USRE49632E1 - Method and apparatus for displaying charging state of battery of portable terminal - Google Patents

Method and apparatus for displaying charging state of battery of portable terminal Download PDF

Info

Publication number
USRE49632E1
USRE49632E1 US16/668,891 US201916668891A USRE49632E US RE49632 E1 USRE49632 E1 US RE49632E1 US 201916668891 A US201916668891 A US 201916668891A US RE49632 E USRE49632 E US RE49632E
Authority
US
United States
Prior art keywords
charging
stage
battery unit
icons
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/668,891
Inventor
Han Lim KIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US16/668,891 priority Critical patent/USRE49632E1/en
Application granted granted Critical
Publication of USRE49632E1 publication Critical patent/USRE49632E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators

Definitions

  • the present invention relates to a portable terminal, and more particularly, to a method and apparatus that displays the charging-state of a battery of a portable terminal.
  • Portable terminals are manufactured to provide a variety of functions (for example, a mobile communication service, a camera, an MP3 player, a digital multimedia broadcasting service). Since such functions are frequently used through a portable terminal, the portable terminals are ever increasing their power consumption.
  • the following is a description of a conventional method for displaying a charged state of a portable terminal battery.
  • FIG. 1 is a screen showing a battery charging-state of a conventional portable terminal.
  • the conventional portable terminal has cyclically displayed icons a, b, c, and d, which are indicative of charging stages, respectively, regarding of charging-states according to the charging voltage of a battery unit.
  • the icon “d,” which is a still image is displayed on the display, as shown by reference numeral 120 .
  • the conventional charging-state display method only indicates that the battery unit has been charged, but does not display what stage or how much the battery unit is charged. Therefore, it is inconvenient in that a user cannot check how much the battery unit is charged or check how much charging capacity of the battery unit remains.
  • the conventional portable terminal has disadvantages in that it forces the user to wait, without knowing, how much more time is required to recharge the battery since the terminal does not indicate the recharge time.
  • the present invention is to provide a method and apparatus that can form icons corresponding to the charging states of a battery of a portable terminal and display the icons on the display, so that a user can check at least one of the charging state, charging capacity, and remaining capacity of a battery.
  • a method for displaying a battery charging state of a portable terminal comprising measuring a charged voltage of a battery unit; judging the charging stage of the measured charged voltage, sequentially displaying icons that indicate stages of charging and cyclically performing the above steps.
  • a portable terminal comprising: a storage unit for storing charging-stage display information where the charging stage of a charging voltage matches the icon data, a battery unit for charging charges supplied from a power source and for converting the charged voltage caused by the charges into a digital signal, a controller for determining icon data based on the charging stage and a display unit for displaying icons based on the determined icon data.
  • FIG. 1 is a screen showing a battery charging-state of a conventional portable terminal.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a portable terminal according to an embodiment of the present invention
  • FIG. 3 is a flowchart describing operations of a portable terminal according to an embodiment of the present invention.
  • FIG. 4 is a screen showing a battery charging state according to an embodiment of the present invention.
  • FIG. 5 is a screen showing a battery charging state according to another embodiment of the present invention.
  • the portable terminal of the present invention refers to a concept including all the devices that are portable and receive electric-power from a battery.
  • Such terminals may for example, be a mobile communication terminal, a mobile phone, a personal digital assistant (PDA), a smart phone, a digital multimedia broadcasting (DMB) receiver, an MP3 player, a digital camera, etc.
  • PDA personal digital assistant
  • DMB digital multimedia broadcasting
  • each icon corresponds to one of four exemplary charging stages as follows:
  • the icon labeled a (hereinafter referred to as ‘icon a’) denotes stage 0 , indicative of a first charging state of a battery.
  • the icon labeled b (hereinafter referred to as ‘icon b’) denotes stage 1 , indicative of a second charging state of the battery.
  • icons c and d are defined to denote stages 2 and 3 indicative of corresponding charging states of the battery, respectively.
  • the icons a, b, c, and d are stored in a storage unit of the portable terminal.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a portable terminal according to an embodiment of the present invention.
  • the portable terminal includes a communication unit 210 , an input unit 220 , a display unit 230 , a storage unit 240 , a battery unit 250 , and a controller 260 .
  • the communication unit 210 is configured to include: a radio frequency (RF) transmitter for up-converting the frequency of transmitted signals and amplifying the transmitted signals and an RF receiver for low-noise amplifying a received RF signal and down-converting the frequency of the received RF signal.
  • RF radio frequency
  • the input unit 220 can be implemented by a touch pad or a key pad that includes various function keys, numeral keys, special keys, and character keys, etc.
  • the input unit 220 serves to transmit signals input by a user to the controller 260 to control operations of the portable terminal.
  • the display unit 230 can be implemented by a liquid crystal display (LCD), etc., and displays various display data and operation states of the portable terminal. Specifically, the display unit 230 of the present invention displays icons indicative of charging states of the battery unit 250 , according to icon data stored in the storage unit 240 . The display unit 230 may also act as input unit 220 when a touch screen capability is available.
  • LCD liquid crystal display
  • the storage unit 240 stores programs and data, which are required for the portable terminal operations. Specifically, the storage unit 240 stores charging-state display information as shown in Table 1.
  • Stage Type of Icon Display Sequence 2.05-2.09999 Stage 0 a, b, c, d a->b->c->d->a->b . . . 2.1-2.49999 Stage 1 b, c, d b->c->d->b->c . . . 2.5-2.89999 Stage 2 c, d c->d->c->d . . . 2.9 Stage 3 d d
  • the charging-state display information includes a charged voltage charged in a charging circuit 252 , a charging state corresponding to the charged voltage, and icon data indicative of corresponding charging states (or charging voltages).
  • the charging-state display information is preferably stored as a database, matching the charging voltage, charging-state, and icon data with each other.
  • the icon data includes the type of icon, which corresponds to the charging stage of the battery unit 250 , and display sequence for the icons.
  • the controller 260 determines that the charging stage is stage 1 , and then selects icons b, c, and d from a sub field of Type of Icon in the Icon Data field, as shown in Table 1.
  • the controller 260 controls the display unit 230 so that the selected icons b, c, and d can be displayed according to the display sequence of b->c->d->b->c-> . . . in a sub field of the Display Sequence in the Icon Data field.
  • the battery unit 250 converts AC power (110 V or 220 V) from a power source into DC power and charges the battery using the DC power. After that, the battery unit 250 converts the charged voltage into a digital signal and transmits it to the controller 260 .
  • the battery unit 250 is preferably configured to include an AC adapter 253 , a charging circuit 252 , and an A/D converter 251 .
  • the AC adapter 253 converts AC power (110 V or 220 V) from the power source into DC power.
  • the charging circuit 252 charges based on the DC power outputted from the AC adapter 253 .
  • the A/D converter 251 converts the charged voltage of the charging circuit 252 , which is an analog signal, into a digital signal and transmits it to the controller 260 .
  • the controller 260 controls the entire operation of the portable terminal.
  • the controller 260 of the present invention detects a voltage as a digital signal which the A/D converter 251 has converted, and determines a charging state based on the detected charged voltage.
  • the controller 260 is preferably configured to include a charging-stage determining unit 261 . As well, the controller 260 performs the control in such a way that icons indicative of charging stages of the battery unit 250 can be displayed, according to the icon data stored in the storage unit 240 .
  • FIG. 3 is a flowchart describing a method for determining and displaying a charged voltage of a portable terminal according to an embodiment of the present invention.
  • the controller 260 makes a determination as to whether the battery unit 250 is charging the battery based on power supplied from a power source (S 301 ).
  • the charging circuit 252 charges the battery.
  • the A/D converter 251 measures a voltage caused by the charging voltage and converts it into a digital voltage value (i.e., a digital signal).
  • step S 301 When the determination of step S 301 is positive, the charging-stage determining unit 261 of the controller 260 receives the digital voltage value provided by the A/D converter 251 , which converts the determined charged voltage, and determines the charging stage of the battery and based on the charging stage displays information stored in the storage unit 240 (S 307 ).
  • the controller 260 makes a determination whether the charged voltage of the battery unit 250 is within the voltage range of stage 0 (S 309 ). When the determination of step S 309 is positive, the controller 260 controls the display unit 230 so that an icon indicative of a charging-state of stage 0 can be displayed (S 310 ).
  • the controller 260 performs the control in such a way that icons corresponding to stage 1 (S 311 ), stage 2 (S 312 ), and stage 3 (S 313 ) can be sequentially displayed.
  • the icons are cyclically displayed as the sequence of a, b, c, and d.
  • step S 301 the procedure returns to step S 301 so that the controller 260 determines whether power is applied to the battery unit 250 , and then repeatedly proceeds with the above steps.
  • step S 309 determines whether the charged voltage is within the charged voltage range of stage 1 (S 314 ).
  • step S 314 When the determination of step S 314 is positive, the controller 260 controls the display unit 230 so that an icon indicative of a charging state of stage 1 can be displayed (S 315 ).
  • the controller 260 After the display of the stage 1 icon (S 315 ), the controller 260 performs the control in such a way that icons corresponding to stage 2 (S 316 ) and stage 3 (S 317 ) can be sequentially displayed. For example, when the charged voltage is in the range of 2.1 ⁇ 2.49999V, as shown by reference numeral 420 of FIG. 4 , the icons are cyclically displayed as the sequence of b, c, and d.
  • step S 301 The procedure returns to step S 301 so that the controller 260 determines whether power is applied to the battery unit 250 , and then repeatedly proceeds with the above steps.
  • step S 314 determines whether the charged voltage is within the charged voltage range of stage 2 (S 318 ).
  • step S 318 When the determination of step S 318 is positive, or the charging voltage is within the charged voltage range of stage 2 , the controller 260 controls the display unit 230 so that icons indicative of charging states of stage 2 (S 319 ) and stage 3 (S 320 ) can be displayed.
  • the controller 260 performs the control in such a way that icons corresponding to stage 2 (S 319 ) and stage 3 (S 320 ) can be sequentially displayed. That is, when the charged voltage is in the range of 2.5 ⁇ 2.8999V, as shown by reference numeral 430 of FIG. 4 , the icons are cyclically displayed as the sequence of c and d.
  • step S 301 the procedure returns to step S 301 so that the controller 260 determines whether power is applied to the battery unit 250 , and then repeatedly proceeds with the above steps.
  • step S 318 determines that the charged voltage is within the charged voltage of stage 3 (fully charged state), and controls the displays unit so that the icon indicative of a fully charged state of stage 3 can be displayed ( 8321 ). That is, when the charged voltage is 2.9V, as shown by reference numeral 440 , the icon d, which is a still image, is displayed.
  • FIG. 4 is a screen showing a battery charging state according to an embodiment of the present invention.
  • the controller 260 measures the charged voltage of the battery unit 250 to check the charging stage corresponding to the measured charged voltage, and then displays an icon corresponding to the charging stage.
  • the controller 260 sequentially displays icons that correspond to a charging stage higher than the stage of the displayed icon through to the fully charged stage.
  • the display unit 230 cyclically displays icons a, b, c, and d, in order, as shown by reference numeral 410 of FIG. 4 .
  • the battery unit 250 arrives at the charging state of stage 1 , and the display unit 230 cyclically displays icons b, c, and d, in order, as shown by reference numeral 420 of FIG. 4 .
  • the voltage of battery unit 250 arrives at the charging state of stage 2 , and the display unit 230 cyclically displays icons c, and d, in order, as shown by reference numeral 430 of FIG. 4 .
  • the battery unit 250 arrives at the charging state of stage 3 , and the display unit 230 displays the icon d, which is a still image, as shown by reference numeral 440 of FIG. 4 .
  • FIG. 5 is a screen showing a battery charging state according to another embodiment of the present invention.
  • the controller 260 displays icons, distinguishing between a region (or regions) of the icons, indicating that a charging stage has been completed, and another region (or regions), indicating that charging is presently performed.
  • a displaying method is to allow a user to read the charging stages of the battery unit 250 without trouble.
  • this method distinguishes charging states by color, brightness, or patterns formed on corresponding regions of the icons.
  • the controller 260 when the voltage of battery unit 250 is in a charging state of stage 0 , the controller 260 cyclically displays icons whose corresponding regions of the icons are only filled with only slanted lines, to indicate that it is presently charging, as shown by reference numeral 510 in FIG. 5 .
  • the controller 260 fills the first region (level 1 ) of the icons with a color, for example, a dimmed color, and, at the same time, cyclically displays the icons whose first region is filled with a dimmed color and whose second and third regions of the icons (level 2 and level 3 , respectively) are filled with slanted lines, to indicate that it is presently charging, as shown by reference numeral 520 in FIG. 5 .
  • the controller 260 further fills the second region of the icons with the same color as the first regions, and, at the same time, cyclically displays the icons whose first and second regions are filled with the dimmed color and whose third region is filled with slanted lines, to indicate that it is presently charging, as shown by reference numeral 530 in FIG. 5 . And, after the battery unit 250 is fully charged, the controller 260 further fills the third region and displays the still or steady icon with the dimmed color, that is, the first, second and third regions are filled with the dimmed color, as shown by reference numeral 540 in FIG. 5 .
  • the above-described methods according to the present invention can be realized in hardware or as software or computer code that can be stored in a recording medium such as a CD ROM, an RAM, a floppy disk, a hard disk, or a magneto-optical disk or downloaded over a network, so that the methods described herein can be rendered in such software using a general purpose computer, or a special processor or in programmable or dedicated hardware, such as an ASIC or FPGA.
  • the computer, the processor or the programmable hardware include memory components, e.g., RAM, ROM, Flash, etc. that may store or receive software or computer code that when accessed and executed by the computer, processor or hardware implement the processing methods described herein.
  • a method and apparatus can display a battery charging-state of a portable terminal through an icon on the display, thus allowing a user to check a state where the battery has been charged, a charged capacity, and a remaining capacity of the battery.

Abstract

A method and apparatus for displaying a battery charging-state is disclosed. The method comprises measuring the charged voltage of a battery unit, determining the charging stage of the measured charged voltage, and sequentially and cyclically displaying icons that indicate a charging stage.

Description

CLAIM PRIORITY
More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,004,241. This application is a continuation reissue of, and claims the benefit of, U.S. application Ser. No. 14/883,311, filed on Oct. 14, 2015, now U.S. Pat. No. RE47,712, which is a continuation reissue of U.S. application Ser. No. 13/974,581, filed on Aug. 23, 2013, now U.S. Pat. No. RE45,797, which is a reissue application of U.S. Pat. No. 8,004,241, issued from U.S. application Ser. No. 11/936,177, filed on Nov. 7, 2007, which claims the benefit of the earlier filing date, pursuant to 35 USC 119, to that patent application entitled “Method and Apparatus for Displaying Charging-State of Battery of Portable Terminal,” filed in the Korean Intellectual Property Office on Nov. 9, 2006 and assigned Serial No. 2006-0110683, the contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a portable terminal, and more particularly, to a method and apparatus that displays the charging-state of a battery of a portable terminal.
2. Description of the Related Art
Portable terminals are manufactured to provide a variety of functions (for example, a mobile communication service, a camera, an MP3 player, a digital multimedia broadcasting service). Since such functions are frequently used through a portable terminal, the portable terminals are ever increasing their power consumption.
In response to this increase in power consumption, the battery of a portable terminal must be frequently recharged.
The following is a description of a conventional method for displaying a charged state of a portable terminal battery.
FIG. 1 is a screen showing a battery charging-state of a conventional portable terminal.
As shown by reference numeral 110, the conventional portable terminal has cyclically displayed icons a, b, c, and d, which are indicative of charging stages, respectively, regarding of charging-states according to the charging voltage of a battery unit. When the charging-state of the battery unit becomes a fully charged state, the icon “d,” which is a still image, is displayed on the display, as shown by reference numeral 120.
As such, the conventional charging-state display method only indicates that the battery unit has been charged, but does not display what stage or how much the battery unit is charged. Therefore, it is inconvenient in that a user cannot check how much the battery unit is charged or check how much charging capacity of the battery unit remains.
As well, the conventional portable terminal has disadvantages in that it forces the user to wait, without knowing, how much more time is required to recharge the battery since the terminal does not indicate the recharge time.
SUMMARY OF THE INVENTION
In order to resolve the above problems, the present invention is to provide a method and apparatus that can form icons corresponding to the charging states of a battery of a portable terminal and display the icons on the display, so that a user can check at least one of the charging state, charging capacity, and remaining capacity of a battery.
According to the present invention, there is provided a method for displaying a battery charging state of a portable terminal, comprising measuring a charged voltage of a battery unit; judging the charging stage of the measured charged voltage, sequentially displaying icons that indicate stages of charging and cyclically performing the above steps.
In accordance with the present invention, there is provided a portable terminal comprising: a storage unit for storing charging-stage display information where the charging stage of a charging voltage matches the icon data, a battery unit for charging charges supplied from a power source and for converting the charged voltage caused by the charges into a digital signal, a controller for determining icon data based on the charging stage and a display unit for displaying icons based on the determined icon data.
BRIEF DESCRIPTION OF THE DRAWINGS
The above features and advantages of the present invention will be more apparent from the following detailed description in conjunction with the accompanying drawings, in which:
FIG. 1 is a screen showing a battery charging-state of a conventional portable terminal.
FIG. 2 is a schematic block diagram illustrating a configuration of a portable terminal according to an embodiment of the present invention;
FIG. 3 is a flowchart describing operations of a portable terminal according to an embodiment of the present invention;
FIG. 4 is a screen showing a battery charging state according to an embodiment of the present invention; and
FIG. 5 is a screen showing a battery charging state according to another embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The terminologies in the present application are defined as follows:
The portable terminal of the present invention refers to a concept including all the devices that are portable and receive electric-power from a battery. Such terminals may for example, be a mobile communication terminal, a mobile phone, a personal digital assistant (PDA), a smart phone, a digital multimedia broadcasting (DMB) receiver, an MP3 player, a digital camera, etc.
Although a battery is recharged through a plurality of processes, for convenience, the recharging processes according to the present invention will be described based on four stages. However, it will be easily appreciated to those skilled in the art that the present invention is not limited by the following embodiments described based on the four recharging stages.
For four recharging stages of a battery, the present invention introduces four icons wherein each icon corresponds to one of four exemplary charging stages as follows:
The icon labeled a (hereinafter referred to as ‘icon a’) denotes stage 0, indicative of a first charging state of a battery. The icon labeled b (hereinafter referred to as ‘icon b’) denotes stage 1, indicative of a second charging state of the battery. Similar to the icons a and b, icons c and d are defined to denote stages 2 and 3 indicative of corresponding charging states of the battery, respectively. The icons a, b, c, and d are stored in a storage unit of the portable terminal.
Embodiments of the present invention are described in detail with reference to the accompanying drawings. Elements and regions in the drawings may be schematically illustrated for brevity and clarity.
FIG. 2 is a schematic block diagram illustrating a configuration of a portable terminal according to an embodiment of the present invention.
As shown in FIG. 2 , the portable terminal includes a communication unit 210, an input unit 220, a display unit 230, a storage unit 240, a battery unit 250, and a controller 260.
The communication unit 210 is configured to include: a radio frequency (RF) transmitter for up-converting the frequency of transmitted signals and amplifying the transmitted signals and an RF receiver for low-noise amplifying a received RF signal and down-converting the frequency of the received RF signal.
The input unit 220 can be implemented by a touch pad or a key pad that includes various function keys, numeral keys, special keys, and character keys, etc. The input unit 220 serves to transmit signals input by a user to the controller 260 to control operations of the portable terminal.
The display unit 230 can be implemented by a liquid crystal display (LCD), etc., and displays various display data and operation states of the portable terminal. Specifically, the display unit 230 of the present invention displays icons indicative of charging states of the battery unit 250, according to icon data stored in the storage unit 240. The display unit 230 may also act as input unit 220 when a touch screen capability is available.
The storage unit 240 stores programs and data, which are required for the portable terminal operations. Specifically, the storage unit 240 stores charging-state display information as shown in Table 1.
TABLE 1
Charged Voltage Charging Icon Data
[V] Stage Type of Icon Display Sequence
2.05-2.09999 Stage 0 a, b, c, d a->b->c->d->a->b . . .
 2.1-2.49999 Stage 1 b, c, d b->c->d->b->c . . .
 2.5-2.89999 Stage 2 c, d c->d->c->d . . .
2.9 Stage 3 d d
As described in Table 1, the charging-state display information includes a charged voltage charged in a charging circuit 252, a charging state corresponding to the charged voltage, and icon data indicative of corresponding charging states (or charging voltages). The charging-state display information is preferably stored as a database, matching the charging voltage, charging-state, and icon data with each other.
As well, the icon data includes the type of icon, which corresponds to the charging stage of the battery unit 250, and display sequence for the icons.
For example, when the charged voltage of the charging circuit 252 is 2.23V, the controller 260 determines that the charging stage is stage 1, and then selects icons b, c, and d from a sub field of Type of Icon in the Icon Data field, as shown in Table 1.
After that, the controller 260 controls the display unit 230 so that the selected icons b, c, and d can be displayed according to the display sequence of b->c->d->b->c-> . . . in a sub field of the Display Sequence in the Icon Data field.
The battery unit 250 converts AC power (110 V or 220 V) from a power source into DC power and charges the battery using the DC power. After that, the battery unit 250 converts the charged voltage into a digital signal and transmits it to the controller 260.
To this end, the battery unit 250 is preferably configured to include an AC adapter 253, a charging circuit 252, and an A/D converter 251.
The AC adapter 253 converts AC power (110 V or 220 V) from the power source into DC power. The charging circuit 252 charges based on the DC power outputted from the AC adapter 253. The A/D converter 251 converts the charged voltage of the charging circuit 252, which is an analog signal, into a digital signal and transmits it to the controller 260.
The controller 260 controls the entire operation of the portable terminal.
Specifically, the controller 260 of the present invention detects a voltage as a digital signal which the A/D converter 251 has converted, and determines a charging state based on the detected charged voltage.
To this end, the controller 260 is preferably configured to include a charging-stage determining unit 261. As well, the controller 260 performs the control in such a way that icons indicative of charging stages of the battery unit 250 can be displayed, according to the icon data stored in the storage unit 240.
FIG. 3 is a flowchart describing a method for determining and displaying a charged voltage of a portable terminal according to an embodiment of the present invention.
As shown in FIGS. 1 and 2 , the controller 260 makes a determination as to whether the battery unit 250 is charging the battery based on power supplied from a power source (S301).
More specifically, when the power is applied to the battery unit 250, the charging circuit 252 charges the battery. The A/D converter 251 measures a voltage caused by the charging voltage and converts it into a digital voltage value (i.e., a digital signal).
When the determination of step S301 is positive, the charging-stage determining unit 261 of the controller 260 receives the digital voltage value provided by the A/D converter 251, which converts the determined charged voltage, and determines the charging stage of the battery and based on the charging stage displays information stored in the storage unit 240 (S307).
The controller 260 makes a determination whether the charged voltage of the battery unit 250 is within the voltage range of stage 0 (S309). When the determination of step S309 is positive, the controller 260 controls the display unit 230 so that an icon indicative of a charging-state of stage 0 can be displayed (S310).
Next, the controller 260 performs the control in such a way that icons corresponding to stage 1 (S311), stage 2 (S312), and stage 3 (S313) can be sequentially displayed. For example, when the charged voltage is less than 2.0999V, as shown by reference numeral 410 of FIG. 4 , the icons are cyclically displayed as the sequence of a, b, c, and d.
After that, the procedure returns to step S301 so that the controller 260 determines whether power is applied to the battery unit 250, and then repeatedly proceeds with the above steps.
On the other hand, when the determination of step S309 is negative, or the charged voltage is not within the voltage range of stage 0, the controller 260 determines whether the charged voltage is within the charged voltage range of stage 1 (S314).
When the determination of step S314 is positive, the controller 260 controls the display unit 230 so that an icon indicative of a charging state of stage 1 can be displayed (S315).
After the display of the stage 1 icon (S315), the controller 260 performs the control in such a way that icons corresponding to stage 2 (S316) and stage 3 (S317) can be sequentially displayed. For example, when the charged voltage is in the range of 2.1˜2.49999V, as shown by reference numeral 420 of FIG. 4 , the icons are cyclically displayed as the sequence of b, c, and d.
The procedure returns to step S301 so that the controller 260 determines whether power is applied to the battery unit 250, and then repeatedly proceeds with the above steps.
When the determination of step S314 is negative, or the charging voltage is not within the charged voltage range of stage 1, the controller 260 determines whether the charged voltage is within the charged voltage range of stage 2 (S318).
When the determination of step S318 is positive, or the charging voltage is within the charged voltage range of stage 2, the controller 260 controls the display unit 230 so that icons indicative of charging states of stage 2 (S319) and stage 3 (S320) can be displayed.
After that, the controller 260 performs the control in such a way that icons corresponding to stage 2 (S319) and stage 3 (S320) can be sequentially displayed. That is, when the charged voltage is in the range of 2.5˜2.8999V, as shown by reference numeral 430 of FIG. 4 , the icons are cyclically displayed as the sequence of c and d.
Next, the procedure returns to step S301 so that the controller 260 determines whether power is applied to the battery unit 250, and then repeatedly proceeds with the above steps.
In addition, when the determination of step S318 is negative, or the charged voltage is not within the charging voltage range of stage 2, the controller 260 determines that the charged voltage is within the charged voltage of stage 3 (fully charged state), and controls the displays unit so that the icon indicative of a fully charged state of stage 3 can be displayed (8321). That is, when the charged voltage is 2.9V, as shown by reference numeral 440, the icon d, which is a still image, is displayed.
FIG. 4 is a screen showing a battery charging state according to an embodiment of the present invention.
Referring to FIG. 4 , the controller 260 measures the charged voltage of the battery unit 250 to check the charging stage corresponding to the measured charged voltage, and then displays an icon corresponding to the charging stage.
After that, the controller 260 sequentially displays icons that correspond to a charging stage higher than the stage of the displayed icon through to the fully charged stage.
For example, when power is applied to the battery unit 250, whose charging state is stage 0, the display unit 230 cyclically displays icons a, b, c, and d, in order, as shown by reference numeral 410 of FIG. 4 . After that, the battery unit 250 arrives at the charging state of stage 1, and the display unit 230 cyclically displays icons b, c, and d, in order, as shown by reference numeral 420 of FIG. 4 . In addition, the voltage of battery unit 250 arrives at the charging state of stage 2, and the display unit 230 cyclically displays icons c, and d, in order, as shown by reference numeral 430 of FIG. 4 . Repeatedly, the battery unit 250 arrives at the charging state of stage 3, and the display unit 230 displays the icon d, which is a still image, as shown by reference numeral 440 of FIG. 4 .
FIG. 5 is a screen showing a battery charging state according to another embodiment of the present invention.
Referring to FIG. 5 , the controller 260 displays icons, distinguishing between a region (or regions) of the icons, indicating that a charging stage has been completed, and another region (or regions), indicating that charging is presently performed. Such a displaying method is to allow a user to read the charging stages of the battery unit 250 without trouble. Preferably, this method distinguishes charging states by color, brightness, or patterns formed on corresponding regions of the icons.
For example, when the voltage of battery unit 250 is in a charging state of stage 0, the controller 260 cyclically displays icons whose corresponding regions of the icons are only filled with only slanted lines, to indicate that it is presently charging, as shown by reference numeral 510 in FIG. 5 . After completing stage 0, the controller 260 fills the first region (level 1) of the icons with a color, for example, a dimmed color, and, at the same time, cyclically displays the icons whose first region is filled with a dimmed color and whose second and third regions of the icons (level 2 and level 3, respectively) are filled with slanted lines, to indicate that it is presently charging, as shown by reference numeral 520 in FIG. 5 . After completing stage 1, the controller 260 further fills the second region of the icons with the same color as the first regions, and, at the same time, cyclically displays the icons whose first and second regions are filled with the dimmed color and whose third region is filled with slanted lines, to indicate that it is presently charging, as shown by reference numeral 530 in FIG. 5 . And, after the battery unit 250 is fully charged, the controller 260 further fills the third region and displays the still or steady icon with the dimmed color, that is, the first, second and third regions are filled with the dimmed color, as shown by reference numeral 540 in FIG. 5 .
The above-described methods according to the present invention can be realized in hardware or as software or computer code that can be stored in a recording medium such as a CD ROM, an RAM, a floppy disk, a hard disk, or a magneto-optical disk or downloaded over a network, so that the methods described herein can be rendered in such software using a general purpose computer, or a special processor or in programmable or dedicated hardware, such as an ASIC or FPGA. As would be understood in the art, the computer, the processor or the programmable hardware include memory components, e.g., RAM, ROM, Flash, etc. that may store or receive software or computer code that when accessed and executed by the computer, processor or hardware implement the processing methods described herein.
While the present invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
As described in the foregoing, a method and apparatus can display a battery charging-state of a portable terminal through an icon on the display, thus allowing a user to check a state where the battery has been charged, a charged capacity, and a remaining capacity of the battery.

Claims (30)

What is claimed is:
1. A method for displaying a battery charging-state of a portable terminal, comprising:
(a) measuring a charged voltage of a battery unit;
(b)determining a charging stage of the measured charged voltage;
(c) sequentially and cyclically displaying during a charging period a plurality of sequential icons that are sequentially displayed in a unique sequence of icons changing states during each respective level of charge as an indication of both:
(1) a specific stage of a level of charge in said battery unit from a charged state of each respective charging stage to a fully charged state, and (2) that the battery unit is currently undergoing a charging operation;
(d) repeating step (a) to step (c) until the battery unit is fully charged;
wherein each specific stage of the level of charge is displayed according to a pre-stored display sequence for the icons.
2. The method of claim 1, wherein the steps of measuring, determining, and displaying are repeated until the battery unit is fully charged, wherein a single icon is steadily displayed.
3. The method of claim 1, wherein the determining the charging stage is performed by using charging stage display information formed of different values of charging voltages that are matched with icon data associated with each of the charging stages.
4. The method of claim 3, wherein the icon data comprises types and display sequence of icons to be displayed sequentially while recharging the battery, according to the charging stages.
5. The method of claim 1, wherein the step of sequentially displaying icons serves to display the icons in sequence based on types and display sequence.
6. The method of claim 1, wherein the step of sequentially displaying icons serves to display icons, distinguishing between a region of the icons indicating that a charging stage has been completed and another region indicating that charging is presently occurring.
7. A portable terminal comprising:
a storage unit for storing charging stage display information where the charging stage of a voltage is associated with icon data;
a battery unit for accepting a charging voltage supplied from a power source and for converting the charged voltage into a digital signal;
a controller for determining icon data based on the stage of charging of the charged voltage; and
a display unit for displaying said icon data sequentially and repeatedly at each respective charging state during a charging period a plurality of sequential icons that are sequentially displayed in a unique sequence of icons changing states during each respective level of charge as an indication of both:
(1) a specific stage of a level of charge in said battery unit from an initial charged state of each respective charging stage to a fully charged state, and (2) that the battery unit is currently undergoing a charging operation;
wherein each specific stage of the level of charge is displayed according to a pre-stored display sequence for the icons.
8. The terminal of claim 7, wherein the controller comprises a charging stage determining unit.
9. The terminal of claim 7, wherein the controller displays icons, distinguishing between a region of the icons indicating that a charging stage has been completed and another region indicating that charging is presently occurring.
10. A portable terminal comprising:
a battery unit receiving a charging voltage,
a charge determining unit measuring a level of voltage charge in said battery unit and determining an icon from a plurality of icons based on said measured level of voltage charge; and
a display unit sequentially displaying each of said plurality of icons beginning from said determined icon, excluding selected ones of said plurality of icons and repeatedly displaying each of said plurality of icons until the battery unit is fully charged;
wherein each specific stage of the level of charge is displayed according to a pre-stored display sequence for the icons that is a unique display sequence of icons changing states during each respective level of charge as an indication of both:
(1) a specific stage of a level of charge in said battery unit from an initial charged state of each respective charging stage to a fully charged state, and (2) that the battery unit is currently undergoing a charging operation.
11. The portable terminal of claim 10, wherein the charging determining unit comprises:
a memory containing a plurality of progressively higher, non-overlapping, voltage ranges and icon information associated with each of said ranges.
12. The portable terminal of claim 11, wherein the step of determining an icon comprises:
selecting one of said plurality of voltages ranges based on said measured voltage level; and
selecting an icon associated with the selected voltage range.
13. The portable terminal of claim 11, wherein the step of displaying further comprises the steps of:
displaying each of said icons in a different color.
14. The portable terminal of claim 10, the charge determining unit further comprising:
an analog-to-digital converter for converting said measured level of voltage to a digital signal.
15. The portable terminal of claim 10, wherein said icon display is held steady when a full level of charge is determined.
16. The portable terminal of claim 11, wherein said selected excluded icons are icons associated with voltage ranges lower than said measured voltage.
17. The portable terminal of claim 11, wherein each of said icons includes a plurality of sub-icons, wherein said sub-icons represent one of said plurality of voltage ranges.
18. A portable terminal comprising:
a rechargeable battery unit receiving a charging voltage;
a controller for:
(a)measuring a voltage charge in said battery unit;
(b)converting said measured voltage charge into a digital signal;
(c) determining an icon sequence based on said digital signal; and
(d) repeating step (a) to step (c) until the battery unit is fully charged;
a display unit for cyclically displaying said icon sequence corresponding to a pre-stored display sequence for the icons that is a unique display sequence of icons changing states during each respective level of charge as an indication of both:
(1) a specific stage of a level of charge in said battery unit from an initial charged state of each respective charging stage to a fully charged state, and (2) that the battery unit is currently undergoing a charging operation.
19. The terminal of claim 18, wherein said icon sequence is determined based on said measured signal is within one of a plurality of non-overlapping, progressive higher voltage ranges.
20. The terminal of claim 19, wherein the determination of an icon sequence is performed by comparing said digital signal value to a plurality of range values.
21. An electronic device comprising:
a battery unit;
a display unit;
a memory configured to store a plurality of images, each of the plurality of images corresponding to each of charging stages of the battery unit; and
at least one processor, wherein the at least one processor is configured to:
(a) identify a charging state of the battery unit,
(b) determine a charging stage among the charging stages based on the charging state of the battery unit,
(c) control to sequentially display, at the determined charging stage, a subset of the plurality of images in a sequential order from the determined charging stage toward a fully charged stage on the display unit while undergoing a charging operation, and
(d) repeat step (a) to step (c) to indicate that the battery unit is being charged.
22. The electronic device of claim 21, wherein the at least one processor is configured to repeat step (a) to step (c) until the battery unit is fully charged.
23. The electronic device of claim 22, wherein the at least one processor is configured to control to display an image corresponding to the fully charged stage on the display when the battery unit is fully charged.
24. The electronic device of claim 21, wherein the at least one processor is configured to determine the charging stage of the electronic device.
25. A method for displaying a charging status for a battery unit of an electronic device, comprising:
(a) identifying, by at least one processor, a charging state of the battery unit;
(b) determining a charging stage among charging stages based on the charging state of the battery unit;
(c) displaying sequentially, at the determined charging stage, a subset of a plurality of images in a sequential order from the determined charging stage toward a fully charged stage on a display unit of the electronic device while undergoing a charging operation; and
(d) repeating step (a) to step (c) to indicate that the battery unit is being charged,
wherein the plurality of images is stored in a memory of the electronic device, each of the plurality of images corresponding to each of the charging stages of the battery unit.
26. The method of claim 25, wherein repeating step (a) to step (c) comprises repeating step (a) to step (c) until the battery unit is fully charged.
27. The method of claim 26, further comprising steadily displaying an image corresponding to the fully charged stage on the display unit when the battery unit is fully charged.
28. An electronic device comprising:
a battery unit;
a display unit;
a memory storing a plurality of images, each of the plurality of images corresponding to each of charging stages of the battery unit; and
at least one processor configured to:
measure a charge state of the battery unit corresponding to a charging stage,
control to sequentially display images corresponding to a first charging stage, a second charging stage and a fully charged stage individually in a sequence on the display unit while undergoing a charging operation when the charge state measured by the at least one processor corresponds to the first charging stage,
control to sequentially display images corresponding to the second charging stage and the fully charged stage individually in a sequential order on the display unit while undergoing the charging operation when the charge state measured by the at least one processor corresponds to the second charging stage, and
control to display an image corresponding to the fully charged stage when the charge state measured by the at least one processor corresponds to the fully charged stage.
29. The electronic device of claim 28, wherein the at least one processor is configured to determine the charging stage of the electronic device.
30. A method for displaying a charging status for a battery unit of an electronic device, comprising:
measuring, by at least one processor of the electronic device, a charge state of the battery unit corresponding to a charging stage;
displaying sequentially images corresponding to a first charging stage, a second charging stage and a fully charged stage individually in a predetermined sequence on a display unit of the electronic device while undergoing a charging operation when the charge state measured by the at least one processor corresponds to the first charging stage;
displaying sequentially images corresponding to the second charging stage and the fully charged stage individually in a sequential order on the display unit while undergoing the charging operation when the charge state measured by the at least one processor corresponds to the second charging stage; and
displaying steadily an image corresponding to the fully charged stage when the charge state measured by the at least one processor corresponds to the fully charged stage,
wherein a plurality of images is stored in a memory of the electronic device, each of the plurality of images corresponding to each of charging stages of the battery unit.
US16/668,891 2006-11-09 2019-10-30 Method and apparatus for displaying charging state of battery of portable terminal Active 2028-01-27 USRE49632E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/668,891 USRE49632E1 (en) 2006-11-09 2019-10-30 Method and apparatus for displaying charging state of battery of portable terminal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2006-0110683 2006-11-09
KR1020060110683A KR100879515B1 (en) 2006-11-09 2006-11-09 Method and apparatus for?displaying a charging status of battery in terminal
US11/936,177 US8004241B2 (en) 2006-11-09 2007-11-07 Method and apparatus for displaying charging-state of battery of portable terminal
US13/974,581 USRE45797E1 (en) 2006-11-09 2013-08-23 Method and apparatus for displaying charging-state of battery of portable terminal
US14/883,311 USRE47712E1 (en) 2006-11-09 2015-10-14 Method and apparatus for displaying charging-state of battery of portable terminal
US16/668,891 USRE49632E1 (en) 2006-11-09 2019-10-30 Method and apparatus for displaying charging state of battery of portable terminal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/936,177 Reissue US8004241B2 (en) 2006-11-09 2007-11-07 Method and apparatus for displaying charging-state of battery of portable terminal

Publications (1)

Publication Number Publication Date
USRE49632E1 true USRE49632E1 (en) 2023-08-29

Family

ID=39047812

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/936,177 Ceased US8004241B2 (en) 2006-11-09 2007-11-07 Method and apparatus for displaying charging-state of battery of portable terminal
US13/974,581 Active 2028-01-27 USRE45797E1 (en) 2006-11-09 2013-08-23 Method and apparatus for displaying charging-state of battery of portable terminal
US14/883,311 Active 2028-01-27 USRE47712E1 (en) 2006-11-09 2015-10-14 Method and apparatus for displaying charging-state of battery of portable terminal
US16/668,891 Active 2028-01-27 USRE49632E1 (en) 2006-11-09 2019-10-30 Method and apparatus for displaying charging state of battery of portable terminal

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/936,177 Ceased US8004241B2 (en) 2006-11-09 2007-11-07 Method and apparatus for displaying charging-state of battery of portable terminal
US13/974,581 Active 2028-01-27 USRE45797E1 (en) 2006-11-09 2013-08-23 Method and apparatus for displaying charging-state of battery of portable terminal
US14/883,311 Active 2028-01-27 USRE47712E1 (en) 2006-11-09 2015-10-14 Method and apparatus for displaying charging-state of battery of portable terminal

Country Status (4)

Country Link
US (4) US8004241B2 (en)
EP (2) EP2752966B1 (en)
KR (1) KR100879515B1 (en)
ES (2) ES2769586T3 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879515B1 (en) * 2006-11-09 2009-01-22 삼성전자주식회사 Method and apparatus for?displaying a charging status of battery in terminal
KR101426707B1 (en) * 2007-11-26 2014-08-05 삼성전자주식회사 Wireless headset and method for displaying battery state
CN101498767B (en) * 2008-01-31 2011-06-22 鸿富锦精密工业(深圳)有限公司 Wireless communication terminal and its battery power measuring method
JP2009195081A (en) * 2008-02-18 2009-08-27 Panasonic Corp Charging control circuit, charger device equipped with circuit, and battery pack
CN102117940B (en) * 2009-12-31 2014-07-02 联想(北京)有限公司 Method for displaying electric quantity of battery and data processing apparatus
US9814885B2 (en) 2010-04-27 2017-11-14 Medtronic, Inc. Stimulation electrode selection
US8406890B2 (en) 2011-04-14 2013-03-26 Medtronic, Inc. Implantable medical devices storing graphics processing data
CN103217649A (en) * 2013-03-28 2013-07-24 广东欧珀移动通信有限公司 Method and device for displaying electric quantity, and mobile device
CN104166096A (en) * 2013-05-16 2014-11-26 鸿富锦精密工业(深圳)有限公司 Electric quantity prompting apparatus and electric quantity prompting method thereof
USD741366S1 (en) * 2013-11-21 2015-10-20 Microsoft Corporation Display screen with icon
WO2015080344A1 (en) * 2013-11-29 2015-06-04 엘지전자 주식회사 Mobile terminal and method for controlling mobile terminal
KR101650038B1 (en) * 2015-05-27 2016-08-22 충남대학교산학협력단 Portable terminal and method for controlling a battery charging of the same
USD784408S1 (en) * 2015-07-02 2017-04-18 Abb Technology Oy Display screen or portion thereof with icon
US9721447B2 (en) * 2015-09-20 2017-08-01 Lenovo (Singapore) Pte. Ltd. Display of rechargeable battery charge notification
CN105677545B (en) * 2015-12-29 2018-09-04 青岛海信电器股份有限公司 A kind of interface processing method and device based on mobile device
USD852225S1 (en) * 2017-02-14 2019-06-25 Roche Diabetes Care, Inc. Display screen with graphical user interface for glucose monitoring system
KR102515606B1 (en) * 2017-10-31 2023-03-28 삼성에스디아이 주식회사 Method, battery pack, and electronic device for displaying battery charge capacity
US11173805B2 (en) * 2018-01-30 2021-11-16 Karma Automotive Llc State-of-charge display system
CN112751973A (en) * 2019-10-31 2021-05-04 北京小米移动软件有限公司 Method and device for displaying charging information and intelligent equipment
USD947863S1 (en) 2019-12-09 2022-04-05 Monday.com Ltd. Display screen or portion thereof with animated graphical user interface
CN111030250B (en) * 2019-12-27 2021-06-25 北京锐安科技有限公司 Battery state indicating circuit and indicating method
JP1675990S (en) * 2020-06-18 2021-01-04

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216371A (en) 1989-06-12 1993-06-01 Ricoh Company, Ltd. Battery pack including measuring and indicating
US5406188A (en) 1993-05-03 1995-04-11 Ncr Corporation Method and apparatus for displaying a charge level of a battery
DE19529437C1 (en) 1995-08-10 1997-04-03 Wolf Geraete Gmbh Vertrieb Display for visual indication of the state of charge of a rechargeable battery
KR200214925Y1 (en) 2000-09-19 2001-02-15 엘지전자주식회사 Checking device for battery charging state of mobile phone having charger
JP2001188080A (en) 1999-12-28 2001-07-10 Sharp Corp Method for displaying charged level of battery
US6320354B1 (en) 2000-07-21 2001-11-20 Motorola, Inc. Method and apparatus for battery charging
US6405062B1 (en) * 1999-09-30 2002-06-11 Sanyo Electric Co., Ltd. Battery level indicator for a telephone set
KR20030069508A (en) 2002-02-21 2003-08-27 주식회사 어필텔레콤 Charging state displaying method for mobile phone
US20030220722A1 (en) 2002-05-27 2003-11-27 Yamaha Corporation Vehicle capable of auditorily informing its state and method for auditorily informing state of vehicle
KR20030092752A (en) 2002-05-31 2003-12-06 엘지전자 주식회사 Charging display device in mobile phone
KR200369508Y1 (en) 2004-09-01 2004-12-04 김만식 a shower nozzle holder
US20050093509A1 (en) 2003-10-29 2005-05-05 Hui-Hu Liang Automotive-use charger flashing light array
KR20050059452A (en) 2003-12-15 2005-06-21 주식회사 팬택 Method for displaying battery state of handset
KR200392752Y1 (en) 2005-06-01 2005-08-17 두산중공업 주식회사 Shim for repairing of stator core
KR20060053725A (en) 2004-11-17 2006-05-22 엘지전자 주식회사 Mobile communication device displaying the time required full-charge and its displaying method
KR100643460B1 (en) 2005-12-12 2006-11-10 엘지전자 주식회사 Charge state display device and method for mobile communication device
KR100686083B1 (en) 2006-01-04 2007-02-26 엘지전자 주식회사 Mobile terminal having notifying charge state of battery and mothod thereof
KR20070050116A (en) 2005-11-10 2007-05-15 주식회사 팬택 Mobile phone for displaying charge of battery
US8004241B2 (en) 2006-11-09 2011-08-23 Samsung Electronics Co., Ltd. Method and apparatus for displaying charging-state of battery of portable terminal

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216371A (en) 1989-06-12 1993-06-01 Ricoh Company, Ltd. Battery pack including measuring and indicating
US5406188A (en) 1993-05-03 1995-04-11 Ncr Corporation Method and apparatus for displaying a charge level of a battery
DE19529437C1 (en) 1995-08-10 1997-04-03 Wolf Geraete Gmbh Vertrieb Display for visual indication of the state of charge of a rechargeable battery
US6405062B1 (en) * 1999-09-30 2002-06-11 Sanyo Electric Co., Ltd. Battery level indicator for a telephone set
JP2001188080A (en) 1999-12-28 2001-07-10 Sharp Corp Method for displaying charged level of battery
US6320354B1 (en) 2000-07-21 2001-11-20 Motorola, Inc. Method and apparatus for battery charging
KR200214925Y1 (en) 2000-09-19 2001-02-15 엘지전자주식회사 Checking device for battery charging state of mobile phone having charger
KR20030069508A (en) 2002-02-21 2003-08-27 주식회사 어필텔레콤 Charging state displaying method for mobile phone
US20030220722A1 (en) 2002-05-27 2003-11-27 Yamaha Corporation Vehicle capable of auditorily informing its state and method for auditorily informing state of vehicle
US7188005B2 (en) * 2002-05-27 2007-03-06 Yamaha Corporation Vehicle capable of auditorily informing its state and method for auditorily informing state of vehicle
KR20030092752A (en) 2002-05-31 2003-12-06 엘지전자 주식회사 Charging display device in mobile phone
US20050093509A1 (en) 2003-10-29 2005-05-05 Hui-Hu Liang Automotive-use charger flashing light array
KR20050059452A (en) 2003-12-15 2005-06-21 주식회사 팬택 Method for displaying battery state of handset
KR200369508Y1 (en) 2004-09-01 2004-12-04 김만식 a shower nozzle holder
KR20060053725A (en) 2004-11-17 2006-05-22 엘지전자 주식회사 Mobile communication device displaying the time required full-charge and its displaying method
KR200392752Y1 (en) 2005-06-01 2005-08-17 두산중공업 주식회사 Shim for repairing of stator core
KR20070050116A (en) 2005-11-10 2007-05-15 주식회사 팬택 Mobile phone for displaying charge of battery
KR100643460B1 (en) 2005-12-12 2006-11-10 엘지전자 주식회사 Charge state display device and method for mobile communication device
KR100686083B1 (en) 2006-01-04 2007-02-26 엘지전자 주식회사 Mobile terminal having notifying charge state of battery and mothod thereof
US8004241B2 (en) 2006-11-09 2011-08-23 Samsung Electronics Co., Ltd. Method and apparatus for displaying charging-state of battery of portable terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Samsung Electronics: "Operating manual (Bedienungsanleitung) mobile phone Samsung SGH-X200 (German)"; May 31, 2005.

Also Published As

Publication number Publication date
EP2752966B1 (en) 2020-01-08
KR100879515B1 (en) 2009-01-22
EP2752966A3 (en) 2017-08-02
EP2752966A2 (en) 2014-07-09
EP1921726A2 (en) 2008-05-14
EP1921726B1 (en) 2014-04-02
USRE45797E1 (en) 2015-11-10
KR20080042366A (en) 2008-05-15
ES2769586T3 (en) 2020-06-26
US20080111523A1 (en) 2008-05-15
EP1921726A3 (en) 2012-10-31
ES2471124T3 (en) 2014-06-25
US8004241B2 (en) 2011-08-23
USRE47712E1 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
USRE49632E1 (en) Method and apparatus for displaying charging state of battery of portable terminal
US8332668B2 (en) Method and system for discovering a power source on a peripheral bus
US10998752B2 (en) Electronic apparatus, charge controlling method, and computer-readable recording medium
US8232770B2 (en) Battery remaining capacity predicting apparatus
US20100039081A1 (en) System for supplying and receiving power, power supply device and method thereof
EP1662269A1 (en) Battery remaining power calculating method, battery remaining power calculating device, and battery remaining power calculating program
US6854066B1 (en) Method and system to avoid battery sag by detecting momentary fluctuation in a periodic terminal voltage measurement and excluding the measurement from updated average terminal voltage
CN108924908B (en) WiFi scanning method and device and electronic device
KR101829710B1 (en) Apparatus and method for determining battery current consumption in portable terminal
US20130099758A1 (en) Apparatus and method for controlling charge current in portable terminal
US20220381844A1 (en) Prediction method and apparatus of battery health, and storage medium
KR100547730B1 (en) How to display charge remaining time
US8493069B2 (en) Method and apparatus for displaying state of current consumption of a battery in portable terminal
WO2009084686A1 (en) Portable electronic device and method for controlling the same
KR20140004519A (en) Method of inspecting battery and apparatus for inspecting battery
JP2002286816A (en) Battery life detection method
KR20060117395A (en) Method of displaying remaining quantity of battery in mobile telecommunication terminal
CN110970950B (en) Charging control method and device, storage medium and split type electronic equipment
KR20050014073A (en) Method for displaying battery use time in mobile phone
KR100750140B1 (en) Method and apparatus for indicating remaining electric charge of battery
KR20000038876A (en) Method for displaying remaining capacity of smart battery
KR20010016910A (en) Capacity gauging system of rechargeable battery
KR20010010779A (en) Method for displaying remain capacity of battary

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY