USRE48404E1 - Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor - Google Patents
Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor Download PDFInfo
- Publication number
- USRE48404E1 USRE48404E1 US15/642,307 US201715642307A USRE48404E US RE48404 E1 USRE48404 E1 US RE48404E1 US 201715642307 A US201715642307 A US 201715642307A US RE48404 E USRE48404 E US RE48404E
- Authority
- US
- United States
- Prior art keywords
- hgf
- seq
- gene
- sequence
- cdna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/4753—Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- sequencelisting.ascii.txt 29,879 bytes, created on Dec. 30, 2009
- the present invention relates to a highly efficient hybrid Hepatocyte Growth Factor (HGF) gene which simultaneously expresses two heterotypes of HGF.
- HGF Hepatocyte Growth Factor
- the present invention relates to a hybrid HGF gene prepared by inserting an inherent or foreign intron between exons 4 and 5 in HGF cDNA, which has higher expression efficiency than HGF cDNA and simultaneously expresses two heterotypes of HGF and dHGF (deleted variant HGF).
- HGF is a heparin binding glycoprotein called a scatter factor.
- a gene encoding HGF is located at chromosome 721.1 7q21.1 and comprises 18 exons and 17 introns, having the nucleotide sequence of SEQ ID NO: 1 (Seki T., et al., Gene 102:213-219 (1991)).
- a transcript of about 6 kb is transcribed from the HGF gene, and then, a polypeptide HGF precursor consisting of 728 amino acids is synthesized therefrom. Simultaneously, a polypeptide of dHGF precursor consisting of 723 amino acids is also synthesized by an alternative splicing of the HGF gene.
- the biologically inactive precursors may be converted into active forms of disulfide-linked heterodimer by protease in serum.
- the alpha chain having a high molecular weight forms four kringle domains and an N-terminal hairpin loop like a preactivated peptide region of plasminogen.
- the kringle domains of a triple disulfide-bonded loop structure consisting of about 80 amino acids may play an important role in protein-protein interaction.
- the low molecular weight beta chain forms an inactive serine protease-like domain.
- dHGF consisting 723 amino acids is a polypeptide with deletion of five amino acids in the 1st kringle domain of the alpha chain, i.e., F, L, P, S and S.
- HGF histoneum growth factor
- dHGF histoneum growth factor
- HGF shows about 20-fold, 10-fold and 2-fold higher activities than dHGF in promoting DNA synthesis in human umbilical cord venous endothelial cell, arterial smooth muscle cell and NSF-60 (murine myeloblast cell), respectively.
- dHGF shows about 3-fold and 2-fold higher activities than HGF in promoting DNA synthesis of LLC-PK1 (pig kidney epithelial cell), and OK (American opossum kidney epithelial cell) and mouse interstitial cell, respectively.
- HGF has a 70-fold higher solubility in PBS than dHGF.
- HGF secreted from mesoderm-derived cells has various biological functions, e.g., 1) inducing epithelial cells into a tubular structure; 2) stimulating vascularization from endothelial cells in vitro and in vivo; 3) regeneration of liver and kidney, owing to its anti-apoptosis activity; 4) organogenesis of kidney, ovary and testis; 5) controlling osteogenesis; 6) stimulating the growth and differentiation of erythroid hematopoietic precursor cells; and 7) axon sprouting of neurons (Stella, M. C. and Comoglio, P. M., The International Journal of Biochemistry & Cell Biology 31:1357-1362 (1999)).
- HGF or a gene encoding HGF may be developed as a therapeutic agent for treating ischemic or liver diseases.
- the HGF may exist as either HGF or dHGF, and therefore, the coexpression of HGF and dHGF is important for maximizing the therapeutic effect.
- the present inventors have endeavored to develop a hybrid HGF gene which can simultaneously express HGF and dHGF with a high efficiency for gene therapy.
- the hybrid HGF gene having an inherent or foreign intron is inserted between exons 4 and 5 of HGF cDNA.
- FIG. 1 a schematic diagram of HGF-X prototype illustrating the positions of the gene fragments
- FIG. 2 a process for cloning gene fragments from HepG2 genomic DNA
- FIG. 3 a process for cloning gene fragments from human placenta cDNA
- FIGS. 4A and 4B processes for preparing expression vectors pCK-HGF-X
- FIG. 5 a process for preparing expression vectors pCK-cHGF and pCK-dHGF
- FIG. 6 a process for preparing expression vectors pCP-HGF-X family
- FIG. 7 a process for preparing expression vectors pCP-cHGF and pCP-dHGF
- FIG. 8 gene expression levels of pCP-cHGF, pCP-dHGF and pCP-HGF-X.
- FIG. 9 gene expression patterns of pCP-cHGF, pCP-dHGF and pCP-HGF-X observed by electrophoresis on 12% polyacrylamide gel,
- FIG. 10 gene expression levels of pCP-cHGF, pCP-dHGF and pCP-HGF-X7, in vivo,
- FIG. 11 cerebral angiogenesis of two groups of rabbits which were subject to administrating pCP and pCP-HGF-X7, respectively,
- the hybrid Hepatocyte Growth Factor (HGF) gene of the present invention comprises cDNA corresponding to the exons 1 to 18, and an inherent or foreign intron inserted between exons 4 and 5 of the cDNA.
- the intron comprises a fragment of the inherent intro or a recombinant sequence.
- hybrid HGF gene of the present invention comprising the inherent intron is 7113 bp long and has the nucleotide sequence of SEQ ID NO: 2.
- the hybrid HGF gene simultaneously expresses both HGF and dHGF, and has higher expression efficiency than HGF cDNA.
- Codon degeneracy enables the hybrid HGF gene of the present invention to be modified or changed in the coding and/or non-coding region without altering the amino acid sequence of the protein and the expression of the gene. Accordingly, polynucleotides which is substantially identical to the hybrid HGF gene of SEQ ID NO:2, and the fragments thereof fall within the scope of the invention. “Substantially identical” means that the sequence homology is not less than 80%, preferably not less than 90%, and more preferably not less than 95%.
- a hybrid HGF gene may comprise a fragment of inherent intron optionally having a small recombinant sequence inserted thereinto between exons 4 and 5 of HGF cDNA.
- a hybrid HGF gene comprising a fragment of inherent intron designates “HGF-X”.
- the hybrid HGF gene of the present invention is synthesized and inserted into an expression vector, according to the known genetic engineering methods. Then, the vector can be introduced into an appropriate host cells such as E. coli and yeast.
- Escherichia coli Top10F′ may be transfected with HGF-X7 gene of the present invention.
- Escherichia coli Top10F′ pCK-HGFX7 and Escherichia coli Top10F′ pCP-HGFX7 then obtained were deposited as the accession numbers KCCM-10361 and KCCM-10362, respectively, on Mar. 12, 2002.
- the gene of the present invention and the protein encoded thereby may be produced on a large scale.
- the vector of the present invention may selectively comprise sequence(s) for regulating gene expression such as promoter or terminator, self-replication sequence and secretory signal, depending on host cells.
- the present invention comprises a pharmaceutical composition for treating or preventing ischemic and liver diseases, which comprises the hybrid HGF gene or the vector comprising the gene as an active ingredient.
- the composition is formulated for injection.
- composition of the present invention may further comprise pharmaceutically acceptable carriers.
- pharmaceutically acceptable carriers Any of the conventional procedures in the pharmaceutical field may be used to prepare oral formulations such as tablets, capsules, pills, granules, suspensions and solutions; rejection formulations such as solutions, suspensions, or dried powders that may be mixed with distilled water before injection; locally-applicable formulations such as ointments, creams and lotions; and other formulations.
- Carriers generally used in the pharmaceutical field may be employed in the composition of the present invention.
- orally-administered formulations may include binders, emulsifiers, disintegrating agents, excipients, solubilizing agents, dispersing agents, stabilizing agents, suspending agents, coloring agents or spicery.
- Injection formulations may comprise preservatives, unagonizing agents, solubilizing agents or stabilizing agents. Preparation for local administration may contain bases, excipients, lubricants or preservatives. Any of the suitable formulations known in the art (Remington's Pharmaceutical Science [the new edition], Mack Publishing Company, Eaton Pa.) may be used in the present invention.
- the inventive composition can be clinically administered as various oral and parenteral formulations.
- a suitable formulation may be prepared using such excipients as additives, enhancers, binders, wetting agents, disintegrating agents and surfactants, or diluents.
- Solid formulations for oral administration include pills, tablets, dusting powder, granules and capsules. Those solid formulations may be prepared by mixing one or more excipients, e.g. starch, calcium carbonate, sucrose, lactose and gelatin with dibenzylbuthyllacton lignan derivatives. Also, lubricants such as magnesium stearate and talc may be included in the present formulation.
- Liquid formulations for oral administration include suspension, solution, emulsion and syrup.
- formulations may contain wetting agents, sweeteners, aromatics and preservatives, in addition to general simple diluents such as water and liquid paraffin.
- Formulations for parenteral administration include sterilized aqueous solution, suspension, emulsion, freeze-dried alternative treatment and suppositories.
- Water-insoluble excipients and suspending agents comprise vegetable fats such as propylene glycol, polyethylene glycol and olive oil, and injectable esters such as ethyl oleate.
- Witepsol®, Macrogol®, Tween® 61, cacao fats, laurin fats and glycerogelatins may be used as bases of suppositories.
- inventive composition may be administered orally or via parenteral routes such as intravenous, intramuscular, subcutaneous, intraabdominal, sternal and arterial injection or infusion, or topically through rectal, intranasal, inhalational or intraocular administration.
- parenteral routes such as intravenous, intramuscular, subcutaneous, intraabdominal, sternal and arterial injection or infusion, or topically through rectal, intranasal, inhalational or intraocular administration.
- composition of the present invention ought to be determined in light of various relevant factors including the conditions to be treated, the chosen route of administration, the age, sex and body weight of the individual patient, and the severity of the patient's symptom, and can be administrated in a single dose or in divided dose. Therefore, the daily dose should not be construed as a limitation to the scope of the invention in any way.
- Human HepG2 cells (ATCC Accession NO: HB-8065) were suspended in TES buffer (10 mM Tris-HCl; 1 mM EDTA; 0.7% SDS) and treated with 400 ⁇ g/Ml of proteinase K at 50° C. for 1 hour. Subsequently, genomic DNA was extracted from the cell suspension by phenol/chloroform extraction and ethanol precipitation according to the conventional method in the art.
- HGF-F2 HGF gene fragment 2
- HGF-F3 HGF gene fragment 2
- SEQ ID NOs: 6 and 7 SEQ ID NOs: 6 and 7
- HGF-F5 SEQ ID NOs: 8 and 7
- HGF-F7 SEQ ID NOs: 9 and 7
- HGF-F8 SEQ ID NOs: 10 and 7; HGF-F6, respectively ( FIG. 1 ).
- the PCR amplification mixture was prepared by mixing 1 ⁇ l of template DNA, 1 ⁇ l each of primer (10 pmol/ ⁇ l), 10 ⁇ l of dNTP (10 mM), 3.5 unit of Expand High Fidelity enzyme (Gibco BRL, USA) and 10 ⁇ l of enzyme buffer solution and adjusted to a final volume of 100 ⁇ l with distilled water. 30 cycles of the PCR amplification was carried out, each cycle consisting of 1 min at 94° C., 1 min at 55° C. and 30 sec at 72° C.
- the primers used herein and the amplified gene fragments obtained therefrom are shown in Table 1.
- the amplified HGF-F2 comprised the sequence ranging from 392 to 2247 of human HGF cDNA prototype (HGF-X1; composed of exons 1 to 4-intron 4-exons 5 to 18) of SEQ ID NO: 2; HGF-F3, the sequence ranging from 392 to 727; HGF-5, the sequence ranging from 2229 to 5471; HGF-F6, the sequence ranging from 5117 to 5471; HGF-F7, the sequence ranging from 3168 to 5471; and HGF-F8, the sequence ranging from 4168 to 5471.
- HGF-X1 human HGF cDNA prototype
- HGF-X1 composed of exons 1 to 4-intron 4-exons 5 to 18
- HGF-F3 the sequence ranging from 392 to 727
- HGF-5 the sequence ranging from 2229 to 5471
- HGF-F6 the sequence ranging from 5117 to 5471
- HGF-F7 the sequence ranging from 3168 to 5471
- HGF-F8
- the amplified HGF gene fragments were each inserted into the multiple cloning site of pGEM-T easy vector (Promega, WI, USA) to obtain pGEM-T easy-HGF-F2, pGEM-T easy-HGF-F3, pGEM-T easy-HGF-F5, pGEM-T easy-HGF-F6, pGEM-T easy-HGF-F7 and pGEM-T easy-HGF-F8, respectively ( FIG. 2 ).
- the nucleotide sequences of the amplified HGF gene fragments were confirmed by a sequence analysis.
- human placenta cDNA (Clontech, CA, USA) was employed as a template DNA under the same condition as described in Example 1.
- the synthetic oligonucleotides of SEQ ID NOs: 11 and 12, and SEQ ID NOs: 13 and 14 were employed to obtain DNA fragments containing HGF-F1 and HGF-F4, respectively.
- DNA fragments containing cDNAs of HGF gene (cHGF) and deleted HGF gene (dHGF) were amplified by PCR using synthetic oligonucleotides of SEQ ID NOs: 15 and 16 as a primer pair, respectively.
- dHGF is a HGF gene with deletion of 5 base sequences.
- the amplified HGF-F1 and HGF-F4 comprised the nucleotide sequences ranging from 1 to 402 and from 6533 to 7113 of SEQ ID NO: 2 of human HGF cDNA prototype, respectively.
- HGF gene cDNA comprised the nucleotide sequence ranging from 1 to 2184 of SEQ ID NO: 1 of human HGF gene, and dHGF gene cDNA has the same sequence as HGF gene cDNA except for the deletion of the sequence ranging from 483 to 495.
- the amplified fragments of HGF gene were each inserted into the multiple cloning site of pGEM-T easy vector (Promega, WI, USA) to obtain pGEM-T easy-HGF-F1, pGEM-T easy-HGF-F4, pGEM-T easy-cHGF and pGEM-T easy-dHGF, respectively ( FIG. 3 ).
- the nucleotide sequences of the human HGF gene fragments, HGF gene cDNA and dHGF gene cDNA were confirmed by sequence analyses.
- Hybrid HGF gene constructs of genomic DNA and cDNA were prepared by combining the fragments of HGF gene cloned in steps (1) and (2) as follows ( FIGS. 4A and 4B ).
- Plasmid pGEM-T-easy-HGF-F1 was treated with HindIII/BamHI to obtain HGF-F1.
- Plasmid pCK (see PCT International Publication NO: WO/0040737) was treated with HindIII/BamHI, and HGF-F1 was inserted thereinto to obtain pCK-F1.
- plasmids pGEM-T-easy-HGF-F2 and pGEM-T-easy-HGF-F3 were treated with MluI/BamHI to obtain HGF-F2 and HGF-F3, respectively.
- pCK-1 was treated with MluI/BamHI, and then HGF-F2 and HGF-F3 were inserted thereinto to obtain pCK-F12M and pCKF13M.
- the MluI restriction site of vectors pCK-F12M and pCK-F13M was substituted with an HgaI restriction site by employing a site-directed mutagenesis kit (Stratagene, CA., USA) to obtain pCK-F12 and pCK-F13, respectively.
- plasmid pGEM-T-easy-HGF-F4 was treated with BamHI/XbaI to obtain HGF-F4.
- pCK-F12 and pCK-F13 were treated with BamHI/XbaI, and HGF-F4 was inserted thereinto to obtain pCK-F124 and pCK-F134, respectively.
- plasmids pGEM-T-easy-HGF-F5, pGEM-T-easy-HGF-F6, pGEM-T-easy-HGF-F7 and pGEM-T-easy-HGF-F8 were treated with BamHI/XhoI to obtain HGF-F5, HGF-F6, HGF-F7 and HGF-F8, respectively.
- pCK-F124 and pCK-F134 were treated with BamHI/XhoI, and then HGF-F5, HGF-F6, HGF-F7 and HGF-F8 were inserted thereinto to obtain pCK-F1254 and pCK-F1264, pCK-F1274, pCK-F1284, pCK-F1354, pCK-F1364, pCK-F1374 and pCK-F1384, respectively.
- HGF-XhoI cDNA fragment of HGF gene
- HGF-XhoI HGF-XhoI
- HGF-XhoI was inserted into pCK-F1254, pCK-F1264, pCK-F1274, pCK-F1284, pCK-F1354, pCK-F1364, pCK-F1374 and pCK-F1384 to obtain pCK-HGF-X1, pCK-HGF-X2, pCK-HGF-X3, pCK-HGF-X4, pCK-HGF-X5, pCK-HGF-X6, pCK-HGF-X7 and pCK-HGF-X8, respectively.
- pGEM-T easy-cHGF and pGEM-T easy-dHGF were treated with BamHI to obtain HGF gene cDNA and dHGF gene cDNA. Then, HGF gene cDNA and dHGF gene cDNA were inserted into the BamHI restriction site of pCK to obtain pCK-cHGF and pCK-dHGF, respectively ( FIG. 5 ).
- Plasmid pcDNA3.1 (Invitrogen, USA) was digested with NdeI, treated with the Klenow fragment to build blunt ends, and then digested with NheI to obtain a DNA fragment containing human cytomegalovirus promoter.
- Plasmids pCK-HGF-X1, pCK-HGF-X2, pCK-HGF-X3, pCK-HGF-X4, pCK-HGF-X5, pCK-HGF-X6, pCK-HGF-X7 and pCK-HGF-X8 were digested with SnaBI, treated with the Klenow fragment to make blunt ends and digested with NheI, and then the above DNA fragment containing human cytomegalovirus promoter was inserted thereinto to obtain pCP-HGF-X1, pCP-HGF-X2, pCP-HGF-X3, pCP-HGF-X4, pCP-HGF-X5, pCP-HGF-X6, pCP-
- Plasmid pcDNA3.1 (Invitrogen, USA) was digested with NheI, treated with the Klenow fragment to make blunt ends and digested with NdeI to obtain the DNA fragment containing human cytomegalovirus promoter.
- pCK-cHGF and pCK-dHGF were digested with MluI, treated with the Klenow fragment to make blunt ends and digested with NdeI, and then the above DNA fragment containing human cytomegalovirus promoter was inserted thereinto to obtain pCP-cHGF and pCP-dHGF, respectively ( FIG. 7 ).
- Hybrid HGF gene constructs HGF-X1 to HGF-X8
- HGF-X1 to HGF-X8 HGF-X8
- pCP-HGF-X2, pCP-HGF-X3, pCP-HGF-X6, pCP-HGF-X7 and pCP-HGF-X8 were transfected into 5 ⁇ 10 6 cells of 293 cell (ATCC CRL 1573) together with 0.5 ⁇ g of DONAI-LacZ (TAKARA SHUZO, Japan) DNA using FuGENE6 (Gibco BRL, MD, USA), according to the manufacturer's instructions.
- DONAI-LacZ TAKARA SHUZO, Japan
- HGF-X7 In order to compare the gene expression levels, the amount of HGF in the cell culture was measured by an enzyme-linked immunosorbent assay kit (ELISA, R&D System, MN, USA). After calibrating the infection efficiency by the measured LacZ activity, the expression level of HGF-X gene was found to be from 20 to 150-fold higher than those of HGF cDNA and dHGF cDNA ( FIG. 8 ). HGF-X7, in particular, showed the highest gene expression level.
- RNAs were extracted from the transfected 293 cells using the Trizol method (Trizol; Gibco BRL, USA) and subjected to RT-PCR to obtain cDNA. Then, using cDNA as a template DNA, PCR amplification was carried out using synthetic oligonucleotides of SEQ ID NOs: 17 and 18 as a primer pair.
- the PCR amplification mixture was prepared by mixing 1 ⁇ l of the template DNA, 1 ⁇ l each of the primer (10 pmol/ ⁇ l), 10 ⁇ l of dNTP (10 mM), 3.5 unit of Taq polymerase (TAKARA SHUZO, Japan) and 10 ⁇ l of enzyme buffer solution and adjusted to a final volume of 100 ⁇ l with distilled water. 30 cycles of PCR amplification was conducted, each cycle consisting of 1 min at 94° C., 1 min at 55° C., and 90 sec at 72° C.
- the amplified PCR products corresponded to the boundary region between exons 4 and 5 of HGF gene; HGF gene cDNA of 142 by and dHGF gene cDNA of 127 bp, respectively. With no splicing, the PCR product of at least 1 kb in length was amplified; and if alternative splicing occurred, HGF gene cDNA of 142 bp and dHGF gene cDNA of 127 by were simultaneously synthesized and amplified. The amplified PCR products were distinguished by electrophoresis on a 12% polyacrylamide gel.
- mice 100 ⁇ g each of pCP-HGF-X7, pCP-cHGF and pCP-dHGF were injected into the enterior anterior tibial muscle of the hind limb of mice with an insulin syringe. After 5 days, the mice were sacrificed and the muscles around the injection spot were removed and smashed in a protein extraction buffer (25 mM Tris-HCl (pH 7.4), 50 mM NaCl, 0.5% Na-deoxycholate, 2% NP-40, 0.2% SDS) to separate total proteins. The amount of the total proteins was measured with a DC protein analysis kit (Bio-Rad Laboratories, CA, USA) and the amount of expressed HGF was determined with an ELISA kit (R&D System) according to the manufacturer's instruction.
- a protein extraction buffer 25 mM Tris-HCl (pH 7.4), 50 mM NaCl, 0.5% Na-deoxycholate, 2% NP-40, 0.2% SDS
- the amount of HGF expressed from HGF-X7 is 250-fold higher than that from HGF gene cDNA or dHGF gene cDNA.
- a rabbit ischemic hind limb model which is a standard animal model for the ischemic limb disease, was prepared by the method described by Takeshita et al., Journal of Clinical Investigation 93:662 (1994).
- each of 30 white rabbits from New Zealand male, from 3.8 to 4.2 kg was intramuscularly injected with 5 mg/kg of xylazine and, then, anesthetized by an intramuscular injection of 50 mg/kg of ketamine.
- the left femoral region of the rabbit was incised and all branches of the femoral artery were separated and tied.
- the region from the proximal part to the branching point of the saphenous and popliteal arteries was incised to prepare the model.
- 15 mg/kg/day of cefazolin was injected intramuscularly for 5 days and 0.3 mg/day of morphine, for 10 days.
- 10 days after the operation (day 10) angiography was carried out for the left hind limb where the ischemia was induced, and the degree of arteriogenesis was recorded as a basal level.
- the rabbits were randomly divided into two groups and injected at four sites in the femoral muscle with 500 ⁇ g of plasmid pCP-HGF-X7 (experimental group) or 500 ⁇ g of plasmid pCP (control), respectively.
- 40 days after the operation (day 40) angiography was carried out again for the left hind limb and the degree of arteriogenesis at the arteriole level was determined and compared to that of day 10.
- the degree of angiogenesis was significantly enhanced in the experimental group administered with pCP-HGF-X7 as compared with the pCP-administered control group.
- HGF-X7 gene can be effectively used in the gene therapy of an ischemic disease.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
TABLE 1 | |||
5′ |
3′ primer | Amplified fragment | |
gHGF3 | gHGF4 | HGF gene fragment 2 | |
(SEQ ID NO: 3) | (SEQ ID NO: 4) | (HGF-F2) | |
gHGF3 | gHGF10 | HGF gene fragment 3 | |
(SEQ ID NO: 3) | (SEQ ID NO: 5) | (HGF-F3) | |
gHGF5 | gHGF7 | HGF gene fragment 5 | |
(SEQ ID NO: 6) | (SEQ ID NO: 7) | (HGF-F5) | |
gHGF12 | gHGF7 | HGF gene fragment 7 | |
(SEQ ID NO: 8) | (SEQ ID NO: 7) | (HGF-F7) | |
gHGF13 | gHGF7 | HGF gene fragment 8 | |
(SEQ ID NO: 9) | (SEQ ID NO: 7) | (HGF-F8) | |
gHGF6 | gHGF7 | HGF gene fragment 6 | |
(SEQ ID NO: 10) | (SEQ ID NO: 7) | (HGF-F6) | |
TABLE 2 | |||
5′ |
3′ primer | Amplified fragment | |
gHGF1 | gHGF2 | HGF gene fragment 1 | |
(SEQ ID NO: 11) | (SEQ ID NO: 12) | (HGF-F1) | |
gHGF8 | gHGF9 | HGF gene fragment 4 | |
(SEQ ID NO: 13) | (SEQ ID NO: 14) | (HGF-F4) | |
cHGF5 | cHGF3 | HGF gene cDNA | |
(SEQ ID NO: 15) | (SEQ ID NO: 16) | (cHGF) | |
dHGF gene cDNA | |||
(dHGF) | |||
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/642,307 USRE48404E1 (en) | 2002-03-20 | 2017-07-05 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020015074A KR100562824B1 (en) | 2002-03-20 | 2002-03-20 | Hybrid hepatocyte growth factor gene which has a high expression efficiency and expresses two heterotypes of hepatocyte growth factor |
KR10-2002-0015074 | 2002-03-20 | ||
PCT/KR2003/000548 WO2003078568A2 (en) | 2002-03-20 | 2003-03-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US10/944,277 US7812146B2 (en) | 2002-03-20 | 2004-09-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US12/650,860 US7745174B2 (en) | 2002-03-20 | 2009-12-31 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US15/642,307 USRE48404E1 (en) | 2002-03-20 | 2017-07-05 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/650,860 Reissue US7745174B2 (en) | 2002-03-20 | 2009-12-31 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE48404E1 true USRE48404E1 (en) | 2021-01-26 |
Family
ID=28036130
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/944,277 Active 2027-08-24 US7812146B2 (en) | 2002-03-20 | 2004-09-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US11/957,170 Expired - Lifetime US7838505B2 (en) | 2002-03-20 | 2007-12-14 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US12/650,860 Ceased US7745174B2 (en) | 2002-03-20 | 2009-12-31 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US12/908,765 Expired - Lifetime US8338385B2 (en) | 2002-03-20 | 2010-10-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US15/642,307 Expired - Lifetime USRE48404E1 (en) | 2002-03-20 | 2017-07-05 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/944,277 Active 2027-08-24 US7812146B2 (en) | 2002-03-20 | 2004-09-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US11/957,170 Expired - Lifetime US7838505B2 (en) | 2002-03-20 | 2007-12-14 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US12/650,860 Ceased US7745174B2 (en) | 2002-03-20 | 2009-12-31 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US12/908,765 Expired - Lifetime US8338385B2 (en) | 2002-03-20 | 2010-10-20 | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
Country Status (14)
Country | Link |
---|---|
US (5) | US7812146B2 (en) |
EP (1) | EP1490492B1 (en) |
JP (1) | JP4057537B2 (en) |
KR (1) | KR100562824B1 (en) |
CN (1) | CN100378219C (en) |
AT (1) | ATE380826T1 (en) |
AU (1) | AU2003210053A1 (en) |
BR (1) | BRPI0303570B8 (en) |
DE (1) | DE60318026T2 (en) |
DK (1) | DK1490492T3 (en) |
ES (1) | ES2298538T3 (en) |
HK (1) | HK1080895A1 (en) |
PT (1) | PT1490492E (en) |
WO (1) | WO2003078568A2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100562824B1 (en) * | 2002-03-20 | 2006-03-23 | 주식회사 바이로메드 | Hybrid hepatocyte growth factor gene which has a high expression efficiency and expresses two heterotypes of hepatocyte growth factor |
BRPI0618488A2 (en) * | 2005-11-10 | 2011-08-30 | Receptor Biologix Inc | Hepatocyte Growth Factor Intron Fusion Proteins |
US20090202606A1 (en) | 2008-01-25 | 2009-08-13 | Viromed Co., Ltd. | Treatment and Prevention of Cardiac Conditions Using Two or More Isoforms of Hepatocyte Growth Factor |
CA2720611C (en) | 2008-04-09 | 2016-07-12 | Viromed Co., Ltd. | Lyophilized dna formulations for enhanced expression of plasmid dna |
EP2216399A1 (en) | 2009-01-30 | 2010-08-11 | Université de la Méditerranée | Human soluble CD146, preparation and uses thereof |
CN102120047A (en) * | 2010-01-11 | 2011-07-13 | 上海优益绩国际贸易有限公司 | Slow-release stent for targeted delivery of blood-delivery reconstruction gene medicament |
US10639351B2 (en) | 2013-10-22 | 2020-05-05 | Helixmith Co., Ltd. | Method for treating amyotrophic lateral sclerosis with a polynucleotide encoding two or more isoforms of hepatocyte growth factor |
JP6532141B2 (en) | 2014-09-26 | 2019-06-19 | ヘリックスミス カンパニー リミテッド | Composition for prevention or treatment of peripheral artery disease using hepatocyte growth factor and stroma cell-derived factor 1 alpha |
CN109477119A (en) * | 2016-02-04 | 2019-03-15 | 斯比根公司 | Express the mescenchymal stem cell and application thereof of hepatocyte growth factor |
WO2019132624A1 (en) * | 2017-12-29 | 2019-07-04 | 주식회사 헬릭스미스 | Adeno-associated virus (aav) vector having hybrid hgf gene introduced thereto |
KR102245539B1 (en) | 2018-02-12 | 2021-04-29 | 주식회사 지앤피바이오사이언스 | Composition for increasing expression level of growth factor genes containing core-shell structured microparticles as effective component |
CN108611367B (en) * | 2018-04-24 | 2019-11-19 | 北京诺思兰德生物技术股份有限公司 | The gene therapy recombinant vector that one kind is mediated by plasmid vector |
JP7235230B2 (en) * | 2018-05-17 | 2023-03-08 | ヘリックスミス カンパニー, リミテッド | Treatment of neuropathic pain associated with chemotherapy-induced peripheral neuropathy |
WO2020016655A2 (en) * | 2018-07-17 | 2020-01-23 | Helixmith Co., Ltd. | Treatment of neuropathy with dna constructs expressing igf-1 isoforms |
US11554179B2 (en) | 2018-07-19 | 2023-01-17 | Helixmith Co., Ltd | Lyophilized pharmaceutical compositions for naked DNA gene therapy |
CN110747214B (en) * | 2019-03-13 | 2021-12-31 | 深圳市臻质医疗科技有限公司 | DNA fragment, mRNA-antibody fusion molecule with long-acting expression and cell specific binding capacity and preparation method thereof |
KR20210035126A (en) | 2021-03-18 | 2021-03-31 | 주식회사 지앤피바이오사이언스 | Composition for increasing expression level of growth factor genes containing core-shell structured microparticles as effective component |
KR20220135215A (en) * | 2021-03-29 | 2022-10-06 | 주식회사 헬릭스미스 | Pharmaceutical composition for treating Charcot-Marie-Tooth disease |
US20230212603A1 (en) | 2021-10-06 | 2023-07-06 | G&P Bioscience Co., Ltd. | Development of optimized recombinant expression construct |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328836A (en) | 1990-07-13 | 1994-07-12 | Snow Brand Milk Products Co., Ltd. | Plasmids containing DNA encoding the amino acid sequence of TCF-II and use thereof |
US5500354A (en) | 1989-08-11 | 1996-03-19 | Mitsubishi Kasei Corporation | Hepatic parenchymal cell growth factor gene encoding the same, process for producing the factor and transformants producing the factor |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5587359A (en) | 1989-03-10 | 1996-12-24 | Snow Brand Milk Products Co., Ltd. | Human derived glycoprotein, biologically active factor which includes glycoprotein and pharmaceutical product |
US5652225A (en) | 1994-10-04 | 1997-07-29 | St. Elizabeth's Medical Center Of Boston, Inc. | Methods and products for nucleic acid delivery |
US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
WO1998050079A2 (en) | 1997-05-06 | 1998-11-12 | The Regents Of The University Of California | Techniques and compositions for treating heart failure and ventricular remodeling by in vivo delivery of angiogenic transgenes |
JPH11246433A (en) | 1998-03-03 | 1999-09-14 | Sumitomo Pharmaceut Co Ltd | Cardiac infarction medicine |
WO1999045775A1 (en) | 1998-03-09 | 1999-09-16 | St. Elizabeth's Medical Center | Compositions and methods for modulating vascularization |
US6013624A (en) | 1993-10-18 | 2000-01-11 | North Shore University Hospital Research Corporation | Method for inducing the proliferation and migration of endothelial cells using scatter factor |
US6121246A (en) | 1995-10-20 | 2000-09-19 | St. Elizabeth's Medical Center Of Boston, Inc. | Method for treating ischemic tissue |
WO2001034208A1 (en) | 1999-11-05 | 2001-05-17 | The Regents Of The University Of California | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery |
US6248722B1 (en) | 1995-08-29 | 2001-06-19 | Sumitomo Pharmaceuticals Company, Limited | Medicament comprising HGF gene |
US6258787B1 (en) | 1995-10-02 | 2001-07-10 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury |
US6316419B1 (en) | 1991-11-12 | 2001-11-13 | University Of Michigan | Induction of angiogenesis in heart muscle by a DNA sequence encoding an angiogenic protein |
US6413942B1 (en) | 1989-03-21 | 2002-07-02 | Vical, Inc. | Methods of delivering a physiologically active polypeptide to a mammal |
WO2002089856A1 (en) | 2001-05-03 | 2002-11-14 | The Regents Of The University Of California | Techniques and compositions for treating cardiovascular disease by (in vivo) gene delivery |
US20020172663A1 (en) | 2001-01-23 | 2002-11-21 | Maria Palasis | Localized myocardial injection method for treating ischemic myocardium |
US6498144B1 (en) | 1993-10-18 | 2002-12-24 | North Shore - Long Island Jewish Research Institute | Use of scatter factor to enhance angiogenesis |
US20030171287A1 (en) | 2000-06-27 | 2003-09-11 | Ryuichi Morishita | Medicinal compositions for angiogenic therapy |
KR20030075718A (en) | 2002-03-20 | 2003-09-26 | 주식회사 바이로메드 | Hybrid hepatocyte growth factor gene which has a high expression efficiency and expresses two heterotypes of hepatocyte growth factor |
US6706694B1 (en) | 1990-03-21 | 2004-03-16 | Vical Incorporated | Expression of exogenous polynucleotide sequences in a vertebrate |
US20040228834A1 (en) | 1998-03-09 | 2004-11-18 | Jeffrey Isner | Compositions and methods for modulating vascularization |
US6887477B1 (en) | 1998-08-05 | 2005-05-03 | Tomokazu Nagano | Method of treating ischemic disease by intramuscular administration of Hepatocyte growth factor |
US20070059288A1 (en) | 2005-03-31 | 2007-03-15 | Dinsmore Jonathan H | Treatment for heart disease |
US20080268030A1 (en) | 1999-10-29 | 2008-10-30 | Medgene Bioscience, Inc. | Gene therapy for diabetic ischemic disease |
US20090202606A1 (en) | 2008-01-25 | 2009-08-13 | Viromed Co., Ltd. | Treatment and Prevention of Cardiac Conditions Using Two or More Isoforms of Hepatocyte Growth Factor |
US20090258932A1 (en) | 2008-04-09 | 2009-10-15 | Viromed Co., Ltd. | Lyophilized DNA Formulations for Enhanced Expression of Plasmid DNA |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1142272C (en) * | 2000-02-02 | 2004-03-17 | 中国人民解放军军事医学科学院百环生物医学研究中心 | Rcombinant adenovirus and its use in preventing and treating fibrous diseases |
-
2002
- 2002-03-20 KR KR1020020015074A patent/KR100562824B1/en active IP Right Grant
-
2003
- 2003-03-20 CN CNB038065347A patent/CN100378219C/en not_active Expired - Lifetime
- 2003-03-20 DK DK03744561T patent/DK1490492T3/en active
- 2003-03-20 ES ES03744561T patent/ES2298538T3/en not_active Expired - Lifetime
- 2003-03-20 WO PCT/KR2003/000548 patent/WO2003078568A2/en active IP Right Grant
- 2003-03-20 EP EP03744561A patent/EP1490492B1/en not_active Expired - Lifetime
- 2003-03-20 BR BRPI0303570A patent/BRPI0303570B8/en not_active IP Right Cessation
- 2003-03-20 AU AU2003210053A patent/AU2003210053A1/en not_active Abandoned
- 2003-03-20 DE DE60318026T patent/DE60318026T2/en not_active Expired - Lifetime
- 2003-03-20 PT PT03744561T patent/PT1490492E/en unknown
- 2003-03-20 AT AT03744561T patent/ATE380826T1/en active
- 2003-03-20 JP JP2003576563A patent/JP4057537B2/en not_active Expired - Lifetime
-
2004
- 2004-09-20 US US10/944,277 patent/US7812146B2/en active Active
-
2006
- 2006-01-17 HK HK06100717A patent/HK1080895A1/en not_active IP Right Cessation
-
2007
- 2007-12-14 US US11/957,170 patent/US7838505B2/en not_active Expired - Lifetime
-
2009
- 2009-12-31 US US12/650,860 patent/US7745174B2/en not_active Ceased
-
2010
- 2010-10-20 US US12/908,765 patent/US8338385B2/en not_active Expired - Lifetime
-
2017
- 2017-07-05 US US15/642,307 patent/USRE48404E1/en not_active Expired - Lifetime
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587359A (en) | 1989-03-10 | 1996-12-24 | Snow Brand Milk Products Co., Ltd. | Human derived glycoprotein, biologically active factor which includes glycoprotein and pharmaceutical product |
US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US6413942B1 (en) | 1989-03-21 | 2002-07-02 | Vical, Inc. | Methods of delivering a physiologically active polypeptide to a mammal |
US5500354A (en) | 1989-08-11 | 1996-03-19 | Mitsubishi Kasei Corporation | Hepatic parenchymal cell growth factor gene encoding the same, process for producing the factor and transformants producing the factor |
US6706694B1 (en) | 1990-03-21 | 2004-03-16 | Vical Incorporated | Expression of exogenous polynucleotide sequences in a vertebrate |
US5328836A (en) | 1990-07-13 | 1994-07-12 | Snow Brand Milk Products Co., Ltd. | Plasmids containing DNA encoding the amino acid sequence of TCF-II and use thereof |
US6316419B1 (en) | 1991-11-12 | 2001-11-13 | University Of Michigan | Induction of angiogenesis in heart muscle by a DNA sequence encoding an angiogenic protein |
US6013624A (en) | 1993-10-18 | 2000-01-11 | North Shore University Hospital Research Corporation | Method for inducing the proliferation and migration of endothelial cells using scatter factor |
US6498144B1 (en) | 1993-10-18 | 2002-12-24 | North Shore - Long Island Jewish Research Institute | Use of scatter factor to enhance angiogenesis |
US5652225A (en) | 1994-10-04 | 1997-07-29 | St. Elizabeth's Medical Center Of Boston, Inc. | Methods and products for nucleic acid delivery |
US20060286072A1 (en) | 1995-02-28 | 2006-12-21 | Giordano Frank J | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery |
US20030148968A1 (en) | 1995-02-28 | 2003-08-07 | Hammond H. Kirk | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery |
US20090082293A1 (en) | 1995-02-28 | 2009-03-26 | Giordano Frank J | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery |
US6248722B1 (en) | 1995-08-29 | 2001-06-19 | Sumitomo Pharmaceuticals Company, Limited | Medicament comprising HGF gene |
US20090004260A1 (en) | 1995-08-29 | 2009-01-01 | Anges Mg, Inc. | Medicament comprising hgf gene |
US7285540B2 (en) | 1995-08-29 | 2007-10-23 | Anges Mg, Inc. | Medicament comprising HGF gene |
US20040105882A1 (en) | 1995-08-29 | 2004-06-03 | Medgene Bioscience, Inc. | Medicament comprising HGF gene |
US6258787B1 (en) | 1995-10-02 | 2001-07-10 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury |
US6121246A (en) | 1995-10-20 | 2000-09-19 | St. Elizabeth's Medical Center Of Boston, Inc. | Method for treating ischemic tissue |
WO1998050079A2 (en) | 1997-05-06 | 1998-11-12 | The Regents Of The University Of California | Techniques and compositions for treating heart failure and ventricular remodeling by in vivo delivery of angiogenic transgenes |
JPH11246433A (en) | 1998-03-03 | 1999-09-14 | Sumitomo Pharmaceut Co Ltd | Cardiac infarction medicine |
WO1999045775A1 (en) | 1998-03-09 | 1999-09-16 | St. Elizabeth's Medical Center | Compositions and methods for modulating vascularization |
US20040228834A1 (en) | 1998-03-09 | 2004-11-18 | Jeffrey Isner | Compositions and methods for modulating vascularization |
US6887477B1 (en) | 1998-08-05 | 2005-05-03 | Tomokazu Nagano | Method of treating ischemic disease by intramuscular administration of Hepatocyte growth factor |
US20080268030A1 (en) | 1999-10-29 | 2008-10-30 | Medgene Bioscience, Inc. | Gene therapy for diabetic ischemic disease |
WO2001034208A1 (en) | 1999-11-05 | 2001-05-17 | The Regents Of The University Of California | Techniques and compositions for treating cardiovascular disease by in vivo gene delivery |
US20030171287A1 (en) | 2000-06-27 | 2003-09-11 | Ryuichi Morishita | Medicinal compositions for angiogenic therapy |
US20020172663A1 (en) | 2001-01-23 | 2002-11-21 | Maria Palasis | Localized myocardial injection method for treating ischemic myocardium |
WO2002089856A1 (en) | 2001-05-03 | 2002-11-14 | The Regents Of The University Of California | Techniques and compositions for treating cardiovascular disease by (in vivo) gene delivery |
US7812146B2 (en) | 2002-03-20 | 2010-10-12 | Viromed Co., Ltd. | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US20050079581A1 (en) | 2002-03-20 | 2005-04-14 | Viromed Co., Ltd. | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
KR20030075718A (en) | 2002-03-20 | 2003-09-26 | 주식회사 바이로메드 | Hybrid hepatocyte growth factor gene which has a high expression efficiency and expresses two heterotypes of hepatocyte growth factor |
US20090131350A1 (en) | 2002-03-20 | 2009-05-21 | Viromed, Co., Ltd. | Hybrid Hepatocyte Growth Factor Gene Having High Expression Efficiency of Two Heterotypes of Hepatocyte Growth Factor |
US7745174B2 (en) | 2002-03-20 | 2010-06-29 | Viromed Co., Ltd. | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US7838505B2 (en) * | 2002-03-20 | 2010-11-23 | Viromed Co., Ltd. | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US8338385B2 (en) * | 2002-03-20 | 2012-12-25 | Viromed Co., Ltd. | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor |
US20070059288A1 (en) | 2005-03-31 | 2007-03-15 | Dinsmore Jonathan H | Treatment for heart disease |
US20090202606A1 (en) | 2008-01-25 | 2009-08-13 | Viromed Co., Ltd. | Treatment and Prevention of Cardiac Conditions Using Two or More Isoforms of Hepatocyte Growth Factor |
US20090258932A1 (en) | 2008-04-09 | 2009-10-15 | Viromed Co., Ltd. | Lyophilized DNA Formulations for Enhanced Expression of Plasmid DNA |
US8389492B2 (en) * | 2008-04-09 | 2013-03-05 | Viromed Co., Ltd. | Lyophilized DNA formulations for enhanced expression of plasmid DNA |
Non-Patent Citations (54)
Title |
---|
Courtney et al. (GenBank Accession No. AC004960 available since Jun. 12, 1998, Retrieved from Internet: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=3845412). |
Deng, et al., "Secretory Expression of the Deleted Variant of Human Hepatocyte Growth Factor (hdHGF) in Pichia pastoris," Chinese Journal of Biochemistry and Molecular Biology, 2001, 17:590-594, China Academic Journal Electronic Publishing House, Beijing, China. |
Esp@cenet Database, English language abstract of JP 11-246433 A, published Sep. 14, 1999 (listed as document B1 on the accompanying form PTO/SB/08A). |
European Search Report for European Application No. EP 03 74 4561, dated Apr. 18, 2006, European Patent Office, Munich, Germany. |
File History of U.S. Appl. No. 10/944,277, filed Sep. 20, 2004, Inventors: Jong-Mook Kim et al. |
File History of U.S. Appl. No. 11/957,170, filed Dec. 14, 2007, Inventors: Jong-Mook Kim et al. |
File History of U.S. Appl. No. 12/650,860, filed Dec. 31, 2009, Inventors: Jong-Mook Kim et al. |
File History of U.S. Appl. No. 12/908,765, filed Oct. 20, 2010, Inventors: Jong-Mook Kim et al. |
Folkman (Circulation. vol. 97, Issue 12, pp. 1108-1110). Mar. 31, 1998. * |
Gardilik, et al., "Vectors and delivery systems in gene therapy," Med Sci Monit 11(4):RA110-121 (2005). |
Henry, T.D. et al., "Safety of a Non-Viral Plasmid-Encoding Dual Isoforms of Hepatocyte Growth Factor in Critical Limb Ischemia Patients: A Phase I Study," Gene Therapy, 2011, pp. 788-794, vol. 18. |
Kato et al., "Nonviral HVJ (hemagglutinating virus of Japan) liposome-mediated retrograde gene transfer of human hepatocyte growth factor into rat nervous system promotes functional and histological recovery of the crushed nerve," Neuroscience Research, 52, pp. 299-310, Elsevier Ireland Ltd and the Japan Neuroscience Society (2005). |
Kibbe, M.R. et al., "Safety and Efficacy of Plasmid DNA Expressing Two Isoforms of Hepatocyte Growth Factor in Patients with Critical Limb Ischemia," Gene Therapy, 2016, pp. 306-312, vol. 23. |
Kisselev, L., "Polypeptide Release Factors in Prokaryotes and Eukaryotes: Same Function, Different Structure," Structure, 2002, 10, pp. 8-9, Elsevier Science Ltd., Cambridge, Massachusetts, USA. |
Liu et al, Journal of Controlled Release vol. 78, Issues 1-3, Jan. 17, 2002, pp. 259-266. |
Liu, Y., "The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization," Gene 215:159-169, Elsevier/North-Holland (1998). |
Miyazawa, K., et al., "Molecular Cloning and Sequence Analysis of cDNA for Human Hepatocyte Growth Factor," Biochem. Biophys. Res. Commun. 163:967-973, Academic Press (1989). |
Morishita, R. et al., "Safety Evaluation of Clinical Gene Therapy Using Hepatocyte Growth Factor to Treat Peripheral Arterial Disease," Hypertension, Aug. 2004, 13 pages. |
Nakamura, T., et al., "Molecular cloning and expression of human hepatocyte growth factor," Nature 342:440-443, Nature Publishing Group (1989). |
NCBI Entrez, GenBank Database, Accession No. AC004960, "Homo sapiens PAC clone RP5-1098B1 from 7q11.23-q21, complete sequence," 51 pages (first available 1998). |
Ngo et al., In The Protein Folding Problem and Tertiary Structure Prediction, 1994, Merz et al. (ed.), Birkhauser, Boston, MA, pp. 433 and 492-495. |
Notice of Allowance and Fees Due for Co-Pending U.S. Appl. No. 10/944,277, mailed May 29, 2009. |
Notice of Allowance and Fees Due for Co-Pending U.S. Appl. No. 10/944,277, mailed Oct. 23, 2009. |
Notice of Allowance and Fees Due for U.S. Appl. No. 10/944,277, dated May 29, 2009. |
Notice of Allowance and Fees Due for U.S. Appl. No. 10/944,277, dated Oct. 23, 2009. |
Notice of Allowance and Fees Due for U.S. Appl. No. 12/650,860, dated Mar. 10, 2010. |
Notice of Allowance for U.S. Appl. No. 11/957,170 (now U.S. Pat. No. 7,838,505), dated Jul. 19, 2010. |
Office Action for Co-Pending U.S. Appl. No. 10/944,277, mailed Feb. 13, 2009. |
Office Action for Co-pending U.S. Appl. No. 10/944,277, mailed Jan. 9, 2008. |
Office Action for Co-pending U.S. Appl. No. 11/957,170, mailed Jan. 28, 2010. |
Office Action for U.S. Appl. No. 10/944,277, dated Feb. 13, 2009. |
Office Action for U.S. Appl. No. 10/944,277, dated Jan. 9, 2008. |
Office Action for U.S. Appl. No. 11/957,170, dated Jan. 28, 2010. |
Office Action for U.S. Appl. No. 12/359,137, dated Apr. 28, 2011. |
Office Action for U.S. Appl. No. 12/421,425, dated Aug. 19, 2010. |
Office Action for U.S. Appl. No. 12/421,425, dated Dec. 17, 2010. |
Patil, et al., "DNA-based Therapeutics and DNA Delivery Systems: A Comprehensive Review," The AAPS Journal 9(1) Article 9:E61-E77 (2005). |
PCT International Search Report, PCT Application No. PCT/KR2003/000548, Sep. 5, 2003, 3 pages. |
Potrykus. Gene transfer to cereals: an assessment, Biotechnology, 1990, 8(6):535-542. |
Romano et al. Stem Cells, 1999, 17 :191-202. |
Rubin, et al., "A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor," Proc. Natl. Acad. Sci. USA, 1991, 88:415-419, Proceedings of the National Academy of Sciences of the United States of America, 500 5th St., Washington, DC 20001. |
Schmitz et al, Gut. Jan. 2002; 50(1): 130-135. |
Seki, T., et al., "Isolation and Expression of cDNA for Different Forms of Hepatocyte Growth Factor from Human Leukocyte," Biochem. Biophys. Res. Commun. 172:321-327, Academic Press (1990). |
Seki, T., et al., "Organization of the human hepatocyte growth factor-encoding gene," Gene 102:213-219, Elsevier/North-Holland (1991). |
Shi, E. et al., "Nonviral Gene Transfer of Hepatocyte Growth Factor Attenuates Neurologic Injury After Spinal Cord Ischemia in Rabbits," Cardiopulmonary Support and Physiology, The Journal of Thoracic and Cardiovascular Surgery, Oct. 2006, pp. 941-947, vol. 132, No. 4. |
Shigematsu, H. et al., "Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Hepatocyte Growth Factor Plasmid for Critical Limb Ischemia," Gene Therapy, 2010, pp. 1152-1161, vol. 17. |
Shima, N., et al., "Hepatocyte Growth Factor and its Variant with a Deletion of Five Amino Acids are Distinguishable in their Biological Activity and Tertiary Structure," Biochem. Biophys. Res. Commun. 200:808-815, Academic Press (1994). |
Thomas, et al., "Progress and Problems with the use of viral vectors for gene therapy," Nature Reviews Genetics 4:346-358, Nature Publishing Group (2003). |
U.S. Appl. No. 12/650,860, inventors Kim et al., filed Dec. 31, 2009. |
U.S. Appl. No. 13/045,460, filed Mar. 10, 2011. |
Warnecke C. et al., "Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements," Biochemical journal, 1999, 340 (1), pp. 17-24, Portland Press, Colchester, Great Britain. |
Wishart et al., "A Single Mutation Converts a Novel Phosphotyrosine Binding into a Dual-Specificity Phosphatase," Journal of Biological Chemistry, 1995, 270 (45), pp. 26782-26785, American Society for Biochemistry and Molecular Biology, Bethesda, MD, USA. |
Witkowski et al., "Conversion of a A-Ketoacyl Synthase to a Malonyl Decarboxylase by Replacement of the Active-Site Cysteine with Glutamine," Biochemistry, 1999, 38 (36), pp. 11643-11650, American Chemical Society, Washington, DC, USA. |
Yang, et al., "Sustained Expression of Naked Plasmid DNA Encoding Hepatocyte Growth Factor in Mice Promotes Liver and Overall Body Growth," Hepatology 33:848-859, American Assoc. for the Study of Liver Disease (2001). |
Also Published As
Publication number | Publication date |
---|---|
KR100562824B1 (en) | 2006-03-23 |
BR0303570A (en) | 2005-07-19 |
AU2003210053A8 (en) | 2003-09-29 |
US7838505B2 (en) | 2010-11-23 |
US7745174B2 (en) | 2010-06-29 |
WO2003078568A2 (en) | 2003-09-25 |
DE60318026D1 (en) | 2008-01-24 |
PT1490492E (en) | 2008-03-25 |
AU2003210053A1 (en) | 2003-09-29 |
KR20030075718A (en) | 2003-09-26 |
ATE380826T1 (en) | 2007-12-15 |
US20090131350A1 (en) | 2009-05-21 |
US20100105878A1 (en) | 2010-04-29 |
ES2298538T3 (en) | 2008-05-16 |
EP1490492B1 (en) | 2007-12-12 |
US20050079581A1 (en) | 2005-04-14 |
DE60318026T2 (en) | 2008-11-20 |
US20120010273A1 (en) | 2012-01-12 |
DK1490492T3 (en) | 2008-03-17 |
CN1643149A (en) | 2005-07-20 |
JP2005520512A (en) | 2005-07-14 |
EP1490492A2 (en) | 2004-12-29 |
HK1080895A1 (en) | 2006-05-04 |
EP1490492A4 (en) | 2006-05-31 |
JP4057537B2 (en) | 2008-03-05 |
BRPI0303570B1 (en) | 2018-04-24 |
BRPI0303570B8 (en) | 2021-05-25 |
US8338385B2 (en) | 2012-12-25 |
WO2003078568A3 (en) | 2003-11-27 |
US7812146B2 (en) | 2010-10-12 |
CN100378219C (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48404E1 (en) | Hybrid hepatocyte growth factor gene having high expression efficiency of two heterotypes of hepatocyte growth factor | |
JP3802329B2 (en) | DNA encoding a growth factor specific for epithelial cells | |
AU697891B2 (en) | Production of biologically active recombinant neurotrophic protein | |
JPH01501283A (en) | Novel type of colony stimulating factor-1 | |
CA2100690C (en) | Megakaryocyte differentiation factor | |
JP3121611B2 (en) | Gene vector for expressing nerve growth factor in eukaryotic cells | |
JP2002511762A (en) | Murine and human cerberus-like proteins and compositions containing them | |
AU733964B2 (en) | Novel flt-3 receptor agonists | |
US5352589A (en) | Deletion mutant of basic fibroblast growth factor and production thereof | |
EP0363675A1 (en) | New derivatives of human/bovine basic fibroblast growth factor | |
CA2649800C (en) | Hgf precursor protein variant and active protein thereof | |
KR20080106450A (en) | Proteins, nucleic acids and medicaments | |
CA2485587C (en) | Muteins of placental growth factor type 1, preparation method and application thereof | |
JPH093099A (en) | Modified material of macrophage stimulating protein and its production | |
US9371523B2 (en) | Cell migration regulator | |
JPWO2002048349A1 (en) | Polypeptide having heparin binding ability | |
EP1723236A1 (en) | Method for the recombinant expression of an n-terminal fragment of hepatocyte growth factor | |
AU2007226346A1 (en) | Medicaments and proteins based on TGF-beta monomers for the treatment of wounds | |
KR19990088583A (en) | Process of purifying angiogenesis inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VIROMED CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, EUN-JIN;REEL/FRAME:049107/0034 Effective date: 20090730 Owner name: VIROMED CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JONG-MOOK;HAHN, WOONG;REEL/FRAME:049107/0040 Effective date: 20041115 |
|
AS | Assignment |
Owner name: HELIXMITH CO., LTD, KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:VIROMED CO., LTD;REEL/FRAME:049440/0350 Effective date: 20190419 |
|
AS | Assignment |
Owner name: HELIXMITH CO., LTD, KOREA, REPUBLIC OF Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME FROM --HELIXMITH CO., LTD -TO HELIXMITH CO., LTD PREVIOUSLY RECORDED AT REEL: 049440 FRAME: 0350. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VIROMED CO., LTD;REEL/FRAME:054511/0535 Effective date: 20190419 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |