro, chloro, bromo, or iodo.
The term “substituted” or “substitution” of an atom means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded.
“Unsubstituted” atoms bear all of the hydrogen atoms dictated by their valency. When a substituent is keto (i.e., =0), then two hydrogens on the atom are replaced. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds; by “stable compound” or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term “optionally substituted” is used to indicate that a group may have a substituent at each substitutable atom of the group (including more than one substituent on a single atom), provided that the designated atom's normal valency is not exceeded and the identity of each substituent is independent of the others. Up to three H atoms in each residue are replaced with alkyl, halogen, haloalkyl, hydroxy, loweralkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, heteroaryl, phenoxy, benzyloxy, or heteroaryloxy. “Unsubstituted” atoms bear all of the hydrogen atoms dictated by their valency. When a substituent is keto (i.e., =0), then two hydrogens on the atom are replaced. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds; by “stable compound” or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term “method of treating” means amelioration or relief from the symptoms and/or effects associated with the disorders described herein. As used herein, reference to “treatment” of a patient is intended to include prophylaxis.
The term “compounds of the invention”, and equivalent expressions, are meant to embrace compounds of general formula (I) as hereinbefore described, which expression includes the prodrugs, the pharmaceutically acceptable salts, and the solvates, e.g. hydrates, where the context so permits. Similarly, reference to intermediates, whether or not they themselves are claimed, is meant to embrace their salts, and solvates, where the context so permits. For the sake of clarity, particular instances when the context so permits are sometimes indicated in the text, but these instances are purely illustrative and it is not intended to exclude other instances when the context so permits.
The term “pharmaceutically acceptable salts” means the relatively non-toxic, inorganic, and organic acid addition salts, and base addition salts, of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds. In particular, acid addition salts can be prepared by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed. Exemplary acid addition salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactiobionate, sulphamates, malonates, salicylates, propionates, methylene-bis-b-hydroxynaphthoates, gentisates, isethionates, di-p-toluoyltartrates, methane-sulphonates, ethanesulphonates, benzenesulphonates, p-toluenesulphonates, cyclohexylsulphamates and quinateslaurylsulphonate salts, and the like (see, for example, Berge et al., “Pharmaceutical Salts,” J. Pharm. Sci., 66:1-9 (1977) and Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, which are hereby incorporated by reference in their entirety). Base addition salts can also be prepared by separately reacting the purified compound in its acid form with a suitable organic or inorganic base and isolating the salt thus formed. Base addition salts include pharmaceutically acceptable metal and amine salts. Suitable metal salts include the sodium, potassium, calcium, barium, zinc, magnesium, and aluminum salts. The sodium and potassium salts are preferred. Suitable inorganic base addition salts are prepared from metal bases which include, for example, sodium hydride, sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide, lithium hydroxide, magnesium hydroxide, and zinc hydroxide. Suitable amine base addition salts are prepared from amines which have sufficient basicity to form a stable salt, and preferably include those amines which are frequently used in medicinal chemistry because of their low toxicity and acceptability for medical use, such as ammonia, ethylenediamine, N-methyl-glucamine, lysine, arginine, ornithine, choline, N,N′-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)aminomethane, tetramethylammonium hydroxide, triethylamine, dibenzylamine, ephenamine, dehydroabietylamine, N-ethylpiperidine, benzylamine, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trim- ethylamine, ethylamine, basic amino acids, e.g., lysine and arginine, dicyclohexylamine, and the like.
The term “pharmaceutically acceptable prodrugs” as used herein means those prodrugs of the compounds useful according to the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commen- surate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term “prodrug” means compounds that are rapidly transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. Functional groups which may be rapidly transformed, by metabolic cleavage, in vivo form a class of groups reactive with the carboxyl group of the compounds of this invention. They include, but are not limited to, such groups as alkanoyl (such as acetyl, propionyl, butyryl, and the like), unsubstituted and substituted aroyl (such as benzoyl and substituted benzoyl), alkoxycarbonyl (such as ethoxycarbonyl), trialkylsilyl (such as trimethyl- and triethysilyl), monoesters formed with dicarboxylic acids (such as succinyl), and the like. Because of the ease with which the metabolically cleavable groups of the compounds useful according to this invention are cleaved in vivo, the compounds bearing such groups act as pro-drugs. The compounds bearing the metabolically cleavable groups have the advantage that they may exhibit improved bioavailability as a result of enhanced solubility and/or rate of absorption conferred upon the parent compound by virtue of the presence of the metabolically cleavable group. A thorough discussion of prodrugs is provided in the following: Design of Prodrugs, H. Bundgaard, ed., Elsevier (1985); Methods in Enzymology, K. Widder et al, Ed., Academic Press, 42, p. 309-396 (1985); A Textbook of Drug Design and Development, Krogsgaard-Larsen and H. Bundgaard, ed., Chapter 5; “Design and Applications of Prodrugs” p. 113-191 (1991); Advanced Drug Delivery Reviews, H. Bundgard, 8, p. 1-38 (1992); J. Pharm. Sci., 77:285 (1988); Nakeya et al, Chem. Pharm. Bull., 32:692 (1984); Higuchi et al., “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series, and Bioreversible Carriers in Drug Design, Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press (1987), which are incorporated herein by reference in their entirety. Examples of prodrugs include, but are not limited to, acetate, formate, and benzoate derivatives of alcohol and amine functional groups in the compounds of the invention.
The term “solvate” refers to a compound of Formula I in the solid state, wherein molecules of a suitable solvent are incorporated in the crystal lattice. A suitable solvent for therapeutic administration is physiologically tolerable at the dosage administered. Examples of suitable solvents for therapeutic administration are ethanol and water. When water is the solvent, the solvate is referred to as a hydrate. In general, solvates are formed by dissolving the compound in the appropriate solvent and isolating the solvate by cooling or using an antisolvent. The solvate is typically dried or azeotroped under ambient conditions.
The term “therapeutically effective amounts” is meant to describe an amount of compound of the present invention effective in increasing the levels of serotonin, norepinephrine, or dopamine at the synapse and thus producing the desired therapeutic effect. Such amounts generally vary according to a number of factors well within the purview of ordinarily skilled artisans given the description provided herein to determine and account for. These include, without limitation: the particular subject, as well as its age, weight, height, general physical condition, and medical history; the particular compound used, as well as the carrier in which it is formulated and the route of administration selected for it; and, the nature and severity of the condition being treated.
The term “pharmaceutical composition” means a composition comprising a compound of Formula (I) and at least one component comprising pharmaceutically acceptable carriers, diluents, adjuvants, excipients, or vehicles, such as preserving agents, fillers, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifingal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms. Examples of suspending agents include ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monosterate and gelatin. Examples of suitable carriers, diluents, solvents, or vehicles include water, ethanol, polyols, suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Examples of excipients include lactose, milk sugar, sodium citrate, calcium carbonate, and dicalcium phosphate. Examples of disintegrating agents include starch, alginic acids, and certain complex silicates. Examples of lubricants include magnesium stearate, sodium lauryl sulphate, talc, as well as high molecular weight polyethylene glycols.
The term “pharmaceutically acceptable” means it is, within the scope of sound medical judgement, suitable for use in contact with the cells of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
The term “pharmaceutically acceptable dosage forms” means dosage forms of the compound of the invention, and includes, for example, tablets, dragees, powders, elixirs, syrups, liquid preparations, including suspensions, sprays, inhalants tablets, lozenges, emulsions, solutions, granules, capsules, and suppositories, as well as liquid preparations for injections, including liposome preparations. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., latest edition.
Compounds described herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms. Each chiral center may be defined, in terms of absolute stereochemistry, as (R)- or (S)-. This technology is meant to include all such possible isomers, as well as mixtures thereof, including racemic and optically pure forms. Optically active (R)- and (S)-, (−)- and (+)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.
This technology also envisions the “quaternization” of any basic nitrogen-containing groups of the compounds disclosed herein. The basic nitrogen can be quaternized with any agents known to those of ordinary skill in the art including, for example, lower alkyl halides, such as methyl, ethyl, propyl and butyl chloride, bromides and iodides; dialkyl sulfates including dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; and aralkyl halides including benzyl and phenethyl bromides. Water or oil-soluble or dispersible products may be obtained by such quaternization.
In the characterization of some of the substituents, it is recited that certain substituents may combine to form rings. Unless stated otherwise, it is intended that such rings may exhibit various degrees of unsaturation (from fully saturated to fully unsaturated), may include heteroatoms and may be substituted with lower alkyl or alkoxy.
Compounds of Formula (I) can be produced according to known methods. For example, compounds of Formula (I) wherein s is 0 can be prepared according to Scheme 1 and Scheme 2 outlined below.
Coupling of the carboxylic acid (1) with the amine (2) leads to formation of the compound (3). The coupling reaction can be carried out in a variety of solvents, for example in methylene chloride (CH2Cl2), tetrahydrofuran (THF), dimethylformamide (DMF), or other such solvents or in the mixture of such solvents. During the coupling process, the non-participating carboxylic acids or amines on the reacting set of amino acids or peptide fragments can be protected by a suitable protecting group which can be selectively removed at a later time if desired. A detailed description of these groups and their selection and chemistry is contained in “The Peptides, Vol. 3”, Gross and Meinenhofer, Eds., Academic Press, New York, 1981, which is hereby incorporated by reference in its entirety. Thus, useful protective groups for the amino group are benzyloxycarbonyl (Cbz), t-butyloxycarbonyl (t-BOC), 2,2,2-trichloroethoxycarbonyl (Trot), t-amytoxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-(trichlorosilyl)ethoxycarbonyl, 9-fluorenylmethoxycarbonyl (Fmoc), phthaloyl, acetyl (Ac), formyl, trifluoroacetyl, and the like.
Alternatively, carboxylic acid bearing protecting group (PG) (4) can be coupled with the amine (2) to form compound (5). Following the deprotection reaction, compound (6) can be reacted with compound (11), R4-LG (wherein LG is a suitable leaving group), to form final product (3).
Compounds of Formula (I) wherein s is 1 can be prepared according to the general schemes outlined below (Scheme 3 and Scheme 4).
The compounds of the present invention may be prepared by stepwise coupling of the amino acids. The coupling reactions are conducted in solvents such as methylene chloride (CH2Cl2), tetrahydrofuran (THF), dimethylformamide (DMF), or other such solvents. During the coupling process, the non-participating carboxylic acids or amines on the reacting set of amino acids or peptide fragments can be protected by a suitable protecting group which can be selectively removed at a later time if desired. A detailed description of these groups and their selection and chemistry is contained in “The Peptides; Vol. 3”, Gross and Meinenhofer, L ds Academic Press, New York, 1981, which is hereby incorporated by reference in its entirety. Thus, useful protective groups for the amino group are benzyloxycarbonyl (Cbz), t-butyloxycarbonyl (t-BOC), 2,2,2-trichloroethoxycarbonyl (Troc), t-amyloxycarbonyl, t-methoxybenzyloxycarbonyl, 2-(trichlorosilyl)ethoxycarbonyl, 9-fluorenylmethoxycarbonyl (Fmoc), phthaloyl, acetyl (Ac), formyl, trifluoroacetyl, and the like. Carboxylic acid bearing protecting group (PG) (4) is coupled with the amine (2) to form compound (5). Following the deprotection the reaction, compound (6) is coupled with another acid (7) to form final product (8).
Alternatively, carboxylic acid bearing protecting group (PG) (4) can be coupled with the amine (6) to form compound (9). Following the deprotection reaction, compound (10) can be reacted with compound (11), R4-LG (wherein LG is a suitable leaving group), to form final product. (8).
In one embodiment, compound has the Formula (Ia):
R1a is selected from the group consisting of monocyclic and bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R2a is selected from the group consisting of C1-6 alkyl, —CH2OC1-6 alkyl, —CH2Ar, and heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R1a s selected from the group consisting of —CH2OC1-6 alkyl, —CH2C(O)NHR5a, and —CH2C(O)R5a;
R4a is selected from the group consisting of —C(O)(CH2)1 Ph, —C(O)CH2NR6aR7a, —SO2Ar, —SO2C1-6 alkyl, —C(O)(CH2)nHet, —C(O)C1-6 alky, —C(O)CF3, heteroaryl, and —(CH2)1NR6aR7a, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 akoxy;
R5a is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6aR7a, and —CR8aR9a;
R6a, R7a, R8a, and R9a are each independently selected from the group consisting of H, C1-6 alkyl, and —(CH2)kOH;
or R6a and R7a are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, azepane, azetidine, or morpholine ring;
or R8a and R9a are taken together with the carbon to which they are attached to form an oxetane ring;
n is 0, 1, 2, or 3; and
k is 1, 2, or 3.
Another embodiment relates to the compound of Formulae (I) where R1 is selected from the group consisting of
Another embodiment relates to the compound of Formuae (I) where R2 is selected from the group consisting of Me, —CH(Me)2, —CH2OMe,
Another embodiment relates to the compound of Formulae (I) where R3 is selected from the group consisting of —CH2OMe,
Another embodiment relates to the compound of Formulae (I) where R4 is selected from the group consisting of trifluoroacetyl,
p is 0, 1, 2, or 3;
r is 0, 1, 2, 3, 4, or 5;
t is 0, 1, 2, 3, or 4; and
R is selected from the group consisting of H, halogen, cyano, C1-6 alkyl, and C1-6 alkoxy.
Another embodiment relates to the compound of Formulae (I) where the compound has a structure selected from the group consisting of:
A second aspect of the present invention relates to a method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject. This method includes administering to the subject in need thereof a compound of the Formula (I):
R1 is selected from the group consisting of monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle, wherein monocyclic and bicyclic aryl, biphenyl, monocyclic and bicyclic heteroaryl and bi-heteroaryl, monocyclic and bicyclic heterocyclyl and bi-heterocyclyl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, —CF3, C1-6 alkyl, and C1-6 alkoxy;
R2 is independently selected at each occurrence thereof from the group consisting of H, D, C1-6 alkyl, 'CH2OC1-6 alkyl, —CH2Ar, and —CH2heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R3 is independently selected at each occurrence thereof from the group consisting of H, D, —CH2OC1-6 alkyl, —(CH2)mC(O)NHR5, and —(CH2)mC(O)NR6R7;
R4 is selected from the group consisting of —C(O)(CH2)1Ph, —C(O)CH2NR6R7, —SO2Ar, —SO2C1-6 alkyl, —SO2C3-6cycloalkyl, —C(O)(CH2)nHet, —C(O)C(O)Het, —C(O)C1-6 alkyl, C(O)OC1-6 alkyl, —C(O)CF3, heteroaryl, —C(O)R10, and —(CH2)1NR6R7, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5 is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6R7, and CR8R9;
R6, R7, R8, and R9 are each independently selected from the group consisting of H, D, C1-6 alkyl, and —(CH2)kOH;
or R6 and 7 are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, or morpholine ring;
or R8 and R9 are taken together with the carbon to which they are attached to form an oxetane ring;
R10 is monocyclic carbocycle or fused bicyclic carbocycle;
X is —(CH2)q—, —O—, or —(CD2)q—;
Y is O or S;
k is 1, 2, or 3;
m is 0, 1, 2, 3, 4, or 5;
n is 0, 1, 2, or 3;
q is 0, 1, or 2; and
s is 0 or 1.
In one embodiment, an autoimmune disorder is treated. The autoimmune disorder is selected from the group consisting of arthritis, colitis, multiple sclerosis, lupus, systemic sclerosis, and sjögren syndrome.
In another embodiment, immunosuppression is provided for transplanted organs or tissues. The immunosuppression is used to prevent transplant rejection and graft-verse-host disease.
In another embodiment, an inflammatory disorder is treated. The inflammatory disorder is Crohn's disease or ulcerative colitis.
In yet another embodiment, cancer is treated. The cancer is selected from the group consisting of neoplastic disorders, hematologic malignancies, and lymphocytic malignancies.
While it may be possible for compounds of Formula (I) to be administered as raw chemicals, it will often be preferable to present them as a part of a pharmaceutical composition. Accordingly, another aspect of the present invention is a pharmaceutical composition containing a therapeutically effective amount of the compound of Formula (I), or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier. The carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
In practicing the method of the present invention, agents suitable for treating a subject can be administered using any method standard in the art. The agents, in their appropriate delivery form, can be administered orally, intradermally, intramuscularly, intraperitoneally, intravenously, subcutaneously, or intranasally. The compositions of the present invention may be administered alone or with suitable pharmaceutical carriers, and can be in solid or liquid form, such as tablets, capsules, powders, solutions, suspensions, or emulsions.
The agents of the present invention may be orally administered, for example, with an inert diluent, or with an assimilable edible carrier, or it may be enclosed in hard or soft shell capsules, or it may be compressed into tablets, or they may be incorporated directly with the food of the diet. Agents of the present invention may also be administered in a time release manner incorporated within such devices as time-release capsules or nanotubes. Such devices afford flexibility relative to time and dosage. For oral therapeutic administration, the agents of the present invention may be incorporated with excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, and the like. Such compositions and preparations should contain at least 0.1% of the agent, although lower concentrations may be effective and indeed optimal. The percentage of the agent in these compositions may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit. The amount of an agent of the present invention in such therapeutically useful compositions is such that a suitable dosage will be obtained.
Also specifically contemplated are oral dosage forms of the agents of the present invention. The agents may be chemically modified so that oral delivery of the derivative is efficacious. Generally, the chemical modification contemplated is the attachment of at least one moiety to the component molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the component or components and increase in circulation time in the body. Examples of such moieties include: polyethylene glycol, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. (Abuchowski and Davis, “Soluble Polymer Enzyme Adducts,” In: Enzymes as Drugs, Hocenberg and
Roberts, eds., Wiley-Interscience, New York, N.Y, pp. 367-383 (1981), which are hereby incorporated by reference in their entirety). Other polymers that could be used are poly-1,3-dioxolane and poly-1,3,6-tioxocane. Preferred for pharmaceutical usage, as indicated above, are polyethylene glycol moieties.
The tablets, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, sucrulose, or saccharin. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.
Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar, or both. A syrup may contain, in addition to active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor.
The agents of the present invention may also be administered parenterally. Solutions or suspensions of the agent can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols, such as propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
When it is desirable to deliver the agents of the present invention systemically, they may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
Intraperitoneal or intrathecal administration of the agents of the present invention can also be achieved using infusion pump devices such as those described by Medtronic, Northridge, Calif. Such devices allow continuous infusion of desired compounds avoiding multiple injections and multiple manipulations.
In addition to the formulations described previously, the agents may also be formulated as a depot preparation. Such long acting formulations may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
The agents of the present invention may also be administered directly to the airways in the form of an aerosol. For use as aerosols, the agent of the present invention in solution or suspension may be packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants. The agent of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.
Effective doses of the compositions of the present invention, for the treatment of cancer or pathogen infection vary depending upon many different factors, including type and stage of cancer or the type of pathogen infection, means of administration, target site, physiological state of the patient, other medications or therapies administered, and physical state of the patient relative to other medical complications. Treatment dosages need to be titrated to optimize safety and efficacy.
The percentage of active ingredient in the compositions of the present invention may be varied, it being necessary that it should constitute a proportion such that a suitable dosage shall be obtained. Obviously, several unit dosage forms may be administered at about the same time. The dose employed will be determined by the physician, and depends upon the desired therapeutic effect, the route of administration and the duration of the treatment, and the condition of the patient. In the adult, the doses are generally from about 0.01 to about 100 mg/kg body weight, preferably about 0.01 to about 10 mg/kg body weight per day by inhalation, from about 0.01 to about 100 mg/kg body weight, preferably 0.1 to 70 mg/kg body weight, more especially 0.1 to 10 mg/kg body weight per day by oral administration, and from about 0.01 to about 50 mg/kg body weight, preferably 0.01 to 10 mg/kg body weight per day by intravenous administration. In each particular case, the doses will be determined in accordance with the factors distinctive to the subject to be treated, such as age, weight, general state of health, and other characteristics which can influence the efficacy of the medicinal product.
The products according to the present invention may be administered as frequently as necessary in order to obtain the desired therapeutic effect. Some patients may respond rapidly to a higher or lower dose and may find much weaker maintenance doses adequate. For other patients, it may be necessary to have long-term treatments at the rate of 1 to 4 doses per day, in accordance with the physiological requirements of each particular patient. Generally, the active product may be administered orally 1 to 4 times per day. It goes without saying that, for other patients, it will be necessary to prescribe not more than one or two doses per day.
The following examples are provided to illustrate embodiments of the present invention but are by no means intended to limit its scope.
Carboxylic acid (1.0 eq.), O-(7-Azabenzotriazol-1-yl)-N, N,N,N′-tetramethyluronium hexafluorophosphate (HATU) (1.2 eq.) and 1-Hydroxy-7-Azabenzotriazole (HOAt) 0.6M in DMF (1.0 eq.) were dissolved in DMF under argon atmosphere. The solution was cooled to 0° C. and amine (1.1 eq.) was added. After stirring for 5 minutes at 0° C., Hünig's base (3-4 eq.) was added. The reaction mixture was stirred at 0° C. After completion of reaction (1 h; monitored by LCMS), water was added to reaction mixture and stirred 30 minutes. Product was isolated either by filtration or ethyl acetate extraction.
Carboxylic acid (1.0 eq.), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) (1.2 eq.) and 1-Hydroxybenzotriazole (HOBt) (1.3 eq.) were dissolved in DMF under argon atmosphere. The solution was cooled to 0° C. and amine (1.1 eq.) was added. After stirring for 5 minutes at 0° C., Hünig's base (2-3 eq.) was added. The reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature overnight.
The substrate was dissolved in dichloromethane and the solution was cooled to 0° C. Trifluoroacetic acid (20% v/v with respect to dichloromethane) was added to the solution drop wise at 0° C. with constant stirring. The mixture was allowed to warm to room temperature slowly (over a period of 1 hour), and stirred until the completion of reaction (monitored by LCMS). Excess trifluoroacetic acid and dichloromethane were evaporated and crude was dried under vacuum.
The substrate was dissolved in methanol. Palladium on carbon (10%) was added carefully. Residual air from the flask was removed and flushed with hydrogen. The mixture was stirred at room temperature under hydrogen atmosphere using a hydrogen balloon. After completion of reaction (3-4 hours; monitored by LCMS), the mixture was filtered through celite. Filtrate was evaporated and dried under vacuum to give product.
DPLG-2122 was prepared following the general procedure for HATU mediated coupling of Boc-4-F-Phe-OH (2.00 g, 7.06 mmol) and 1-naphthylmethylamine (1.17 mL, 7.77 mmol). After completion of reaction (1 h), 100 mL water was added to the reaction mixture. A precipitate was formed. The mixture was stirred for 15 minutes and filtered. The precipitate was washed with water and dried to give 2.96 g (99%) product. 1H NMR (500 MHz, DMSO-d6) δ 8.47 (t, J=5.8 Hz, 1H), 8.03 (dd, J=6.3, 3.4 Hz, 1H), 7.94 (dd, J=6.2, 3.4 Hz, 1H), 7.84 (d, J=8.1 Hz, 1H), 7.55-7.52 (m, 2H), 7.44-7.41 (m, 1H), 7.38-7.36 (m, 1H), 7.28-7.25 (m, 2H), 7.07-7.00 (m, 3H), 4.74 (d, J=5.6 Hz, 2H), 4.25-4.15 (m, 1H), 2.93 (dd, J=13.6, 5.1 Hz, 1H), 2.77 (dd, J=13.6, 10.0 Hz, 1H), 1.30 (s, 9H).
DPLG-2123 was prepared by following the general procedure for Boc-deprotection of DPLG-21046 (2.96 g, 7.00 mmol). The crude was triturated with diethyl ether and filtered to give product as a white solid (2.54 g, 83%). 1H NMR (500 MHz, DMSO-d6) δ 8.91-8.88 (m, 1H), 8.30 (bs, 3H), 7.98-7.94 (m, 2H), 7.89 (d, J=8.2 Hz, 1H), 7.58-7.55 (m, 2H), 7.44 (dd, J=8.2, 7.0 Hz, 1H), 7.28 (d, J=7.0 Hz, 1H), 7.22-7.19 (m, 2H), 7.09-7.06 (m, 2H), 4.81 (dd, J=15.1, 5.8 Hz, 1H), 4.69 (dd, J=15.1, 5.1 Hz, 1H), 4.04-4.01 (m, 1H), 3.06-2.98 (m, 2H).
DPLG-2134 was prepared following the general procedure for HATU mediated coupling of Boc-Asp(OBn)OH (356 mg, 1.1 mmol) and (S)-2-amino-3-(4-fluorophenyl)-N-(naphthalen-1-ylmethyl) propanamide 2,2,2-trifluoroacetate (436 mg, 1.0 mmol). After completion of reaction (3 h), the mixture was precipitated by the addition of 100 mL water. The mixture was stirred for 15 minutes and filtered. The precipitate was dried to give 627 mg (quant.) product. 1H NMR (500 MHz, DMSO-d6) δ 8.51 (t, J=5.7 Hz, 1H), 8.01-7.99 (m, 1H), 7.96-7.94 (m, 2H), 7.85 (d, J=8.2 Hz, 1H), 7.56-7.52 (m, 2H), 7.42 (t, J=7.6 Hz, 1H), 7.39-7.29 (m, 6H), 7.20-7.17 (m, 3H), 7.02-6.98 (m, 2H), 5.12-5.04 (m, 2H), 4.71 (d, J=5.6 Hz, 2H), 4.56-4.51 (m, 1H), 4.34 (td, J=8.7, 5.1 Hz, 1H), 2.99-2.95 (m, 1H), 2.87-2.80 (m, 1H), 2.69 (dd, J=16.2, 5.0 Hz, 1H), 2.57-2.52 (m, 1H), 1.36 (s, 9H).
DPLG-2135 was synthesized by following the general procedure for Boc-deprotection of (S)-benzyl 3-((tert-butoxycarbonyl)amino)-4-(((S)-3-(4-fluorophenyl)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (627 mg, 1 mmol). After completion of reaction dichloromethane and excess trifluoroacetic acid were evaporated. The crude was washed with diethyl ether to give product (628 mg, 98%). 1H NMR (500 MHz, DMSO-d6) δ 8.76 (d, J=8.2 Hz, 1H), 8.62 (t, J=5.7 Hz, 1H), 8.18 (bs, 3H), 8.02-7.99 (m, 1H), 7.96-7.93 (m, 1H), 7.85 (d, J=8.2 Hz, 1H), 7.56-7.51 (m, 2H), 7.44-7.34 (m, 6H), 7.31 (d, J=7.0 Hz, 1H), 7.26-7.23 (m, 2H), 7.08-7.04 (m, 2H), 5.18 (dd, J=12.5 Hz, 1H), 5.14 (d, J=12.5 Hz, 1H), 4.77-4.69 (m, 2H), 4.61 (td, J=8.5, 5.6 Hz, 1H), 4.10-4.18 (m, 1H), 3.04-2.97 (m, 2H), 2.87-2.80 (m, 2H).
DPLG-2138 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (162 mg, 1.08 mmol) and (S)-benzyl 3-amino-4-(((S)-3-(4-fluorophenyl)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (628 mg, 0.98 mmol). After completion of reaction (3 h), the mixture was precipitated by the addition of 100 mL water. The mixture was stirred for 15 minutes and filtered. The precipitate was dried to give 600 mg (93%) product. 1H NMR (500 MHz, DMSO-d6) δ 8.45 (t, J=5.7 Hz, 1H), 8.20 (d, J=8.0 Hz, 1H), 8.07 (d, J=8.3 Hz, 1H), 8.03-8.01 (m, 1H), 7.95-7.93 (m, 1H), 7.84 (d, J=8.2 Hz, 1H), 7.56-7.51 (m, 2H), 7.44-7.41 (m, 1H), 7.38-7.30 (m, 6H), 7.27-7.24 (m, 2H), 7.20-7.15 (m, 5H), 7.02-6.98 (m, 2H), 5.04 (s, 2H), 4.72 (d, J=5.6 Hz, 2H), 4.67 (td, J=8.2, 5.8 Hz, 1H), 4.51 (td, J=8.5, 5.4 Hz, 1H), 2.99 (dd, J=13.8, 5.4 Hz, 1H), 2.84 (dd, J=13.8, 8.8 Hz, 1H), 2.77-2.72 (m, 3H), 2.54-2.49 (m, 1H), 2.39-2.32 (m, 2H).
DPLG-2141 was synthesized by following the general procedure for O-debenzylation of DPLG-2138 (600 mg, 0.91 mmol). The product (518 mg, quant.) was isolated as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.42 (s, 1H), 8.50 (t, J=6.0 Hz, 1H), 8.15 (d, J=7.8 Hz, 1H), 8.06-8.03 (m, 2H), 7.95-7.93 (m, 1H), 7.84 (d, J=8.2 Hz, 1H), 7.57-7.52 (m, 2H), 7.44-7.41 (m, 1H), 7.34-7.32 (m, 1H), 7.27-7.24 (m, 2H), 7.20-7.15 (m, 5H), 7.01-6.97 (m, 2H), 4.72 (d, J=5.7 Hz, 2H), 4.58-4.53 (m, 1H), 4.48 (td, J=8.4, 5.1 Hz, 1H), 3.01 (dd, J=13.8, 5.3 Hz, 1H), 2.84 (dd, J=13.8, 8.9 Hz, 1H), 2.78-2.74 (m, 2H), 2.60 (dd, J=16.5, 6.2 Hz, 1H), 2.41-2.31 (m, 3H).
DPLG-21054 was synthesized by following the general protocol for HATU mediated coupling of Boc-Asp-OBn (2.00 g, 6.19 mmol) with O-tert-butyl hydroxylamine hydrochloride (855.2 mg, 6.81 mmol). After completion of reaction, water was added. Mixture was extracted with ethyl acetate twice. Combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. Organic layer was evaporated to give product as colorless paste (2.40 g, 98%). The crude was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 10.33 (s, 1H), 7.43-7.27 (m, 5H), 7.21 (d, J=8.3 Hz, 1H), 5.11 (s, 2H), 4.43-4.36 (m, 1H), 2.55 (dd, J=14.8, 5.9 Hz, 1H), 2.40 (dd, J=14.8, 8.0 Hz, 1H), 1.36 (s, 9H), 1.13 (s, 9H).
DPLG-21055 was synthesized by following the general procedure for Boc-deprotection of DPLG-21054 (2.40 g, 6.08 mmol). Crude was dried under vacuum to give colorless paste (2.48 g, quant.). Product was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 10.64 (s, 1H), 8.36 (bs, 3H), 7.44-7.34 (m, 5H), 5.23-5.19 (m, 2H), 4.47-4.39 (m, 1H), 2.71 (d, J=5.3 Hz, 2H), 1.13 (s, 9H).
DPLG-21056 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (991.1 mg, 6.60 mmol) with DPLG-21055 (2.45 g, 6.00 mmol). After completion of reaction, water was added. A white precipitate was formed. White precipitate was filtered, washed with water, and dried to give product (2.02 g, 79%). Product was used in the next step without further purification. Complex NMR due to presence of 90:10 rotamers. 1H NMR (500 MHz, DMSO-d6) δ 10.36 (s, 1H), 10.15 (s, 0.1H), 8.37 (d, J=7.8 Hz, 0.9H), 8.30 (d, J=7.7 Hz, 0.1H), 7.38-7.31 (m, 5H), 7.27-7.24 (m, 2H), 7.20-7.14 (m, 3H), 5.10 (s, 2H), 4.74-4.71 (m, 0.1H), 4.67-4.62 (m, 0.9H), 2.77 (t, J=7.9 Hz, 2H), 2.57 (dd, J=15.0, 6.2 Hz, 1H), 2.46-2.37 (m, 3H), 1.12 (s, 9H).
DPLG-21059 was synthesized by following the general procedure for O-debenzylation of DPLG-21056 (1.98 g, 4.64 mmol). Product (1.55 g, 99%) was isolated as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.61 (s, 1H), 10.33 (s, 1H), 8.16 (d, J=8.0 Hz, 1H), 7.29-7.23 (m, 2H), 7.22-7.14 (m, 3H), 4.64-4.46 (m, 1H), 2.81-2.76 (m, 2H), 2.54-2.46 (m, 1H), 2.43-2.37 (m, 2H), 2.35 (dd, J=14.8, 7.5 Hz, 1H), 1.13 (s, 9H).
DPLG3 was prepared following the general procedure for HATU mediated coupling of PhCH2CH2C(O)-Asp(CON-HOtBu)-OH (1.35 g, 4.00 mmol) and H-4F-Phe-CH2-naphth TFA salt (1.92 g, 4.40 mmol). After completion of reaction, 100 mL water was added. A white precipitate was formed. Precipitate was filtered and washed with ethanol. The precipitate was triturated with methanol and filtered. Precipitate was dried to give 1.73 g (67%) pure product as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 10.33 (s, 1H), 8.53 (t, J=5.8 Hz, 1H), 8.11-8.04 (m, 3H), 7.97-7.91 (m, 1H), 7.84 (d, J=8.1 Hz, 1H), 7.59-7.50 (m, 2H), 7.43 (dd, J=8.1, 7.1 Hz, 1H), 7.36 (d, J=7.0 Hz, 1H), 7.29-7.23 (m, 2H), 7.22-7.13 (m, 5H), 7.03-6.95 (m, 2H), 4.76 (dd, J=15.3, 5.9 Hz, 1H), 4.70 (dd, J=15.3, 5.7 Hz, 1H), 4.63-4.54 (m, 1H), 4.51-4.43 (m, 1H), 3.04 (dd, J=13.8, 5.0 Hz, 1H), 2.82 (dd, J=13.8, 9.2 Hz, 1H), 2.78-2.72 (m, 2H), 2.46 (dd, J=14.9, 6.4 Hz, 1H), 2.39-2.32 (m, 2H), 2.27 (dd, J=14.9, 7.8 Hz, 1H), 1.11 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 171.38, 170.70, 170.45, 167.61, 160.93 (d, 7=242.0 Hz), 141.26, 134.21, 133.83 (d, J=3.3 Hz), 133.24, 130.98 (d, J=8.2 Hz), 130.83, 128.48, 128.32, 128.11, 127.50, 126.22, 125.88, 125.77, 125.42, 125.37, 123.45, 114.71 (d, 7=21.1 Hz) 80.58, 54.29, 49.63, 40.23, 36.80, 36.45, 34.65, 30.97, 6.26. 19F NMR (471 MHz, DMSO-d6) δ −119.28 (tt, J=9.3, 5.3 Hz).
Boc-β-methoxyalanine dicyclohexylamine (80 mg, 0.2 mmol) was dissolved in DMF (4 mL). The solution was cooled to 0° C. and dipyrrolidino(N-succinimidyloxy)carbenium hexafluorophosphate (90.5 mg, 0.22 mmol) was added in one portion. 30 μL triethylamine was added and mixture was stirred at 0° C. for 15 minutes. A solution of amine (TFA.H-4F-Phe-naphth) (87.3 mg, 0.2 mmol) in 1 mL DMF and 30 μL Et3N was added to the reaction mixture. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with chloroform and washed with 1N HCl, water, aq. NaHCO3, water and brine. The organic layer was evaporated and purified by column chromatography to give product with traces of urea (dipyrrolidin-1 -ylmethanone) byproduct. The crude was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 8.46 (t, J=5.6 Hz, 1H), 8.07 (d, J=8.3 Hz, 1H), 8.02-8.00 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (d, J=8.2 Hz, 1H), 7.56-7.53 (m, 2H), 7.43 (dd, J=8.2, 7.0 Hz, 1H), 7.30 (d, J=6.9 Hz, 1H), 7.22-7.19 (m, 2H), 7.04-6.99 (m, 2H), 6.88 (d, J=8.1 Hz, 1H), 4.72 (d, J=5.6 Hz, 2H), 4.61-4.54 (m, 1H), 4.14-4.10 (m, 1H), 3.35 (d, J=6.1 Hz, 2H), 3.15 (s, 3H), 3.00 (dd, J=13.8, 5.4 Hz, 1H), 2.84 (d, J=13.8, 8.8 Hz, 1H), 1.45-1.30 (m, 9H).
DPLG-2050 was synthesized by following the general procedure for Boc-deprotection of Boc-Ser(OMe)-4F-Phe-naphth (from previous step). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude product was washed with diethyl ether and dried to give product 70.0 mg (65% for 2 steps). 1H NMR (500 MHz, DMSO-d6) 67 8.80 (d, J=8.2 Hz, 1H), 8.65 (t, J=5.6 Hz, 1H), 8.14 (bs, 3H), 8.02-7.99 (m, 1H), 7.98-7.95 (m, 1H), 7.87 (d, J=8.1 Hz, 1H), 7.58-7.53 (m, 2H), 7.43 (dd, J=8.2, 7.0 Hz, 1H), 7.30 (dd, J=7.0, 1.2 Hz, 1H), 7.26-7.23 (m, 2H), 7.10-7.05 (m, 2H), 4.74 (d, J=5.6 Hz, 2H), 4.62 (td, J=8.5, 5.7 Hz, 1H), 3.97 (m, 1H), 3.66 (dd, J=10.7, 3.6 Hz, 1H), 3.56 (dd, J=10.7, 7.0 Hz, 1H), 3.26 (s, 3H), 3.00 (dd, J=13.7, 5.7 Hz, 1H), 2.85 (dd, J=13.7, 8.8 Hz, 1H).
DPLG-2054 was prepared by following the general procedure for EDCI coupling of TFA.H-Ser(OMe)-4F-Phe-naphth (16 mg, 0.03 mmol) and 3-phenylpropanoic acid (5.4 mg, 0.036 mg). The product was purified by HPLC to give 5.8 mg (29%) of product. 1H NMR (500 MHz, Chloroform-d) δ 7.92-7.91 (m, 1H), 7.87-7.86 (m, 1H), 7.80 (d, J=8.2 Hz, 1H), 7.54-7.50 (m, 2H), 7.40 (t, J=7.6 Hz, 1H), 7.34 (d, J=6.9 Hz, 1H), 7.28-7.24 (m, 2H), 7.22-7.19 (m, 1H), 7.12-7.10 (m, 2H), 7.06-7.03 (m, 2H), 6.86-6.82 (m, 2H), 6.44 (t, J=5.7 Hz, 1H), 6.41 (d, J=8.4 Hz, 1H), 6.08 (d, J=6.3 Hz, 1H), 4.90 (dd, J=14.6, 5.7 Hz, 1H), 4.78 (dd, J=14.6, 5.2 Hz, 1H), 4.68 (dt, J=8.5, 6.5 Hz, 1H), 4.34 (td, J=6.7, 4.4 Hz, 1H), 3.50 (dd, J=9.4, 4.4 Hz, 1H), 3.14-3.08 (m, 2H), 3.05 (dd, J=14.0, 6.6 Hz, 1H), 2.99 (s, 3H), 2.86-2.79 (m, 2H), 2.43 (t, J=7.7 Hz, 2H).
TFA.H-Ser(OMe)-4F-Phe-naphth (13.4 mg, 0.025 mmol) was dissolved in dichloromethane and the solution was cooled to 0° C. Triethylamine (28 μL) followed by TsCl (6 mg+20 mg) were added to the reaction mixture. The reaction mixture was allowed to warm to room temperature and stirred overnight. Dichloromethane was evaporated and the crude was dissolved in ethylacetate. The solution was washed with water, 1N HCl followed by brine. The product was purified by HPLC to give 7.8 mg (54%) of product. 1H NMR (500 MHz, DMSO-d6) δ 8.39 (t, J=5.9 Hz, 1H), 8.27 (d, J=8.1 Hz, 1H), 8.00-7.93 (m, 3H), 7.84 (d, J=8.3 Hz, 1H), 7.61-7.59 (m, 2H), 7.55-7.53 (m, 2H), 7.40 (dd, J=8.2, 7.0 Hz, 1H), 7.27-7.24 (m, 3H), 7.17-7.13 (m, 2H), 7.04-7.00 (m, 2H), 4.70 (d, J=5.7 Hz, 2H), 4.38 (td, J=8.0, 6.1 Hz, 1H), 3.96-3.93 (m, 1H), 3.26-3.24 (m, 2H), 3.02 (s, 3H), 2.88 (dd, J=13.7, 6.0 Hz, 1H), 2.67 (dd, J=13.7, 8.0 Hz, 1H), 2.32 (s, 3H).
Boc-Ala-OSu (286 mg, 1.0 mmol) and 1-naphthylmethylamine (160 ↑l, 1.1 mmol) were dissolved in dichloromethane (10 mL). The solution was cooled to 0° C. and triethylamine (100 μL) was added. Reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature. After completion of reaction, dichloromethane was evaporated and crude was suspended in water. Water layer was extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO3, water, 1N HCl and brine. The organic layer was dried over anhydrous sodium sulfate and evaporated to give product (320 mg, 97%), which was used in next step without further purification. 1H NMR (500 MHz, Chloroform-d) δ 7.96 (d, J=8.1 Hz, 1H), 7.87 (dd, J=7.5, 1.7 Hz, 1H), 7.80 (dd, J=6.9, 2.5 Hz, 1H), 7.59-7.48 (m, 2H), 7.44-7.40 (m, 2H), 6.44 (s, 1H), 4.96-4.88 (m, 3H), 4.18-4.15 (m, 1H), 1.37 (d, J=7.1 Hz, 3H), 1.34 (s, 9H).
DPLG-2026 was synthesized by following the general procedure for Boc-deprotection of Boc-Ala-naphth (158 mg, 0.48 mmol). After completion of reaction (3 h), dichloromethane and excess TFA were evaporated. The crude product was dried under vacuum to give product (164 mg, quant.). 1H NMR (500 MHz, DMSO-d6) δ 8.91 (t, J=5.7 Hz, 1H), 8.15 (bs, 3H), 8.07-8.04 (m, 1H), 7.99-7.97 (m, 1H), 7.91-7.87 (m, 1H), 7.60-7.55 (m, 2H), 7.51-7.48 (m, 2H), 4.85 (dd, J=15.2, 5.7 Hz, 1H), 4.78 (dd, J=15.2, 5.5 Hz, 1H), 3.91-3.86 (m, 1H), 1.37 (d, J=7.0 Hz, 3H).
H-Ala-naphth TFA salt (0.24 mmol) was dissolved in 3 mL dimethylformamide and basified with N-methylmorpholine. Boc-Ser(OMe)-OH (96 mg, 0.24 mmol) was added to the solution. The mixture was cooled to 0° C. and dipyrrolidino(N-succinimidyloxy)carbenium hexafluorophosphate (103 mg, 0.25 mmol) were added in one portion. The reaction mixture was allowed to warm to room temperature slowly and stirred at room temperature overnight. The reaction mixture was diluted with water and extracted twice with ethyl acetate. The organic layer was dried over anhydrous Na2SO4 and evaporated. The product was purified by silica gel column chromatography (eluent ethylacetate and hexane) to give 95 mg (92%) of product. 1H NMR (500 MHz, DMSO-d6) δ 8.29 (t, J=5.8 Hz, 1H), 8.11 (d, J=7.4 Hz, 1H), 8.03-8.01 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.57-7.53 (m, 2H), 7.48-7.45 (m, 1H), 7.42 (dd, J=7.0, 1.4 Hz, 1H), 6.95 (d, J=8.0 Hz, 1H), 4.75 (d, J=5.6 Hz, 2H), 4.36-4.31 (m, 1H), 4.19-4.15 (m, 1H), 3.47-3.39 (m, 2H), 3.15 (s, 3H), 1.37 (s, 9H), 1.25 (d, J=7.1 Hz, 3H).
DPLG-2038 was synthesized by following the general procedure for Boc-deprotection of Boc-Ser(OMe)-Alanaphth (95 mg, 0.22 mmol). After completion of reaction, dichloromethane and excess trifluoroacetic acid were evaporated and crude was triturated with diethylether. The mixture was filtered to give corresponding amine TFA salt (60 mg, 61%) as a white powder. 1H NMR (500 MHz, DMSO-d6) δ 8.73 (d, J=7.6 Hz, 1H), 8.51 (t, J=5.7 Hz, 1H), 8.18 (bs, 3H), 8.05-8.03 (m, 1H), 7.97-7.95 (m, 1H), 7.87 (d, J=8.0 Hz, 1H), 7.58-7.54 (m, 2H), 7.49-7.43 (m, 2H), 4.80-4.72 (m, 2H), 4.45-4.39 (m, 1H), 4.03 (m, 1H), 3.65 (dd, J=10.7, 3.8 Hz, 1H), 3.56 (dd, J=10.7, 7.2 Hz, 1H), 3.25 (s, 3H), 1.28 (d, J=7.0 Hz, 3H).
DPLG-2048 was prepared following the general procedure for EDC coupling of 3-phenylpropianic acid (16.5 mg, 0.11 mmol) with TFA.H-Ser(OMe)-Ala-naphth (44.3 mg, 0.1 mmol). The crude was purified by silica gel column chromatography to give 44.1 mg (87%) of product. 1H NMR (500 MHz, DMSO-d6) δ 8.24-8.18 (m, 2H), 8.15 (d, J=7.8 Hz, 1H), 8.04-8.02 (m, 1H), 7.96-7.94 (m, 1H), 7.86-7.84 (m, 1H), 7.56-7.53 (m, 2H), 7.45-7.40 (m, 2H), 7.27-7.24 (m, 2H), 7.20-7.16 (m, 3H), 4.75 (d, J=5.7 Hz, 2H), 4.50 (dt, J=7.9, 6.0 Hz, 1H), 4.36-4.30 (m, 1H), 3.45-3.41 (m, 2H), 3.12 (s, 3H), 2.79 (t, J=7.9 Hz, 2H), 2.47-2.44 (m, 2H), 1.26 (d, J=7.1 Hz, 3H).
DPLG-2040 was prepared following the general procedure for EDC mediated coupling of 5-methyl-iso-oxazole-3-carboxylic acid (9.2 mg, 0.072 mmol) with TFA.H-Ser (OMe)-Ala-naphth (28.0 mg, 0.06 mmol). The product was purified by HPLC to give 16.3 mg (62%) of product. 1H NMR (500 MHz, DMSO-d6) δ 8.50 (d, J=7.9 Hz, 1H), 8.37 (d, J=7.5 Hz, 1H), 8.32 (t, J=5.8 Hz, 1H), 8.04-8.02 (m, 1H), 7.96-7.94 (m, 1H), 7.86 (d, J=8.0 Hz, 1H), 7.57-7.53 (m, 2H), 7.48-7.42 (m, 2H), 6.56 (d, J=1.1 Hz, 1H), 4.76-4.68 (m, 3H), 4.39-4.34 (m, 1H), 3.64-3.58 (m, 2H), 3.19 (s, 3H), 2.47 (s, 3H), 1.27 (d, J=7.1 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.19, 171.82, 168.93, 159.05, 158.95, 134.77, 133.72, 131.25, 128.96, 128.04, 126.66, 126.28, 125.85, 125.58, 123.84, 101.82, 72.05, 58.64, 53.19, 48.97, 39.57, 18.71, 12.31.
DPLG-2039 was prepared following the general procedure for EDCI coupling of 2-methylthiazole-4-carboxylic acid (10.3 mg, 0.072 mmol) and TFA.H-Ser(OMe)-Ala-naphth (28.0 mg, 0.06 mmol). The product was purified by HPLC to give 14.3 mg (52%) mg of product. 1H NMR (500 MHz, DMSO-d6) δ 8.42 (d, J=7.6 Hz, 1H), 8.32 (t, J=5.7 Hz, 1H), 8.13 (s, 1H), 8.09 (d, J=8.1 Hz, 1H), 8.04-8.02 (m, 1H), 7.96-7.94 (m, 1H), 7.86 (d, J=8.0 Hz, 1H), 7.57-7.53 (m, 2H), 7.49-7.42 (m, 2H), 4.76 (d, J=5.7 Hz, 2H), 4.71 (dt, J=8.2, 5.5 Hz, 1H), 4.42-4.36 (m, 1H), 3.65 (dd, J=10.0, 6.1 Hz, 1H), 3.58 (dd, J=10.0, 4.9 Hz, 1H), 3.17 (s, 3H), 2.72 (s, 3H), 1.27 (d, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.14, 169.22, 166.95, 160.38, 149.16, 134.76, 133.73, 131.26, 128.96, 128.06, 126.67, 126.29, 125.86, 125.62, 124.73, 123.85, 72.68, 58.74, 52.69, 48.94, 40.67, 19.22, 18.77.
Boc-Ala-OSu (515 mg, 1.8 mmol) was dissolved in 10 mL dry dichloromethane. The solution was cooled to 0° C. and a solution of 4-(aminomethyl)indole (263 mg, 1.8 mmol) in DMF (2 mL) was added. The reaction mixture was warmed to room temperature and stirred overnight. After completion of reaction, dichloromethane was evaporated. The crude solid was dissolved in ethyl acetate and washed with water followed by brine. The organic layer was dried over anhydrous sodium sulfate and evaporated to give product (560 mg, 98%), which was pure by NMR. 1H NMR (500 MHz, DMSO-d6) δ 11.11 (s, 1H), 8.17 (t, J=5.8 Hz, 1H), 7.32-7.29 (m, 2H), 7.01 (t, J=7.6 Hz, 1H), 6.90-6.87 (m, 2H), 6.48-6.47 (m, 1H), 4.58 (dd, J=15.2, 6.0 Hz, 1H), 4.47 (dd, J=15.2, 5.5 Hz, 1H), 4.05-3.99 (m, 1H), 1.38 (s, 9H), 1.20 (d, J=7.1 Hz, 3H).
DPLG-2025 was synthesized by following the general procedure for Boc-deprotection of Boc-Ala-Indole (276 mg, 0.87 mmol). After completion of reaction (2 h) dichloromethane and excess TFA were evaporated. The crude product was dissolved in water and washed with dichloromethane. The water layer was frozen and lyophilized to give solid product (213 mg 74%). 1H NMR (500 MHz, DMSO-d6) δ 11.19 (s, 1H), 8.76 (t, J=5.8 Hz, 1H), 8.05 (bs, 3H), 7.36-7.32 (m, 2H), 7.04 (t, J=7.6 Hz, 1H), 6.93-6.90 (m, 1H), 6.50-6.48 (m, 1H), 4.63 (dd, J=14.9, 5.8 Hz, 1H), 4.53 (dd, J=14.9, 5.4 Hz, 1H), 3.84-3.80 (m, 1H), 1.35 (d, J=6.9 Hz, 3H).
(S)—N-((1H-indol-4-yl)methyl)-2-aminopropanamide (33.1 mg, 0.1 mmol) was dissolved in dichloromethane (2 mL) and tetrahydrofuran (2 mL) and triethylamine (28 μL, 0.2 mmol) was added. The solution was cooled to 0° C. and Boc-Ala-OSu was added in one portion. A white precipitate appeared. After 30 minutes, the solvent was evaporated and the crude was dissolved in ethyl acetate. The solution was washed with water, NaHCO3 solution followed by brine. The organic layer was dried over anhydrous sodium sulfate and evaporated to give product (38.0 mg, 98%). 1H NMR (500 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.34-8.31 (m, 1H), 7.86 (d, J=7.6 Hz, 1H), 7.32-7.29 (m, 2H), 7.03-7.00 (m, 2H), 6.86 (d, J=7.2 Hz, 1H), 6.47-6.45 (m, 1H), 4.55 (dd, J=15.1, 5.8 Hz, 1H), 4.50 (dd, J=15.1, 5.6 Hz, 1H), 4.37-4.29 (m, 1H), 3.99-3.93 (m, 1H), 1.37 (s, 9H), 1.23 (d, J=7.0 Hz, 3H), 1.16 (d, J=6.6 Hz, 3H).
DPLG-2033 was synthesized by following the general procedure for Boc-deprotection of tert-butyl ((S)-1-4(S)-1-4(1H-indol-4-yl)methyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (240 mg, 0.618 mmol). After completion of reaction (4 h), excess trifluoroacetic acid and dichloromethane were evaporated and the crude was washed twice with diethyl ether to give product (193 mg, 78%). 1H NMR (500 MHz, DMSO-d6) δ 11.14 (s, 1H), 8.59 (d, J=7.7 Hz, 1H), 8.46 (t, J=5.7 Hz, 1H), 8.06 (bs, 3H), 7.33-7.30 (m, 2H), 7.04-7.01 (m, 1H), 6.87 (d, J=7.2 Hz, 1H), 6.48 (d, J=2.8 Hz, 1H), 4.57 (dd, J=15.1, 5.7 Hz, 1H), 4.51 (dd, J=15.1, 5.5 Hz, 1H), 4.44-4.38 (m, 1H), 3.87 (m, 1H), 1.33 (d, J=7.0 Hz, 3H), 1.27 (d, J=7.0 Hz, 3H).
DPLG-2042 was prepared following the general procedure for EDC mediated coupling of 2-methylthiazole-4-carboxylic acid (21 mg, 0.144 mmol) and (S)—N-((1H-indol-4-yl)methyl)-2-((S)-2-aminopropanamido) propanamide 2,2,2-trifluoroacetate (50.0 mg, 0.12 mmol). The crude was purified by HPLC to give 16.0 mg (32%) of product. 1H NMR (500 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.35 (t, J=5.9 Hz, 1H), 8.28 (d, J=7.7 Hz, 1H), 8.17 (d, J=7.8 Hz, 1H), 8.11 (s, 1H), 7.32-7.29 (m, 2H), 7.04-7.01 (m, 1H), 6.87 (d, J=7.1 Hz, 1H), 6.48 (t, J=2.2 Hz, 1H), 4.59-4.48 (m, 3H), 4.41-4.35 (m, 1H), 2.72 (s, 3H), 1.32 (d, J=7.0 Hz, 3H), 1.25 (d, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.14, 171.88, 166.82, 160.09, 149.42, 136.22, 130.45, 126.57, 125.37, 124.46, 121.16, 117.64, 110.86, 79.64, 48.73, 48.59, 41.07, 19.36, 19.21, 19.00.
DPLG-2041 was prepared following the general procedure for EDC mediated coupling of 5-methyl-iso-oxazole-3-carboxylic acid (18.3 mg, 0.144 mmol) and (S)—N-((1H-indol-4-yl)methyl)-2-((S)-2-aminopropanamido) propanamide 2,2,2-trifluoroacetate (50.0 mg, 0.12 mmol). The product was purified by HPLC to give 6.1 mg (13%) of product. 1H NMR (500 MHz, DMSO-d6) δ 11.12 (s, 1H), 8.58 (d, J=7.4 Hz, 1H), 8.32 (t, J=5.8 Hz, 1H), 8.15 (d, J=7.6 Hz, 1H), 7.32-7.29 (m, 2H), 7.02 (t, J=7.6 Hz, 1H), 6.87 (d, J=7.1 Hz, 1H), 6.54 (s, 1H), 6.48-6.47 (m, 1H), 4.58-4.45 (m, 3H), 4.38-4.33 (m, 1H), 2.47 (s, 3H), 1.32 (d, J=7.1 Hz, 3H), 1.25 (d, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.21, 171.67, 171.62, 159.08, 158.75, 136.22, 130.44, 126.56, 125.37, 121.16, 117.63, 110.85, 101.80, 99.82, 49.01, 48.74, 41.06, 18.98, 18.44, 12.30.
DPLG-2076 was synthesized by following the general procedure for O-debenzylation of benzyl N4-(tert-butoxy)-N2-(tert-butoxycarbonyl)-L-asparaginate (592 mg, 1.5 mmol). After completion of reaction (5 h), the mixture was filtered through celite and filterate was evaporated to give product (450 mg, 98%). 1H NMR (500 MHz, Chloroform-d) δ 9.28 & 8.98 (s, rotamers, 1H), 6.92 & 5.76 (bs, rotamers, 1H), 4.59-4.47 (m, 1H), 3.22-2.69 (m, 2H), 1.44 (s, 9H), 1.27 & 1.24 (s, rotamers, 9H).
DPLG-2081 was prepared by following the general procedure for HATU mediated coupling of N4-(tert-butoxy)-N2-(tert-butoxycarbonyl)-L-asparagine (304 mg, 1 mmol) and O-benzylalanine hydrochloride (237 mg, 1.1 mmol). After completion of reaction (4 h), water was added to the reaction mixture and extracted twice with ethyl acetate. The combined organic layer was evaporated and the crude product was purified by recrystallization with ethanol-water to give pure product (276 mg, 59%). 1H NMR (500 MHz, Chloroform-d) δ 8.20 (s, 1H), 7.51-7.34 (m, 6H), 6.13 & 5.89 (bs, rotamers, 1H), 5.20 (d, J=12.4 Hz, 1H), 5.15 (d, J=12.4 Hz, 1H), 4.60-4.45 (m, 2H), 2.79-2.66 (m, 1H), 2.49-2.45 (m, 1H), 1.46 (s, 9H), 1.41 (d, J=7.2 Hz, 3H), 1.26 (s, 9H).
DPLG-2092 was synthesized by following the general procedure for O-debenzylation of benzyl N4-(tert-butoxy)-N2-(tert-butoxycarbonyl)-L-asparaginyl-L-alaninate (150 mg, 0.32 mmol). After completion of reaction, mixture was filtered through celite and evaporated to give product (120 mg, quant.). 1H NMR (500 MHz, DMSO-d6) δ 12.96 (bs, 1H), 10.37 (s, 1H), 7.94 (d, J=6.7 Hz, 1H), 7.01 (d, J=6.6 Hz, 1H), 4.28-4.23 (m, 1H), 4.10-4.04 (m, 1H), 2.39 (dd, J=14.4, 4.4 Hz, 1H), 2.27 (dd, J=14.4, 9.9 Hz, 1H), 1.37 (s, 9H), 1.23 (d, J=7.2 Hz, 3H), 1.14 (s, 9H).
DPLG-2095 was prepared following the general procedure for HATU mediated coupling of N4-(tert-butoxy)-N2-(tert-butoxycarbonyl)-L-asparaginyl-L-alanine (120 mg, 0.32 mmol) and 1-naphthylmethylamine (56 μl, 0.38 mmol). After completion of reaction (6 h), the mixture was precipitated with water. The precipitate was filtered and dried to give product (153 mg, 93%). 1H NMR (500 MHz, DMSO-d6) δ 0.26 (s, 1H), 8.47 (t, J=5.7 Hz, 1H), 8.06-8.04 (m, 1H), 8.01 (d, J=7.4 Hz, 1H), 7.96-7.94 (m, 1H), 7.86-7.84 (m, 1H), 7.57-7.52 (m, 2H), 7.48-7.43 (m, 2H), 6.94 (d, J=8.1 Hz, 1H), 4.74 (d, J=5.8 Hz, 2H), 4.32-4.26 (m, 2H), 2.46 (dd, J=14.6, 5.5 Hz, 1H), 2.29 (dd, J=14.6, 8.5 Hz, 1H), 1.37 (s, 9H), 1.24 (d, J=7.0 Hz, 3H), 1.13 (s, 9H).
DPLG-2097 was synthesized by following the general procedure for Boc-deprotection of tert-butyl ((4S,7S)-4,12,12-trimethyl-1-(naphthalen-1-yl)-3,6,9-trioxo-11-oxa-2,5,10-triazatridecan-7-yl)carbamate (118 mg, 0.23 mmol). After completion of reaction, excess trifluoroacetic acid and dichloromethane were evaporated. The crude was triturated with diethyl ether to give product (120 mg, 98%). 1H NMR (500 MHz, DMSO-d6) δ 10.68 (s, 1H), 8.71 (d, J=7.3 Hz, 1H), 8.58 (t, J=5.7 Hz, 1H), 8.16 (s, 3H), 8.07-8.05 (m, 1H), 7.97-7.95 (m, 1H), 7.87-7.85 (m, 1H), 7.58-7.53 (m, 2H), 7.49-7.44 (m, 2H), 4.79-4.71 (m, 2H), 4.39-4.34 (m, 1H), 4.13 (m, 1H), 2.70 (dd, J=16.4, 4.9 Hz, 1H), 2.56 (dd, J=16.4, 8.1 Hz, 1H), 1.28 (d, J=7.0 Hz, 3H), 1.15 (s, 9H).
DPLG-2098 was prepared by following the general procedure for HATU mediated coupling of pyrazine-2-carboxylic acid (2.5 mg, 0.02 mmol) and (S)-2-amino-N4-(tertbutoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.3 mg (99%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.45 (s, 1H), 9.19 (d, J=1.4 Hz, 1H), 8.94 (d, J=8.1 Hz, 1H), 8.92 (d, J=2.5 Hz, 1H), 8.78 (t J=2.0 Hz, 1H), 8.50 (t J=5.8 Hz, 1H), 8.37 (d, J=7.3 Hz, 1H), 8.07-8.05 (m, 1H), 7.95-7.93 (m, 1H), 7.85-7.83 (m, 1H), 7.56-7.52 (m, 2H), 7.48-7.44 (m, 2H), 4.85-4.81 (m, 1H), 4.75 (d, J=5.8 Hz, 2H), 4.36-4.30 (m, 1H), 2.68 (dd, J=14.7, 7.2 Hz, 1H), 2.63 (dd, J=14.7, 5.2 Hz, 35 1H), 1.27 (d, J=7.1 Hz, 3H), 1.06 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 172.34, 170.17, 167.99, 162.82, 148.35, 144.51, 143.88, 134.86, 133.69, 131.25, 128.94, 127.92, 126.62, 126.21, 125.85, 125.63, 123.84, 81.09, 50.50, 49.19, 40.63, 35.39, 26.62, 18.44.
DPLG-2099 was prepared by following the general procedure for HATU mediated coupling of morpholine-4-acetic acid (3.0 mg, 0.02 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.6 mg (98%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.38 (s, 1H), 8.50 (t, J=5.8 Hz, 1H), 8.20 (d, J=7.3 Hz, 1H), 8.08-8.06 (m, 1H), 7.98-8.02 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (dd, J=7.0, 2.6 Hz, 1H), 7.57-7.52 (m, 2H), 7.48-7.44 (m, 2H), 4.73 (d, J=5.7 Hz, 2H), 4.62-4.57 (m, 1H), 4.31-4.27 (m, 1H), 3.61 (t, J=4.6 Hz, 4H), 2.94 (s, 2H), 2.50-2.43 (m, 6H), 1.25 (d, J=7.2 Hz, 3H), 1.11 (s, 9H).
((S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol) was dissolved in dichloromethane and dimethylformamide (1 mL+1 mL) and the solution was cooled to 0° C. 4-(Dimethylamino)pyridine (1.2 mg, 0.01 mmol), Hunig's base (11 mL, 0.06 mmol) and 4-toluene-sulphonyl chloride (0.02 mmol) were added and the solution was allowed to warm to room temperature. After completion of the reaction (5 h), mixture was diluted with dichloromethane and washed with water. The organic layer was evaporated and purified by HPLC to give product (5.1 mg, 45%). 1H NMR (500 MHz, DMSO-d6) δ 10.40 (s, 1H), 8.33 (t, J=6.0 Hz, 1H), 8.22 (d, J=7.2 Hz, 1H), 8.08-8.06 (m, 1H), 7.94-7.92 (m, 1H), 7.83 (d, J=7.6, 1H), 7.65 (d, J=7.9 Hz, 2H), 7.55-7.51 (m, 2H), 7.45-7.41 (m, 2H), 7.32 (d, J=7.9 Hz, 2H), 4.74 (dd, J=15.3, 6.1 Hz, 1H), 4.64 (dd, J=15.3, 5.7 Hz, 1H), 4.10-4.07 (m, 1H), 3.92-3.86 (m, 1H), 2.42 (dd, J=14.8, 7.7 Hz, 1H), 2.36 (s, 3H), 2.22 (dd, J=14.8, 6.5 Hz, 1H), 1.09-1.06 (m, 12H). 13C NMR (126 MHz, DMSO-d6) δ 172.14, 169.91, 167.48, 134.89, 133.67, 131.25, 129.69, 128.91, 127.86, 127.13, 126.60, 126.34, 126.22, 126.18, 125.80, 125.64, 123.85, 81.10, 53.41, 49.06, 40.58, 36.34, 26.68, 21.41, 18.08.
DPLG-2102 was prepared by following the general pro-cedure for HATU mediated coupling of 2-methylthiazole-3-carboxylic acid (2.9 mg, 0.02 mmol) and (S)-2-amino-N4(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 8.4 mg (77%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.44 (s, 1H), 8.52 (t, J=5.8 Hz, 1H), 8.32 (d, J=7.3 Hz, 1H), 8.29 (d, J=8.1 Hz, 1H), 8.12 (s, 1H), 8.08-8.06 (m, 1H), 7.96-7.94 (m, 1H), 7.84 (dd, J=7.0, 2.5 Hz, 1H), 7.56-7.52 (m, 2H), 7.48-7.44 (m, 2H), 4.78-4.74 (m, 3H), 4.35-4.29 (m, 1H), 2.71 (s, 3H), 2.63 (dd, J=14.6, 7.3 Hz, 1H), 2.58 (dd, J=14.6, 5.3 Hz, 1H), 1.26 (d, J=7.1 Hz, 3H), 1.07 (s, 9H). 13C NMR (125 MHz, DMSO-d6) δ 172.36, 170.42, 167.98, 166.75, 160.36, 149.21, 134.86, 133.69, 131.26, 128.94, 127.91, 126.63, 126.22, 125.87, 125.64, 124.70, 123.85, 81.11, 50.30, 49.14, 40.63, 35.60, 26.64, 19.20, 18.50.
DPLG-2105 was prepared by following the general procedure for HATU mediated coupling of 5-methylisoxazole-3-carboxylic acid (2.5 mg, 0.02 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 10.2 mg (97%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.37 (s, 1H), 8.62 (d, J=8.0 Hz, 1H), 8.48 (t, J=5.8 Hz, 1H), 8.27 (d, J=7.4 Hz, 1H), 8.06-8.04 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (dd, J=7.4, 1.9 Hz, 1H), 7.56-7.52 (m, 2H), 7.48-7.43 (m, 2H), 6.54 (s, 1H), 4.79-4.76 (m, 1H), 4.74 (d, J=5.8 Hz, 2H), 4.34-4.28 (m, 1H), 2.60 (dd, J=14.7, 5.5 Hz, 1H), 2.55 (dd, J=14.7, 8.0 Hz, 1H), 2.47 (s, 3H), 1.25 (d, J=7.1 Hz, 3H), 1.09 (s, 9H). 13C NMR (125 MHz, DMSO-d6) δ 171.88, 171.36, 169.73, 167.46, 158.45, 158.36, 134.38, 133.22, 130.78, 128.47, 127.47, 126.17, 125.76, 125.40, 125.16, 123.37, 101.31, 80.59, 50.03, 48.65, 40.15, 34.65, 26.20, 18.10, 11.83.
DPLG-2103 was prepared by following the general procedure for HATU mediated coupling of potassium oxirane-2-benzoate (2.5 mg, 0.02 mmol) and (S)-2-amino-N4-(tertbutoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol). The crude was purified by HPLC to give 8.0 mg (82%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.38 (s, 1H), 8.48 (t, J=5.8 Hz, 1H), 8.32 (d, J=8.2 Hz, 1H), 8.20 (d, J=7.4 Hz, 1H), 8.08-8.06 (m, 1H), 7.96-7.94 (m, 1H), 7.84 (dd, J=7.3, 2.1 Hz, 1H), 7.57-7.52 (m, 2H), 7.48-7.43 (m, 2H), 4.74 (d, J=5.8 Hz, 2H), 4.62 (td, J=8.1, 5.7 Hz, 1H), 4.31-4.25 (m, 1H), 3.46 (dd, J=4.3, 2.5 Hz, 1H), 2.90 (dd, J=6.4, 4.3 Hz, 1H), 2.77 (dd, J=6.4, 2.5 Hz, 1H), 2.55-2.51 (m, 1H), 2.42 (dd, J=14.7, 8.0 Hz, 1H), 1.25 (d, J=7.1 Hz, 3H), 1.12 (s, 9H). 13C NMR (125 MHz, DMSO-d6) δ 171.90, 169.94, 167.57, 167.40, 134.40, 133.23, 130.79, 128.47, 127.45, 126.17, 125.76, 125.39, 125.19, 123.38, 80.60, 49.54, 48.60, 48.23, 45.59, 40.15, 34.83, 26.23, 18.05.
(S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (10.6 mg, 0.02 mmol) was dissolved in 1 mL tetrahydrofuran and the solution was cooled to 0° C. The mixture was basified with N-methylmorpholine (4.4 mL, 0.04 mmol). Trifluoroacetic anhydride (2.8 mL, 0.02 mmol) was added, and mixture was stirred for one hour at 0° C. The crude was purified by HPLC to give pure product (8.3 mg, 81%). 1H NMR (500 MHz, DMSO-d6) δ 10.38 (s, 1H), 9.67 (s, 1H), 8.48 (t, J=5.7 Hz, 1H), 8.41 (d, J=7.3 Hz, 1H), 8.06-8.04 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (d, J=7.6 Hz, 1H), 7.57-7.53 (m, 2H), 7.48-7.43 (m, 2H), 4.74-4.70 (m, 3H), 4.33-4.27 (m, 1H), 2.63 (dd, J=15.2, 5.0 Hz, 1H), 2.54-2.49 (m, 1H), 1.26 (d, J=7.1 Hz, 3H), 1.12 (s, 9H). 13C NMR (125 MHz, DMSO-d6) δ 172.37, 169.53, 167.42, 134.87, 133.70, 131.25, 128.94, 127.93, 126.63, 126.24, 125.86, 125.58, 123.84, 81.08, 50.66, 49.19, 40.62, 34.60, 26.65, 18.50. 19F NMR (471 MHz, DMSO, C6F6 external reference) 6-71.81.
DPLG-2127 was prepared by following the general procedure for HATU mediated coupling of 4-phenylbutanoic acid (5.4 mg, 0.033 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (17.3 mg, 0.033 mmol). The crude was purified by HPLC to give 15.7 mg (85%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.34 (s, 1H), 8.46 (t, J=5.9 Hz, 1H), 8.11-8.06 (m, 3H), 7.95-7.93 (m, 1H), 7.85-7.83 (m, 1H), 7.56-7.52 (m, 2H), 7.45 (d, J=5.0 Hz, 2H), 7.28-7.25 (m, 2H), 7.19-7.16 (m, 3H), 4.75 (dd, J=15.3, 5.9 Hz, 1H), 4.70 (dd, J=15.3, 5.7 Hz, 1H), 4.60-4.56 (m, 1H), 4.30-4.24 (m, 1H), 2.56-2.50 (m, 3H), 2.34 (dd, J=14.8, 7.8 Hz, 1H), 2.13 (t, J=7.4 Hz, 2H), 1.80-1.74 (m, 2H), 1.24 (d, J=7.0 Hz, 3H), 1.10 (s, 9H). 13C NMR (125 MHz, DMSO-d6) δ 172.43, 172.37, 171.03, 168.12, 142.26, 134.87, 133.69, 131.26, 128.93, 128.77, 128.70, 127.90, 126.62, 126.21, 126.17, 125.84, 125.67, 123.85, 99.99, 80.99, 50.17, 49.05, 35.24, 35.10, 35.04, 27.48, 26.70, 18.55.
DPLG-2142 was prepared by following the general procedure for HATU mediated coupling of phenylacetic acid (4.9 mg, 0.036 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (17.3 mg, 0.033 mmol). The crude was purified by HPLC to give 12.1 mg (68%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.38 (s, 1H), 8.47 (t, J=5.9 Hz, 1H), 8.36 (d, J=7.9 Hz, 1H), 8.18 (d, J=7.4 Hz, 1H), 8.09-8.07 (m, 1H), 7.95-7.93 (m, 1H), 7.85-7.83 (m, 1H), 7.56-7.52 (m, 2H), 7.45 (d, J=5.0 Hz, 2H), 7.29-7.19 (m, 5H), 4.76 (dd, J=15.3, 6.0 Hz, 1H), 4.69 (dd, J=15.3, 5.8 Hz, 1H), 4.60-4.56 (m, 1H), 4.29-4.23 (m, 1H), 3.46 (s, 2H), 2.56-2.51 (m, 1H), 2.37 (dd, J=14.9, 7.3 Hz, 1H), 1.22 (d, J=7.1 Hz, 3H), 1.10 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.37, 170.90, 170.54, 168.07, 136.60, 134.91, 133.69, 131.28, 129.51, 128.93, 128.60, 127.90, 126.77, 126.63, 126.20, 125.84, 125.72, 123.87, 81.03, 50.18, 49.12, 42.40, 40.58, 35.30, 26.71, 18.41.
DPLG-2074 was prepared following the general procedure for HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (217 mg, 0.67 mmol) and (S)-2-amino-N-(naphthalen-1-ylmethyl)propanamide (230 mg, 0.67 mmol). The product was isolated by ethyl acetate extraction and purified by recrystallization with ethanol-water (yield=302 mg, 85%). 1H NMR (500 MHz, Chloroform-d) δ 7.95 (d, J=8.3 Hz, 1H), 7.83 (d, J=8.1 Hz, 1H), 7.76 (dd, J=7.0, 2.4 Hz, 1H), 7.53-7.46 (m, 2H), 7.41-7.37 (m, 2H), 7.34-7.28 (m, 3H), 7.26-7.24 (m, 2H), 6.76 (d, J=7.6 Hz, 1H), 6.64 (m, 1H), 5.45 (d, J=8.4 Hz, 1H), 4.96 (d, J=11.9 Hz, 1H), 4.93 (d, J=11.9 Hz, 1H), 4.86 (d, J=5.4 Hz, 2H), 4.45-4.35 (m, 2H), 2.86 (dd, J=17.1, 4.6 Hz, 1H), 2.67 (dd, J=17.1, 6.7 Hz, 1H), 1.39-1.38 (m, 12H).
DPLG-2114 was synthesized by following the general procedure for Boc-deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (50 mg, 0.094 mmol). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated and the crude was dried under vacuum. The crude product (51 mg, quant.) was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 8.75 (d, J=7.4 Hz, 1H), 8.50 (t, J=5.8 Hz, 1H), 8.26 (d, J=5.1 Hz, 3H), 8.04-8.02 (m, 1H), 7.96-7.94 (m, 1H), 7.85 (d, J=7.9 Hz, 1H), 7.56-7.51 (m, 2H), 7.48-7.42 (m, 2H), 7.39-7.34 (m, 5H), 5.16 (d, J=12.3 Hz, 1H), 5.12 (d, J=12.3 Hz, 1H), 4.79-4.70 (m, 2H), 4.41-4.35 (m, 1H), 4.21-4.18 (m, 1H), 3.00 (dd, J=17.5, 4.0 Hz, 1H), 2.81 (dd, J=17.5, 8.7 Hz, 1H), 1.28 (d, J=7.0 Hz, 3H).
DPLG-2115 was prepared following the general procedure for HATU mediated coupling of 3-phenylproapanoic acid (15.5 mg, 0.103 mmol) and benzyl (S)-3-amino-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4- oxobutanoate 2,2,2-trifluoroacetate (51 mg, 0.094 mmol). After completion of reaction (4 h), the mixture was precipitated by the addition of 50 mL water. The white precipitate was filtered and dried to give product (50 mg, 94%). 1H NMR (500 MHz, DMSO-d6) δ 8.34 (t, J=5.8 Hz, 1H), 8.27 (d, J=8.0 Hz, 1H), 8.11 (d, J=7.4 Hz, 1H), 8.05-8.03 (m, 1H), 7.95-7.93 (m, 1H), 7.84 (dd, J=7.6, 1.7 Hz, 1H), 7.56-7.51 (m, 2H), 7.47-7.42 (m, 2H), 7.37-7.30 (m, 5H), 7.27-7.24 (m, 2H), 7.20-7.15 (m, 3H), 5.04 (s, 2H), 4.74 (d, J=5.7 Hz, 2H), 4.69 (td, J=8.1, 5.7 Hz, 1H), 4.32-4.26 (m, 1H), 2.82-2.77 (m, 3H), 2.57 (dd, J=16.2, 8.3 Hz, 1H), 2.40 (t, J=7.9 Hz, 2H), 1.23 (d, J=7.1 Hz, 3H).
Benzyl (S)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxo -3-(3 -phenylpropanamido)butanoate (50 mg, 0.088 mmol) was dissolved in 5 mL ethanol and 1 mL dimethylformamide. 20 mg palladium on carbon (10%) was added carefully and the mixture was stirred under hydrogen atmosphere. The reaction was not complete after 24 hours. The mixture was filtered through celite, evaporated, and purified by HPLC to give product (22.5 mg, 54%). 1H NMR (500 MHz, DMSO-d6) δ 12.34 (s, 1H), 8.37 (m, 1H), 8.23 (d, J=7.7 Hz, 1H), 8.07-8.04 (m, 2H), 7.96-7.94 (m, 1H), 7.84 (d, J=7.9 Hz, 1H), 7.57-7.52 (m, 2H), 7.48-7.42 (m, 2H), 7.28-7.25 (m, 2H), 7.21-7.15 (m, 3H), 4.74 (d, J=5.8 Hz, 2H), 4.61-4.56 (m, 1H), 4.31-4.25 (m, 1H), 2.80 (t, J=7.9 Hz, 2H), 2.67 (dd, J=16.6, 6.1 Hz, 1H), 2.48-2.39 (m, 3H), 1.23 (d, J=7.1 Hz, 3H).
DPLG-2130 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 -oxo-3-(3-phenylpropanamido)butanoic acid (12.4 mg, 0.026 mmol) and 3-aminoxetane (2.2 μL, 0.031 mmol). The mixture was purified by HPLC to give product (12.0 mg, 87%). 1H NMR (500 MHz, DMSO-d6) δ 8.71 (d, J=6.4 Hz, 1H), 8.44 (t, J=5.8 Hz, 1H), 8.21 (d, J=7.3 Hz, 1H), 8.15 (d, J=7.9 Hz, 1H), 8.07-8.05 (m, 1H), 7.95-7.94 (m, 1H), 7.84 (d, J=7.8 Hz, 1H), 7.57-7.52 (m, 2H), 7.47-7.42 (m, 2H), 7.27-7.24 (m, 2H), 7.19-7.15 (m, 3H), 4.76 (dd, J=15.4, 5.9 Hz, 1H), 4.70 (dd, J=15.4, 5.8 Hz, 1H), 4.64-4.51 (m, 4H), 4.34-4.22 (m, 3H), 2.78 (t, J=7.8 Hz, 2H), 2.58 (dd, J=15.2, 7.5 Hz, 1H), 2.44-2.40 (m, 3H), 1.25 (d, J=7.2 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.43, 171.96, 171.01, 169.79, 141.67, 134.83, 133.68, 131.25, 128.94, 128.72, 128.61, 127.90, 126.63, 126.32, 126.23, 125.81, 125.56, 123.81, 77.44, 77.28, 50.01, 49.15, 44.28, 40.63, 37.82, 37.12, 31.42, 18.31.
Benzyl (S)-3-amino-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4- oxobutanoate 2,2,2-trifluoroacetate (55 mg, 0.01 mmol) was dissolved in 5 mL dichloromethane, and triethylamine (42 μl, 0.3 mmol) was added. The solution was cooled to 0° C. and 4-toluenesulfonylchloride (23 mg, 0.12 mmol) was added. After completion of reaction, the mixture was diluted in dichloromethane and washed with 1N HCl followed by brine. The organic layer was evaporated to give product (22 mg, 37%). 1H NMR (500 MHz, DMSO-d6) δ 8.25-8.17 (m, 3H), 8.02-8.00 (m, 1H), 7.94-7.92 (m, 1H), 7.83 (d, J=8.1 Hz, 1H), 7.65 (d, J=8.0 Hz, 2H), 7.55-7.51 (m, 2H), 7.45-7.29 (m, 9H), 4.98 (d, J=12.6 Hz, 1H), 4.91 (d, J=12.6 Hz, 1H), 4.70 (d, J=5.8 Hz, 2H), 4.18 (m, 1H), 4.03-3.97 (m, 1H), 2.68-2.64 (m, 1H), 2.46-2.41 (m, 1H), 2.35 (s, 3H), 1.10 (d, J=7.0 Hz, 3H).
DPLG-2088 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-3-((4-methylphenyl)sulfonamido)-4-(((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (21 g, 0.0357 mmol). The isolated crude was purified by HPLC to give product (12.1 mg, 68%). 1H NMR (500 MHz, DMSO-d6) δ 12.41 (bs, 1H), 8.32 (bs, 1H), 8.20 (d, J=7.3 Hz, 1H), 8.04-8.02 (m, 1H), 7.95-7.93 (m, 1H), 7.83 (d, J=8.1 Hz, 1H), 7.66 (d, J=8.0 Hz, 2H), 7.56-7.52 (m, 2H), 7.44 (t, J=7.6 Hz, 1H), 7.39 (d, J=7.0 Hz, 1H), 7.33 (d, J=8.0 Hz, 2H), 4.70 (d, J=5.8 Hz, 2H), 4.08-4.06 (m, 1H), 4.01-3.96 (m, 1H), 2.54-2.50 (m, 1H), 2.36 (s, 3H), 2.28 (dd, J=16.3, 7.3 Hz, 1H), 1.11 (d, J=7.1 Hz, 3H).
DPLG-2090 was prepared following the general procedure for HATU mediated coupling of (S)-3-((4-methylphenyl)sulfonamido)-4-((((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (5.0 mg, 0.01 mmol) and diethyl amine hydrochloride (1.6 mg, 0.015 mmol). The mixture was purified by HPLC to give the product (4.0 mg, 73%). 1H NMR (500 MHz, DMSO-d6) δ 8.36 (d, J=7.4 Hz, 1H), 8.26 (t, J=6.0 Hz, 1H), 8.09-8.03 (m, 2H), 7.94-7.92 (m, 1H), 7.81 (d, J=8.1 Hz, 1H), 7.70-7.67 (m, 2H), 7.54-7.51 (m, 2H), 7.42-7.34 (m, 4H), 4.77 (dd, J=15.5, 6.2 Hz, 1H), 4.60 (dd, J=15.5, 5.7 Hz, 1H), 4.09-4.06 (m, 1H), 3.96-3.90 (m, 1H), 3.15-2.98 (m, 3H), 2.94-2.87 (m, 1H), 2.70 (dd, J=16.2, 9.4 Hz, 1H), 2.43 (dd, J=16.2, 4.7 Hz, 1H), 2.36 (s, 3H), 1.11 (d, J=7.2 Hz, 3H), 0.95 (t, J=7.1 Hz, 3H), 0.77 (t, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 172.30, 170.23, 168.80, 142.95, 139.00, 134.85, 133.64, 131.21, 129.75, 128.91, 127.78, 127.05, 126.57, 126.16, 125.75, 125.30, 123.74, 53.43, 49.20, 41.75, 36.18, 21.39, 17.74, 14.19, 13.15.
DPLG-2091 was prepared following the general procedure for HATU mediated coupling of (S)-3-((4-methylphenyl)sulfonamido)-4-((((S)-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (5.0 mg, 0.01 mmol) and O-tert-butyl hydroxylamine hydrochloride (2 mg, 0.015 mmol). The mixture was purified by HPLC to give the product (3.3 mg, 56%). 1H NMR (500 MHz, DMSO-d6) δ 10.40 (s, 1H), 8.33 (t, J=6.0 Hz, 1H), 8.22 (d, J=7.2 Hz, 1H), 8.08-8.06 (m, 1H), 8.01 (bs, 1H), 7.94-7.92 (m, 1H), 7.83 (d, J=7.6 Hz, 1H), 7.65 (d, J=7.9 Hz, 2H), 7.55-7.51 (m, 2H), 7.45-7.40 (m, 2H), 7.32 (d, J=8.0 Hz, 2H), 4.73 (dd, J=15.4, 6.0 Hz, 1H), 4.64 (dd, J=15.4, 5.7 Hz, 1H), 4.10-4.07 (m, 1H), 3.92-3.86 (m, 1H), 2.42 (dd, J=14.9, 7.7 Hz, 1H), 2.36 (s, 3H), 2.22 (dd, J=14.9, 6.6 Hz, 1H), 1.08-1.06 (m, 12H). 13C NMR (126 MHz, DMSO) δ 172.14, 169.91, 167.48, 134.89, 133.67, 131.25, 129.69, 128.91, 127.86, 127.13, 126.60, 126.34, 126.22, 126.18, 125.80, 125.64, 123.85, 81.10, 53.41, 49.06, 40.58, 36.34, 26.68, 21.41, 18.08. HRMS calc. for C29H36N4O6S [M+H]′: 591.2253. Found: 591.2271.
DPLG-2063 was prepared by following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (33.6 mg, 0.1 mmol) and H-Ala-OBn.HCl (21.5 mg, 0.1 mmol). After completion of the reaction, the mixture was precipitated by the addition of cold water. The precipitate was filtered and dried to give the product (27 mg, 54%). 1H NMR (500 MHz, DMSO-d6) δ 10.20 (s, 1H), 8.31 (d, J=7.0 Hz, 1H), 8.07 (d, J=8.2 Hz, 1H), 7.40-7.32 (m, 5H), 7.28-7.25 (m, 2H), 7.20-7.15 (m, 3H), 5.11 (s, 2H), 4.66 (td, J=9.0, 4.9 Hz, 1H), 4.33-4.27 (m, 1H), 2.80-2.76 (m, 2H), 2.41-2.37 (m, 3H), 2.26 (dd, J=14.8, 9.5 Hz, 1H), 1.29 (d, J=7.2 Hz, 3H), 1.14 (s, 9H).
DPLG-2067 was synthesized by following the general procedure for O-debenzylation of (S)-benzyl 2-((S)-4-(tertbutoxylamino)-4-oxo-2-(3-phenylpropanamido)butanamido)propanoate (25.0 mg, 0.05 mmol). After completion of the reaction (5 h), the mixture was filtered through celite. The filtrate was evaporated and dried under vacuum to give the product (20 mg, quant.). 1H NMR (500 MHz, DMSO-d6)δ 12.35 (s, 1H), 9.75 (s, 1H), 7.80 (s, 1H), 7.20-7.17 (m, 2H), 7.12-7.09 (m, 1H), 7.01 (d, J=7.4 Hz, 2H), 4.32-4.28 (m, 1H), 3.67-3.61 (m, 1H), 2.67-2.58 (m, 2H), 2.43-2.37 (m, 1H), 2.34-2.28 (m, 1H), 2.23-2.21 (m, 2H), 1.15 (d, J=6.8 Hz, 3H), 1.12 (s, 9H).
DPLG-2068 was prepared by following the general procedure for HATU mediated coupling of N4-(tert-butoxy)-N2-(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and quinolin-4-ylmethylamine dihydrochloride (2.8 mg, 0.0123 mmol). The crude was purified by HPLC to give 2.0 mg (30%) of product. 1H NMR (500 MHz, DMSO-d6) δ 10.39 (s, 1H), 8.84 (d, J=4.5 Hz, 1H), 8.60 (t, J=6.0 Hz, 1H), 8.29 (d, J=7.1 Hz, 1H), 8.19-8.15 (m, 2H), 8.05 (dd, J=8.5, 1.3 Hz, 1H), 7.80-7.76 (m, 1H), 7.66-7.63 (m, 1H), 7.40 (d, J=4.4 Hz, 1H), 7.27-7.24 (m, 2H), 7.20-7.15 (m, 3H), 4.80-4.78 (m, 2H), 4.64-4.59 (m, 1H), 4.30-4.27 (m, 1H), 2.80-2.77 (m, 2H), 2.56-2.51 (m, 1H), 2.44-2.40 (m, 2H), 2.35 (dd, J=14.9, 7.1 Hz, 1H), 1.29 (d, J=7.1 Hz, 3H), 1.06 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.37, 171.41, 170.72, 167.72, 150.12, 147.30, 144.63, 141.24, 129.42, 129.30, 128.27, 128.13, 126.65, 125.94, 125.85, 123.50, 118.92, 80.55, 64.91, 49.62, 48.81, 36.73, 34.82, 30.95, 26.19, 17.72. HRMS calc. for C30H37N5O5 [M+H]+: 548.2873. Found: 548.2857.
DPLG-2073 was prepared by following the general procedure for HATU mediated coupling of N4-(tert-butoxy)-N2-(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and quinolin-5-ylmethylamine (2.0 mg, 0.0123 mmol). The crude was purified by HPLC to give 4.7 mg (70%) of product. 1H NMR (500 MHz, DMSO-d6)δ 10.39 (s, 1H), 8.92-8.91 (m, 1H), 8.55 (d, J=8.6 Hz, 1H), 8.51 (t, J=6.0 Hz, 1H), 8.18-8.15 (m, 2H), 7.94 (d, J=8.4 Hz, 1H), 7.70 (dd, J=8.5, 7.0 Hz, 1H), 7.57-7.54 (m, 2H), 7.27-7.24 (m, 2H), 7.19-7.15 (m, 3H), 4.79 (dd, J=15.4, 6.1 Hz, 1H), 4.70 (dd, J=15.4, 5.7 Hz, 1H), 4.61-4.56 (m, 1H), 4.27-4.21 (m, 1H), 2.80-2.76 (m, 2H), 2.53-2.48 (m, 1H), 2.43-2.39 (m, 2H), 2.33 (dd, J=14.8, 7.2 Hz, 1H), 1.23 (d, J=7.1 Hz, 3H), 1.10 (s, 9H). 3C NMR (126 MHz, DMSO) δ 172.42, 171.86, 170.99, 168.15, 150.64, 148.44, 141.70, 135.99, 132.49, 129.36, 128.90, 128.74, 128.60, 126.39, 126.31, 126.22, 121.75, 81.04, 70.24, 50.08, 49.12, 37.19, 35.28, 31.41, 26.70, 18.32. HRMS calc. for C30H37N5O5 [M+H]′: 548.2873. Found: 548.2879.
DPLG-2083 was prepared by following the general procedure for HATU mediated coupling of N4-(tert-butoxy)-N2-(3-phenylpropanoyl)-L-asparaginyl-L-alanine (5.0 mg, 0.0123 mmol) and 4-(aminomethyl)indole (1.8 mg, 0.0123 mmol). The crude was purified by HPLC to give 5.8 mg (88%) of product. 1H NMR (500 MHz, DMSO-d6) δ 11.10 (s, 1H), 10.35 (s, 1H), 8.36 (t, J=5.9 Hz, 1H), 8.16 (d, J=8.0 Hz, 1H), 8.05 (d, J=7.4 Hz, 1H), 7.32-7.25 (m, 4H), 7.20-7.16 (m, 3H), 7.01 (t, J=7.6 Hz, 1H), 6.89 (d, J=7.1 Hz, 1H), 6.52-6.51 (m, 1H), 4.61-4.48 (m, 3H), 4.28-4.24 (m, 1H), 2.81-2.77 (m, 2H), 2.53-2.49 (m, 1H), 2.46-2.38 (m, 2H), 2.33 (dd, J=14.8, 7.6 Hz, 1H), 1.23 (d, J=7.1 Hz, 3H), 1.13 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.15, 171.85, 170.85, 168.06, 141.73, 136.20, 130.54, 128.75, 128.63, 128.60, 126.61, 126.31, 125.31, 121.14, 117.76, 110.77, 81.01, 50.13, 49.00, 41.04, 37.24, 35.31, 31.43, 26.72, 18.68. HRMS calc. for C29H37N5O5 [M+H]′: 558.2692. Found: 558.2698.
DPLG-2078 was prepared following the general procedure for HATU coupling. Reaction was carried using Boc-β-methoxyalanine dicyclohexylamine (1.202 g, 3.0 mmol) and 1-naphthylmethylamine (484 mL, 3.3 mmol). After completion of the reaction 150 mL water was added to the reaction mixture and extracted twice with ethyl acetate (2×150 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and evaporated. The crude product was purified by silica gel column chromatography using a gradient of 20%-40% ethyl acetatehexane to give 1.05 g (98%) of pure product. 1H NMR (500 MHz, Chloroform-d) δ 7.96 (d, J=8.4 Hz, 1H), 7.87-7.85 (m, 1H), 7.79 (dd, J=7.2, 2.4 Hz, 1H), 7.54-7.48 (m, 2H), 7.44-7.39 (m, 2H), 6.73 (m, 1H), 5.40 (m, 1H), 4.91 (m, 2H), 4.27 (m, 1H), 3.82 (dd, J=9.0, 4.1 Hz, 1H), 3.47 (dd, J=9.0, 6.2 Hz, 1H), 3.28 (s, 3H), 1.37 (s, 9H).
DPLG-2082 was synthesized by following the general procedure for Boc deprotection of DPLG-2120 (72 mg, 0.02 mmol). After completion of the reaction (4 h), dichloromethane and excess TFA were evaporated and dried under high vacuum. The paste was soluble in diethyl ether. Diethyl ether solution was extracted with water. The water layer was frozen and lyophilized to give product (67 mg, 90%). 1H NMR (500 MHz, DMSO-d6) δ 8.94 (t, J=5.5 Hz, 1H), 8.20 (bs, 3H), 8.04-8.02 (m, 1H), 7.98-7.95 (m, 1H), 7.89-7.87 (m, 1H), 7.59-7.54 (m, 2H), 7.51-7.48 (m, 2H), 4.85 (dd, J=15.2, 5.7 Hz, 1H), 4.77 (dd, J=15.2, 5.4 Hz, 1H), 4.05-4.03 (m, 1H), 3.70-3.63 (m, 2H), 3.28 (s, 3H).
DPLG-2126 was prepared following the general procedure of HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (378 mg, 1.17 mmol) and (S)-2-amino-3-methoxy-N-(naphthalen-1-ylmethyl)propanamide (435.6 mg, 1.17 mmol). After completion of the reaction (2 h), the mixture was diluted with water and extracted twice with ethyl acetate. The organic layer was evaporated and the crude was recrystallized from ethanol-water mixture to give 576 mg (88%) pure product. 1H NMR (500 MHz, DMSO-d6) δ 8.50 (t, J=5.7 Hz, 1H), 8.04-8.02 (m, 1H), 7.95-7.91 (m, 2H), 7.84 (dd, J=7.0, 2.4 Hz, 1H), 7.56-7.51 (m, 2H), 7.47-7.43 (m, 2H), 7.38-7.28 (m, 6H), 5.09 (d, J=12.6 Hz, 1H), 5.05 (d, J=12.6 Hz, 1H), 4.75 (d, J=5.7 Hz, 2H), 4.49-4.45 (m, 1H), 4.43-4.39 (m, 1H), 3.58 (dd, J=9.7, 5.5 Hz, 1H), 3.48 (dd, J=9.7, 5.1 Hz, 1H), 3.24 (s, 3H), 2.81 (dd, J=16.4, 5.1 Hz, 1H), 2.61 (dd, J=16.4, 9.0 Hz, 1H), 1.38 (s, 9H).
DPLG-2131 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (113 mg, 0.2 mmol). After completion of the reaction (4 h), the mixture was filtered through celite. The filtrate was evaporated and dried under vacuum to give the product (94 mg, 99%). 1H NMR (500 MHz, DMSO-d6) δ 8.54 (t, J=5.7 Hz, 1H), 8.05-8.03 (m, 1H), 7.96-7.94 (m, 1H), 7.88 (d, J=7.9 Hz, 1H), 7.84 (dd, J=7.2, 2.0 Hz, 1H), 7.57-7.52 (m, 2H), 7.48-7.43 (m, 2H), 7.19 (d, J=7.9 Hz, 1H), 4.75 (d, J=5.7 Hz, 2H), 4.48-4.44 (m, 1H), 4.32-4.28 (m, 1H), 3.59 (dd, J=9.7, 5.5 Hz, 1H), 3.49 (dd, J=9.7, 5.1 Hz, 1H), 3.24 (s, 3H), 2.64 (dd, J=16.4, 5.5 Hz, 1H), 2.46 (dd, J=16.4, 8.3 Hz, 1H), 1.38 (s, 9H).
DPLG-2133 was prepared following the general procedure of HATU mediated coupling of (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (710 mg, 1.5 mmol) and 0-tert-butyl hydroxylamine hydrochloride (226 mg, 1.8 mmol). After completion of the reaction the mixture was precipitated by the addition of 100 mL water. The precipitate was filtered and dried to give 692 mg (85%) pure product. 1H NMR (500 MHz, DMSO-d6)δ 10.27 (s, 1H), 8.57-8.55 (m, 1H), 8.06-8.04 (m, 1H), 7.96-7.94 (m, 2H), 7.85-7.83 (m, 1H), 7.56-7.53 (m, 2H), 7.48-7.43 (m, 2H), 7.01 (d, J=7.8 Hz, 1H), 4.75 (d, J=5.8 Hz, 2H), 4.48-4.44 (m, 1H), 4.35-4.30 (m, 1H), 3.59 (dd, J=9.8, 5.6 Hz, 1H), 3.51-3.48 (m, 1H), 3.24 (s, 3H), 2.47 (dd, J=14.8, 5.5 Hz, 1H), 2.33-2.28 (m, 1H), 1.37 (s, 9H), 1.13 (s, 9H).
DPLG-2137 was synthesized by following the general procedure for Boc deprotection of tert-butyl ((4S,7S)-4-(methoxymethyl)-12,12-dimethyl-1-(naphthalen-1-yl)-3,6,9-trioxo-11-oxa-2,5,10-triazatridecan-7-yl)carbamate (692 mg, 1.27 mmol). The isolated crude was triturated with diethyl ether to give pure product (691 mg, 97%). 1H NMR (500 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.81 (d, J=7.5 Hz, 1H), 8.67 (t, J=5.8 Hz, 1H), 8.20 (bs, 3H), 8.07-8.05 (m, 1H), 7.96-7.95 (m, 1H), 7.86-7.84 (m, 1H), 7.57-7.53 (m, 2H), 7.47-7.45 (m, 2H), 4.80-4.72 (m, 2H), 4.56-4.53 (m, 1H), 4.22-4.19 (m, 1H), 3.63 (dd, J=9.9, 6.0 Hz, 1H), 3.53 (dd, J=9.9, 4.5 Hz, 1H), 3.26 (s, 3H), 2.72 (dd, J=16.3, 5.1 Hz, 1H), 2.58 (dd, J=16.3, 7.6 Hz, 1H), 1.15 (s, 9H).
DPLG-2086 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (11.0 mg, 0.033 mmol) and [(S)-2-amino-3-methoxy-N-(naphthalen-1-ylmethyl)propanamide] (H-Ser(OMe)-naphth) (11.0 mg, 0.03 mmol). The product was purified by HPLC (yield 15.3 mg, 88%). 1H NMR (500 MHz, DMSO-d6) δ 10.39 (s, 1H), 8.58 (t, J=5.8 Hz, 1H), 8.21 (d, J=8.0 Hz, 1H), 8.11 (d, J=7.7 Hz, 1H), 8.09-8.07 (m, 1H), 7.95-7.93 (m, 1H), 7.84-7.82 (m, 1H), 7.56-7.52 (m, 2H), 7.48-7.43 (m, 2H), 7.28-7.25 (m, 2H), 7.20-7.16 (m, 3H), 4.78 (dd, J=15.4, 5.9 Hz, 1H), 4.71 (J=15.4, 5.7 Hz, 1H), 4.68-4.64 (m, 1H), 4.45-4.42 (m, 1H), 3.60 (dd, J=9.7, 5.9 Hz, 1H), 3.51 (dd, J=9.7, 4.7 Hz, 1H), 3.24 (s, 3H), 2.80-2.77 (m, 2H), 2.53-2.49 (m, 1H), 2.43-2.39 (m, 2H), 2.34 (dd, J=14.8, 7.6 Hz, 1H), 1.11 (s, 9H). 13 C NMR (126 MHz, DMSO) δ 171.94, 171.38, 169.66, 168.05, 141.70, 134.69, 133.65, 131.22, 128.89, 128.76, 128.58, 127.85, 126.59, 126.32, 126.18, 125.83, 125.54, 123.87, 81.02, 72.27, 58.74, 53.69, 50.11, 40.72, 37.24, 35.30, 31.45, 26.71. HRMS calc. for C32H40N4O6 [M+H]′: 577.3026. Found: 577.3005.
DPLG-2143 was prepared following the general procedure for HATU mediated coupling of morpholin 4-yl-acetic acid (3.2 mg, 0.022 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-3 -methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (11.2 mg, 0.02 mmol). The product was purified by HPLC (yield 9.5 mg, 83%). 1H NMR (500 MHz, DMSO-d6) δ 10.37 (s, 1H), 8.60 (t, J=5.8 Hz, 1H), 8.19 (d, J=7.7 Hz, 1H), 8.07-8.05 (m, 1H), 8.03 (d, J=8.1 Hz, 1H), 7.95-7.93 (m, 1H), 7.83 (t, J=4.8, 1H), 7.56-7.52 (m, 2H), 7.45-7.44 (m, 2H), 4.74 (d, J=5.8 Hz, 2H), 4.67-4.63 (m, 1H), 4.47-4.43 (m, 1H), 3.62-3.58 (m, 5H), 3.51 (dd, J=9.8, 4.7 Hz, 1H), 3.23 (s, 3H), 2.92 (s, 2H), 2.54-2.36 (m, 6H), 1.11 (s, 9H). 13C NMR (126 MHz, DMSO) δ 170.54, 169.22, 168.97, 167.59, 134.20, 133.20, 130.75, 128.45, 127.41, 126.14, 125.74, 125.38, 125.07, 123.40, 99.52, 80.60, 71.80, 66.13, 61.34, 58.27, 53.18, 49.23, 40.29, 34.89, 26.24.
DPLG-2144 was prepared following the general procedure for HATU mediated coupling of 5-methylisoxazole-3-carboxylic acid (2.8 mg, 0.022 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (11.2 mg, 0.02 mmol). The product was purified by HPLC (yield 10.2 mg, 92%). 1H NMR (500 MHz, DMSO-d6) δ 10.38 (s, 1H), 8.65 (d, J=8.1 Hz, 1H), 8.60 (t, J=5.8 Hz, 1H), 8.26 (d, J=7.8 Hz, 1H), 8.05-8.03 (m, 1H), 7.95-7.93 (m, 1H), 7.85-7.83 (m, 1H), 7.54-7.52 (m, 2H), 7.46-7.43 (m, 2H), 6.54 (s, 1H), 4.84-4.80 (m, 1H), 4.74 (d, J=5.8 Hz, 2H), 4.50-4.47 (m, 1H), 3.59 (dd, J=9.7, 5.9 Hz, 1H), 3.51 (dd, J=9.7, 5.0 Hz, 1H), 3.23 (s, 3H), 2.62-2.54 (m, 2H), 2.47 (s, 3H), 1.09 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.40, 170.13, 169.17, 167.41, 158.43, 158.35, 134.17, 133.20, 130.74, 128.44, 127.41, 126.13, 125.74, 125.38, 125.03, 123.38, 101.31, 80.60, 71.83, 58.27, 53.11, 50.03, 40.28, 34.66, 26.21, 11.83.
(S)-2-amino-N4-(tert-butoxy)-N1—((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (22.4 mg, 0.04 mmol) was dissolved in 2 mL dichloromethane and the solution was cooled to 0° C. 4-(Dimethylamino)pyridine (1.2 mg, 0.01 mmol), Hunig's base (17 mL, 0.12 mmol), and 4-toluenesulphonyl chloride were added and the solution was allowed to warm to room temperature. After completion of the reaction (4 h), the mixture was diluted with dichloromethane and washed with water. Organic layer was evaporated and purified by HPLC to give product (15.1 mg, 63%). 1H NMR (500 MHz, DMSO-d6) δ 10.36 (s, 1H), 8.48 (t, J=5.9 Hz, 1H), 8.23 (d, J=7.7 Hz, 1H), 8.07-8.05 (m, 1H), 7.99 (bs, 1H), 7.94-7.92 (m, 1H), 7.83-7.81 (m, 1H), 7.66 (d, J=7.9 Hz, 2H), 7.55-7.51 (m, 2H), 7.44-7.42 (m, 2H), 7.32 (d, J=7.9 Hz, 2H), 4.75 (dd, J=15.5, 6.0 Hz, 1H), 4.68 (dd, J=15.5, 5.8 Hz, 1H), 4.24-4.20 (m, 1H), 4.15-4.12 (m, 1H), 3.46 (dd, J=9.6, 5.1 Hz, 1H), 3.31 (dd, J=9.6, 5.0 Hz, 1H), 3.22 (s, 3H), 2.40 (dd, J=14.8, 7.4 Hz, 1H), 2.36 (s, 3H), 2.19 (dd, J=14.8, 6.7 Hz, 1H), 1.08 (s, 9H). 13C NMR (126 MHz, DMSO) δ 170.45, 169.48, 167.37, 142.90, 138.58, 134.66, 133.64, 131.20, 129.75, 128.87, 127.81, 127.13, 126.56, 126.16, 125.80, 125.51, 123.88, 81.09, 72.05, 58.78, 53.62, 53.30, 40.68, 36.45, 26.69, 21.44.
DPLG-2222 was prepared following the general procedure for HATU mediated coupling of phenylacetic acid (4.5 mg, 0.033 mmol) and (S)-2-amino-N4-(tert-butoxy)-N1—((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (16.8 mg, 0.03 mmol). The product was purified by HPLC (yield 9.8 mg, %). 1H NMR (500 MHz, DMSO-d6) δ 10.39 (s, 1H), 8.58 (t, J=6.0 Hz, 1H), 8.39 (d, J=7.9 Hz, 1H), 8.15 (d, J=7.7 Hz, 1H), 8.08-8.06 (m, 1H), 7.95-7.93 (m, 1H), 7.83 (dd, J=6.9, 2.5 Hz, 1H), 7.55-7.53 (m, 2H), 7.46-7.44 (m, 2H), 7.29-7.19 (m, 5H), 4.77 (dd, J=15.5, 6.0 Hz, 1H), 4.70 (dd, J=15.5, 5.7 Hz, 1H), 4.67-4.63 (m, 1H), 4.45-4.41 (m, 1H), 3.58 (dd, J=9.7, 5.9 Hz, 1H), 3.50-3.47 (m, 3H), 3.22 (s, 3H), 2.56-2.50 (m, 1H), 2.38 (dd, J=14.9, 7.5 Hz, 1H), 1.10 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.33, 170.56, 169.64, 167.99, 136.59, 134.70, 133.64, 131.21, 129.51, 128.89, 128.60, 127.83, 126.76, 126.59, 126.18, 125.83, 125.54, 123.88, 81.02, 72.22, 58.71, 53.71, 50.14, 42.37, 40.71, 35.31, 26.71.
DPLG-2223 was prepared following the general procedure for HATU mediated coupling of 4-phenylbutyric acid (5.4 mg, 0.033 mmol) and (S)-2-amino-1V4-(tert-butoxy)-N1-((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)succinamide (16.8 mg, 0.03 mmol). The product was purified by HPLC (yield 10.5 mg, 59%). 1H NMR (500 MHz, DMSO-d6) δ 10.35 (s, 1H), 8.56 (t, J=5.7 Hz, 1H), 8.15 (d, J=8.0 Hz, 1H), 8.06-8.03 (m, 2H), 7.94-7.93 (m, 1H), 7.84-7.82 (m, 1H), 7.55-7.51 (m, 2H), 7.45-7.42 (m, 2H), 7.28-7.22 (m, 2H), 7.19-7.15 (m, 3H), 4.78-4.69 (m, 2H), 4.66-4.61 (m, 1H), 4.45-4.42 (m, 1H), 3.59 (dd, J=9.8, 5.9 Hz, 1H), 3.50 (dd, J=9.8, 4.8 Hz, 1H), 3.20 (s, 3H), 2.56-2.50 (m, 3H), 2.35 (dd, J=14.8, 8.1 Hz, 1H), 2.13 (t, J=7.5 Hz, 2H), 1.76 (p, J=7.5 Hz, 2H), 1.10 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.05, 170.96, 169.18, 167.59, 141.79, 134.19, 133.18, 130.74, 128.42, 128.30, 128.22, 127.38, 126.12, 125.70, 125.36, 125.03, 123.38, 80.51, 71.84, 58.24, 53.11, 49.70, 40.25, 34.72, 34.63, 34.57, 27.04, 26.24.
DPLG-2192 was synthesized by following the general procedure for Boc deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate (225 mg, 0.4 mmol). Yield=230 mg, quant. 1H NMR (500 MHz, DMSO-d6) δ 8.85 (d, J=7.8 Hz, 1H), 8.57 (t, J=5.8 Hz, 1H), 8.27 (bs, 3H), 8.03-8.01 (m, 1H), 7.95-7.93 (m, 1H), 7.84 (dd, J=7.1, 2.4 Hz, 1H), 7.56-7.50 (m, 2H), 7.47-7.43 (m, 2H), 7.40-7.33 (m, 5H), 5.14 (d, J=12.4 Hz, 1H), 5.11 (d, J=12.4 Hz, 1H), 4.79-4.71 (m, 2H), 4.56 (ddd, J=7.8, 6.0, 4.8 Hz, 1H), 4.26 (m, 1H), 3.60 (dd, J=9.8, 6.0 Hz, 1H), 3.53 (dd, J=9.8, 4.8 Hz, 1H), 3.26 (s, 3H), 3.01 (dd, J=17.5, 4.0 Hz, 1H), 2.81 (dd, J=17.5, 8.7 Hz, 1H).
Benzyl (S)-3-amino-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4- oxobutanoate 2,2,2-trifluoroacetate (29 mg, 0.05 mmol) and N,N-dimethylaminopyridine (1 mg) were suspended in dichloromethane (1 mL). Triethylamine was added (21 μL, 0.15 mmol). The resulting transparent solution was cooled to 0° C. and methanesulphonyl chloride (6 μl, 0.075 mmol) was added. After completion of reaction (1 h), the product was isolated by ethyl acetate extraction and purified by HPLC to give product (16.5 mg, 61%). 1H NMR (500 MHz, DMSO-d6) δ 8.45 (t, J=5.8 Hz, 1H), 8.38 (d, J=7.9 Hz, 1H), 8.03-8.01 (m, 1H), 7.95-7.93 (m, 1H), 7.85-7.82 (m, 1H), 7.70 (bs, 1H), 7.57-7.50 (m, 2H), 7.46-7.43 (m, 2H), 7.36-7.31 (m, 5H), 5.09-5.04 (m, 2H), 4.74 (d, J=5.8 Hz, 2H), 4.54-4.48 (m, 1H), 4.34-4.31 (m, 1H), 3.59 (dd, J=9.8, 6.0 Hz, 1H), 3.52 (dd, J=9.8, 5.0 Hz, 1H), 3.24 (s, 3H), 2.87 (s, 3H), 2.83 (dd, J=16.4, 5.3 Hz, 1H), 2.63 (dd, J=16.4, 8.7 Hz, 1H).
DPLG-2203 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-(methyl sulfonamido)-4 -oxobutanoate (16.5 mg, 0.03 mmol). The reaction mixture was filtered through celite and evaporated to give the product (11.0 mg, 80%). 1H NMR (500 MHz, DMSO-d6) δ 8.53 (t, J=5.8 Hz, 1H), 8.34 (d, J=8.0 Hz, 1H), 8.05-8.03 (m, 1H), 7.95-7.93 (m, 1H), 7.83 (dd, J=7.2, 2.2 Hz, 1H), 7.57-7.52 (m, 2H), 7.47-7.43 (m, 2H), 4.78-4.71 (m, 2H), 4.52-4.48 (m, 1H), 4.23 (dd, J=7.9, 5.7 Hz, 1H), 3.60 (dd, J=9.8, 6.1 Hz, 1H), 3.54 (dd, J=9.8, 4.9 Hz, 1H), 3.24 (s, 3H), 2.91 (s, 3H), 2.68 (dd, J=16.4, 5.7 Hz, 1H), 2.49-2.45 (m, 1H).
DPLG-2219 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-(methylsulfonamido)-4-oxobutanoic acid (6.8 g, 0.015 mmol) and 3-aminoxetane (1.2 μL, 0.0165 mmol). The crude was purified by HPLC to give product (5.2 mg, 68%). 1H NMR (500 MHz, DMSO-d6) δ 8.78 (d, J=6.3 Hz, 1H), 8.50 (t, J=5.8 Hz, 1H), 8.42 (d, J=7.9 Hz, 1H), 8.06-8.04 (m, 1H), 7.95-7.93 (m, 1H), 7.84 (dd, J=7.8, 1.7 Hz, 1H), 7.57-7.52 (m, 3H), 7.47-7.42 (m, 2H), 4.78 (dd, J=15.5, 6.0 Hz, 1H), 4.70 (dd, J=15.5, 5.7 Hz, 1H), 4.65-4.57 (m, 2H), 4.54-4.47 (m, 2H), 4.36-4.30 (m, 2H), 4.25-4.22 (m, 1H), 3.63 (dd, J=9.8, 6.3 Hz, 1H), 3.57 (dd, J=9.8, 4.5 Hz, 1H), 3.24 (s, 3H), 2.89 (s, 3H), 2.63 (dd, J=15.4, 7.3 Hz, 1H), 2.49-2.45 (m, 1H). 13C NMR (126 MHz, DMSO) δ 171.25, 169.48, 169.44, 134.62, 133.66, 131.22, 128.91, 127.90, 126.62, 126.22, 125.80, 125.47, 123.85, 77.43, 77.24, 72.19, 58.69, 53.56, 53.38, 44.31, 41.07, 40.76, 38.81.
Benzyl (S)-3-amino-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 - oxobutanoate 2,2,2-trifluoroacetate (48 mg, 0.083 mmol) was dissolved in dichloromethane (1 mL), and triethylamine (35 μl, 0.25 mmol) was added. The resulting solution was cooled to 0° C., and 4-toluenesulphonyl chloride (23.8 mg, 0.125 mmol) was added. After completion of reaction (2 h), the crude was isolated by ethyl acetate extraction and purified by HPLC to give product (11.0 mg, 22%). 1H NMR (500 MHz, DMSO-d6) δ 8.36 (t, J=5.8 Hz, 1H), 8.24 (d, J=7.7 Hz, 1H), 8.19 (d, J=8.9 Hz, 1H), 8.02-8.00 (m, 1H), 7.94-7.92 (m, 1H), 7.83 (dd, J=7.2, 2.3 Hz, 1H), 7.65 (d, J=8.2 Hz, 2H), 7.55-7.50 (m, 2H), 7.45-7.41 (m, 2H), 7.38-7.29 (m, 7H), 4.97 (d, J=12.6 Hz, 1H), 4.91 (d, J=12.6 Hz, 1H), 4.72 (d, J=5.8 Hz, 2H), 4.28 (dt, J=8.5, 5.6 Hz, 1), 4.23 (td, J=7.7, 5.3 Hz, 1H), 3.42 (dd, J=9.6, 5.2 Hz, 1H), 3.35-3.32 (m, 1H), 3.23 (s, 3H), 2.65 (dd, J=16.0, 5.6 Hz, 1H), 2.41 (dd, J=16.0, 8.2 Hz, 1H), 2.35 (s, 3H).
DPLG-2227 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-3-((4 -methylphenyl) sulfonamido)-4 -oxobutanoate (11.0 mg, 0.0178 mmol). Yield=7.5 mg, 80%. 1H NMR (500 MHz, DMSO-d6) δ 12.37 (s, 1H), 8.39 (t, J=5.7 Hz, 1H), 8.20 (d, J=7.7 Hz, 1H), 8.13-8.10 (m, 1H), 8.03-8.01 (m, 1H), 7.95-7.93 (m, 1H), 7.83 (d, J=7.8 Hz, 1H), 7.65 (d, J=8.0 Hz, 2H), 7.55-7.51 (m, 2H), 7.45-7.40 (m, 2H), 7.33 (d, J=8.0 Hz, 2H), 4.72 (d, J=5.7 Hz, 2H), 4.23-4.16 (m, 2H), 3.44 (dd, J=9.6, 5.1 Hz, 1H), 3.36-3.33 (m, 1H), 3.23 (s, 3H), 2.54-2.49 (m, 1H), 2.36 (s, 3H), 2.27 (dd, J=16.3, 7.5 Hz, 1H).
DPLG-2229 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2 -yl)amino)-3-((4 -methylphenyl) sulfonamido)-4-oxobutanoic acid (7.5 mg, 0.014 mmol) and 3-aminoxetane (1.1 mL, 0.0154 mmol). The product was purified by HPLC (yield=6.4 mg, 78%). 1H NMR (500 MHz, DMSO-d6) δ 8.67 (d, J=5.7 Hz, 1H), 8.45 (t, J=6.0 Hz, 1H), 8.23 (d, J=7.6 Hz, 1H), 8.05-8.03 (m, 2H), 7.94-7.92 (m, 1H), 7.83 (d, J=8.0 Hz, 1H), 7.64 (d, J=8.0 Hz, 2H), 7.55-7.51 (m, 2H), 7.45-7.39 (m, 2H), 7.32 (d, J=8.0 Hz, 2H), 4.73 (dd, J=15.6, 5.9 Hz, 1H), 4.68 (dd, J=15.6, 5.8 Hz, 1H), 4.54-4.44 (m, 3H), 4.30-4.12 (m, 4H), 3.52 (dd, J=9.6, 5.2 Hz, 1H), 3.32-3.29 (m, 1H), 3.22 (s, 3H), 2.51-2.46 (m, 1H), 2.36 (s, 3H), 2.27 (dd, J=15.0, 6.1 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 170.12, 169.03, 168.59, 142.44, 138.28, 134.18, 133.18, 130.74, 129.30, 128.44, 127.38, 126.61, 126.13, 125.75, 125.32, 124.90, 123.41, 76.94, 76.74, 71.56, 58.34, 53.25, 52.75, 43.75, 40.27, 38.45, 21.00.
DPLG-2153 was prepared following the general procedure of HATU mediated coupling of Boc-β-methoxyalanine dicyclohexylamine (50 mg, 0.125 mmol) and 4-(aminomethyl)indole (20 mL, 0.138 mmol). The product was isolated by ethyl acetate extraction and purified by silica-gel column chromatography (yield 40 mg, 93%). 1H NMR (500 MHz, Chloroform-d) δ 8.57 (bs, 1H), 7.35 (dd, J=8.1, 2.0 Hz, 1H), 7.22-7.20 (m, 1H), 7.16-7.12 (m, 1H), 7.02-7.00 (m, 1H), 6.74 (bs, 1H), 6.58-6.56 (m, 1H), 5.42 (m, 1H), 4.76 (m, 2H), 4.28 (m, 1H), 3.85-3.82 (m, 1H), 3.49 (dd, J=9.3, 6.3 Hz, 1H), 3.32 (s, 3H), 1.41 (s, 9H).
Tert-butyl (S)-(1-(((1H-indol-4-yl)methyl)amino)-3-methoxy-1-oxopropan-2-yl)carbamate (40 mg, 0.115 mmol) was added to 2 mL 4N HCl in dioxane at 20° C. Within 30 minutes the reaction mixture turned red. LCMS showed completion of the reaction. Dioxane and HCl were evaporated. The crude was coupled with (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (16.8 mg, 0.05 mmol) following the general procedure for HATU mediated coupling. The product was purified by HPLC to give pure product (8.2 mg, 29%). 1H NMR (500 MHz, DMSO-d6) δ 11.09 (s, 1H), 10.36 (s, 1H), 8.46 (t, J=5.9 Hz, 1H), 8.20 (d, J=8.0 Hz, 1H), 8.02 (d, J=7.9 Hz, 1H), 7.30 (t, J=2.8 Hz, 1H), 7.29-7.25 (m, 3H), 7.20-7.15 (m, 3H), 7.02-6.99 (m, 1H), 6.89 (d, J=7.2 Hz, 1H), 6.51 (t, J=2.4 Hz, 1H), 4.67-4.63 (m, 1H), 4.55 (dd, J=15.2, 5.9 Hz, 1H), 4.49 (dd, J=15.2, 5.9 Hz, 1H), 4.44-4.41 (m, 1H), 3.57 (dd, J=9.8, 6.0 Hz, 1H), 3.50 (dd, J=9.8, 4.7 Hz, 1H), 3.23 (s, 3H), 2.81-2.75 (m, 2H), 2.53-2.47 (m, 1H), 2.44-2.38 (m, 2H), 2.33 (dd, J=14.9, 8.0 Hz, 1H), 1.12 (s, 9H).
DPLG-2154 was prepared following the general procedure of HATU mediated coupling of Boc-β-methoxyalanine dicyclohexylamine (100 mg, 0.25 mmol) and 3-methoxybenzyl amine (36 mL, 0.275 mmol). The product was isolated by ethyl acetate extraction and purified by silica-gel column chromatography (yield 74 mg, 87%). 1H NMR (500 MHz, Chloroform-d) δ 7.26-7.22 (m, 1H), 6.86-6.84 (m, 1H), 6.82-6.80 (m, 2H), 6.75 (t, J=6.2 Hz, 1H), 5.42 (bs, 1H), 4.47-4.46 (m, 2H), 4.28 (m, 1H), 3.85 (dd, J=9.2, 3.8 Hz, 1H), 3.80 (s, 3H), 3.51 (dd, J=9.2, 6.2 Hz, 1H), 3.38 (s, 3H), 1.44 (s, 9H).
DPLG-2158 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methoxy-1-((3-methoxybenzyl)amino)-1-oxopropan-2-yl)carbamate (74 mg, 0.219 mmol). After 2 h, dichloromethane and excess TFA were evaporated and crude was dried under vacuum to give product (70 mg, 91%). 1H NMR (500 MHz, Chloroform-d) δ 9.13 (bs, 1H), 8.01 (bs, 2H), 7.56 (t, J=5.8 Hz, 1H), 7.22 (t, J=7.9 Hz, 1H), 6.80 (dd, J=8.3, 2.5 Hz, 1H), 6.75 (d, J=7.6 Hz, 1H), 6.73-6.72 (m, 1H), 4.41-4.35 (m, 2H), 4.29 (dd, J=15.0, 5.5 Hz, 1H), 3.75 (s, 3H), 3.73 (dd, J=10.4, 4.7 Hz, 1H), 3.67 (dd, J=10.4, 5.3 Hz, 1H), 3.32 (s, 3H).
DPLG-2160 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (15.8 mg, 0.047 mmol) and (S)-2-amino-3-methoxy-N-(3-methoxybenzyl) propanamide 2,2,2 trifluoroacetate (18.4 mg, 0.052 mmol). The product was purified by HPLC (yield 16.2 mg, 62%). 1H NMR (500 MHz, DMSO-d6) δ 10.39 (s, 1H), 8.51 (t, J=6.1 Hz, 1H), 8.20 (d, J=7.9 Hz, 1H), 8.09 (d, J=7.7 Hz, 1H), 7.27-7.25 (m, 2H), 7.21-7.15 (m, 4H), 6.82-6.81 (m, 2H), 6.77 (dd, J=8.1, 2.4 Hz, 1H), 4.67-4.63 (m, 1H), 4.40-4.37 (m, 1H), 4.30-4.21 (m, 2H), 3.72 (s, 3H), 3.61 (dd, J=9.8, 5.9 Hz, 1H), 3.50 (dd, J=9.8, 4.6 Hz, 1H), 3.25 (s, 3H), 2.80-2.76 (m, 2H), 2.53-2.48 (m, 1H), 2.43-2.39 (m, 2H), 2.34 (dd, J=14.8, 7.6 Hz, 1H), 1.11 (s, 9H).
DPLG-2184 was prepared following the general procedure of HATU mediated coupling of Boc-β-methoxyalanine dicyclohexylamine (200 mg, 0.5 mmol) and 2,3-dimethoxybenzyl amine (83 μl, 0.55 mmol). The product was isolated by ethyl acetate extraction and purified by silica-gel column chromatography (yield=184 mg, quant.). 1H NMR (500 MHz, DMSO-d6) δ 8.24 (t, J=5.9 Hz, 1H), 7.00-6.97 (m, 1H), 6.93 (dd, J=8.3, 1.7 Hz, 1H), 6.86 (d, J=8.3 Hz, 1H), 6.81 (dd, J=7.6, 1.7 Hz, 1H), 4.31-4.23 (m, 2H), 4.20-4.15 (m, 1H), 3.79 (s, 3H), 3.72 (s, 3H), 3.48-3.46 (m, 2H), 3.24 (s, 3H), 1.38 (s, 9H).
DPLG-2190 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(1-((2, 3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)carbamate (180 mg, 0.49 mmol). Crude product was dried under vacuum to give viscous paste, which upon standing turned solid. 1H NMR (500 MHz, DMSO-d6) δ 8.78 (t, J=5.7 Hz, 1H), 8.21 (bs, 3H), 7.05-7.02 (m, 1H), 6.97 (dd, J=8.2, 1.6 Hz, 1H), 6.83 (dd, J=7.6, 1.6 Hz, 1H), 4.36 (dd, J=15.1, 5.7 Hz, 1H), 4.31 (dd, J=15.1, 5.6 Hz, 1H), 4.04-4.01 (m, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 3.66 (d, J=5.1 Hz, 2H), 3.30 (s, 3H).
DPLG-2191 was prepared following the general procedure of HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (159 mg, 0.49 mmol) and (S)-2-amino-N-(2,3-dimethoxybenzyl)-3- methoxypropanamide 2,2,2-trifluoroacetate (0.49 mmol, from previous step). The product was isolated by ethyl acetate extraction and recrystallized with ethanol-water (yield=245 mg, 87% for 2 steps). 1H NMR (500 MHz, DMSO-d6) δ 8.29 (t, J=5.8 Hz, 1H), 7.86 (d, J=7.9 Hz, 1H), 7.38-7.31 (m, 5H), 7.28 (d, J=8.0 Hz, 1H), 7.00-6.97 (m, 1H), 6.92 (dd, J=8.2, 1.6 Hz, 1H), 6.78 (dd, J=7.7, 1.6 Hz, 1H), 5.08 (d, J=12.6 Hz, 1H), 5.05 (d, J=12.6 Hz, 1H), 4.45-4.37 (m, 2H), 4.31-4.23 (m, 2H), 3.78 (s, 3H), 3.71 (s, 3H), 3.56 (dd, J=9.7, 5.6 Hz, 1H), 3.46 (dd, J=9.7, 5.1 Hz, 1H), 3.24 (s, 3H), 2.82-2.78 (m, 1H), 2.61 (dd, J=16.3, 8.9 Hz, 1H), 1.37 (s, 9H).
DPLG-2197 was synthesized by following the general procedure for Boc-deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-1-((2,3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)amino)-4-oxobutanoate (115 mg, 0.2 mmol). The crude was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 8.81 (d, J=7.8 Hz, 1H), 8.37 (t J=5.9 Hz, 1H), 8.26 (bs, 3H), 7.39-7.34 (m, 5H), 6.99 (t, J=7.9 Hz, 1H), 6.93 (dd, J=8.3, 1.6 Hz, 1H), 6.78 (dd, J=7.7, 1.6 Hz, 1H), 5.14 (d, J=12.4 Hz, 1H), 5.11 (d, J=12.4 Hz, 1H), 4.55-4.51 (m, 1H), 4.33-4.23 (m, 3H), 3.78 (s, 3H), 3.71 (s, 3H), 3.59 (dd, J=9.9, 6.2 Hz, 1H), 3.52 (dd, J=9.9, 4.8 Hz, 1H), 3.27 (s, 3H), 3.02 (dd, J=17.5, 4.1 Hz, 1H), 2.82 (dd, J=17.5, 8.8 Hz, 1H).
DPLG-2200 was prepared following the general procedure of HATU mediated coupling of 3-phenylpropanoic acid (33 mg, 0.22 mmol) and benzyl (S)-3-amino-4-(((S)-1-((2,3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)amino)-4- oxobutanoate 2,2,2-trifluoroacetate (0.2 mmol, from previous step). The reaction mixture was precipitated with water and the precipitate was filtered and dried to give product (110 mg, 91% for 2 steps). 1H NMR (500 MHz, DMSO-d6) δ 8.30 (d, J=7.9 Hz, 1H), 8.24 (t, J=5.9 Hz, 1H), 8.04 (d, J=7.9 Hz, 1H), 7.38-7.32 (m, 5H), 7.28-7.25 (m, 2H), 7.18-7.15 (m, 3H), 6.99 (t, J=7.9 Hz, 1H), 6.92 (dd, J=8.0, 1.6 Hz, 1H), 6.79 (dd, J=7.5, 1.6 Hz, 1H), 5.04 (s, 2H), 4.74 (td, J=8.1, 5.7 Hz, 1H), 4.42 (dt, J=7.8, 5.4 Hz, 1H), 4.31-4.24 (m, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.56 (dd, J=9.8, 5.8 Hz, 1H), 3.47 (dd, J=9.8, 5.0 Hz, 1H), 3.24 (s, 3H), 2.85-2.77 (m, 3H), 2.59 (dd, J=16.2, 8.3 Hz, 1H), 2.41-2.38 (m, 2H).
Benzyl (S)-4-(((S)-1-((2,3-dimethoxybenzyl)amino)-3-methoxy-1-oxopropan-2-yl)amino)-4-oxo-3-(3-phenylpropanamido)butanoate (110 mg, 0.18 mmol) was dissolved in 30 mL methanol, and 35 mg palladium on carbon (10%) was added carefully. The air of flask was replaced by hydrogen and the mixture was stirred at room temperature under hydrogen atmosphere for 2 days. The reaction was not complete. Mixture was filtered through celite. The filterate was evaporated and purified by HPLC to give 40 mg product (50% bsrm; 16.0 mg starting material was recovered). 1H NMR (500 MHz, DMSO-d6) δ 12.34 (s, 1H), 8.27-8.24 (m, 2H), 7.95 (d, J=7.9 Hz, 1H), 7.28-7.25 (m, 2H), 7.20-7.15 (m, 3H), 6.99 (t, J=7.9 Hz, 1H), 6.93 (dd, J=8.2, 1.5 Hz, 1H), 6.80 (dd, J=7.7, 1.5 Hz, 1H), 4.66-4.60 (m, 1H), 4.43-4.38 (m, 1H), 4.28 (d, J=5.9 Hz, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.56 (dd, J=9.7, 5.8 Hz, 1H), 3.47 (dd, J=9.7, 5.0 Hz, 1H), 3.24 (s, 3H), 2.79 (t, J=7.9 Hz, 2H), 2.68 (dd, J=16.6, 5.9 Hz, 1H), 2.48-2.39 (m, 3H).
DPLG-2211 was prepared following the general procedure for HATU mediated coupling of 0-tert-butyl hydroxylamine hydrochloride (6.6 mg, 0.0525 mmol) and (S)-4-(((S)-1-((2,3 -dimethoxybenzyl)amino)-3 -methoxy-1-oxopropan-2-yl)amino)-4-oxo -3-(3 -phenylpropanamido)butanoic acid (18.0 mg, 0.035 mmol). After completion of reaction (1 h), the mixture was diluted with water and extracted with ethyl acetate. The organic layer was evaporated and purified by HPLC to give the product (11.0 mg, 54%). 1H NMR (500 MHz, DMSO-d6) δ 10.37 (s, 1H), 8.37 (t, J=6.0 Hz, 1H), 8.20 (d, J=7.9 Hz, 1H), 8.05 (d, J=7.7 Hz, 1H), 7.28-7.25 (m, 2H), 7.19-7.15 (m, 3H), 6.98 (t, J=7.9 Hz, 1H), 6.92 (dd, J=8.1, 1.6 Hz, 1H), 6.82 (d, J=7.7 Hz, 1H), 4.67-4.63 (m, 1H), 4.40 (dt, J=7.6, 5.3 Hz, 1H), 4.31-4.24 (m, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.59 (dd, J=9.8, 6.0 Hz, 1H), 3.49 (dd, J=9.8, 4.6 Hz, 1H), 3.24 (s, 3H), 2.80-2.76 (m, 2H), 2.52-2.48 (m, 1H), 2.43-2.39 (m, 2H), 2.33 (dd, J=14.9, 7.8 Hz, 1H), 1.11 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.97, 171.35, 169.68, 168.02, 152.58, 146.48, 141.70, 132.79, 128.76, 128.58, 126.32, 124.13, 120.29, 111.99, 81.02, 72.26, 60.39, 58.73, 56.12, 53.56, 50.10, 37.38, 37.24, 35.27, 31.44, 26.70.
DPLG-2175 was prepared following the general procedure for HATU coupling of Boc-β-methoxyalanine dicyclohexylamine (80 mg, 0.02 mmol) and quinolin-8-ylmethylamine dihydrochloride (46 mg, 0.2 mmol) in 2 mL dimethylformamide. (Note: reaction mixture was not soluble in dimethylformamide) After completion of the reaction (3 h), water was added to the reaction mixture (the reaction mixture turned transparent) and extracted twice with chloroform. The combined organic layer was washed with water followed by brine, dried over anhydrous sodium sulfate, and evaporated. The crude product was purified by HPLC to give 68.5 mg (95%) of pure product. 1H NMR (500 MHz, DMSO-d6) δ 8.96-8.94 (m, 1H), 8.46 (t, J=6.2 Hz, 1H), 8.39 (dd, J=8.1, 1.6 Hz, 1H), 7.88 (d, J=8.1 Hz, 1H), 7.64 (d, J=7.1 Hz, 1H), 7.58 (dd, J=8.3, 4.2 Hz, 1H), 7.54 (t, J=7.6 Hz, 1H), 6.96 (d, J=8.1 Hz, 1H), 4.96-4.87 (m, 2H), 4.26-4.22 (m, 1H), 3.54-3.53 (m, 2H), 3.27 (s, 3H), 1.39 (s, 9H).
DPLG-2181 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methoxy-1-oxo -1-((quinolin-8-ylmethyl)amino)propan-2-yl)carbamate (68.5 mg, 0.19 mmol). The crude was used in next step. 1H NMR (500 MHz, DMSO-d6) δ 8.98 (dd, J=4.2, 1.8 Hz, 1H), 8.95 (t, J=5.9 Hz, 1H), 8.42 (dd, J=8.2, 1.8 Hz, 1H), 8.22 (bs, 3H), 7.93 (dd, J=8.1, 1.5 Hz, 1H), 7.67 (dd, J=7.1, 1.5 Hz, 1H), 7.62-7.58 (m, 2H), 5.02 (dd, J=15.9, 5.9 Hz, 1H), 4.96 (dd, J=15.9, 5.7 Hz, 1H), 4.13-4.10 (m, 1H), 3.75-3.69 (m, 2H), 3.32 (s, 3H).
DPLG-2188 was prepared following the general procedure for HATU mediated coupling of N-(tert-butoxycarbonyl)-L-aspartic acid 4-benzyl ester (61.4 mg, 0.19 mmol) and (S)-2-amino-3-methoxy-N-(quinolin-8-ylmethyl)propanamide bis(2,2,2-trifluoroacetate) (0.19 mmol, from previous step). After completion of reaction (1 h), reaction mixture was diluted with water and extracted twice with ethyl acetate. Ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated. The crude was dried under high 1H NMR (500 MHz, DMSO-d6) δ 8.96 (dd, J=4.3, 1.8 Hz, 1H), 8.49 (t, J=5.9 Hz, 1H), 8.43 (dd, J=8.3, 1.8 Hz, 1H), 7.95 (d, J=7.8 Hz, 1H), 7.90 (dd, J=8.0, 1.5 Hz, 1H), 7.63 (dd, J=7.1, 1.5 Hz, 1H), 7.61-7.55 (m, 2H), 7.37-7.30 (m, 6H), 5.09 (d, J=12.7 Hz, 1H), 5.05 (d, J=12.7 Hz, 1H), 4.96 (dd, J=16.4, 6.0 Hz, 1H), 4.89 (dd, J=16.4, 5.9 Hz, 1H), 4.51-4.48 (m, 1H), 4.43 (td, J=8.5, 5.0 Hz, 1H), 3.63 (dd, J=9.7, 5.5 Hz, 1H), 3.52 (dd, J=9.7, 5.1 Hz, 1H), 3.28 (s, 3H), 2.85-2.81 (m, 1H), 2.62 (dd, J=16.2, 8.9 Hz, 1H), 1.38 (s, 9H).
DPLG-2194 was synthesized by following the general procedure for Boc-deprotection of benzyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-oxo -1-((quinolin-8-ylmethyl)amino)propan-2-yl)amino)-4 -oxobutanoate (0.19 mmol, from previous step). After completion of the reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude paste was washed twice with diethyl ether to give product as off white solid (yield=111 mg, 84% for 3 steps). 1H NMR (500 MHz, DMSO-d6)8 8.94 (dd, J=4.2, 1.8 Hz, 1H), 8.87 (d, J=7.8 Hz, 1H), 67 J=6.0 Hz, 1H), 8.39 (dd, J=8.4, 1.8 Hz, 1H), 8.27 (bs, 3H), 7.88 (dd, J=8.1, 1.5 Hz, 1H), 7.61 (dd, J=7.2, 1.5 Hz, 1H), 7.58-7.54 (m, 2H), 7.40-7.31 (m, 5H), 5.13 (J=12.5 Hz, 1H), 5.10 (d, J=12.5 Hz, 1H), 4.97 (dd, J=16.4, 6.1 Hz, 1H), 4.90 (dd, J=16.4, 5.9 Hz, 1H), 4.62-4.58 (m, 1H), 4.27 (m, 1H), 3.66 (dd, J=9.8, 6.0 Hz, 1H), 3.57 (dd, J=9.8, 4.8 Hz, 1H), 3.30 (s, 3H), 3.04 (dd, J=17.5, 3.9 Hz, 1H), 2.85-2.80 (m, 1H).
DPLG-2198 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (26.4 mg, 0.176 mmol) and benzyl (S)-3-amino-4-(((S)-3-methoxy-1-oxo-1-((quinolin-8-ylmethyl)amino)propan-2-yl)amino)-4-oxobutanoate bis(2,2,2-trifluoroacetate) (111 mg, 0.16 mmol). After completion of the reaction (3 h), the mixture was precipitated with water. The precipitate was filtered and dried to give the product (77 mg, 81%). 1H NMR (500 MHz, DMSO-d6) δ 8.94 (dd, J=4.2, 1.8 Hz, 1H), 8.43 (t, J=6.1 Hz, 1H), 8.38 (dd, J=8.3, 1.8 Hz, 1H), 8.32 (d, J=8.0 Hz, 1H), 8.12 (d, J=7.8 Hz, 1H), 7.87 (dd, J=8.1, 1.5 Hz, 1H), 7.61 (dd, J=7.2, 1.5 Hz, 1H), 7.57-7.53 (m, 2H), 7.35-7.30 (m, 5H), 7.27-7.24 (m, 2H), 7.19-7.15 (m, 3H), 5.03 (s, 2H), 4.95 (dd, J=16.4, 6.1 Hz, 1H), 4.90 (dd, J=16.4, 5.9 Hz, 1H), 4.77 (td, J=8.2, 5.7 Hz, 1H), 4.49 (dt, J=7.8, 5.3 Hz, 1H), 3.62 (dd, J=9.7, 5.8 Hz, 1H), 3.52 (dd, J=9.7, 5.0 Hz, 1H), 3.28 (s, 3H), 2.85-2.77 (m, 3H), 2.59 (dd, J=16.2, 8.4 Hz, 1H), 2.42-2.38 (m, 2H).
Benzyl (S)-4-(((S)-3-methoxy-1-oxo-1-((quinolin-8-ylmethyl)amino)propan-2-yl)amino)-4-oxo-3-(3-phenylpropanamido)butanoate (73 mg, 0.122 mmol) was dissolved in 3 mL methanol and 25 mg 10 palladium on carbon (10%) was added. The mixture was stirred overnight under hydrogen atmosphere. The mixture was filtered through celite, evaporated, and purified by HPLC to give the product (19 mg, 30%). 1H NMR (500 MHz, DMSO-d6) δ 12.34 (s, 1H), 8.26-8.23 (m, 2H), 7.99 (d, J=7.8 Hz, 1H), 7.28-7.25 (m, 2H), 7.21-7.15 (m, 3H), 6.81 (dd, J=7.5, 1.5 Hz, 1H), 6.76 (dd, J=7.5, 1.5 Hz, 1H), 6.40 (t, J=7.4 Hz, 1H), 4.63 (td, J=7.8, 5.8 Hz, 1H), 4.40 (dt, J=7.7, 5.4 Hz, 1H), 4.08 (dd, J=15.3, 6.1 Hz, 1H), 4.03 (dd, J=15.3, 5.9 Hz, 1H), 3.56 (dd, J=9.8, 5.8 Hz, 1H), 3.47 (dd, J=9.8, 5.0 Hz, 1H), 3.24 (s, 3H), 3.22 (t, J=5.5 Hz, 2H), 2.80 (t, J=7.9 Hz, 2H), 2.70-2.65 (m, 3H), 2.48-2.39 (m, 3H), 1.79-1.74 (m, 2H).
DPLG-2226 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-oxo-1-(((1,2,3,4 -tetrahydroquinolin-8-yl)methyl)amino)propan-2-yl)amino)-4-oxo-3-(3-phenylpropanamido)butanoic acid (19.0 mg, 0.037 mmol) and O-tert-butylhydroxylamine hydrochloride (5.1 mg, 0.041 mmol). The product was purified by HPLC (17.9 mg, 83%). 1H NMR (500 MHz, DMSO-d6) δ 10.40 (s, 1H), 8.41 (t, J=6.1 Hz, 1H), 8.18 (d, J=7.9 Hz, 1H), 8.10 (d, J=7.8 Hz, 1H), 7.28-7.25 (m, 2H), 7.20-7.15 (m, 3H), 6.84 (d, J=7.5 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.38 (t, J=7.4 Hz, 1H), 5.24-5.20 (m, 1H), 4.67-4.62 (m, 1H), 4.40-4.37 (m, 1H), 4.10 (dd, J=15.1, 6.3 Hz, 1H), 4.00 (dd, J=15.1, 5.8 Hz, 1H), 3.60 (dd, J=9.8, 5.9 Hz, 1H), 3.49 (dd, J=9.8, 4.5 Hz, 1H), 3.24 (s, 3H), 3.22-3.21 (m, 2H), 2.80-2.76 (m, 2H), 2.66 (t, J=6.4 Hz, 2H), 2.52-2.48 (m, 1H), 2.42-2.39 (m, 2H), 2.35 (dd, J=14.8, 7.5 Hz, 1H), 1.79-1.74 (m, 2H), 1.14 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.45, 170.86, 169.46, 167.61, 142.51, 141.23, 128.29, 128.11, 128.00, 126.47, 125.85, 121.30, 120.04, 114.64, 80.59, 71.75, 58.29, 53.09, 49.63, 41.33, 36.77, 34.84, 30.99, 27.16, 26.26, 21.33.
DPLG-2220 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (20.2 mg, 0.06 mmol) and (S)-2-amino-3-methoxy-N-(quinolin-8-ylmethyl)propanamide bis(2,2,2-trifluoroacetate) (32.2 mg, 0.066 mmol). The product was purified by HPLC (yield=21.6 mg, 62%). 1H NMR (500 MHz, DMSO-d6) δ 10.36 (s, 1H), 8.95 (dd, J=4.2, 1.8 Hz, 1H), 8.57 (t, J=6.1 Hz, 1H), 8.38 (dd, J=8.3, 1.8 Hz, 1H), 8.22 (d, J=8.0 Hz, 1H), 8.15 (d, J=7.8 Hz, 1H), 7.87 (dd, J=8.3, 1.5 Hz 1H), 7.63 (dd, J=7.4, 1.5 Hz, 1H), 7.59-7.54 (m, 2H), 7.28-7.25 (m, 2H), 7.20-7.17 (m, 3H), 4.98-4.89 (m, 2H), 4.71-4.67 (m, 1H), 4.50-4.46 (m, 1H), 3.66 (dd, J=9.7, 5.8 Hz, 1H), 3.55 (dd, J=9.7, 4.7 Hz, 1H), 3.29 (s, 3H), 2.80-2.77 (m, 2H), 2.55-2.51 (m, 1H), 2.42 (td, J=7.6, 3.6 Hz, 2H), 2.35 (dd, J=14.7, 7.7 Hz, 1H), 1.06 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.95, 171.47, 169.97, 168.04, 150.09, 145.84, 141.70, 136.89, 136.79, 128.76, 128.58, 128.10, 127.15, 126.89, 126.67, 126.32, 121.86, 80.98, 72.30, 58.78, 53.74, 50.11, 39.16, 37.25, 35.29, 31.45, 26.66.
DPLG-2218 was prepared following the general procedure for HATU mediated coupling of Boc-Val-OH (217 mg, 1 mmol) and 1-naphthylmethylamine (161 μL, 1.1 mmol). The product was isolated by ethyl acetate extraction and purified by recrystallization with ethanol/water (322 mg, 90%). 1H NMR (500 MHz, DMSO-d6) δ 8.37 (t, J=5.7 Hz, 1H), 8.07-8.05 (m, 1H), 7.95-7.93 (m, 1H), 7.84 (d, J=7.9 Hz, 1H), 7.55-7.52 (m, 2H), 7.49-7.42 (m, 2H), 6.71 (d, J=8.9 Hz, 1H), 4.75 (d, J=5.6 Hz, 2H), 3.84-3.81 (m, 1H), 1.96-1.89 (m, 1H), 1.38 (s, 9H), 0.83 (d, J=6.5 Hz, 6H).
DPLG-2221 was synthesized by following the general procedure for Boc-deprotection of tert-butyl (S)-(3-methyl-1-((naphthalen-1-ylmethyl)amino)-1-oxobutan-2-yl)carbamate (107 mg, 0.3 mmol). After completion of reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated to give a paste. The paste was treated with hexane and left overnight. A white solid appeared, which was isolated by decantation of hexane. The solid was dried under vacuum to give pure product (97 mg, 87%). 1H NMR (500 MHz, DMSO-d6) δ 8.94 (t, J=5.7 Hz, 1H), 8.19 (d, J=5.2 Hz, 3H), 8.08-8.07 (m, 1H), 7.98-7.96 (m, 1H), 7.89 (d, J=7.9 Hz, 1H), 7.58-7.47 (m, 4H), 4.90 (dd, J=14.9, 5.8 Hz, 1H), 4.73 (dd, J=14.9, 5.1 Hz, 1H), 3.63-3.61 (m, 1H), 2.10-2.03 (m, 1H), 0.91-0.88 (m, 6H).
DPLG-2224 was prepared following the general procedure for HATU mediated coupling of (S)-4-(tert-butoxyamino)-4-oxo-2-(3-phenylpropanamido)butanoic acid (20.2 mg, 0.06 mmol) and (S)-2-amino-3-methyl-N-(naphthalen-1-ylmethyl) butanamide 2,2,2-trifluoroacetate (24.4 mg, 0.066 mmol). The product was purified by HPLC (yield=12.2 mg, 35%). 1H NMR (500 MHz, DMSO-d6) δ 10.33 (s, 1H), 8.52 (t, J=5.8 Hz, 1H), 8.23 (d, J=8.0 Hz, 1H), 8.09-8.06 (m, 1H), 7.95-7.93 (m, 1H), 7.86-7.83 (m, 1H), 7.74 (d, J=8.8 Hz, 1H), 7.56-7.51 (m, 2H), 7.48-7.45 (m, 2H), 7.27-7.24 (m, 2H), 7.20-7.15 (m, 3H), 4.79-4.65 (m, 3H), 4.20-4.17 (m, 1H), 2.81-2.77 (m, 2H), 2.50-2.47 (m, 1H), 2.42-2.39 (m, 2H), 2.31 (dd, J=14.8, 8.0 Hz, 1H), 2.04-1.99 (m, 1H), 1.12 (s, 9H), 0.81 (d, J=6.8 Hz, 3H), 0.78 (d, J=6.7 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 171.97, 171.27, 170.98, 168.00, 141.67, 134.92, 133.72, 131.31, 128.92, 128.76, 128.58, 128.01, 126.59, 126.33, 126.24, 126.10, 125.84, 124.02, 80.99, 58.24, 50.18, 37.27, 35.05, 31.48, 30.93, 26.72, 19.67, 18.13.
DPLG-2195 was prepared following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (50 mg, 0.33 mmol) and DPLG-2192 (173 mg, 0.3 mmol). Reaction mixture was precipitated by the addition of 5 water. The precipitate was filtered and dried to give pure product (149 mg, 83%). 1H NMR (500 MHz, DMSO-d6) δ 8.44 (t, J=5.8 Hz, 1H), 8.30 (d, J=8.0 Hz, 1H), 8.08 (d, J=7.9 Hz, 1H), 8.04-8.02 (m, 1H), 7.94-7.93 (m, 1H), 7.84-7.81 (m, 1H), 7.56-7.50 (m, 2H), 7.46-7.43 (m, 2H), 7.37-7.25 (m, 7H), 7.19-7.15 (m, 3H), 5.03 (s, 2H), 4.76-4.72 (m, 3H), 4.46 (dt, J=7.9, 5.4 Hz, 1H), 3.57 (dd, J=9.7, 5.8 Hz, 1H), 3.48 (dd, J=9.7, 5.1 Hz, 1H), 3.23 (s, 3H), 2.82-2.76 (m, 3H), 2.58 (dd, J=16.2, 8.4 Hz, 1H), 2.41-2.38 (m, 2H).
DPLG-2201 was synthesized by following the general procedure for O-debenzylation of benzyl (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 -oxo-3-(3-phenylpropanamido)butanoate (145 mg, 0.24 mmol). Yield=120 mg, 99%. 1H NMR (500 MHz, DMSO-d6) δ 12.48 (s, 1H), 8.52 (t, J=5.8 Hz, 1H), 8.25 (d, J=7.8 Hz, 1H), 8.06-8.03 (m, 2H), 7.95-7.93 (m, 1H), 7.84-7.82 (m, 1H), 7.57-7.51 (m, 2H), 7.47-7.43 (m, 2H), 7.28-7.25 (m, 2H), 7.20-7.15 (m, 3H), 4.74 (d, J=5.8 Hz, 2H), 4.63 (td, J=7.6, 6.1 Hz, 1H), 4.44 (dt, J=7.8, 5.4 Hz, 1H), 3.58 (dd, J=9.7, 5.8 Hz, 1H), 3.49 (dd, J=9.7, 5.0 Hz, 1H), 3.23 (s, 3H), 2.79 (t, J=7.9 Hz, 2H), 2.66 (dd, J=16.5, 6.2 Hz, 1H), 2.46-2.38 (m, 3H).
DPLG-2230 was prepared following the general procedure for HATU mediated coupling of (S)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4 -oxo-3-(3-phenylpropanamido)butanoic acid (15.2 mg, 0.03 mmol) and tert-butylamine (9.5 μL, 0.09 mmol). The product was purified by HPLC to give pure product (8.7 mg, 52%). 1H NMR (500 MHz, DMSO-d6) δ 8.66 (t, J=5.9 Hz, 1H), 8.19 (d, J=7.7 Hz, 1H), 8.12 (d, J=8.0 Hz, 1H), 8.07-8.05 (m, 1H), 7.94-7.92 (m, 1H), 7.83-7.81 (m, 1H), 7.55-7.50 (m, 3H), 7.46-7.15 (m, 2H), 7.28-7.25 (m, 2H), 7.20-7.15 (m, 3H), 4.79 (dd, J=15.6, 6.0 Hz, 1H), 4.70 (dd, J=15.6, 5.8 Hz, 1H), 4.63-4.59 (m, 1H), 4.45-4.41 (m, 1H), 3.63 (dd, J=9.8, 6.1 Hz, 1H), 3.54 (dd, J=9.8, 4.4 Hz, 1H), 3.24 (s, 3H), 2.78 (t, J=7.9 Hz, 2H), 2.55-2.51 (m, 1H), 2.43-2.34 (m, 3H), 1.14 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.34, 171.21, 169.26, 169.15, 141.26, 134.21, 133.16, 130.71, 128.43, 128.27, 128.12, 127.32, 126.08, 125.84, 125.68, 125.33, 124.87, 123.32, 71.76, 58.24, 53.32, 50.09, 49.74, 40.25, 38.46, 36.75, 31.05, 28.36.
DPLG-2237 was prepared following the general procedure for HATU mediated coupling of (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoic acid (DPLG-2131, DPLG-2215, DPLG-2236) (118 mg, 0.25 mmol) and tert-butylamine (32 mL, 0.3 mmol). The product was isolated by ethylacetate extraction and purified by HPLC (yield=37.0 mg). 1H NMR (500 MHz, DMSO-d6) δ 8.59 (t, J=5.8 Hz, 1H), 8.05-8.03 (m, 1H), 7.98-7.93 (m, 2H), 7.84-7.82 (m, 1H), 7.55-7.51 (m, 2H), 7.46-7.43 (m, 3H), 6.93 (d, J=8.1 Hz, 1H), 4.79-4.70 (m, 2H), 4.47-4.43 (m, 1H), 4.31-4.26 (m, 1H), 3.61 (dd, J=9.7, 5.7 Hz, 1H), 3.51 (dd, J=9.7, 4.8 Hz, 1H), 3.24 (s, 3H), 2.50-2.45 (m, 1H), 2.33 (dd, J=14.9, 7.8 Hz, 1H), 1.36 (s, 9H), 1.18 (s, 9H).
DPLG-2242 was synthesized by following the general procedure for Boc-deprotection of tert-butyl ((S)-4-(tertbutylamino)-1-(((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl)amino)-1,4 -dioxobutan-2-yl)carbamate (34.4 mg, 0.065 mmol). Yield=32 mg, 91%. 1H NMR (500 MHz, DMSO-d6) δ 8.76 (d, J=7.7 Hz, 1H), 8.67 (t, J=5.8 Hz, 1H), 8.14 (bs, 3H), 8.04-8.02 (m, 1H), 7.95-7.93 (m, 1H), 7.88 (s, 1H), 7.85-7.83 (m, 1H), 7.56-7.52 (m, 2H), 7.47-7.43 (m, 2H), 4.80-4.72 (m, 2H), 4.53 (ddd, J=7.7, 5.9, 4.6 Hz, 1H), 4.16-4.13 (m, 1H), 3.63 (dd, J=9.8, 5.9 Hz, 1H), 3.53 (dd, J=9.8, 4.6 Hz, 1H), 3.26 (s, 3H), 2.73 (dd, J=16.7, 5.2 Hz, 1H), 2.60-2.55 (m, 1H), 1.21 (s, 9H).
DPLG-2244 was synthesized following the general procedure for HATU mediated coupling of (S)-2-amino-N4-(tert-butyl)-N1—((S)-3-methoxy-1-((naphthalen-1-ylmethyl)amino)-1-oxopropan-2-yl) succinamide 2,2,2-trifluoroacetate (21.7 mg, 0.04 mmol) and 5-methylisoxazole-3-carboxylic acid (5.6 mg, 0.044 mmol). The product was purified by HPLC to give pure product (18.6 mg, 87%). 1H NMR (500 MHz, DMSO-d6) δ 8.62 (t, J=5.8 Hz, 1H), 8.56 (d, J=8.0 Hz, 1H), 8.25 (d, J=7.8 Hz, 1H), 8.05-8.03 (m, 1H), 7.95-7.93 (m, 1H), 7.85-7.82 (m, 1H), 7.54-7.51 (m, 3H), 7.45-7.43 (m, 2H), 6.54 (s, 1H), 4.80-4.74 (m, 3H), 4.50-4.46 (m, 1H), 3.60 (dd, J=9.8, 5.9 Hz, 1H), 3.53 (dd, J=9.8, 4.9 Hz, 1H), 3.23 (s, 3H), 2.58 (d, J=6.7 Hz, 2H), 2.47 (s, 3H), 1.16 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.38, 170.37, 169.19, 168.90, 158.48, 158.27, 134.17, 133.19, 130.72, 128.44, 127.40, 126.11, 125.72, 125.36, 124.97, 123.35, 101.30, 71.81, 58.25, 53.14, 50.21, 50.14, 40.29, 38.09, 28.33, 11.84.
DPLG-2231 was synthesized by following the general procedure of EDC mediated coupling of Boc-Glu-OBn (5.06 g, 15.0 mmol) with tert-butylamine (2.37 mL, 22.5 mmol). After completion of the reaction, water was added to the mixture. The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO3, water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated to give product (5.78 g, 98%) as white solid. The product was used in next step without further purification. 1H NMR (500 MHz, Chloroform-d) δ 7.43-7.29 (m, 5H), 5.58 (s, 1H), 5.27 (d, J=8.3 Hz, 1H), 5.20 (d, J=12.3 Hz, 1H), 5.13 (d, J=12.3 Hz, 1H), 4.36-4.23 (m, 1H), 2.22-2.06 (m, 3H), 2.02-1.87 (m, 1H), 1.42 (s, 9H), 1.32 (s, 9H).
DPLG-2233 was synthesized by following the general procedure for Boc-deprotection of DPLG-21002 (3.68 g, 9.38 mmol). After completion of the reaction (5 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give product (3.81 g, quant.) as a colorless paste. Product was used in the next step without further purification. 1H NMR (500 MHz, Chloroform-d) δ 8.44 (s, 3H), 7.42-7.29 (m, 5H), 6.07 (bs, 1H), 5.27 (d, J=11.9 Hz, 1H), 5.20 (d, J=11.9 Hz, 1H), 4.24-4.16 (m, 1H), 2.53-2.44 (m, 1H), 2.43-2.34 (m, 1H), 2.34-2.24 (m, 1H), 2.24-2.13 (m, 1H), 1.30 (d, J=2.1 Hz, 9H).
DPLG-2234 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoic acid (82.6 mg, 0.55 mmol) and DPLG-21008 (203.2 mg, 0.5 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with ethyl acetate. Combined organic layer was washed with aq. NaHCO3, water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated. Crude was purified by column chromatography to give product (193 mg, 91%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.28 (d, J=7.4 Hz, 1H), 7.41-7.30 (m, 5H), 7.30-7.21 (m, 3H), 7.21-7.13 (m, 3H), 5.13 (d, J=12.6 Hz, 1H), 5.10 (d, J=12.6 Hz, 1H), 4.31-4.20 (m, 1H), 2.80-2.76 (m, 2H), 2.45-2.38 (m, 2H), 2.07 (t, J=7.7 Hz, 2H), 1.97-1.84 (m, 1H), 1.79-1.67 (m, 1H), 1.22 (s, 9H).
DPLG-2239 was synthesized by following the general procedure for O-debenzylation of DPLG-2234 (180 mg, 0.34 mmol). The product was isolated as a white solid (140 mg, 99%). 1H NMR (500 MHz, DMSO-d6) δ 8 12.58 (s, 1H), 8.10 (d, J=7.7 Hz, 1H), 7.37 (s, 1H), 7.27-7.13 (m, 5H), 4.19-4.11 (m, 1H), 2.81 (t, J=7.9 Hz, 2H), 2.49-2.36 (m, 2H), 2.10-1.98 (m, 2H), 1.96-1.85 (m, 1H), 1.76-1.63 (m, 1H), 1.23 (s, 9H).
DPLG-2243 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2239 (20.1 mg, 0.06 mmol) and H-Ser(OMe)-CH2-naphth TFA salt (22.3 mg, 0.06 mmol). The crude was purified by HPLC to give product (18.8 mg, 54%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.55 (t, J=5.8 Hz, 1H), 8.10-8.00 (m, 3H), 7.96-7.92 (m, 1H), 7.83 (dd, J=6.1, 3.4 Hz, 1H), 7.56-7.50 (m, 2H), 7.47-7.43 (m, 2H), 7.35 (s, 1H), 7.28-7.23 (m, 2H), 7.21-7.13 (m, 3H), 4.75 (d, J=5.7 Hz, 2H), 4.51 (dt, J=7.7, 5.6 Hz, 1H), 4.27 (td, J=8.3, 5.3 Hz, 1H), 3.55 (dd, J=9.7, 6.0 Hz, 1H), 3.50 (dd, J=9.7, 5.4 Hz, 1H), 3.24 (s, 3H), 2.79 (t, J=7.9 Hz, 2H), 2.48-2.37 (m, 2H), 2.03 (t, J=8.0 Hz, 2H), 1.92-1.78 (m, 1H), 1.77-1.60 (m, 1H), 1.22 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.59, 171.54, 171.19, 169.39, 141.27, 134.15, 133.21, 130.74, 128.44, 128.25, 128.14, 127.44, 126.15, 125.83, 125.75, 125.36, 124.94, 123.37, 71.94, 58.24, 52.65, 52.28, 49.83, 40.30, 36.76, 32.64, 31.03, 28.50, 28.26.
DPLG-2255 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2239 (18.4 mg, 0.055 mmol) and H-Ala-CH2-naphth TFA salt (17.1 mg, 0.05 mmol). The crude was purified by HPLC to give product (20.2 mg, 74%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.45 (t, J=5.7 Hz, 1H), 8.10-8.01 (m, 3H), 7.98-7.90 (m, 1H), 7.84 (dd, J=7.5, 1.9 Hz, 1H), 7.58-7.50 (m, 2H), 7.50-7.41 (m, 2H), 7.35 (s, 1H), 7.29-7.22 (m, 2H), 7.22-7.11 (m, 3H), 4.76 (dd, J=14.2, 4.6 Hz, 1H), 4.73 (dd, J=14.2, 4.5 Hz, 1H), 4.37-4.27 (m, 1H), 4.27-4.18 (m, 1H), 2.79 (t, J=7.9 Hz, 2H), 2.47-2.36 (m, 2H), 2.09-2.00 (m, 2H), 1.90-1.79 (m, 1H), 1.75-1.63 (m, 1H), 1.24 (d, J=7.1 Hz, 3H), 1.22 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.13, 171.56, 171.22, 171.16, 141.29, 134.36, 133.24, 130.78, 128.47, 128.24, 128.15, 127.48, 126.17, 125.82, 125.77, 125.38, 125.07, 123.37, 52.28, 49.83, 48.28, 40.18, 36.74, 32.64, 31.01, 28.50, 28.29, 18.24.
TFA.H-Glu(CONHtBu)-OH (203.0 mg, 0.5 mmol) was dissolved in dichloromethane (6 mL) and triethylamine (140 μL, 1.0 mmol) was added. After stirring the mixture for 10 minutes at room temperature, TsCl (143.0 mg, 0.75 mmol) was added. The reaction mixture was stirred for 2 hours at room temperature. Dichloromethane was evaporated, and the crude was dissolved in ethyl acetate. The solution was washed with water, 1N HCl followed by brine. The product was purified by column chromatography to give product (177.0 mg, 79%) as white solid. 1H NMR (500 MHz,
Chloroform-d) δ 7.66 (d, J=8.5 Hz, 2H), 7.35-7.29 (m, 3H), 7.20 (d, J=8.0 Hz, 2H), 7.18-7.13 (m, 2H), 5.52 (s, 1H), 5.47 (d, J=9.1 Hz, 1H), 4.91 (d, J=12.2 Hz, 1H), 4.87 (d, J=12.2 Hz, 1H), 3.93-3.84 (m, 1H), 2.38 (s, 3H), 2.33-2.11 (m, 3H), 1.88-1.77 (m, 1H), 1.35 (s, 9H).
DPLG-2254 was prepared by following the general procedure for O-debenzylation of DPLG-2238 (170 mg, 0.38 mmol). The product (135 mf, quant.) was isolated as a white solid. 1H NMR (500 MHz, Chloroform-d) δ 7.69 (d, J=7.9 Hz, 2H), 7.26 (d, J=7.9 Hz, 2H), 6.15-5.91 (m, 2H), 3.82-3.69 (m, 1H), 2.39 (s, 3H), 2.35-2.27 (m, 1H), 2.21-2.12 (m, 1H), 2.11-2.02 (m, 1H), 1.99-1.88 (m, 1H), 1.31 (s, 9H).
DPLG-2256 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2254 (29.0 mg, 0.08 mmol) and H-Ala-CH2-naphth TFA salt (27.4 mg, 0.08 mmol). The crude was purified by HPLC to give product (32.8 mg, 74%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.43 (t, J=5.7 Hz, 1H), 8.09 (d, J=7.3 Hz, 1H), 8.04-7.98 (m, 1H), 7.97-7.90 (m, 1H), 7.86 (bs, 1H), 7.84 (d, J=8.1 Hz, 1H), 7.63 (d, J=8.3 Hz, 2H), 7.58-7.49 (m, 2H), 7.49-7.42 (m, 1H), 7.42-7.39 (m, 1H), 7.38 (s, 1H), 7.30 (d, J=7.9 Hz, 2H), 4.75 (dd, J=15.4, 5.8 Hz, 1H), 4.69 (dd, J=15.4, 5.6 Hz, 1H), 4.11-4.01 (m, 1H), 3.74-3.67 (m, 1H), 2.34 (s, 3H), 2.11-1.93 (m, 2H), 1.77-1.66 (m, 1H), 1.66-1.56 (m, 1H), 1.21 (s, 9H), 1.07 (d, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 171.85, 171.05, 169.95, 142.40, 137.98, 134.29, 133.24, 130.77, 129.23, 128.46, 127.51, 126.66, 126.17, 125.78, 125.37, 125.11, 123.37, 55.78, 49.84, 48.11, 40.14, 32.34, 29.23, 28.46, 20.94, 18.15.
DPLG-3010 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2254 (42.8 mg, 0.12 mmol) with 3-aminopropanamide hydrochloride (22.4 mg, 0.18 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with dichloromethane. The combined organic layer was evaporated and purified by HPLC to give product (21.9 mg, 43%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 7.88-7.74 (m, 2H), 7.61 (d, J=8.0 Hz, 2H), 7.40-7.25 (m, 4H), 6.82 (s, 1H), 3.58-3.42 (m, 1H), 3.12-2.89 (m, 2H), 2.36 (s, 3H), 2.07 (t, J=7.1 Hz, 2H), 2.02-1.85 (m, 2H), 1.69-1.50 (m, 2H), 1.19 (s, 9H). 13C NMR (126 MHz, DMSO) δ 172.77, 171.16, 170.43, 142.78, 138.02, 129.51, 126.75, 56.32, 50.08, 35.21, 34.74, 32.31, 29.10, 28.62, 21.12.
DPLG-3023 was synthesized by following the general procedure for EDC mediated coupling of Boc-Asp(OH)-OBn (5.01 g, 15.49 mmol) with tert-butyl amine (2.44 mL, 23.24 mmol). After completion of the reaction, the mixture was diluted with water and extracted twice with ethyl acetate. The combined organic layer was washed with aq. NaHCO3, water, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated to give product (5.80 g, 99%) as a white solid. The product was used in next step without further purification. 1H NMR (500 MHz, Chloroform-d) δ 7.33 (s, 2H), 7.36-7.26 (m, 2H), 5.84 (d, J=8.7 Hz, 1H), 5.40 (bs, 1H), 5.21 (d, J=12.4 Hz, 1H), 5.14 (d, J=12.4 Hz, 1H), 4.54-4.47 (m, 1H), 2.79 (dd, J=15.8, 5.0 Hz, 1H), 2.62 (dd, J=15.8, 4.2 Hz, 1H), 1.42 (s, 9H), 1.29 (s, 9H).
DPLG-3047 was synthesized by following the general procedure for Boc-deprotection of DPLG-21009 (3.84 g, 10.15 mmol). After completion of the reaction (3 h), excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give a colorless paste. The compound was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 8.36 (bs, 3H), 7.85 (s, 1H), 7.46-7.29 (m, 5H), 5.24 (d, J=12.6 Hz, 1H), 5.18 (d, J=12.6 Hz, 1H), 4.39-4.29 (m, 1H), 2.83-2.66 (m, 2H), 1.22 (s, 9H).
DPLG-21012 was synthesized by following the general procedure for the HATU mediated coupling of 3-phenylpropanoic acid (1.68 g, 11.17 mmol) with DPLG-21011 (3.98 g, 10.15 mmol). After completion of the reaction, water was added. A white precipitate was formed. The precipitate was filtered and washed with water. The precipitate was dried in air to give product (3.92 g, 94%) as a white solid. 1H NMR (500 MHz, Chloroform-d) δ 7.39-7.29 (m, 5H), 7.29-7.23 (m, 2H), 7.21-7.14 (m, 3H), 6.88 (d, J=8.0 Hz, 1H), 5.32 (s, 1H), 5.20 (d, J=12.3 Hz, 1H), 5.14 (d, J=12.3 Hz, 1H), 4.84-4.77 (m, 1H), 2.95 (t, J=7.9 Hz, 2H), 2.81 (dd, J=15.7, 4.4 Hz, 1H), 2.61-2.47 (m, 3H), 1.28 (s, 9H).
DPLG-21013 was synthesized by following the procedure for O-debenzylation of DPLG-21012 (1.44 g, 3.50 mmol). The product (1.11 g, 99%) was isolated as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.54 (s, 1H), 8.04 (d, J=8.0 Hz, 1H), 7.45 (s, 1H), 7.29-7.23 (m, 2H), 7.23-7.13 (m, 3H), 4.52-4.44 (m, 1H), 2.83-2.76 (m, 2H), 2.49-2.44 (m, 1H), 2.44-2.34 (m, 3H), 1.22 (s, 9H).
DPLG-2294 was synthesized by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Glu(CONHtBu)-OH (46.8 mg, 0.14 mmol) and H-Ala-OBn HCl salt (33.0 mg, 0.154 mmol). After completion of the reaction, water was added to the reaction mixture and extracted twice ethyl acetate. The combined organic layer was washed 1N HCl followed by brine and dried over anhydrous sodium sulfate. Ethyl acetate was evaporated, and the crude was recrystallized from ethanol-water to give product (37.3 mg, 54%) as white solid. 1H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J=7.2 Hz, 1H), 7.40-7.29 (m, 5H), 7.29-7.23 (m, 3H), 7.22-7.15 (m, 2H), 6.89 (d, J=6.7 Hz, 1H), 5.58 (s, 1H), 5.19 (d, J=12.3 Hz, 1H), 5.13 (d, J=12.3 Hz, 1H), 4.59-4.49 (m, 1H), 4.43-4.35 (m, 1H), 2.95 (t, J=8.2 Hz, 2H), 2.57-2.46 (m, 2H), 2.26-2.19 (m, 2H), 1.96-1.88 (m, 2H), 1.42 (d, J=7.3 Hz, 3H), 1.36 (s, 9H).
DPLG-2297 was synthesized by following the general procedure for O-debenzylation of DPLG-2294 (37.3 mg, 0.075 mmol). The product (30.0 mg, quant.) was isolated as white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.51 (bs, 1H), 8.10 (bs, 1H), 7.97 (d, J=8.2 Hz, 1H), 7.32 (s, 1H), 7.32-7.24 (m, 2H), 7.23-7.13 (m, 3H), 4.29-4.20 (m, 1H), 4.20-4.10 (m, 1H), 2.80 (t, J=7.9 Hz, 2H), 2.45-2.41 (m, 2H), 2.02 (t, J=8.2 Hz, 2H), 1.89-1.78 (m, 1H), 1.70-1.57 (m, 1H), 1.30-1.16 (m, 12H).
DPLG-3012 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2297 (14.2 mg, 0.035 mmol) with 2-(1-naphthyl)ethylamine hydrochloride (8.0 mg, 0.0385 mmol). The crude was purified by HPLC to give product (15.6 mg, 80%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.18 (d, J=8.2 Hz, 1H), 8.09-8.01 (m, 2H), 7.96 (d, J=7.5 Hz, 1H), 7.92 (dd, J=8.1, 1.6 Hz, 1H), 7.79 (d, J=8.2 Hz, 1H), 7.58-7.49 (m, 2H), 7.42 (dd, J=8.3, 6.9 Hz, 1H), 7.40-7.33 (m, 2H), 7.30-7.23 (m, 2H), 7.23-7.19 (m, 2H), 7.19-7.13 (m, 1H), 4.26-4.16 (m, 2H), 3.48-3.33 (m, 2H), 3.22-3.14 (m, 2H), 2.82 (t, J=8.0 Hz, 2H), 2.49-2.40 (m, 2H), 2.10-1.99 (m, 2H), 1.89-1.79 (m, 1H), 1.75-1.63 (m, 1H), 1.23 (s, 9H), 1.18 (d, J=7.1 Hz, 3H).
DPLG-3013 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2297 (14.2 mg, 0.035 mmol) with O-phenylhydroxylamine hydrochloride (5.6 mg, 0.0385 mmol). The crude was purified by HPLC to give product (7.6 mg, 44%) as a white solid. Complex NMR due to presence of 71:29 rotamers. 1H NMR (500 MHz, DMSO-d6) δ 11.97 (s, 0.71H), 11.86 (s, 0.29H), 8.37 (d, J=7.3 Hz, 0.29H), 8.28 (d, J=6.8 Hz, 0.71H), 8.10 (d, J=7.4 Hz, 0.29H), 8.03 (d, J=7.9 Hz, 0.71H), 7.40-7.11 (m, 8H), 7.07-6.94 (m, 3H), 4.34-4.19 (m, 2H), 2.80 (t, J=8.0 Hz, 1.42H), 2.76-2.70 (m, 0.58H), 2.48-2.35 (m, 2H), 2.02 (t, J=8.1 Hz, 2H), 1.88-1.75 (m, 1H), 1.75-1.60 (m, 1H), 1.37-1.28 (m, 3H), 1.26-1.16 (m, 9H).
DPLG-2293 was synthesized by following the general procedure for HATU mediated coupling of Ts-Glu (CONHtBu)-OH (64.0 mg, 0.18 mmol) and H-Ala-OBn HCl salt (43.0 mg, 0.20 mmol). After completion of the reaction, water was added to the reaction mixture to give a white precipitate. The precipitate was filtered, washed with water, and dried to give product (76.0 mg, 82%). 1H NMR (500 MHz, Chloroform-d) δ 7.70 (d, J=8.4 Hz, 2H), 7.45 (d, J=7.4 Hz, 1H), 7.40-7.29 (m, 5H), 7.29-7.20 (m, 2H), 6.70 (d, J=7.1 Hz, 1H), 5.47 (s, 1H), 5.17 (d, J=12.3 Hz, 1H), 5.11 (d, J=12.3 Hz, 1H), 4.42-4.34 (m, 1H), 3.75-3.66 (m, 1H), 2.39 (s, 3H), 2.29-2.19 (m, 1H), 2.18-2.07 (m, 1H), 1.92-1.80 (m, 2H), 1.36 (s, 9H), 1.26 (d, J=7.2 Hz, 3H).
DPLG-2296 was synthesized by following the general procedure for O-debenzylation of DPLG-2293 (76.0 mg, 0.147 mmol). The product (63.0 mg, quant.) was isolated as white solid. 1H NMR (500 MHz, DMSO-d6) δ 7.96 (d, J=6.9 Hz, 1H), 7.82 (d, J=8.7 Hz, 1H), 7.63 (d, J=8.2 Hz, 2H), 7.37 (s, 1H), 7.31 (d, J=8.0 Hz, 2H), 3.85-3.76 (m, 1H), 3.71-3.63 (m, 1H), 2.36 (s, 3H), 2.11-2.02 (m, 1H), 2.02-1.93 (m, 1H), 1.75-1.63 (m, 1H), 1.63-1.52 (m, 1H), 1.21 (s, 9H), 1.06 (d, J=7.1 Hz, 3H).
DPLG-3014 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with 3-(trifluoromethyl)benzylamine (5.5 μL, 0.0385 mmol). The crude was purified by HPLC to give product (13.5 mg, 66%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.47 (t, J=6.1 Hz, 1H), 8.08 (d, J=7.2 Hz, 1H), 7.84 (d, J=8.6 Hz, 1H), 7.63 (d, J=8.3 Hz, 2H), 7.60-7.48 (m, 4H), 7.36-7.29 (m, 3H), 4.37 (dd, J=15.7, 6.0 Hz, 1H), 4.32 (dd, J=15.7, 6.0 Hz, 1H), 4.07-3.97 (m, 1H), 3.73-3.64 (m, 1H), 2.35 (s, 3H), 2.07-1.92 (m, 2H), 1.75-1.65 (m, 1H), 1.65-1.55 (m, 1H), 1.19 (s, 9H), 1.07 (d, J=7.1 Hz, 3H).
DPLG-3015 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with iso-butylamine (4 μl, 0.0385 mmol). The crude was purified by HPLC to give product (11.2 mg, 66%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 7.96 (d, J=7.4 Hz, 1H), 7.84 (d, J=8.5 Hz, 1H), 7.78 (t, J=6.0 Hz, 1H), 7.66-7.60 (m, 2H), 7.37 (s, 1H), 7.32 (d, J=7.9 Hz, 2H), 4.04-3.94 (m, 1H), 3.72-3.63 (m, 1H), 2.96-2.86 (m, 1H), 2.84-2.75 (m, 1H), 2.36 (s, 3H), 2.06-1.92 (m, 2H), 1.72-1.53 (m, 3H), 1.21 (s, 9H), 1.03 (d, J=7.0 Hz, 3H), 0.80 (d, J=6.7 Hz, 6H). 13C NMR (126 MHz, DMSO) δ 171.74, 171.03, 169.86, 142.44, 137.93, 129.26, 126.65, 55.80, 49.84, 48.01, 45.90, 32.26, 29.16, 28.46, 28.01, 20.96, 19.98, 18.31.
DPLG-3016 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with 2-(1-naphthyl)ethylamine hydrochloride (8.0 mg, 0.0385 mmol). The crude was purified by HPLC to give product (16.0 mg, 78%) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.17 (d, J=8.2 Hz, 1H), 8.04 (t, J=5.7 Hz, 1H), 7.99 (d, J=7.4 Hz, 1H), 7.91 (dd, J=8.0, 1.6 Hz, 1H), 7.85 (d, J=8.6 Hz, 1H), 7.78 (d, J=8.2 Hz, 1H), 7.64 (d, J=8.3 Hz, 2H), 7.59-7.46 (m, 2H), 7.45-7.38 (m, 2H), 7.36-7.30 (m, 3H), 4.02-3.92 (m, 1H), 3.74-3.66 (m, 1H), 3.47-3.36 (m, 1H), 3.35-3.31 (m, 1H), 3.16 (t, J=7.6 Hz, 2H), 2.36 (s, 3H), 2.09-1.95 (m, 2H), 1.77-1.66 (m, 1H), 1.66-1.56 (m, 1H), 1.21 (s, 9H), 0.99 (d, J=7.0 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 171.82, 171.06, 169.85, 142.43, 137.95, 135.23, 133.43, 131.52, 129.26, 128.56, 126.80, 126.66, 126.03, 125.59, 125.55, 123.66 55.81, 49.86, 47.99, 39.69, 32.34, 32.29, 29.17, 28.48, 20.95, 18.22.
DPLG-3017 was synthesized by following the general procedure for HATU mediated coupling of DPLG-2296 (15.0 mg, 0.035 mmol) with O-phenylhydroxylamine hydrochloride (5.6 mg, 0.0385 mmol). The crude was purified by HPLC to give product (12.0 mg, 66%) as white solid. Complex NMR due to 86:14 rotamers. 1H NMR (500 MHz, DMSO-d6) δ 11.95 (s, 0.86H), 11.92 (s, 0.14), 8.25 (d, J=6.9 Hz, 0.86H), 8.12 (d, J=7.4 Hz, 0.14H), 7.86 (d, J=8.9 Hz, 1H), 7.68-7.59 (m, 2H), 7.40-7.24 (m, 5H), 7.06-6.90 (m, 3H), 4.16-4.06 (m, 0.14H), 4.02-3.89 (m, 0.86H), 3.78-3.68 (m, 1H), 2.37 (s, 2.58H), 2.32 (s, 0.42H), 2.13-2.01 (m, 1H), 2.01-1.90 (m, 1H), 1.79-1.65 (m, 1H), 1.65-1.52 (m, 1H), 1.28-1.16 (m, 9H), 1.13 (d, J=7.1 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 170.97, 170.27, 169.42, 159.32, 142.39, 138.12, 129.40, 129.20, 126.66, 122.28, 112.66, 55.50, 49.83, 46.04, 32.30, 29.16, 28.45, 20.96, 17.37.
DPLG-3066 was prepared by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Asp(CONHtBu)-OH (16.0 mg, 0.05 mmol) and H-4F-Phe-CH2-naphth TFA salt (21.8 mg, 0.05 mmol). The mixture was purified by HPLC to give product (26.0 mg, 83%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.62 (t, J=5.9 Hz, 1H), 8.20 (d, J=8.3 Hz, 1H), 8.10-8.04 (m, 1H), 8.01 (d, J=8.2 Hz, 1H), 7.96-7.91 (m, 1H), 7.83 (d, J=8.2 Hz, 1H), 7.57-7.50 (m, 2H), 7.48 (s, 1H), 7.43 (t, J=7.6 Hz, 1H), 7.37 (d, J=7.0 Hz, 1H), 7.29-7.23 (m, 2H), 7.23-7.12 (m, 5H), 7.02-6.95 (m, 2H), 4.80 (dd, J=15.4, 6.0 Hz, 1H), 4.69 (dd, J=15.4, 5.6 Hz, 1H), 4.57-4.50 (m, 1H), 4.50-4.41 (m, 1H), 3.10 (dd, J=13.8, 4.5 Hz, 1H), 2.82 (dd, J=13.8, 9.6 Hz, 1H), 2.79-2.68 (m, 2H), 2.52-2.48 (m, 1H), 2.41-2.32 (m, 2H), 2.29 (dd, J=15.0, 6.6 Hz, 1H), 1.15 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.14, 170.98, 170.50, 169.13, 160.88 (d, J=241.8 Hz), 141.26, 134.21, 134.03, 133.20, 130.92 (d, J=8.0 Hz), 130.77, 128.46, 128.28, 128.08, 127.41, 126.15, 125.84, 125.71, 125.31, 125.17, 123.35, 114.66 (d, J=21.6 Hz), 54.30, 50.09, 49.67, 40.22, 38.23, 36.76, 36.18, 31.07, 28.37.
DPLG-3083 was prepared by following the general procedure for HATU mediated coupling of 3-phenylpropanoyl-Glu(CONHtBu)-OH (23.4 mg, 0.07 mmol) and H-4F-Phe-CH2-naphth TFA salt (36.7 mg, 0.084 mmol). The mixture was purified by HPLC to give product (32.6 mg, 73%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.54 (t, J=5.7 Hz, 1H), 8.08 (d, J=8.2 Hz, 1H), 8.05-8.00 (m, 1H), 7.98 (d, J=7.6 Hz, 1H), 7.96-7.91 (m, 1H), 7.84 (d, J=8.2 Hz, 1H), 7.58-7.50 (m, 2H), 7.46-7.39 (m, 1H), 7.34-7.29 (m, 2H), 7.28-7.12 (m, 7H), 7.05-6.96 (m, 2H), 4.73 (d, J=5.7 Hz, 2H), 4.61-4.49 (m, 1H), 4.25-4.14 (m, 1H), 3.00 (dd, J=13.7, 5.5 Hz, 1H), 2.85 (dd, J=13.7, 9.0 Hz, 1H), 2.81-2.69 (m, 2H), 2.48-2.33 (m, 2H), 1.98 (t, J=8.0 Hz, 2H), 1.86-1.73 (m, 1H), 1.71-1.58 (m, 1H), 1.23 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 171.56, 171.35, 171.18, 170.64, 160.94 (d, J=241.4 Hz), 141.27, 134.14, 133.72, 133.23, 130.98 (d, J=7.6 Hz), 130.79, 128.46, 128.25, 128.13, 127.51, 126.19, 125.82, 125.76, 125.33, 125.20, 123.40, 114.70 (d, J=21.2 Hz), 53.99, 52.39, 49.84, 40.23, 36.76, 32.64, 31.01, 28.51, 28.28.
DPLG-3084 was prepared by following the general procedure for HATU mediated coupling of Ind-oxal-Asp (CONHtBu)-OH (18 mg, 0.05 mmol) and H-4F-Phe-CH2-naphth TFA salt (24 mg, 0.055 mmol). The mixture was purified by HPLC to give product (18.0 mg, 55%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.27 (s, 1H), 8.76 (s, 1H), 8.66 (d, J=8.4 Hz, 1H), 8.61 (t, J=5.8 Hz, 1H), 8.28-8.21 (m, 2H), 8.07-8.00 (m, 1H), 7.97-7.91 (m, 1H), 7.83 (d, J=8.2 Hz, 1H), 7.59-7.49 (m, 4H), 7.46-7.38 (m, 1H), 7.33 (d, J=7.1 Hz, 1H), 7.31-7.25 (m, 2H), 7.24-7.17 (m, 2H), 7.01-6.91 (m, 2H), 4.74 (d, J=5.6 Hz, 2H), 4.70-4.62 (m, 1H), 4.58-4.48 (m, 1H), 3.04 (dd, J=13.7, 5.1 Hz, 1H), 2.85 (dd, J=13.7, 9.1 Hz, 1H), 2.58-2.52 (m, 2H), 1.17 (s, 9H). 13C NMR (126 MHz, DMSO) δ 181.01, 170.44, 170.17, 168.91, 162.72, 160.91 (d, J=241.6 Hz), 138.59, 136.25, 134.15, 133.76, 133.22, 130.99 (d, J=8.5 Hz), 130.80, 128.47, 127.52, 126.20, 125.77, 125.33, 123.52, 123.40, 122.65, 121.29, 114.70 (d, J=20.3 Hz), 112.60, 112.11, 54.33, 50.15, 50.09, 40.27, 38.00, 36.59, 28.37.
DPLG-3040 was synthesized by following the general procedure for HATU mediated coupling of Boc-4F-Phe-OH (283 mg, 1.0 mmol) with iso-butylamine (100 μL, 1.0 mmol). After completion of the reaction, water was added to precipitate the product. The precipitate was filtered, washed with water, and dried to give product (230 mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 7.21-7.11 (m, 2H), 7.01-6.92 (m, 2H), 5.90 (s, 1H), 5.06 (s, 1H), 4.29-4.19 (m, 1H), 3.08-2.92 (m, 4H), 1.69-1.58 (m, 1H), 1.41 (s, 9H), 0.86-0.74 (m, 6H). 1H NMR (500 MHz, DMSO-d6) δ 7.83 (d, J=5.9 Hz, 1H), 7.30-7.23 (m, 2H), 7.12-7.04 (m, 2H), 6.89 (d, J=8.7 Hz, 1H), 4.10 (td, J=9.4, 5.0 Hz, 1H), 2.95-2.78 (m, 3H), 2.72 (dd, J=13.7, 9.9 Hz, 1H), 1.70-1.59 (m, 1H), 1.30 (s, 8H), 1.24 (s, 1H), 0.82-0.76 (m, 6H).
DPLG-3043 was synthesized by following the general procedure for Boc-deprotection of Boc-4F-Phe-Ibu (220 mg, 0.65 mmol). The crude product (230 mg, quant.) was used in next step without further purification. 1H NMR (500 MHz, Chloroform-d) δ 7.61 (s, 3H), 7.23-7.11 (m, 2H), 7.07-6.95 (m, 2H), 6.73 (t, J=5.9 Hz, 1H), 4.42-4.30 (m, 1H), 3.18 (dd, J=13.9, 6.4 Hz, 1H), 3.08 (dd, J=13.9, 8.7 Hz, 1H), 3.03-2.93 (m, 1H), 2.91-2.79 (m, 1H), 1.64-1.49 (m, 1H), 0.76 (d, J=6.7 Hz, 3H), 0.73 (d, J=6.7 Hz, 3H).
DPLG-3046 was synthesized by following the general procedure for HATU mediated coupling of Ts-Glu (COHtBu)-OH (35.6 mg, 0.1 mmol) with H-4F-Phe-Ibu TFA salt (38.8 mg, 0.11 mmol). The mixture was purified by HPLC to give product (27.4 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.08 (d, J=8.2 Hz, 1H), 7.92-7.82 (m, 2H), 7.56 (d, J=7.9 Hz, 2H), 7.32 (s, 1H), 7.24 (d, J=7.9 Hz, 2H), 7.21-7.13 (m, 2H), 7.10-7.01 (m, 2H), 4.33-4.21 (m, 1H), 3.60 (td, J=8.1, 5.5 Hz, 1H), 2.89 (dt, J=12.9, 6.4 Hz, 1H), 2.85-2.71 (m, 2H), 2.63 (dd, J=13.6, 8.4 Hz, 1H), 2.32 (s, 3H), 2.00-1.80 (m, 2H), 1.67-1.46 (m, 3H), 1.21 (s, 9H), 0.81-0.68 (m, 6H).
DPLG-3049 was synthesized by following the general protocol for HATU mediated coupling of Indole-3-glyoxylic acid (189 mg, 1.0 mmol) and H-Asp(CONHtBu)-OBn TFA salt (432 mg, 1.1 mmol). After completion of the reaction, water was added to the reaction mixture. A white precipitated appeared which was filtered, washed with water, and dried to give product (270 mg, 60%). 1H NMR (500 MHz, Chloroform-d) δ 10.14 (s, 1H), 9.13 (d, J=3.3 Hz, 1H), 8.42-8.34 (m, 2H), 7.47 (dd, J=6.6, 2.3 Hz, 1H), 7.34-7.23 (m, 7H), 5.54 (s, 1H), 5.23 (d, J=12.4 Hz, 1H), 5.19-5.12 (m, 1H), 5.11-5.03 (m, 1H), 2.80 (dd, J=15.2, 5.8 Hz, 1H), 2.74 (dd, J=15.2, 5.3 Hz, 1H), 1.29 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 179.61, 170.76, 168.78, 162.60, 139.33, 136.24, 135.30, 128.72, 128.56, 128.41, 126.86, 124.09, 123.31, 122.44, 113.14, 112.12, 67.73, 51.99, 49.58, 39.23, 28.78.
DPLG-3052 was prepared by following the general procedure for O-debenzylation of Ind-oxal-Asp(CONHtBu)OBn (265 mg, 0.59 mmol). Crude was purified by HPLC to give product (112 mg, 53%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.81 (s, 1H), 12.27 (d, J=3.3 Hz, 1H), 8.82-8.75 (m, 2H), 8.26-8.20 (m, 1H), 7.57 (s, 1H), 7.56-7.52 (m, 1H), 7.32-7.23 (m, 2H), 4.69-4.60 (m, 1H), 2.67 (dd, J=15.1, 7.2 Hz, 1H), 2.59 (dd, J=15.1, 5.0 Hz, 1H), 1.22 (s, 9H). 13C NMR (126 MHz, DMSO) δ 181.25, 172.26, 168.78, 162.78, 138.64, 136.25, 126.14, 123.53, 122.66, 121.28, 112.60, 112.11, 50.16, 48.97, 37.16, 28.44.
DPLG-3053 was prepared by following the general procedure for HATU mediated coupling of Ind-oxal-Asp (CONHtBu)-OH (7.2 mg, 0.02 mmol) and H-Ala-CH2-naphth TFA salt (7.5 mg, 0.022 mmol). The mixture was purified by HPLC to give product (6.4 mg, 56%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.26 (d, J=3.4 Hz, 1H), 8.77 (d, J=3.2 Hz, 1H), 8.71 (d, J=8.1 Hz, 1H), 8.52 (t, J=5.8 Hz, 1H), 8.30-8.21 (m, 2H), 8.08-8.02 (m, 1H), 7.97-7.91 (m, 1H), 7.86-7.80 (m, 1H), 7.57 (s, 1H), 7.56-7.49 (m, 3H), 7.47-7.41 (m, 2H), 7.31-7.24 (m, 2H), 4.75 (d, J=5.8 Hz, 2H), 4.70-4.60 (m, 1H), 4.38-4.25 (m, 1H), 2.66-2.54 (m, 2H), 1.27 (d, J=7.1 Hz, 3H), 1.17 (s, 9H). 13C NMR (126 MHz, DMSO) δ 181.15, 171.92, 170.01, 168.98, 162.84, 138.58, 136.24, 134.38, 133.22, 130.78, 128.47, 127.46, 126.15, 125.74, 125.38, 125.14, 123.51, 123.35, 122.64, 121.28, 112.59, 112.12, 50.18, 50.07, 48.68, 40.20, 40.02, 39.85, 39.69, 39.52, 39.35, 39.19, 39.02, 38.10, 28.36, 18.07.
DPLG-21001 was synthesized by following the general procedure for HATU mediated coupling of Boc-β-(4-pyridyl)-L-alanine (55.48 mg, 0.2 mmol) and 1-naphthylmethylamine (32 mL, 0.22 mmol). After completion of the reaction, water was added. A white precipitate was formed. Mixture was extracted with ethyl acetate twice. The combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The organic layer was evaporated and dried to give a colorless paste. Crude was purified by HPLC to give pure product as a white solid (57 mg, 70%). 1H NMR (500 MHz, DMSO-d6) δ 8.51 (t, J=5.7 Hz, 1H), 8.49-8.37 (m, 2H), 8.10-8.01 (m, 1H), 7.99-7.91 (m, 1H), 7.85 (d, J=8.1 Hz, 1H), 7.61-7.50 (m, 2H), 7.49-7.36 (m, 2H), 7.34-7.22 (m, 2H), 7.11 (d, J=8.7 Hz, 1H), 4.83-4.67 (m, 2H), 4.35-4.13 (m, 1H), 2.98 (dd, J=13.6, 4.7 Hz, 1H), 2.81 (dd, J=13.6, 10.3 Hz, 1H), 1.30 & 1.16 (s, rotamers, 9H).
DPLG-21023 was synthesized by following the procedure for Boc-deprotection of DPLG-21001 (50 mg, 0.123 mmol). After completion of the reaction, excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under high vacuum to give colorless paste. The paste was triturated with diethyl ether to give a white solid. Diethyl ether was decanted, and white solid was dried under vacuum to give product (65 mg, 99%). The product was used in the next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 9.01 (t, J=5.5 Hz, 1H), 8.74-8.58 (m, 2H), 8.43 (s, 3H), 8.00-7.93 (m, 2H), 7.89 (d, J=8.2 Hz, 1H), 7.60-7.52 (m, 4H), 7.45 (dd, J=8.2, 7.0 Hz, 1H), 7.36 (d, J=7.0 Hz, 1H), 4.80 (dd, J=15.0, 5.6 Hz, 1H), 4.73 (dd, J=15.0, 5.3 Hz, 1H), 4.33-4.05 (m, 1H), 3.24 (dd, J=13.7, 6.6 Hz, 1H), 3.18 (dd, J=13.7, 7.6 Hz, 1H).
DPLG-21033 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21013 (12.8 mg, 0.04 mmol) and DPLG-21023 (25.6 mg, 0.048 mmol). After completion of the reaction, the mixture was purified by HPLC to give product (20.1 mg, 83%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.66 (t, J=5.9 Hz, 1H), 8.47-8.36 (m, 2H), 8.33 (d, J=8.4 Hz, 1H), 8.11-8.05 (m, 1H), 8.03 (d, J=8.0 Hz, 1H), 7.96-7.92 (m, 1H), 7.84 (d, J=7.9 Hz, 1H), 7.58-7.51 (m, 2H), 7.50 (s, 1H), 7.46-7.38 (m, 2H), 7.29-7.14 (m, 7H), 4.82 (dd, J=15.4, 6.0 Hz, 1H), 4.70 (dd, J=15.4, 5.6 Hz, 1H), 4.60-4.48 (m, 2H), 3.18 (dd, J=14.0, 4.3 Hz, 1H), 2.87 (dd, J=14.0, 10.1 Hz, 1H), 2.81-2.70 (m, 2H), 2.52-2.48 (m, 1H), 2.38-2.26 (m, 3H), 1.14 (s, 9H). 13C NMR (126 MHz, DMSO) δ 171.19, 171.12, 170.26, 169.18, 148.96, 147.25, 141.26, 134.17, 133.22, 130.78, 128.49, 128.29, 128.11, 127.46, 126.20, 125.85, 125.75, 125.35, 125.19, 124.66, 123.34, 53.21, 50.11, 49.71, 40.31, 38.15, 36.76, 36.18, 31.05, 28.37.
Boc-4F-Phe-OH (849.87 mg, 3.00 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (690.12 mg, 3.60 mmol) were dissolved in dichloromethane (15.00 mL) under argon atmosphere. Benzyl alcohol (389.30 mg, 3.60 mmol) was added to the mixture at 23° C. The solution was cooled to 0° C. and triethylamine (0.5 mL, 3.60 mmol) was added. Reaction mixture was allowed to warm to room temperature (23° C.) slowly and stirred at room temperature overnight. Dichloromethane was evaporated, and crude solid was extracted using ethyl acetate and water. Organic layer was washed with aq. NaHCO3, 1N HCl, water followed by saturated brine solution. Ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated to give crude product. Crude was purified by combi-flash to give pure product (909 mg, 81%) as white solid. 1H NMR (500 MHz, Chloroform-d) δ 7.39-7.33 (m, 3H), 7.33-7.28 (m, 2H), 7.02-6.94 (m, 2H), 6.93-6.85 (m, 2H), 5.18 (d, J=12.2 Hz, 1H), 5.09 (d, J=12.2 Hz, 1H), 4.98 (d, J=8.2 Hz, 1H), 4.64-4.56 (m, 1H), 3.08 (dd, J=14.0, 6.0 Hz, 1H), 3.02 (dd, J=14.0, 5.9 Hz, 1H), 1.42 (s, 9H).
DPLG-21037 was synthesized by following the general procedure for Boc-deprotection of DPLG-21035 (485.5 mg, 1.3 mmol). After completion of the reaction, excess trifluoroacetic acid and dichloromethane were evaporated. Crude was dried under vacuum to give colorless paste. Crude was dissolved in diethyl ether to give a clear solution. The solution was kept at −20° C. overnight to crystallize the product. Product was filtered and dried (yield 467 mg, 93%). 1H NMR (500 MHz, DMSO-d6) δ 8.66-8.36 (m, 3H), 7.40-7.34 (m, 3H), 7.32-7.24 (m, 2H), 7.24-7.18 (m, 2H), 7.15-7.07 (m, 2H), 5.19-5.13 (m, 2H), 4.40-4.34 (m, 1H), 3.17-3.10 (m, 1H), 3.07 (dd, J=14.1, 7.5 Hz, 1H).
DPLG-21040 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21013 (193 mg, 0.06 mmol) with DPLG-21037 (233 mg, 0.06 mmol). After completion of the reaction, water was added. A white precipitate was formed. Precipitate was filtered and dried in air to give product (310 mg, 89%) as white solid. The product was used in next step without further purification. 1H NMR (500 MHz, DMSO-d6) δ 8.27-8.22 (m, 1H), 7.98-7.92 (m, 1H), 7.39-7.14 (m, 13H), 7.08-7.01 (m, 2H), 5.11-5.04 (m, 2H), 4.65-4.56 (m, 1H), 4.55-4.44 (m, 1H), 3.06-2.91 (m, 2H), 2.78-2.75 (m, 2H), 2.41-2.33 (m, 3H), 2.30-2.15 (m, 1H), 1.21 (s, 9H).
DPLG-21042 was synthesized by following the general procedure for O-debenzylation of DPLG-21040 (300 mg, 0.52 mmol). The product (248 mg, 98%) was isolated as an off-white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.93 (s, 1H), 7.99 (d, J=8.3 Hz, 1H), 7.95-7.87 (m, 1H), 7.34 (s, 1H), 7.29-7.14 (m, 7H), 7.09-7.03 (m, 2H), 4.62-4.54 (m, 1H), 4.40-4.31 (m, 1H), 3.07-3.00 (m, 1H), 2.93-2.84 (m, 1H), 2.80-2.74 (m, 2H), 2.45-2.14 (m, 4H), 1.21 (s, 9H).
DPLG-21049 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21042 (19.4 mg, 0.04 mmol) with 4-phenylbenzylamine (8.1 mg, 0.044 mmol). After completion of the reaction, the mixture was purified by HPLC to give pure product (14.0 mg, 54%) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.64 (t, J=6.0 Hz, 1H), 8.23 (d, J=8.3 Hz, 1H), 8.05 (d, J=8.1 Hz, 1H), 7.68-7.61 (m, 2H), 7.60-7.55 (m, 2H), 7.53 (s, 1H), 7.50-7.42 (m, 2H), 7.39-7.33 (m, 1H), 7.32-7.21 (m, 6H), 7.21-7.13 (m, 3H), 7.09-6.99 (m, 2H), 4.58-4.23 (m, 4H), 3.14 (dd, J=13.9, 4.6 Hz, 1H), 2.89-2.80 (m, 1H), 2.80-2.70 (m, 2H), 2.53-2.50 (m, 1H), 2.43-2.25 (m, 3H), 1.19 (s, 9H).
DPLG-21050 was synthesized by following the general procedure for HATU mediated coupling of DPLG-21042 (19.4 mg, 0.04 mmol) with 3-phenylbenzylamine (8.1 mg, 0.044 mmol). After completion of the reaction, the mixture was purified by HPLC to give pure product (13.2 mg, 51%) as a white solid. 1H NMR (599 MHz, DMSO-d6) δ 8.66 (t, J=6.1 Hz, 1H), 8.21 (d, J=8.2 Hz, 1H), 8.01 (d, J=8.0 Hz, 1H), 7.68-7.61 (m, 2H), 7.57-7.44 (m, 5H), 7.42-7.34 (m, 2H), 7.30-7.12 (m, 7H), 7.06-6.96 (m, 2H), 4.57-4.29 (m, 4H), 3.14 (dd, J=13.9, 4.5 Hz, 1H), 2.89-2.80 (m, 1H), 2.80-2.69 (m, 2H), 2.54-2.50 (m, 1H), 2.42-2.26 (m, 3H), 1.17 (s, 9H).
Measurement of IC50s
All inhibitory assays for N,C capped dipeptides were performed in a black solid-bottom 96-well plate. In general, compound plates were prepared starting from 10 mM in 3× series dilution to 15 μM. 1 μl of DMSO stock was transferred to a black 96-well plate and 100 μL of reaction mixture were added 15 μM N-acetyl-Alanine-Asparagine-Tryptophan-7-amino-4-methylcourmarin (Ac-ANW-AMC) or 25 μM succinyl-Leucine-Leucine-Valine-Tyrosine-7-amino-4-methyl-courmarin (succ-LLVY-AMC), 0.4 nM hu i-20S β5i-subunit or 0.2 nM hu c-20S β5c-subunit, 0.02% SDS, 1% BSA, 0.5 mM EDTA in 20 mM HEPES buffer at pH7.5. The plates were then spun at 1000 rpm for 1 minute, and the fluorescence units of each well were recorded at λex=360 nm, λem=460 nm for 2 hours. The slopes of the initial linear range of the time course were used to calculate the velocity, and relative activities were normalized to the velocities of the DMSO control. The data were fit dose-response equation with restriction of 0% activity and 100% activity in PRISM to avoid the possible miscalculation of IC50s when complete inhibition was not achieved. For compounds with IC50s lower than 5 nM, further dilutions were used. For beta 2c, beta 2i (N-acetyl-Leucine-Leucine-Arginine-7-amino-4-methylcourmarin [Ac-LLR-AMC], beta 1c (N-acetyl-Leucine-Leucine-glutamate-7-amino-4-methylcourmarin [Ac-LLE-AMC]) and betali (N-acetyl-Proline-Alanine-Leucine-7-amino-4-methylcourmarin [Ac-PAL-AMC]) inhibition, only one concentration of compounds at 100 μM was tested.
Structure—Activity Relationship (SAR) Studies
Compounds were incubated in an 11-point series of dilutions with the Karpas lymphoma cell line, which expresses i-20S constitutively (Blackburn et al., “Characerization of a New Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S BetaS-Subunit,” Biochem. J. 430:461-476 (2010), which is hereby incorporated by reference in its entirety), for 4 hours, and the IC50s of the inhibitors were determined using a cell-based Proteasome-Glo™ assay (Promega, Cat. No. G8660) to measure the proteasome activity inside the cells after removal of compound from the medium (Table 4 and FIG. 5B ).
RAW264 GFP-LC3 cells were incubated with vehicle DMSO control, DPLG-3 (10 nM), or the inactive congener DPLG-2032 (1 μM) at 37° C. overnight. Prior to fixation with 4% paraformaldehyde, the cells were treated with bafilomycin A (20 nM), an inhibitor of the late phase of autophagy, for 4 hours. The fluorescent images taken of these different sample treatments (FIGS. 7A-C ) indicated that the DPLG-3 induces autophagy.
Autophagy is a highly conserved process in eukaryotic cells that degrades a large proportion of cytosolic proteins and organelles. It involves the formation of double membrane complexes that fuse with lysosomes to form autolysosomes, where engulfed proteins or organelles are degraded by lysosomal proteases (Fleming et al., “Chemical Modulators of Autophagy as Biological Probes and Potential Therapeutics,” Nature Chemical Biology 7:9-17 (2011), which is hereby incorporated by reference in its entirety). Stresses such as nutrient starvation, hypoxia, protein aggregates, ER stress, pathogens, and DNA damage induce autophagy (Kroemer et al., “Autophagy and the Integrated Stress Response,” Mol. Cell 40:280-293 (2010), which is hereby incorporated by reference in its entirety).
Autophagy plays critical roles in many physiological and patho-physiological processes. It has been shown that pharmacological induction of autophagy in mice with rapamycin increases the lifespan of the mice (Harrison et al., “Rapamycin Fel Latee in Life Extends Lifespan in Genetically Heterogeneous Mice,” Nature 460:392-395 (2009), which is hereby incorporated by reference in its entirety). Autophagy has also been demonstrated to protect against infectious diseases, such as infections caused by the bacteria Mycobacterium tuberculosis, Salmonella enterica, Shigella flexneri, Listeria monocytogenes, etc. and parasites such as Toxoplasma gondii, or by certain viruses (Levine et al., “Autophagy in Immunity and Inflammation,” Nature 469: 323-335 (2011), which is hereby incorporated by reference in its entirety). Autophagy also protects against neurodegeneration, as it is the main clearance route for aggregation-prone proteins and unfolded proteins that are not polyubiquitinated (Rubinsztein, D., “The Roles of Intracellular Protein-Degradation Pathways in Neurodegeneration,” Nature 443:780-786 (2006), which is hereby incorporated by reference in its entirety). Up-regulation of autophagy is hence considered to have potential therapeutic value in a variety of diseases.
Trinitrobenzene sulfonic acid (TNBS)-induced colitis exhibits a heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similarly to human Crohn's disease (CD). In this model, administration of a neutralizing monoclonal antibody against the p40 subunit shared by IL-12/IL-23 fully rescued mice from the disease-associated body weight loss. This is consistent with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12/IL-23 p40 induced in TNBS-treated mice (not shown). Moreover, treatment of TNBS-injected mice with DPLG-3 via I.P. injection at day −1, 1 and 3 relative to the time of TNBS challenge strongly inhibited colitis-induced weight loss (FIG. 4D ) in a dose-dependent manner (3 mg/kg, 6 mg/kg and 12 mg/kg). DPLG-3 did not cause detectable adverse effects.
4T1 is a tumor cell line isolated from a single spontaneously arising mammary tumor from a BALB/BfC3H mouse (mouse mammary tumor virus-positive) (Miller et al., “Characterization of Metastatic Heterogeneity among Sub-populations of a Single Mouse Mammary Tumor: Heterogeneity in Phenotypic Stability,” Invasion Metastasis 33:22 (1983), which is hereby incorporated by reference in its entirety). It is an excellent model system for breast cancer research, because its tumor development is well characterized both oncologically and immunologically. The 4T1 mammary tumor, which is triple-negative (TN) for the expression of estrogen receptor alpha, progesterone receptor, and Her2, closely mimics human breast cancer in its anatomical site, immunogenicity, growth characteristics, and metastatic properties (Pulaski et al., “Reduction of Established Spontaneous Mammary Carcinoma Metastases ollowing Immunotherapy with Major Histocompatibility Complex Class II and B7.1 Cell-Based Tumor Vaccines,” Cancer Res 58:1486 (1998), which is hereby incorporated by reference in its entirety). The tumor growth and metastatic spread of 4T1 cells closely resembles stage IV breast cancer (Mi et al., “Differential Osteopontin Expression in Phenotypically Distinct Subclones of Murine Breast Cancer Cells Mediates Metastatic Behavior,” J. Biol. Chem. 279: 46659-46667 (2004), which is hereby incorporated by reference in its entirety).
In this experiment, 4T1 mammary carcinoma cells (1×105) were injected subcutaneously into the abdominal mammary gland area of recipient mice in 0.1 ml of a single-cell suspension in PBS on day 0 as described previously (Zhang et al., “A Novel Role of Hematopoietic CCL5 in Promoting Triple-Negative Mammary Tumor Progression by Regulating Generation of Myeloid-Derived Suppressor Cells,” Cell Res. 23(3):394-408 (2013), which is hereby incorporated by reference in its entirety). Primary tumors were measured by their surface areas every other day. On Day 10, DPLG-3 in 30 ml of DMSO or DMSO alone was injected into mice by i.p. daily at 6 mg/kg. On Day 20, mice were sacrificed and tumors excised, measured by volume (ml) or by weight (mg). The results, shown in FIGS. 8A-B (4 mice per group), demonstrate the efficacy of DPLG-3 in reducing the size and weight of this tumor. The difference between the control group and the DPLG-3 treatment group is highly significant (*, p<0.05 by Student T test). This study indicates that these inhibitors will likely be useful in reducing inflammation-induced cancers.
In comparing proteasomes across species, certain similarities between the Mycobacterium tuberculosis (Mtb) proteasome and hu i-20S were found. Both preferred certain P1 aromatic amino acids in N-acetyl-tripeptide-AMC substrates and small hydrophobic amino acids in P3 (Blackburn et al., “Characterization of a New Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S BetaS-Subunit,” Biochem. J. 430:461-476 (2010); Lin et al., “Distinct Specificities of Mycobacterium Tuberculosis and Mammalian Proteasomes for N-acetyl Tripeptide Substrates,” J. Biol. Chem. 283:34423-34431 (2008); Fan et al, “Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome”. ACS Med Chem Lett. 5(4):405-10 (2014), which are hereby incorporated by reference in their entirety). The data are shown in FIGS. 1A-B . Moreover, the Mtb proteasome and hu β5i share a spacious 51 pocket that is larger than that in constitutive proteasomes (Lin et al., “N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome Over Human Proteasomes: Role of S3 and 51 Binding Pockets,” J. Am. Chem. Soc. 135:9968-9971 (2013), which is hereby incorporated by reference in its entirety). A high throughput screen against the Mtb proteasome led to discovery of a novel class of 1,3,4-oxathiazol-2-ones (Table 1) that inhibit the Mtb proteasome selectively over hu c-20S (Lin et al., “Inhibitors Selective for Mycobacterial Versus Human Proteasomes,” Nature 461:621-626 (2009), which is hereby incorporated by reference in its entirety).
TABLE 1 |
Kinetic parameters of selected oxathiazolones vs i-20S β5i and hu c-20S β5c. |
Hu20S (β5i | Hu20S (β5c* |
kinact × | KI | kinact/KI | kinact/KI | |||
ID | |
103 (s −1 ) | (μM) | (M−1 s−1) | (M−1 s−1) | Ratio |
HT1043 |
|
0.25 | 2.0 | 128.9 | 0.2 | 645 |
HT1171 |
|
0.77 | 0.76 | 1012.2 | 10.1 | 100 |
HT2004 |
|
1.54 | 1.4 | 1093 | 0.23 | 4750 |
*The plots of kobs vs [I] for hu c-20S were linear. Individual kinact and KI cannot be derived; instead, kinact/KI values were derived from the slopes of the plots. |
Oxathiazolones inhibit the Mtb proteasome via a competitive, irreversible mechanism that results in cyclocarbonylation of the β-OH and α-NH2 of the active site Thr1N of the Mtb proteasome. This is accompanied by a marked conformational change in the loop around the active site that was implicated in favoring suicide-substrate inhibition vs. hydrolysis of the reaction intermediate. Of the 6 pairs of amino acids that are critical for species selectivity, only two pairs are conserved in human β2c, one pair in hu β1c, β1i, and β2i, and none in hu β5c or β5i. Thus, it was predicted that oxathiazolones active against the Mtb proteasome might inhibit hu β5i. Indeed, some exhibited extremely high selectivity for hu β5i over hu β5c. Table 1, shows 3 such compounds tested; see (Fan et al., “Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome,” ACS Med. Chem. Lett. 5(4):405-410 (2014), which is hereby incorporated by reference in its entirety). However, the half-lives of oxathiazolones range from 7 minutes to 3 hours in culture medium and even less in plasma, a drawback for drug development. Further evidence for structural similarity between the Mtb20S and hu i-20S β5i comes from a series of dipeptide boronates with P1 naphthylAlaB(OH)2 (Table 2), which were designed and synthesized to selectively inhibit Mtb20S over hu c-20S β5c. Although there was little selectivity between Mtb20s and hu c-20S β5c, these dipeptide boronates inhibited hu i-2S β5i over hu c-20S β5c with a selectivity index (SI) up to 17-fold.
TABLE 2 |
Kinetic parameters of selected dipeptide |
boronates vs hu i-20S β5i and c-20S β5c. |
IC50 (μM) |
Mtb20S | i-20S β5i | c-20S β5i | Ratio | |
BA1 | 0.07 | 0.0088 | 0.106 | 12.0 |
BA2 | 0.10 | 0.0084 | 0.143 | 17.1 |
|
||||
BA2, R = Phenyl |
Substrate preferences for proteasomes from bacteria, yeast, and cows were profiled, using a library of 6000 N-acetyl-P3-P2-P1-AMCs (Lin et al., “Distinct Specificities of Mycobacterium Tuberculosis and Mammalian Proteasomes for N-acetyl Tripeptide Substrates,” J. Biol. Chem. 283:34423-34431 (2008), which is hereby incorporated by reference in its entirety), and a library of 1,600 N,C-capped dipeptides for screening (FIG. 1A ) (Lin et al., “N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome Over Human Proteasomes: Role of S3 and 51 Binding Pockets,” J. Am. Chem. Soc. 135:9968-9971 (2013), which is hereby incorporated by reference in its entirety).
These results indicated that the combination of 51 and S3 determines substrate selectivity between hu c-20S and hu i-20S. Hu i-20S prefers P1-Trp/Tyr and P3-Gly/Thr/Pro, whereas hu c-20S prefers P1-AlaNal/Leu and P3-Trp/Tyr. Focusing on developing proteasome inhibitors that are reversible and selective N,C-capped dipeptides for the bacterial proteasome over the human proteasome, it was required to find inhibitors of the same class that are reversible and selective for hu i-20S β5i over hu c-20S β5c (FIG. 1A ), based on both substrate profiling and structural analysis. X-ray crystal structures of mouse c-20S and i-20S reinforced the finding that the 51 pocket in i-20S is significantly bigger than that in c-20S, while the S3 pockets look similar between the c-20S and the i-20S (Huber et al., “Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity,” Cell 148:727-738 (2012), which is hereby incorporated by reference in its entirety). In vitro evaluations of several N,C-capped dipeptides indicated that most of the compounds tested had aqueous solubilities of 200-300 μM and t1/2>2 hours in human plasma and dog plasma. In vitro intrinsic clearance by liver microsomes was relatively high: 1.5-14.3 L/h/kg by human and 3.1-28.2 L/h/kg by rat microsomes. A dipeptide, DPLG-2, that was designed for Mtb20S, was stable with t1/2>24 hours in human plasma (Lin et al., “N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome Over Human Proteasomes: Role of S3 and 51 Binding Pockets,” J. Am. Chem. Soc. 135: 9968-9971 (2013), which is hereby incorporated by reference in its entirety). In vitro metabolism studies revealed that the most vulnerable site for microsomal CYP-induced hydroxylation was the α-C of the neo-pentyl Asn, with lesser reactivity at the P1 benzyl position (Blackburn et al., “Optimization of a Series of Dipeptides with a P3 [small beta]-Neopentyl Asparagine Residue as Non-Covalent Inhibitors of the Chymotrypsin-Like Activity of Human 20S Proteasome,” Med Chem Comm 3:710-719 (2012), which is hereby incorporated by reference in its entirety). DPLG-3 was designed by introducing a naphthyl group in the P1 position and N-(tBuO)—As in the P3 position (FIG. 1B ). The structure of DPLG-3 (purity>95%) was confirmed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Its competitive inhibition and selectivity for hu i-20S β5i versus hu c-20S β5c (Table 3) and its selectivity for β5i over β2i and β1i were also confirmed. Since the sequence identities between human c-20S and mouse c-20S and between human i-20S β5i and mouse i-20S β5i are 97% and 92.6%, respectively, it was predicted that DPLG-3 will potently and selectively inhibit mouse i-20S β5i over mouse c-20S β5c in a comparable manner to its selective inhibition of human i-20S β5i. In support of this expectation for preserved selectivity across the human-mouse comparison, ONX 0914 potently and relatively selectively inhibited human and mouse i-20S over human and mouse c-20S, respectively (Huber et al., “Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity,” Cell 148:727-738 (2012), which is hereby incorporated by reference in its entirety). At concentrations up to 50 μM, DPLG-3 was not cytotoxic against HepG2 human hepatoma cells, mouse bone marrow derived macrophages (BMDMs), human peripheral blood mononuclear cells (purchased from New York Blood Bank), or a human B-lymphoma cell line.
Because the i-20S plays important physiological roles in modulating innate and adaptive immune responses, DPLG-3's biological properties in experimental colitis and in inflammatory macrophages were investigated. Crohn's disease (CD) is a major form of inflammatory bowel disease (IBD) that may arise from the interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects (Packey et al., “Interplay of Commensal and Pathogenic Bacteria, Genetic Mutations, and Immunoregulatory Defects in the Pathogenesis of Inflammatory Bowel Diseases,” J. Intern. Med. 263:597-606 (2008); Mumy et al., “The Role of Neutrophils in the Event of Intestinal Inflammation,” Curr. Opin. Pharmacol. 9:697-701 (2009), which are hereby incorporated by reference in their entirety) in both innate and adaptive immune systems (Arseneau et al., “Innate and Adaptive Immune Responses Related to IBD Pathogenesis,” Curr. Gastroenterol. Rep. 9:508-512 (2007), which is hereby incorporated by reference in its entirety). In CD, there is a sustained activation of mucosal immune responses of the Th1 and Th17 types, perhaps reflecting constitutive activation, failure of down-regulatory mechanisms, or continued stimulation resulting from changes in the epithelial mucosal barrier (Mashimo et al., “Impaired Defense of Intestinal Mucosa in Mice Lacking Intestinal Trefoil Factor,” Science 274:262-265 (1996); Al-Sadi et al., “Mechanism of Cytokine Modulation of Epithelial Tight Junction Barrier,” Front Biosci. 14:2765-2778 (2009), which are hereby incorporated by reference in their entirety).
CD has a strong genetic basis (Ogura et al., “A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn's Disease,” Nature 411:603-606 (2001); Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which are hereby incorporated by reference in their entirety). Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular bacterial sensor and an important regulator of host resistance to microbial challenge as well as tissue homeostasis. The gene encoding NOD2, CARD15, was the first CD susceptibility gene identified (Ogura et al., “A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn's Disease,” Nature 411:603-606 (2001); Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which are hereby incorporated by reference in their entirety). Three main variants of NOD2, R702W, G908R, and 1007fs, together account for ˜80% of NOD2 mutations independently associated with susceptibility to CD (Lesage et al., “CARD15/NOD2 Mutational Analysis and Genotype-Phenotype Correlation in 612 Patients with Inflammatory Bowel Disease,” Am. J. Hum. Genet. 70:845-857 (2002); Hugot et al., “Prevalence of CARD15/NOD2 Mutations in Caucasian Healthy People,” Am. J. Gastroenterol. 102:1259-1267 (2007), which are hereby incorporated by reference in their entirety). All three mutations are located near or within the leucine rich repeat domain (LRR) of NOD2 that is involved in ligand binding. How these human NOD2 mutants contribute to the development and pathogenesis of CD is controversial (Girardin et al., “Nod2 is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection,” J. Biol. Chem. 278: 8869-8872 (2003); Watanabe et al., “NOD2 is a Negative Regulator of Toll-like Receptor 2-Mediated T Helper Type 1 Responses,” Nat. Immunol. 5:800-808 (2004); Kobayashi et al., “Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract,” Science 307:731-734 (2005); Maeda et al., “Nod2 Mutation in Crohn's Disease Potentiates NF-kappaB Activity and IL-1beta Processing,” Science 307:734-738 (2005); Noguchi et al., “A Crohn's Disease-Associated NOD2 Mutation Suppresses Transcription of Human IL10 by Inhibiting Activity of the Nuclear Ribonucleoprotein hnRNP-A1,” Nat. Immunol. 10:471-479 (2009), which are hereby incorporated by reference in their entirety). A gain-of-function property of these mutants was identified, which is to inhibit IL-10 gene transcription by interfering with the p38 MAPK-mediated phosphorylation of a novel transcription factor, heterogeneous nuclear ribonucleoprotein A1 (Noguchi et al., “A Crohn's Disease-Associated NOD2 Mutation Suppresses Transcription of Human IL10 by Inhibiting Activity of the Nuclear Ribonucleoprotein hnRNP-A1, ” Nat. Immunol. 10:471-479 (2009), which is hereby incorporated by reference in its entirety), providing a plausible mechanistic explanation for the lack of adequate control of chronic intestinal mucosal inflammation associated with CD.
Genetic studies have identified mutations in the IL-12//IL-23 pathway associated with the pathogenesis of CD (Duerr et al., “A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene,” Science 314:1461-1463 (2006), which is hereby incorporated by reference in its entirety), including JAK2, TYK2, IL12RB1 and IL12B (Wang et al., “An IFN-Gamma-Inducible Transcription Factor, IFN Consensus Sequence Binding Protein (ICSBP), Stimulates IL-12 p40 Expression in Macrophages,” J. Immunol. 165:271-279 (2000), which is hereby incorporated by reference in its entirety). IL-12 and IL-23 are crucial cytokines with respect to IBD that are involved in the development and effector functions of Th1 and Th17 cells, respectively (Shih et al., “Recent Advances in IBD Pathogenesis: Genetics and Immunobiology,” Curr. Gastroenterol. Rep. 10:568-575 (2008), which is hereby incorporated by reference in its entirety). Clinical studies have strongly implicated the importance of high levels of IL-12 and IL-23 in CD pathogenesis (Monteleone et al., “Interco leukin 12 is Expressed and Actively Released by Crohn's Disease Intestinal Lamina Propria Mononuclear Cells,” Gastroenterology 112:1169-1178 (1997); Schmidt et al., “Expression of Interleukin-12-Related Cytokine Transcripts in Inflammatory Bowel Disease: Elevated Interleukin-23p19 and Interleukin-27p28 in Crohn's Disease but not in Ulcerative Colitis,” Inflamm. Bowel Dis. 11:16-23 (2005); Penack et al., “NOD2 Regulates Hematopoietic Cell Function During Graft-versus-Host Disease,” J. Exp. Med. 206:2101-2110 (2009), which are hereby incorporated by reference in their entirety). Consistent with that, monoclonal antibody blockade of p40 (IL12B), the shared subunit of both IL-12 and IL-23, is therapeutically beneficial (Mannon et al., “Anti-Interleukin-12 Antibody for Active Crohn's Disease,” N. Engl. J. Med. 351:2069-2079 (2004); Fuss et al., “Both IL-12p70 and IL-23 are Synthesized During Active Crohn's Disease and are Down-Regulated by Treatment with Anti-IL-12 p40 Monoclonal Antibody,” Inflamm. Bowel Dis. 12:9-15 (2006); Melmed et al., “Future Biologic Targets for IBD: Potentials and Pitfalls,” Nat. Rev. Gastroenterol. Hepatol. 7:110-117 (2010), which are hereby incorporated by reference in their entirety).
TNBS-induced experimental colitis studies showed that hematopoietic NOD2 is required to control experimental colitis and that the pathogenesis of this model is dependent on IL-12/IL-23 and is rescued by DPLG-3. In the trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis mouse model, it is shown by bone marrow chimeras that NOD2 deficiency in the hematopoietic compartment critically regulates experimental colitis (FIGS. 2A-D ).
TNBS-induced colitis exhibited heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similar to this progression in human CD (Mashimo et al., “Impaired Defense of Intestinal Mucosa in Mice Lacking Intestinal Trefoil Factor,” Science 274:262-265 (1996); Al-Sadi et al., “Mechanism of Cytokine Modulation of Epithelial Tight Junction Barrier,” Front Biosci. 14:2765-2778 (2009); Ogura et al., “A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn's Disease,” Nature 411:603-606 (2001), which are hereby incorporated by reference in their entirety). In this model, Watanabe et al. also showed that administration of muramyl dipeptide (MDP), the natural ligand of NOD2, protected mice from colitis by downregulating multiple Toll-like receptor (TLR)-mediated innate responses (TLR2, 4, and 9), including the production of IL-12 and IFN-γ (Hugot et al., “Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn's Disease,” Nature 411:599-603 (2001), which is hereby incorporated by reference in its entirety). Recent work in this area has further established that MDP, through activation of the NOD2 signaling pathway, induces a transcriptional regulator called CCAAT/enhancer-binding protein a (C/EBPa) to control IL-12 production and reduce colitis pathogenesis. Thus, C/EBPa KO mice, like NOD2-deficient mice, are more susceptible to colitis-associated weight loss than WT mice (FIG. 3A ). Further, C/EBPa KO mice completely lose responsiveness to MDP-mediated rescue of colitis pathogenesis. Use of a neutralizing monoclonal antibody against the p40 subunit shared by IL-12/IL-23 fully rescued WT and C/EBPa KO mice from the disease (FIG. 3A ), consistently with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12 induced in TNBS-treated mice (FIG. 3B ). Moreover, administration of the immune proteasome inhibitor DPLG-3 to TNBS-treated WT mice via i.v. injection strongly inhibited colitis-associated pathogenesis (FIG. 3C ).
Pathogenesis of TNBS-induced experimental colitis is dependent on IL-12/IL-23 and is rescued by DPLG-3. Trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice exhibits a heightened Th1-Th17 response (increased IL-12 and IL-17) as the disease becomes chronic, similarly to human CD (Noguchi et al., “A Crohn's Disease-Associated NOD2 Mutation Suppresses Transcription of Human IL10 by Inhibiting Activity of the Nuclear Ribonucleoprotein hnRNP-A1,” Nat. Immunol. 10:471-479 (2009); Alex et al., “Distinct Cytokine Patterns Identified from Multiplex Profiles of Murine DSS and TNBS-Induced Colitis,” Inflamm. Bowel Dis. 15:341-352 (2009); Sarra et al., “IL-23/IL-17 Axis in IBD,” Inflamm. Bowel Dis. 16:1808-1813 (2010); Holler et al., “Prognostic Significance of NOD2/CARD15 Variants in HLA-Identical Sibling Hematopoietic Stem Cell Transplantation: Effect on Long-Term Outcome is Confirmed in 2 Independent Cohorts and may be Modulated by the Type of Gastrointestinal Decontamination,” Blood 107: 4189-4193 (2006), which are hereby incorporated by reference in their entirety). In this model, administration of a neutralizing monoclonal antibody against the p40 subunit shared by IL-12/IL-23 fully rescued mice from the disease-associated body weight loss (FIG. 2A ), consistent with the degree of systemic neutralization of the cytokine, as measured by serum levels of IL-12/IL-23 p40 induced in TNBS-treated mice (FIG. 2B ). Moreover, treatment of TNBS-injected mice with DPLG-3 via one-time i.v. injection at the time of TNBS challenge strongly inhibited colitis-induced weight loss (FIG. 2C ).
DPLG-3 differentially regulates cytokine production in macrophages. To further explore the mechanisms underlying the treatment effects of DPLG-3 on TNBS-induced colitis, the cytokine expression at both the protein and mRNA levels in macrophages was analyzed. FIG. 4A shows that in LPS-activated macrophages, DPLG-3 dose-dependently inhibited the production of TNF-α, IL-12/IL-23p40 and IL-12. Noticeably, production of IL-12 and IL-23 was more sensitive to the inhibitory effects of DPLG-3 than that of TNF-α by a factor of 10-20. In contrast, DPLG-3 dose-dependently induced IL-6 production on its own, while having no significant effects on IL-10 production (FIG. 4B ). Similar degrees of the inhibitory effects of DPLG-3 on IL-12 and IL-23 production were observed at the level of mRNA expression of the IL-12p35 and p40 genes (FIG. 4C ), suggestive of transcriptional regulation. The differentially cytokine-regulating property of DPLG-3 is in contrast to that of ONX 0914, which is inhibitory for all cytokines analyzed (Muchamuel et al., “A Selective Inhibitor of the Immuno-proteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis,” Nat. Med. 15:781-787 (2009), which is hereby incorporated by reference in its entirety). The positive effects in vitro and in vivo of DPLG-3 led to performance of SAR studies to develop and test similar compounds that inhibit the enzymes of the immunoproteasomes more specifically than their counterparts in the constitutive human proteasome. The dipeptide compounds and their relative inhibitory results on the βcomponent of the human immunoproteasome (β5i) and constitutive proteasome (β5c) are described in Examples 151 and 152. The inhibitory effect of DPLG-3 in vivo tests in addition to the colitis model described above can be found in Examples 153 and 155.
Encouraged by DPLG-3's positive effects in vitro and in vivo, in an effort to expand the hit library with the objectives to improve the potency, selectivity, solubility, and lipophilic ligand efficiency, applicants designed, synthesized, and enzymatically evaluated >30 dipeptides (all compounds' purity >95%). Table 3 lists the inhibition kinetic parameters, selectivity index, and calculated log Ps of selected dipeptides. Hill slopes of all compounds were <1.0 (FIG. 5A ). The log P was reduced from 4.66 to <3. To determine if they were able to penetrate cell membranes, the compounds were incubated in an 11-point series of dilutions with the Karpas lymphoma cell line, which expresses i-20S constitutively (Blackburn et al., “Characterization of a New Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S BetaS-Subunit,” Biochem. J. 430:461-476 (2010), which is hereby incorporated by reference in its entirety), for 4 hours, and the IC50s of the inhibitors were determined using a cell-based Proteasome-Glo™ assay (Promega, Cat. No. G8660) to measure the proteasome activity inside the cells after removal of the compound from the medium (Table 4 and FIG. 5B ). Contra to the effect of Bortezomib, inhibition of immunoproteasome by DPLG-3 and DPLG-2086 in Karpas cells did not result in the accumulation of poly-ubiquitinated proteins (FIG. 5C ). Their cytotoxicity against the Karpas lymphoma cells was determined (Table 4). The LD50s (Table 4) correlated with the IC50s for c-20S inhibition, as the LD50s were equal to or slightly higher than the IC50s for c-20S inhibition (FIG. 6 ). However, the IC50s for the inhibition of i-20S appeared to be irrelevant for their cytotoxicity, as seen with DPLG-3, DPLG-2106 and DPLG-2127. Moreover, DPLG-3 did not cause accumulation of poly-ubiquitinylated (poly-Ub proteins, in contrast to Bortezomib and DPLG-2086). This is further evidence for the i-20S selectivity of DPLG-3, because the i-20S's activator, PA28 (Preckel et al., “Impaired Immunoproteasome Assembly and Immune Responses in PA28−/− mice,” Science 286:2162-2165 (1999), which is hereby incorporated by reference in its entirety), does not specifically recruit poly-Ub proteins for degradation (Rechsteiner et al., “Mobilizing the Proteolytic Machine: Cell Biological Roles of Proteasome Activators and Inhibitors,” Trends in Cell Biology 15:27-33 (2005), which is hereby incorporated by reference in its entirety). Although DPLG-2086 is partly selective for i-20S over c-20S, it is still a relatively potent inhibitor of c-20S; thus the accumulation of poly-Ub proteins during treatment with DPLG-2086 is likely due to its inhibition of c-20S.
TABLE 3 |
Kinetic parameters and calculated logP for N,C-capped dipeptides |
IC50 (μM) |
Hu i- | LD50 | ||||
ID | Structures | 20S | Hu c-20S | SIa | (μM) |
DPLG-3 |
|
0.0036 | 42.1 | >11,000 | 2.04 |
DPLG-2032 |
|
77.8 | >100 | — | 37 |
DPLG-2048 |
|
34.9 | 59.8 | 1.7 | >100 |
DPLG-2054 |
|
>100 | 75.8 | <0.8 | >100 |
DPLG-2058 |
|
0.011 | 0.48 | 44 | 34.4 |
DPLG-2068 |
|
3.06 | 28.4 | 9.3 | >100 |
DPLG-2073 |
|
1.37 | 13.3 | 10 | >100 |
DPLG-2083 |
|
0.025 | 0.24 | 10 | 0.254 |
DPLG-2086 |
|
0.0038 | 0.23 | 60 | 0.46 |
DPLG-2091 |
|
0.026 | 2.3 | 88 | 5.3 |
DPLG-2098 |
|
4.31 | >100 | >23 | >100 |
DPLG-2099 |
|
0.53 | 41.9 | 79 | >100 |
DPLG-2102 |
|
1.7 | 55.9 | 33 | 42 |
DPLG-2105 |
|
0.031 | 1.2 | 39 | 18 |
DPLG-2106 |
|
0.14 | 6.5 | 46 | 7.8 |
DPLG-2109 |
|
57.1 | >100 | >2 | >100 |
DPLG-2127 |
|
0.023 | 15.6 | 680 | >100 |
DPLG-2130 |
|
0.46 | 79 | 170 | 67.8 |
DPLG-2142 |
|
0.028 | 5.0 | 180 | 9.1 |
DPLG-2143 |
|
0.25 | 19.6 | 78 | >100 |
DPLG-2144 |
|
0.009 | 0.62 | 69 | 1.47 |
DPLG-2150 |
|
0.0044 | 0.61 | 139 | 0.8 |
DPLG-2160 |
|
0.0094 | 0.098 | 10 | 0.05 |
DPLG-2211 |
|
0.245 | 1.28 | 5 | 4.18 |
DPLG-2219 | |
4.73 | >100 | >21 | >100 |
DPLG-2220 | |
0.070 | 1.35 | 19 | 6.27 |
DPLG-2224 | |
0.0043 | 0.228 | 53 | >100 |
DPLG-2226 | |
1.15 | 78.1 | 68 | >100 |
DPLG-2222 | |
0.011 | 0.738 | 70 | >100 |
DPLG-2223 | |
0.0065 | 0.767 | 118 | 4.47 |
DPLG-2229 | |
0.069 | 19.3 | 236 | >100 |
DPLG-2230 | |
0.0055 | 0.498 | 90 | 1.11 |
DPLG-2243 | |
0.00012 | 0.0295 | 246 | 0.062 |
DPLG-2244 | |
0.0125 | 0.82 | 66 | 2.20 |
DPLG-2255 |
|
0.0015 | 0.12 | 80 | 0.028 |
DPLG-2256 | |
0.00009 | 0.031 | 343 | 0.034 |
DPLG-3012 | |
0.93 | 9.65 | 10.4 | 4.16 |
DPLG-3013 | |
0.23 | 0.66 | 2.9 | 11.03 |
DPLG-3014 | |
0.025 | 0.42 | 17 | 0.96 |
DPLG-3016 | |
0.71 | 2.81 | 4 | 6.03 |
DPLG-3017 | |
0.099 | 0.60 | 6 | 6.33 |
DPLG-3053 | |
0.00075 | 0.075 | 100 | 0.22 |
DPLG-3066 | |
0.0053 | >100 | >19000 | 0.198 |
DPLG-3083 | |
0.0033 | 0.3 | 90 | 1.20 |
DPLG-3084 | |
0.0014 | 0.037 | 26 | 0.084 |
DPLG-21033 | |
0.0053 | 0.438 | 83 | — |
DPLG-21049 | |
0.133 | 0.70 | 5 | — |
DPLG-21050 | |
0.026 | >100 | >3846 | — |
aSI: selectivity index; | |||||
blogP: calculated with ChemDraw. |
TABLE 4 |
IC50s of the N,C-dipeptides inhibiting proteasome inside |
the Karpas 1106p cells and their LD50 against Karpas. |
Proteasome-glo ® | LD50 (μM) | ||
ID | β5-IC50 (μM) | Karpas | |
DPLG-3 | 0.11 | 2.04 | |
DPLG-2032 | >100 | >100 | |
DPLG-2058 | 0.009 | 34.4 | |
DPLG-2083 | 0.16 | 0.254 | |
DPLG-2086 | 0.005 | 0.46 | |
DPLG-2091 | 0.064 | 5.3 | |
DPLG-2106 | 1.46 | 7.8 | |
DPLG-2127 | 0.16 | >100 | |
DPLG-2130 | 1.13 | 67.8 | |
DPLG-2150 | 0.009 | 0.8 | |
DPLG-2160 | 0.019 | 0.05 | |
Bortezomib | 0.0006 | 0.0017 | |
Karpas: subtype of lymphoma; Proteasome-glo ®: test of proteasome inhibition in intact cells. |
Although the invention has been described in detail, for the purpose of illustration, it is understood that such detail is for that purpose and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.
Claims (76)
1. A compound of Formula (Ia):
wherein
R1a is selected from the group consisting of bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle, wherein bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R2a is selected from the group consisting of C1-6 alkyl, —CH2OC1-6 alkyl, CH2Ar, and heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R3a is selected from the group consisting of —CH2OC1-6 alkyl, —(CH2)mC(O)NHR5a, and —CH2C(O)R5a;
R4a is selected from the group consisting of —C(O)(CH2)nPh, —C(O)CH2NR6aR7a, —SO2Ar, —SO2C1-6 alkyl, —C(O)(CH2)nHet, —C(O)C1-6 alkyl, —C(O)CF3, heteroaryl, and —(CH2)nNR6aR7a, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5a is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6aR7a, and —CR8aR9a;
R6a, R7a, R8a, and R9a are each independently selected from the group consisting of H, C1-6 alkyl, and —(CH2)kOH;
or R6a and R7a are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, azepane, azetidine, or morpholine ring;
or R8a and R9a are taken together with the carbon to which they are attached to form an oxetane ring;
m is 1 or 2;
n is 0, 1, 2, or 3; and
k is 1, 2, or 3.
2. A pharmaceutical composition comprising a therapeutically effective amount of the compound according to claim 1 and a pharmaceutically acceptable carrier.
3. The compound according to claim 1 , wherein m is 1.
4. The compound according to claim 1 , wherein m is 2.
5. The compound according to claim 1 , wherein R5a is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, and —CR8aR9a.
11. A method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject, said method comprising:
administering to the subject in need thereof a compound of the Formula (Ia):
wherein
R1a is selected from the group consisting of bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle, wherein bicyclic aryl, monocyclic and bicyclic heteroaryl, and monocyclic and bicyclic non-aromatic heterocycle can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R2a is selected from the group consisting of C1-6 alkyl, —CH2OC1-6 alkyl, —CH2Ar, and heteroaryl, wherein aryl (Ar) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R3a is selected from the group consisting of —CH2OC1-6 alkyl, —CHmC(O)NHR5a, and —CH2C(O)R5a;
R4a is selected from the group consisting of —C(O)(CH2)nPh, —C(O)CH2NR6aR7a, —SO2Ar, —SO2C1-6 alkyl, —C(O)(CH2)nHet, —C(O)C1-6 alkyl, —C(O)CF3, heteroaryl, and —(CH2)nNR6aR7a, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted from 1 to 3 times with a substituent selected independently at each occurrence thereof from the group consisting of halogen, cyano, C1-6 alkyl, and C1-6 alkoxy;
R5a is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, —NR6aR7a, and —CR8aR9a;
R6a, R7a, R8a, and R9a are each independently selected from the group consisting of H, C1-6 alkyl, and —(CH2)kOH;
or R6a and R7a are taken together with the nitrogen to which they are attached to form a piperidine, pyrrolidine, azepane, azetidine, or morpholine ring;
or R8a and R9a are taken together with the carbon to which they are attached to form an oxetane ring;
m is 1 or 2;
n is 0, 1, 2, or 3; and
k is 1, 2, or 3.
12. The method of claim 11 , wherein m is 1.
13. The method of claim 11 , wherein m is 2.
14. The method of claim 11 , wherein R5a is selected from the group consisting of C1-6 alkyl, C1-6 alkoxy, non-aromatic heterocycle, and —CR8aR9a.
20. The method of claim 12 , wherein an autoimmune disorder is treated, said autoimmune disorder being selected from the group consisting of arthritis, colitis, and lupus.
21. The method of claim 12 , wherein immunosuppression is provided for transplanted organs or tissues, said immunosuppression being used to prevent transplant rejection.
22. The method of claim 12 , wherein an inflammatory disorder is treated, said inflammatory disorder being Crohn's disease.
23. The method of claim 12 , wherein cancer is treated, said cancer being selected from the group consisting of neoplastic disorders, hematologic malignancies, and lymphocytic malignancies.
24. A compound of Formula (I):
wherein
R1 is bicyclic aryl optionally substituted 1 time with a substituent selected independently at each occurrence thereof from the group consisting of halogen and C1-6 alkyl;
R2 is selected from the group consisting of C1-6 alkyl, —CH2OC1-6 alkyl, and —CH2Ar, wherein aryl (Ar) can be optionally substituted 1 time with halogen;
R3 is independently selected at each occurrence thereof from the group consisting of —CH2OC1-6 alkyl and —(CH2)mC(O)NHR5;
R4 is selected from the group consisting of —C(O)(CH2)nPh, —SO2Ar, —SO2C1-6 alkyl, —C(O)(CH2)nHet, and —C(O)C(O)Het, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted 1 time with C1-6 alkyl;
R5 is selected from the group consisting of C1-4 alkyl and —CR8R9;
R8 and R9 are taken together with the carbon to which the are attached to form an oxetane ring;
X is —(CH2)q—,
Y is O;
m is 1 or 2,
n is 0 or 2;
q is 1; and
s is 1.
44. A method of treating cancer, immunologic disorders, autoimmune disorders, neurodegenerative disorders, or inflammatory disorders in a subject or for providing immunosuppression for transplanted organs or tissues in a subject, said method comprising
administering to the subject in need thereof a compound of the Formula (I):
wherein
R1 is bicyclic aryl optionally substituted 1 time with a substituent selected independently at each occurrence thereof from the group consisting of halogen and C1-6 alkyl;
R2 is selected from the group consisting of C1-6 alkyl, —CH2OC1-6 alkyl, and —CH2Ar, wherein aryl (Ar) can be optionally substituted 1 time with halogen;
R3 is independently selected at each occurrence thereof from the group consisting of —CH2OC1-6 alkyl and —(CH2)mC(O)NHR5;
R4 is selected from the group consisting of —C(O)(CH2)nPh, —SO2Ar, —SO2C1-6 alkyl, —C(O)(CH2)nHet, and —C(O)C(O)Het, wherein aryl (Ar) and heteroaryl (Het) can be optionally substituted 1 time with C1-6 alkyl;
R5 is selected from the group consisting of C1-4 alkyl and —CR8R9;
R8 and R9 are taken together with the carbon to which they are attached to form an oxetane ring;
X is —(CH2)q—;
Y is O;
m is 1 or 2;
n is 0 or 2;
q is 1; and
s is 1.
64. The method of claim 44, wherein an autoimmune disorder is treated, said autoimmune disorder being selected from the group consisting of arthritis, colitis, and lupus.
65. The method of claim 44, wherein immunosuppression is provided for transplanted organs or tissues, said immunosuppression being used to prevent transplant rejection.
66. The method of claim 44, wherein an inflammatory disorder is treated, said inflammatory disorder being Crohn's disease.
67. The method of claim 44, wherein cancer is treated, said cancer being selected from the group consisting of neoplastic disorders, hematologic malignancies, and lymphocytic malignancies.
68. A pharmaceutical composition comprising a therapeutically effective amount of the compound according to claim 24 and a pharmaceutically acceptable carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/893,086 USRE49816E1 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461926062P | 2014-01-10 | 2014-01-10 | |
US16/893,086 USRE49816E1 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
US15/110,000 US9988421B2 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
PCT/US2015/011022 WO2015106200A2 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE49816E1 true USRE49816E1 (en) | 2024-01-30 |
Family
ID=53524481
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/110,000 Ceased US9988421B2 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
US16/893,086 Active USRE49816E1 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/110,000 Ceased US9988421B2 (en) | 2014-01-10 | 2015-01-12 | Dipeptides as inhibitors of human immunoproteasomes |
Country Status (4)
Country | Link |
---|---|
US (2) | US9988421B2 (en) |
EP (1) | EP3092244B1 (en) |
ES (1) | ES2748434T3 (en) |
WO (1) | WO2015106200A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9988421B2 (en) | 2014-01-10 | 2018-06-05 | Cornell University | Dipeptides as inhibitors of human immunoproteasomes |
WO2015195950A1 (en) * | 2014-06-20 | 2015-12-23 | Principia Biophamram Inc. | Lmp7 inhibitors |
CN107073069B (en) | 2014-08-18 | 2022-03-08 | 康奈尔大学 | Dipeptide mimetics as inhibitors of human immunoproteasome |
EP3362754B1 (en) | 2015-10-15 | 2021-12-22 | Cornell University | Proteasome inhibitors and uses thereof |
US11203613B2 (en) | 2017-10-11 | 2021-12-21 | Cornell University | Peptidomimetic proteasome inhibitors |
US11046729B2 (en) | 2017-10-26 | 2021-06-29 | Southern Research Institute | Dipeptide analogs as TGF-beta inhibitors |
GB201808149D0 (en) | 2018-05-18 | 2018-07-11 | Univ Court Univ Of Glasgow | Protected amino acids |
NL2024194B1 (en) | 2019-11-08 | 2021-07-20 | Ioniqa Tech B V | Method for treatment of waste material and reactor system thereof |
WO2021113528A1 (en) * | 2019-12-04 | 2021-06-10 | Southern Research Institute | Modulators of programmed death-ligand-1 and/or programmed death-ligand-2 |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763604A (en) | 1992-03-06 | 1998-06-09 | Hoffmann-La Roche Inc. | Sulfonamidocarboxamides |
WO1998029387A1 (en) | 1996-12-25 | 1998-07-09 | Agrogene Ltd. | Aminobutyric acid fungicides |
US20050171146A1 (en) | 2002-06-05 | 2005-08-04 | Solvay Pharmaceuticals Gmbh | Non-peptidic BRS-3 agonists |
WO2006009134A1 (en) | 2004-07-21 | 2006-01-26 | Mitsui Chemicals, Inc. | Diamine derivative, process for producing the same and fungicide containing the derivative as active ingredient |
US7001921B1 (en) | 1995-01-23 | 2006-02-21 | Biogen Idec Ma Inc. | Cell adhesion inhibitors |
WO2006029210A2 (en) | 2004-09-07 | 2006-03-16 | Smithkline Beecham Corporation | Acyclic 1,3-diamines and uses therefor |
WO2006065826A2 (en) | 2004-12-15 | 2006-06-22 | Merck & Co., Inc. | Process to chiral beta amino acid derivatives by asymmetric hydrogenation |
WO2006099261A2 (en) | 2005-03-11 | 2006-09-21 | The University Of North Carolina At Chapel Hill | Potent and specific immunoproteasome inhibitors |
JP2006298785A (en) | 2005-04-18 | 2006-11-02 | Mitsui Chemicals Inc | Diamine derivative, its manufacturing method and bactericide having the same as active ingredient |
US20070010515A1 (en) | 2003-06-03 | 2007-01-11 | Akira Masuda | [1,2,4] Triazolo [1,5, a] pyrimidin-2-ylurea derivative and use thereof |
WO2007083394A1 (en) | 2006-01-19 | 2007-07-26 | Mitsui Chemicals, Inc. | Pest control composition containing diamine derivative |
WO2007149512A2 (en) | 2006-06-19 | 2007-12-27 | Proteolix, Inc. | Peptide epoxyketones for pr0teas0me inhibition |
WO2009051581A1 (en) | 2007-10-16 | 2009-04-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
US20090227601A1 (en) | 2005-12-07 | 2009-09-10 | Amgen Inc. | Bradykinin 1 Receptor Antagonists |
WO2010036357A1 (en) | 2008-09-29 | 2010-04-01 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
WO2010038200A1 (en) | 2008-10-01 | 2010-04-08 | Actelion Pharmaceuticals Ltd | Oxazolidine compounds as orexin receptor antagonists |
US20100249400A1 (en) | 2007-09-11 | 2010-09-30 | Tokyo University Of Science Educational Foundation Administrative Organization | Novel dihydronaphthalene compound and use thereof |
US20100249197A1 (en) | 2000-09-29 | 2010-09-30 | Watkins Clare J | Carbamic acid compounds comprising an amide linkage as hdac inhibitors |
WO2011123502A1 (en) | 2010-03-31 | 2011-10-06 | Millennium Pharmaceuticals, Inc | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
US8048911B2 (en) | 2002-09-13 | 2011-11-01 | OGA Research, Inc. | Melanin eliminator preparation |
WO2012065891A1 (en) | 2010-11-17 | 2012-05-24 | Ucb Pharma Gmbh | Process for preparing lacosamide |
WO2012116440A1 (en) | 2011-03-03 | 2012-09-07 | Zalicus Pharmaceuticals Ltd. | Benzimidazole inhibitors of the sodium channel |
CN102807601A (en) | 2011-06-03 | 2012-12-05 | 首都医科大学 | Aminoacyl-tryptophanyl-5-methoxytryptamine and preparation method and application thereof |
WO2013005045A1 (en) | 2011-07-07 | 2013-01-10 | Kalvista Pharmaceuticals Limited | Benzylamine derivatives as inhibitors of plasma kallikrein |
US8367668B2 (en) | 2007-06-01 | 2013-02-05 | MERCK Patent Gesellschaft mit beschränkter Haftung | Pyridazinone derivatives |
US20130072422A1 (en) | 2010-03-01 | 2013-03-21 | Kevin D. Shenk | Compounds for immunoproteasome inhibition |
WO2013092979A1 (en) | 2011-12-22 | 2013-06-27 | Ares Trading S.A. | Alpha-amino boronic acid derivatives, selective immunoproteasome inhibitors |
JP2014091731A (en) | 2012-11-06 | 2014-05-19 | Kobe Gakuin | Peptide compound from novel somatostatin, and dna polymerase inhibitor, anticancer agent and apoptosis-inducing agent comprising the same |
WO2014095773A1 (en) | 2012-12-21 | 2014-06-26 | F. Hoffmann-La Roche Ag | Peptides as oxytocin agonists |
US20140315786A1 (en) | 2011-03-18 | 2014-10-23 | Catabasis Pharmaceuticals, Inc. | Use of intracellular enzymes for the release of covalently linked bioactives |
WO2015076359A1 (en) | 2013-11-21 | 2015-05-28 | 国立大学法人北海道大学 | Proteasome-inhibiting compound |
WO2015106200A2 (en) | 2014-01-10 | 2015-07-16 | Cornell University | Dipeptides as inhibitors of human immunoproteasomes |
WO2016028571A2 (en) | 2014-08-18 | 2016-02-25 | Cornell University | Dipeptidomimetics as inhibitors of human immunoproteasomes |
WO2017066763A1 (en) | 2015-10-15 | 2017-04-20 | Cornell University | Proteasome inhibitors and uses thereof |
WO2019075252A1 (en) | 2017-10-11 | 2019-04-18 | Cornell University | Peptidomimetic proteasome inhibitors |
-
2015
- 2015-01-12 US US15/110,000 patent/US9988421B2/en not_active Ceased
- 2015-01-12 EP EP15735399.6A patent/EP3092244B1/en active Active
- 2015-01-12 ES ES15735399T patent/ES2748434T3/en active Active
- 2015-01-12 WO PCT/US2015/011022 patent/WO2015106200A2/en active Application Filing
- 2015-01-12 US US16/893,086 patent/USRE49816E1/en active Active
Patent Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763604A (en) | 1992-03-06 | 1998-06-09 | Hoffmann-La Roche Inc. | Sulfonamidocarboxamides |
US7001921B1 (en) | 1995-01-23 | 2006-02-21 | Biogen Idec Ma Inc. | Cell adhesion inhibitors |
WO1998029387A1 (en) | 1996-12-25 | 1998-07-09 | Agrogene Ltd. | Aminobutyric acid fungicides |
US20100249197A1 (en) | 2000-09-29 | 2010-09-30 | Watkins Clare J | Carbamic acid compounds comprising an amide linkage as hdac inhibitors |
US20050171146A1 (en) | 2002-06-05 | 2005-08-04 | Solvay Pharmaceuticals Gmbh | Non-peptidic BRS-3 agonists |
US8048911B2 (en) | 2002-09-13 | 2011-11-01 | OGA Research, Inc. | Melanin eliminator preparation |
US20070010515A1 (en) | 2003-06-03 | 2007-01-11 | Akira Masuda | [1,2,4] Triazolo [1,5, a] pyrimidin-2-ylurea derivative and use thereof |
WO2006009134A1 (en) | 2004-07-21 | 2006-01-26 | Mitsui Chemicals, Inc. | Diamine derivative, process for producing the same and fungicide containing the derivative as active ingredient |
CN1984880A (en) | 2004-07-21 | 2007-06-20 | 三井化学株式会社 | Diamine derivative, process for producing the same and fungicide containing the derivative as active ingredient |
US20070244153A1 (en) | 2004-07-21 | 2007-10-18 | Mitsui Chemicals, Inc. | Diamine Derivative, Process of Preparation Thereof, and Fungicide Comprising Diamine Derivative as an Active Ingredient |
JP2008512476A (en) | 2004-09-07 | 2008-04-24 | スミスクライン・ビーチャム・コーポレイション | Acyclic 1,3-diamine and use thereof |
WO2006029210A2 (en) | 2004-09-07 | 2006-03-16 | Smithkline Beecham Corporation | Acyclic 1,3-diamines and uses therefor |
WO2006065826A2 (en) | 2004-12-15 | 2006-06-22 | Merck & Co., Inc. | Process to chiral beta amino acid derivatives by asymmetric hydrogenation |
US20060241056A1 (en) * | 2005-03-11 | 2006-10-26 | University Of North Carolina At Chapel Hill | Potent and specific immunoproteasome inhibitors |
WO2006099261A2 (en) | 2005-03-11 | 2006-09-21 | The University Of North Carolina At Chapel Hill | Potent and specific immunoproteasome inhibitors |
JP2006298785A (en) | 2005-04-18 | 2006-11-02 | Mitsui Chemicals Inc | Diamine derivative, its manufacturing method and bactericide having the same as active ingredient |
US20090227601A1 (en) | 2005-12-07 | 2009-09-10 | Amgen Inc. | Bradykinin 1 Receptor Antagonists |
WO2007083394A1 (en) | 2006-01-19 | 2007-07-26 | Mitsui Chemicals, Inc. | Pest control composition containing diamine derivative |
WO2007149512A2 (en) | 2006-06-19 | 2007-12-27 | Proteolix, Inc. | Peptide epoxyketones for pr0teas0me inhibition |
CN101506224A (en) | 2006-06-19 | 2009-08-12 | 普罗特奥里克斯公司 | Peptide epoxyketones for proteasome inhibition |
US20130053303A1 (en) | 2006-06-19 | 2013-02-28 | Onyx Therapeutics, Inc. | Compounds for enzyme inhibition |
US8367668B2 (en) | 2007-06-01 | 2013-02-05 | MERCK Patent Gesellschaft mit beschränkter Haftung | Pyridazinone derivatives |
US20100249400A1 (en) | 2007-09-11 | 2010-09-30 | Tokyo University Of Science Educational Foundation Administrative Organization | Novel dihydronaphthalene compound and use thereof |
JP2014167005A (en) | 2007-09-11 | 2014-09-11 | Tokyo Univ Of Science | Proteasome inhibitor |
WO2009051581A1 (en) | 2007-10-16 | 2009-04-23 | Millennium Pharmaceuticals, Inc. | Proteasome inhibitors |
WO2010036357A1 (en) | 2008-09-29 | 2010-04-01 | Millennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclobutylethylboronic acid |
WO2010038200A1 (en) | 2008-10-01 | 2010-04-08 | Actelion Pharmaceuticals Ltd | Oxazolidine compounds as orexin receptor antagonists |
US20130072422A1 (en) | 2010-03-01 | 2013-03-21 | Kevin D. Shenk | Compounds for immunoproteasome inhibition |
WO2011123502A1 (en) | 2010-03-31 | 2011-10-06 | Millennium Pharmaceuticals, Inc | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
WO2012065891A1 (en) | 2010-11-17 | 2012-05-24 | Ucb Pharma Gmbh | Process for preparing lacosamide |
WO2012116440A1 (en) | 2011-03-03 | 2012-09-07 | Zalicus Pharmaceuticals Ltd. | Benzimidazole inhibitors of the sodium channel |
US20140315786A1 (en) | 2011-03-18 | 2014-10-23 | Catabasis Pharmaceuticals, Inc. | Use of intracellular enzymes for the release of covalently linked bioactives |
CN102807601A (en) | 2011-06-03 | 2012-12-05 | 首都医科大学 | Aminoacyl-tryptophanyl-5-methoxytryptamine and preparation method and application thereof |
WO2013005045A1 (en) | 2011-07-07 | 2013-01-10 | Kalvista Pharmaceuticals Limited | Benzylamine derivatives as inhibitors of plasma kallikrein |
WO2013092979A1 (en) | 2011-12-22 | 2013-06-27 | Ares Trading S.A. | Alpha-amino boronic acid derivatives, selective immunoproteasome inhibitors |
JP2014091731A (en) | 2012-11-06 | 2014-05-19 | Kobe Gakuin | Peptide compound from novel somatostatin, and dna polymerase inhibitor, anticancer agent and apoptosis-inducing agent comprising the same |
WO2014095773A1 (en) | 2012-12-21 | 2014-06-26 | F. Hoffmann-La Roche Ag | Peptides as oxytocin agonists |
WO2015076359A1 (en) | 2013-11-21 | 2015-05-28 | 国立大学法人北海道大学 | Proteasome-inhibiting compound |
WO2015106200A2 (en) | 2014-01-10 | 2015-07-16 | Cornell University | Dipeptides as inhibitors of human immunoproteasomes |
WO2016028571A2 (en) | 2014-08-18 | 2016-02-25 | Cornell University | Dipeptidomimetics as inhibitors of human immunoproteasomes |
US20180221431A1 (en) | 2014-08-18 | 2018-08-09 | Cornell University | Dipeptidomimetics as inhibitors of human immunoproteasomes |
US11202817B2 (en) | 2014-08-18 | 2021-12-21 | Cornell University | Dipeptidomimetics as inhibitors of human immunoproteasomes |
US20220080022A1 (en) | 2014-08-18 | 2022-03-17 | Cornell University | Dipeptidomimetics as inhibitors of human immunoproteasomes |
WO2017066763A1 (en) | 2015-10-15 | 2017-04-20 | Cornell University | Proteasome inhibitors and uses thereof |
US20180282317A1 (en) | 2015-10-15 | 2018-10-04 | Cornell University | Proteasome inhibitors and uses thereof |
US20210171514A1 (en) | 2015-10-15 | 2021-06-10 | Cornell University | Proteasome inhibitors and uses thereof |
US11066397B2 (en) | 2015-10-15 | 2021-07-20 | Cornell University | Proteasome inhibitors and uses thereof |
WO2019075252A1 (en) | 2017-10-11 | 2019-04-18 | Cornell University | Peptidomimetic proteasome inhibitors |
US20200317729A1 (en) | 2017-10-11 | 2020-10-08 | Cornell University | Peptidomimetic proteasome inhibitors |
US11203613B2 (en) | 2017-10-11 | 2021-12-21 | Cornell University | Peptidomimetic proteasome inhibitors |
US20220056073A1 (en) | 2017-10-11 | 2022-02-24 | Cornell University | Peptidomimetic proteasome inhibitors |
Non-Patent Citations (150)
Title |
---|
Ahlford et al., "Fine-Tuning Catalytic Activity and Selectivity-[Rh(Amino Acid Thioamide)] Complexes for Efficient Ketone Reduction," Tetrahedron Lett. 50:6321-6324 (2009). |
Allen et al., "Analysis of the Cytosolic Proteome in a Cell Culture Model of Familial Amyotrophic Lateral Sclerosis Reveals Alterations to the Proteasome, Antioxidant Defenses, and Nitric Oxide Synthetic Pathways," J. Biol. Chem. 278:6371-6383 (2003). |
Basler et al., "Inhibition of the Immunoproteasome Ameliorates Experimental Autoimmune Encephalomyelitis," EMBO Mol. Med. 6:226-238 (2014). |
Basler et al., "Prevention of Experimental Colitis by a Selective Inhibitor of the Immunoproteasome," J. Immunol. 185:634-641 (2010). |
Baud et al., "Defining the Mechanism of Action and Enzymatic Selectivity of Psammaplin A against Its Epigenetic Targets," J. Med. Chem. 55:1731-1750 (2012). |
Baumeister et al., "The Proteasome: Paradigm of a Self-Compartmentalizing Protease," Cell 92:367-380 (1998). |
Beaumont et al. "Design of Ester Prodrugs to Enhance Oral Absorption of Poorly Permeable Compounds: Challenges to the Discovery Scientist" Curr. Drug Metab. 4:461-485. (2003). |
Bedford et al., "Ubiquitin-Like Protein Conjugation and the Ubiquitin-Proteasome System as Drug Targets," Nat. Rev. Drug Discov. 10:29-46 (2011). |
Blackburn et al. "Optimization of a Series of Dipeptides with a P3 Beta-Neopentyl Asparagine Residue as Non-Covalent Inhibitors of the Chymotrypsin-Like Activity of the Human 20S Proteasome," Med. Chem. Commun. 3:710-719 (2012). |
Blackburn et al. Optimization of a series of dipeptides with a P3 beta-neopentyl asparagine residue as non-covalent inhibitors of the chymotrypsin-like activity of human 20S proteasome. Med Chem Commun, 2012 (published Apr. 19, 2012), vol. 3, pp. 710-719. * |
Blackburn et al., "Characterization of a new Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S Beta5-Subunit," Biochem. J. 430:461-476 (2010). |
Blackburn et al., "Chracterization of a new Series of Non-Covalent Proteasome Inhibitors with Exquisite Potency and Selectivity for the 20S Beta5-Subunit," Biochem. J. 430:461-476 (2010). |
Bontscho et al., "Myeloperoxidase-Specific Plasma Cell Depletion by Bortezomib Protects From Anti-Neutrophil Cytoplasmic Autoantibodies-Induced Glomerulonephritis," J. Am. Soc. Nephrol. 22:336-348 (2011). |
Brun, "Proteasome Inhibition as a Novel Therapy in Treating Rheumatoid Arthritis," Med. Hypotheses 71:65-72 (2008). |
CAS Registry No. 120655-16-5, Entered STN: May 12, 1989. |
CAS Registry No. 1461869-28-2, Entered STN: Oct. 21, 2013. |
CAS Registry No. 294889-15-9, Entered STN: Oct. 12, 2000. |
CAS Registry No. 3641-55-2, Entered STN: Nov. 16, 1984. |
CAS Registry No. 50633-04-0, Entered STN: Nov. 16, 1984. |
CAS Registry No. 51219-69-3, Entered STN: Nov. 16, 1984. |
CAS Registry No. 51219-75-1, Entered STN: Nov. 16, 1984. |
CAS Registry No. 59973-55-6, Entered STN: Nov. 16, 1984. |
CAS Registry No. 839730-13-1, Entered STN: Mar. 1, 2005. |
CAS Registry No. 839730-21-1, Entered STN: Mar. 1, 2005. |
CAS Registry No. 839730-22-2, Entered STN: Mar. 1, 2005. |
CAS Registry No. 866779-17-1, Entered STN: Nov. 4, 2005. |
CAS Registry No. 87639-77-8, Entered STN: Nov. 16, 1984. |
Coumar et al., "3-[2-((2S)-2-Cyano-pyrrolidin-1-yl)-2-oxo-ethylamino]-3-methyl-butyramide Analogues as Selective DPP-IV Inhibitors for the Treatment of Type-II Diabetes," Bioorg. Med. Chem. Lett. 17(5):1274-1279 (2007). |
Database Registry Database accession No. 1060993-03-4. |
Database Registry Database accession No. 1276335-00-2. |
Database Registry Database accession No. 1299989-71-1. |
DFHBI IT Datasheet (Lucerna). |
Drey et al., "Synthesis of β-Amino-Acid Peptides by Aminolysis of Substituted Di-hydro-1,3-oxazinones and Amino-Protected β-Lactams," Perkin Transactions 1, J. Chem. Soc. 17:2001-2006 17:2001-2006 (1973). |
Duke et al., "Synthesis and Biological Evaluation of Sparsomycin Analogues," J. Med. Chem. 26:1556-1561 (1983). |
Egerer et al., "Tissue-Specific Up-Regulation of the Proteasome Subunit beta5i (LMP7) in Sjogren's Syndrome," Arthritis Rheum. 54:1501-1508 (2006). |
El-Hashim et al., "Effect of Inhibition of the Ubiquitin-Proteasome-System and IkappaB Kinase on Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma," Int. J. Immunopathol. Pharmacol. 24:33-42 (2011). |
Elliott et al., "Proteasome Inhibition: A Novel Mechanism to Combat Asthma," J. Allergy Clin. Immunol. 104:294-300 (1999). |
El-Naggar et al., "Database CA [Online]: ‘Synthesis and Biological Activity of Some New 4-(Aminoacyl) Aminopyridines and 2-(Aminoacyl)Aminopyrimidine Derivatives,’" Polish Journal of Chemistry, 56:1279-1285 (1982). |
El-Naggar et al., "Synthesis and Biological Activity of Some New 4-(Aminoacyl)Aminopyridines and 2-(Aminoacyl) Aminopyrimidine Derivatives," Polish Journal of Chemistry, 56:1279-1285 (1982). |
Ettmayer et al., "Lessons Learned from Marketed and Investigational Prodrugs," J. Med. Chem. 47:2393-2404 (2004). |
Examination report for Europe Patent Application No. 15834073.7 (dated Mar. 25, 2020). |
Examination Report for Indian Patent Application No. 201747005687 (dated Aug. 29, 2019). |
Examination Report for Indian Patent Application No. 202048025018 (dated Jun. 3, 2021). |
Extended European Search Report and Opinion for European Application No. 16856412.8 dated Mar. 22, 2019. |
Extended European Search Report for EP Application Serial No. 18867283.6 (dated Sep. 27, 2021). |
Extended European Search Report for EP Application Serial No. 21216660.7 (dated Mar. 29, 2022). |
Fisher et al., "Multicenter Phase II Study of Bortezomib in Patients With Relapsed or Refractory Mantle Cell Lymphoma," J. Clin. Oncol. 24(30):4867-4874 (2006). |
Fuchise et al., "Atlantic Cod Trypsin-Catalyzed Peptide Synthesis with Inverse Substrates as Acyl Donor Components," Chem. Pharm. Bull. 58(4):484-487 (2010). |
Goldberg, "Functions of the Proteasome: From Protein Degradation and Immune Surveillance to Cancer Therapy," Biochem. Soc. Trans. 35:12-17 (2007). |
Grudzinski et al., "Studia nad Procesami Uwodornienia Aminonitryli. IX. Otrzymywanie N,N′-Dwuacylo-Trojmetylenodwuamin o Niejednakowych Resztach Kwasowych w Czateczce [Studies on the Hydrogenation of Aminonitriles. IX. Synthesis of N,N′-Diacyl-trimethylenediamines Containing Different Acyl Residues]," Acta Poloniae Pharmaceutica 22(6):485-490 (1965) (Article in Polish, English Title and Summary at pp. 489-490). |
Guillaume et al., "Two Abundant Proteasome Subtypes That Uniquely Process Some Antigens Presented by HLA Class I Molecules," Proc. Natl. Acad. Sci. U.S.A. 107:18599-18604 (2010). |
Han, Hyo-Kyung "Targeted Prodrug Design to Optimize Drug Delivery," AAPS Pharmsci 2:1-11 (2000). |
Henry et al., "Proteolytic Activity and Expression of the 20S Proteasome are Increased in Psoriasis Lesional Skin," Br. J. Dermatol. 165:311-320 (2011). |
Hirai, et al., "Bortezomib Suppresses Function and Survival of Plasmacytoid Dendritic Cells by Targeting Intracellular Trafficking of Toll-Like Receptors and Endoplasmic Reticulum Homeostasis," Blood 117:500-509 (2011). |
Hook et al. "The Proteolytic Stability of ‘Designed’ [beta]-Peptides Containing [alpha]-Peptide-Bond Mimics and of Mixed [alpha, beta]-Peptides: Application to Construction of MHC-Binding Peptides" Chemistry & Biodiversity 2:591-632 (2005). |
Huber et al., "Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity," Cell 148:727-738 (2012). |
Huber et al., "Inhibitors for the Immuno- and Constitutive Proteasome: Current and Future Trends in Drug Development," Angew Chem. Int. Ed Engl. 51:8708-8720 (2012). |
Ichikawa et al., "Beneficial Effect of Novel Proteasome Inhibitors in Murine Lupus via Dual Inhibition of Type I Interferon and Autoantibody-Secreting Cells," Arthritis & Rheumatism 64(2):493-503 (2012). |
Ichikawa et al., "Novel Proteasome Inhibitors Have a Beneficial Effect in Murine Lupus via the Dual Inhibition of Type I Interferon and Autoantibody-Secreting Cells," HHS Public Access Author Manuscript, Available in PMC Sep. 28, 2015, 19 pages, Published in final edited form as: Arthritis Rheum. 64(2):493-503 (2012). |
Inoue et al., "The Effect of Proteasome Inhibitor MG132 on Experimental Inflammatory Bowel Disease," Clin. Exp. Immunol. 156:172-82 (2009). |
International Preliminary Report on Patentability and Written Opinion for PCT/US2015/011022 (dated Jul. 12, 2016). |
International Preliminary Report on Patentability and Written Opinion for PCT/US2015/011022 (dated Jul. 21, 2016). |
International Preliminary Report on Patentability for Application No. PCT/2018/055482 (dated Apr. 14, 2020). |
International Preliminary Report on Patentability for Application No. PCT/US2015/044876 (dated Feb. 21, 2017). |
International Preliminary Report on Patentability for Application No. PCT/US2016/057346 (dated Apr. 17, 2018). |
International Search Report and Written Opinion for corresponding Application No. PCT/2018/055482 (dated Feb. 8, 2019). |
International Search Report and Written Opinion for corresponding Application No. PCT/US2015/011022 (dated Jun. 24, 2015). |
International Search Report and Written Opinion for corresponding Application No. PCT/US2015/044876 (dated Nov. 13, 2015). |
Kataoka et al., "Formation of Heterocyclic Amine—Amino Acid Adducts by Heating in a Model System," Food Chemistry 130(3):725-729 (2012). |
Kincaid et al., "Mice Completely Lacking Immunoproteasomes Display Major Alternatives in Antigen Presentation," HHS Public Access Author Manuscript, Available in PMC Aug. 1, 2012, 18 pages, Published in final edited form as: Nat. Immunol. 13(2):129-135 (2012). |
Kłoda, "Systemic Sclerosis—Bortezomib—is it Wonder Drug?," MEDtube.net (2011) https://medtube.net/tribune/systemic-sclerosis-bortezomib-is-it-wonder-drug/. |
Korshin et al., "Aminoamidines. 7.* 2-(Arylaminomethyl)imidazolines and Their Acylated Derivatives," Izvestiya Akademii Nauk, Seriya Khimicheskaya 3:472-479 (1994) with English translation as Korshin et al., "Aminoamidines. 7.* 2-(Arylaminomethyl)imidazolines and Their Acylated Derivatives," Russ. Chem. Bull. 43(3):431-438 (1994). |
Lang et al., "The Early Marginal Zone B Cell-Initiated T-Independent Type 2 Response Resists the Proteasome Inhibitor Bortezomib," J. Immunol. 185:5637-5647 (2010). |
Lei et al., "Structural Features and Binding Free Energies for Non-Covalent Inhibitors Interacting with Immunoproteasome by Molecular Modeling and Dynamics Simulations," Theor. Chem. Acc. 131:1-11 (2012). |
Lei et al., "Structural Features and Binding Free Energies for Non-Covalent Inhibitors Interacting with Immunoproteasome by Molecular Modeling and Dynamics Simulations," Theor. Chem. Acc. 131:2-11 (2012). |
Liang et al., "Proteasome Inhibition in Transplantation-Focusing on the Experience with Bortezomib," Curr. Pharm. Design 19:3299-3304. |
Lin et al., "N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome Over Human Proteasomes: Role of S3 and S1 Binding Pockets," J. Am. Chem. Soc. 135:9968-9971 (2013). |
Liotta et al., "Antibody-Catalyzed Rearrangement of a Peptide Bond: Mechanistic and Kinetic Investigations," J. Am. Chem. Soc. 117(17):4729-4741 (1995). |
Mateos-Mazon et al., "Use of Bortezomib in the Management of Chronic Graft-Versus-Host Disease Among Multiple Myeloma Patients Relapsing After Allogeneic Transplantation," Haematologica 92(9):1295-1296 (2007). |
Meng et al., "Epoxomicin, a Potent and Selective Proteasome Inhibitor, Exhibits in Vivo Antiinflammatory Activity," P. Natl. Acad. Sci. U.S.A. 96:10403-10408 (1999). |
Minagar et al., "Plasma Ubiquitin-Proteasome System Profile in Patients With Multiple Sclerosis: Correlation With Clinical Features, Neuroimaging, and Treatment With Interferon-Beta-1 b," Neurol. Res. 34:611-618 (2012). |
Mitsiades et al., "Proteasome Inhibition as a New Therapeutic Principle in Hematological Malignancies," Current Drug Targets 7:1341-1347 (2006). |
Muchamuel et al., "A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis," Nat. Med. 15:781-787 (2009). |
Muchamuel et al., "A Selective Inhibitor of the Immunoproteasome Subunit LMP7 Blocks Cytokine Production and Attenuates Progression of Experimental Arthritis," Nature Medicine 15(7):781-787 (2009). |
Muller, Christa "Prodrug Approaches for Enhancing the Bioavailability of Drugs with Low Solubility," Chemistry & Biodiversity 6:2071-2083. (2009). |
Mutlu et al., "Proteasomal Inhibition After Injury Prevents Fibrosis by Modulating TGF-b1 Signalling," Thorax 67:139-146 (2012). |
Neubert et al., "The Proteasome Inhibitor Bortezomib Depletes Plasma Cells and Protects Mice With Lupus-Like Disease From Nephritis," Nat. Med. 14:748-755 (2008). |
Niewerth et al., "Anti-Leukemic Activity and Mechanisms Underlying Resistance to the Novel Immunoproteasome Inhibitor PR-924," Biochem. Pharmacol. 89:43-51 (2014). |
Notice of Reasons for Rejection for Japanese Patent Application No. 2017-509632 (dated Jun. 5, 2019). |
Notice of Reasons for Rejection for Japanese Patent Application No. 2018-519271 (dated Oct. 22, 2020). |
Notice of Reasons for Rejection for Japanese Patent Application No. 2021-176164 (dated Dec. 8, 2022). |
Office Action for Chinese Patent Application No. 201580056519.4 (dated May 7, 2021). |
Office Action for EP Application Serial No. 15834073.7 (dated Mar. 4, 2022). |
Office Action for European Patent Application No. 15735399.6 (dated Jun. 11, 2018). |
Office Action for U.S. Appl. No. 15/110,000 (dated Jun. 5, 2017). |
Office Action for U.S. Appl. No. 15/504,951 (dated Jun. 11, 2019). |
Office Action for U.S. Appl. No. 15/504,951 (dated Mar. 26, 2021). |
Office Action for U.S. Appl. No. 15/504,951 (dated Oct. 12, 2018). |
Office Action for U.S. Appl. No. 15/504,951 (dated Sep. 10, 2020). |
Office Action for U.S. Appl. No. 15/768,628 (dated May 1, 2020). |
Office Action for U.S. Appl. No. 15/768,628 (dated Oct. 11, 2019). |
Office Action for U.S. Appl. No. 17/177,729 (dated Mar. 21, 2022). |
Office Action for U.S. Appl. No. 17/521,328 (dated Nov. 1, 2022). |
Office Action in Chinese Patent Application No. 201680065296.2 (dated Apr. 30, 2021). |
Office Action in Chinese Patent Application No. 201680065296.2 (dated Dec. 4, 2019). |
Office Action in Chinese Patent Application No. 201680065296.2 (dated Sep. 28, 2020). |
Office Action in European Application No. 16856412.8 (dated Sep. 16, 2020). |
O'Mahony et al., "A Practical Synthesis of 2′-Aminoacylamino-2′-Deoxyadenosines," Tetrahedron 63(29): 6901-6908 (2007). |
Orlowski "The Ubiquitin Proteasome Pathway from Bench to Bedside," Hematology 220-225 (2005). |
Padrissa-Altes et al., "The use of a Reversible Proteasome Inhibitor in a Model of Reduced-Size Orthotopic Liver Transplantation in Rats," Exp. Mol. Pathol. 93:99-110 (2012). |
Partial Supplementary European Search Report for EP Application Serial No. 18867283.6 (dated Jun. 23, 2021). |
PCT International Search Report and Written Opinion corresponding to PCT/US2016/057346, dated Mar. 23, 2017. |
Perkins, "Integrating Cell-Signalling Pathways With NF-[kappa]B and IKK Function," Nat. Rev. Mol. Cell. Biol. 8:49-62 (2007). |
Pubchem CID 129847054, Sep. 13, 2017 (Accession date Jan. 18, 2019). |
Pubchem CID 64894495, Oct. 23, 2012 (Accession date Nov. 29, 2018). |
Pubchem CID 91250924, https://pubchem.ncbi.nlm.nih.gov/compound/91250924, Retrieved Nov. 24, 2019. |
Pubchem. CID 17857389. Dec. 4, 2007, pp. 1-13[online], [retrieved on Feb. 27, 2017] Retrieved from the Internet <URL: https://pubchem.ncbi.nlm.nih.gov/compound/17857389; p. 4, formula. |
Pubchem. SID 132071324. Jan. 24, 2012, pp. 1-6 [online], [retrieved on Oct. 1, 2015]. Retrieved from the Internet <URL: http://pubchem.ncbi.nih.gov/substance/132071324>;p. 3, formula. |
Pubchem. SID 132358420. Jan. 24, 2012, pp. 1-6 [online], [retrieved on Oct. 1, 2015] Retrieved from the Internet <URL: http://pubchem.ncbi.nih.gov/substance/132358420>; p. 3, formula. |
Pubchem. SID 144773390. Oct. 18, 2012, pp. 1-6 [online], [retrieved on Oct. 1, 2015]. Retrieved from the Internet <URL: http://pubchem.ncbi.nih.gov/substance/144773390>; p. 3, formula. |
Pubchem. SID 146191084. Oct. 10, 2012, pp. 1-6 [online]. [retrieved on Oct. 10, 2015]. Retrieved from the Internet <URL: http://pubchem.ncbi.nih.gov/substance/146191084>;p. 3, formula. |
PubChem: Compound Summary for CID 269632 (Mar. 26, 2005) https://pubchem.ncbi.nim.nih.gov/compound/269632?from=summary>. |
Pubchem: Compound Summary for CID 269632 (Mar. 26, 2005). |
Restriction Requirement for U.S. Appl. No. 15/110,000 (dated Mar. 6, 2017). |
Restriction Requirement for U.S. Appl. No. 15/504,951 (dated Jun. 8, 2018). |
Restriction Requirement for U.S. Appl. No. 16/755,427 (dated Dec. 21, 2020). |
Roccaro et al., "Selective Inhibition of Chymotrypsin-Like Activity of the Immunoproteasome and Constitutive Proteasome in Waldenstrom Macroglobulinemia," Blood 115:4051-4060 (2010). |
Rock et al., "Inhibitors of the Proteasome Block the Degradation of Most Cell Proteins and the Generation of Peptides Presented on MHC Class I Molecules," Cell 78:761-771 (1994). |
Rock et al., "Proteases in MHC Class I Presentation and Cross-Presentation," NIH Public Access Author Manuscript, Available in PMC May 13, 2011, 16 pages, Published in final edited form as: J. Immunol. 184 (1):9-15 (2010). |
Rock et al., "Protein Degradation and the Generation of MHC Class I-Presented Peptides," Adv. Immunol 80:1-70 (2002). |
Rowe, R. C. Editor, Handbok of Pharmaceutical Excipients, Sixth Edition, 2009 (Year: 2009). * |
Schmidt et al., "Targeting the Proteasome: Partial Inhibition of the Proteasome by Bortezomib or Deletion of the Immunosubunit LMP7 Attenuates Experimental Colitis," Gut 59:896-906 (2010). |
Siebler et al., "Molecular Mutil-Wavelength Optical Anion Sensors," Eur. J. Inorg. Chem. 523-527 (2010). |
Singh et al., "Immunoproteasome β5i-Selective Dipeptidomimetic Inhibitors," ChemMedChem 11:1-6 (2016). |
Singh et al., "PR-924, a Selective Inhibitor of the Immunoproteasome Subunit LMP-7, Blocks Multiple Myeloma Cell Growth Both in Vitro and in Vivo," NIH Public Access Author Manuscript, Available in PMC Jan. 1, 2012, 15 pages, Published in final edited form as: Br. J. Haematol. 152:155-163 (2011). |
Singh et al., "Recent Trends in Targeted Anticancer Prodrug and Conjugate Design," NIH Public Access Author Manuscript, Available in PMC Jan. 5, 2010, 53 pages, Published in final edited form as: Curr. Med. Chem. 15 (18):1802-1826 (2008). |
Solomon et al., "Synthesis and Antimalarial Activity of Novel Side Chain Modified Antimalarial Agents Derived From 4-Aminoquinoline," Medicinal Chemistry, 4:446-456 (2008). |
Supplementary European Search Report dated Mar. 27, 2018 for EP Application Serial No. 15834073.7. |
Supplementary European Search Report for EP Application Serial No. 18867283.6 (dated Oct. 14, 2021). |
Supplementary European Search Report for European Patent Application No. 15735399.6 (dated Jun. 29, 2017). |
Sureshkumar et al., "Proteasome Inhibition With Bortezomib: an Effective Therapy for Severe Antibody Mediated Rejection After Renal Transplantation," Clin. Nephrol. 77: 246-253 (2012). |
Testa, Bernard "Prodrug Research: Futile or Failure?" Biochemical Pharmacology 68:2097-2106 (2004). |
Translation of the Office Action for Chinese Patent Application No. 201580056519.4 (dated Jun. 29, 2020). |
Van der Heijden et al., "The Proteasome Inhibitor Bortezomib Inhibits the Release of NFkappaB-Inducible Cytokines and Induces Apoptosis of Activated T Cells From Rheumatoid Arthritis Patients," Clin. Exp. Rheumatol. 27:92-98 (2009). |
Verbrugge et al., "Inactivating PSMB5 Mutations and P-glycoprotein (Multidrug Resistance-Associated Protein/ATP-Binding Cassette B1) Mediate Resistance to Proteasome Inhibitors: ex Vivo Efficacy of (Immuno)Proteasome Inhibitors in Mononuclear Blood Cells From Patients With Rheumatoid Arthritis," J. Pharmacol. Exp. Ther. 341:174-182 (2012). |
Vippagunta et al. "Crystalline Solids" Advanced Drug Delivery Reviews 48:3-26. (2001). |
Walsh et al., "Proteasome Inhibitor-Based Primary Therapy for Antibody-Mediated Renal Allograft Rejection," Transplantation 89(3):277-284 (2010). |
Yamazaki et al., "Two New Tryptamine Derivatives, Leptoclinidamide and (−)-Leptoclinidamine B, from an Indonesian Ascidian Leptoclinides dubius," Marine Drugs, 10(12):349-357 (2012). |
Zhang et al., "In Vitro and in Vivo Therapeutic Efficacy of Carfilzomib in Mantle Cell Lymphoma: Targeting the Immunoproteasome," Mol. Cancer Ther. 12:2494-2504 (2013). |
Zollner et al., "Proteasome Inhibition Reduces Superantigen-Mediated T Cell Activation and the Severity of Psoriasis in a SCID-hu Model," J. Clin. Invest. 109:671-679(2002). |
Also Published As
Publication number | Publication date |
---|---|
EP3092244A4 (en) | 2017-07-12 |
WO2015106200A3 (en) | 2015-09-11 |
US20170121366A1 (en) | 2017-05-04 |
US9988421B2 (en) | 2018-06-05 |
EP3092244A2 (en) | 2016-11-16 |
ES2748434T3 (en) | 2020-03-16 |
EP3092244B1 (en) | 2019-08-14 |
WO2015106200A2 (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49816E1 (en) | Dipeptides as inhibitors of human immunoproteasomes | |
US9783573B2 (en) | IAP antagonists | |
ES2865199T3 (en) | Bicyclic fused aryl or heteroaryl compounds as modulators of IRAK4 | |
US12016896B2 (en) | Dipeptidomimetics as inhibitors of human immunoproteasomes | |
US9603889B2 (en) | IAP antagonists | |
US11629141B2 (en) | Proteasome inhibitors and uses thereof | |
US20140135270A1 (en) | Macrocyclic compounds for inhibition of inhibitors of apoptosis | |
US20180105539A1 (en) | Boronic acid derivatives | |
US11732005B2 (en) | Peptidomimetic proteasome inhibitors | |
KR102044904B1 (en) | Tripeptide epoxyketone compound constructed by heterocycle and preparation method and use thereof | |
US20240043470A1 (en) | Macrocyclic compounds as proteasome inhibitors | |
US20170210778A1 (en) | Novel compounds | |
US20240208938A1 (en) | Small molecule modulators of il-17 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |