USRE47923E1 - Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps - Google Patents
Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps Download PDFInfo
- Publication number
- USRE47923E1 USRE47923E1 US15/058,005 US201615058005A USRE47923E US RE47923 E1 USRE47923 E1 US RE47923E1 US 201615058005 A US201615058005 A US 201615058005A US RE47923 E USRE47923 E US RE47923E
- Authority
- US
- United States
- Prior art keywords
- encapsulant
- semiconductor
- conductive
- semiconductor device
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 200
- 238000000034 method Methods 0.000 title description 32
- 239000008393 encapsulating agent Substances 0.000 claims abstract description 84
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims description 10
- 239000003351 stiffener Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 136
- 239000000463 material Substances 0.000 description 41
- 230000008569 process Effects 0.000 description 26
- HCWZEPKLWVAEOV-UHFFFAOYSA-N 2,2',5,5'-tetrachlorobiphenyl Chemical compound ClC1=CC=C(Cl)C(C=2C(=CC=C(Cl)C=2)Cl)=C1 HCWZEPKLWVAEOV-UHFFFAOYSA-N 0.000 description 15
- 239000010949 copper Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000007772 electroless plating Methods 0.000 description 13
- 238000009713 electroplating Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- 238000004806 packaging method and process Methods 0.000 description 12
- 238000005240 physical vapour deposition Methods 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 229910000679 solder Inorganic materials 0.000 description 10
- 239000011135 tin Substances 0.000 description 10
- 239000004593 Epoxy Substances 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- 208000024875 Infantile dystonia-parkinsonism Diseases 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 208000001543 infantile parkinsonism-dystonia Diseases 0.000 description 8
- 238000001465 metallisation Methods 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 239000010944 silver (metal) Substances 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- HBVFXTAPOLSOPB-UHFFFAOYSA-N nickel vanadium Chemical compound [V].[Ni] HBVFXTAPOLSOPB-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000001721 transfer moulding Methods 0.000 description 3
- JPOPEORRMSDUIP-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(2,3,5,6-tetrachlorophenyl)benzene Chemical compound ClC1=CC(Cl)=C(Cl)C(C=2C(=C(Cl)C=C(Cl)C=2Cl)Cl)=C1Cl JPOPEORRMSDUIP-UHFFFAOYSA-N 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 2
- -1 SiON Chemical compound 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- OFLYIWITHZJFLS-UHFFFAOYSA-N [Si].[Au] Chemical compound [Si].[Au] OFLYIWITHZJFLS-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
- H01L23/49548—Cross section geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4821—Flat leads, e.g. lead frames with or without insulating supports
- H01L21/4828—Etching
- H01L21/4832—Etching a temporary substrate after encapsulation process to form leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3135—Double encapsulation or coating and encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L24/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/12105—Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/24221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/24225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/24226—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83401—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/83411—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83417—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/83424—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83439—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0651—Wire or wire-like electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06524—Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1023—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00012—Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01073—Tantalum [Ta]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/049—Nitrides composed of metals from groups of the periodic table
- H01L2924/0494—4th Group
- H01L2924/04941—TiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/0665—Epoxy resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1433—Application-specific integrated circuit [ASIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Definitions
- the present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a package-in-package configuration with an inner known good die interconnected with conductive bumps formed in shallow vias.
- Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
- LED light emitting diode
- MOSFET power metal oxide semiconductor field effect transistor
- Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays.
- Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
- Semiconductor devices exploit the electrical properties of semiconductor materials.
- the atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
- a semiconductor device contains active and passive electrical structures.
- Active structures including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current.
- Passive structures including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions.
- the passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
- Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components.
- Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
- One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products.
- a smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
- Some semiconductor devices are configured as a package-in-package (PiP).
- the semiconductor die are interconnected by bond wires or deep conductive through silicon vias (TSV) or deep conductive through hole vias (THV).
- TSV deep conductive through silicon vias
- TSV deep conductive through hole vias
- the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer.
- the semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over the first encapsulant including the encapsulant bump to form a conductive bump.
- a second encapsulant is deposited over the semiconductor package and support layer.
- the present invention is a semiconductor device comprising a first semiconductor die or component.
- a first encapsulant is deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant.
- a first conductive layer is disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
- the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer.
- the semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
- the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer.
- the semiconductor package includes a bump comprising an inner insulating material and outer conductive material.
- FIG. 1 illustrates a PCB with different types of packages mounted to its surface
- FIGS. 2a-2c illustrate further detail of the representative semiconductor packages mounted to the PCB
- FIGS. 3a-3j illustrate a process of forming wafer level PiP mounted to a substrate with inner known good die interconnected with conductive bumps formed in shallow vias;
- FIG. 4 illustrates the PiP with an IPD
- FIG. 5 illustrates the inner package mounted to a support layer
- FIG. 6 illustrates the inner package mounted to an EMI and RFI shielding layer
- FIGS. 7a-7b illustrates the inner package mounted to a PCB
- FIGS. 8a-8h illustrate a process of forming PiP mounted to a carrier with inner known good die interconnected with conductive bumps formed in shallow vias.
- Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer.
- Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits.
- Active electrical components such as transistors and diodes, have the ability to control the flow of electrical current.
- Passive electrical components such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
- Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization.
- Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion.
- the doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current.
- Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
- Active and passive components are formed by layers of materials with different electrical properties.
- the layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- electrolytic plating electroless plating processes.
- Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
- the layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned.
- a pattern is transferred from a photomask to the photoresist using light.
- the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned.
- the remainder of the photoresist is removed, leaving behind a patterned layer.
- some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
- Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
- Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation.
- the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes.
- the wafer is singulated using a laser cutting tool or saw blade.
- the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components.
- Contact pads formed over the semiconductor die are then connected to contact pads within the package.
- the electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds.
- An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation.
- the finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
- FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface.
- Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
- Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a sub-component of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer.
- the semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
- PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB.
- Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
- a semiconductor device has two packaging levels.
- First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier.
- Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB.
- a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
- first level packaging including wire bond package 56 and flip chip 58
- second level packaging including ball grid array (BGA) 60 , bump chip carrier (BCC) 62 , dual in-line package (DIP) 64 , land grid array (LGA) 66 , multi-chip module (MCM) 68 , quad flat non-leaded package (QFN) 70 , and quad flat package 72 .
- BGA ball grid array
- BCC bump chip carrier
- DIP dual in-line package
- LGA land grid array
- MCM multi-chip module
- QFN quad flat non-leaded package
- quad flat package 72 quad flat package
- electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages.
- manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
- FIGS. 2a-2c show exemplary semiconductor packages.
- FIG. 2a illustrates further detail of DIP 64 mounted on PCB 52 .
- Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die.
- the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74 .
- Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74 .
- semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin.
- the package body includes an insulative packaging material such as polymer or ceramic.
- Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52 .
- Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82 .
- FIG. 2b illustrates further detail of BCC 62 mounted on PCB 52 .
- Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92 .
- Wire bonds 94 provide first level packing interconnect between contact pads 96 and 98 .
- Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device.
- Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation.
- Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52 .
- Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52 .
- semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging.
- Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die.
- the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108 .
- Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110 .
- BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112 .
- Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110 , signal lines 114 , and bumps 112 .
- a molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device.
- the flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance.
- the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106 .
- FIGS. 3a-3j illustrate, in relation to FIGS. 1 and 2a-2c , a process of forming wafer level PiP mounted to a substrate with inner known good die interconnected with conductive bumps formed in shallow vias.
- a substrate or carrier 120 contains temporary or sacrificial base material such as silicon, polymer, polymer composite, metal, ceramic, glass, glass epoxy, beryllium oxide, or other suitable low-cost, rigid material or bulk semiconductor material for structural support.
- a plurality of shallow vias 121 is formed in the surface of carrier 120 .
- an electrically conductive layer 122 is formed over surface 123 of carrier 120 , including following the contour of vias 121 , using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- a portion of conductive layer 122 denoted as conductive bumps 122 a, resides in vias 121 .
- Conductive layer 122 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Portions of conductive layer 122 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
- semiconductor die or component 124 is mounted to conductive layer 122 with contact pads 126 on active surface 128 oriented upward away from carrier 120 .
- Active surface 128 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
- the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 128 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
- DSP digital signal processor
- Semiconductor die 124 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
- Back surface 130 is secured to conductive layer 122 with an adhesive material 132 , such as thermal epoxy or epoxy resin. Bond wires 134 are formed between contact pads 126 to conductive layer 122 for electrical interconnect.
- An encapsulant or molding compound 136 is deposited over semiconductor die 124 , conductive layer 122 , and bond wires 134 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
- Encapsulant 136 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
- Encapsulant 136 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
- FIG. 3d shows a semiconductor wafer 140 containing a base substrate material 142 such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide, for structural support.
- An electrically conductive layer 144 is formed over substrate 142 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- Conductive layer 144 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
- Conductive layer 144 provides electrical interconnect. Portions of conductive layer 144 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
- An adhesive layer 146 such as thermal epoxy or epoxy resin, is formed over a surface of substrate 142 .
- semiconductor wafer 140 may also contain a plurality of semiconductor die each having an active region 148 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
- the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 148 to implement baseband analog circuits or digital circuits, such as DSP, memory, or other signal processing circuit.
- semiconductor wafer 140 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
- Conductive layer 144 is electrically connected to the active and passive circuits in active region 148 .
- the temporary carrier 120 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping to expose conductive bumps 122 a.
- the semiconductor package 138 is inverted and mounted to substrate 142 with encapsulant 136 contacting adhesive layer 146 , as shown in FIGS. 3d-3e .
- bond wires 150 are formed between conductive layer 122 and conductive layer 144 .
- the active and passive circuits of semiconductor die 124 are electrically connected through contact pads 126 , bond wires 134 , conductive layer 122 , and bond wires 150 to conductive layer 144 of substrate 142 .
- An adhesive layer 152 is formed over a portion of conductive layer 122 opposite semiconductor die 124 .
- a semiconductor die or component 154 is mounted with back surface 156 to conductive layer 122 and contact pads 158 on active surface 160 oriented upward away from conductive layer 122 .
- Active surface 160 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
- the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 160 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
- Semiconductor die 154 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
- an encapsulant or molding compound 162 is deposited over semiconductor package 138 , bond wires 150 , and substrate 142 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
- Encapsulant 162 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 162 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
- a plurality of shallow vias 167 a and 167 b is formed in the surface of encapsulant 162 by an etching process to expose conductive bumps 122 a and contact pads 158 .
- an electrically conductive layer 164 is formed over encapsulant 162 , conductive bumps 122 a, and contact pads 158 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- a portion of conductive layer 164 denoted as conductive bumps 164 a and 164 b, resides in vias 167 a and 167 b.
- Conductive layer 164 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
- Conductive layer 164 operates as a redistribution layer (RDL) and provides electrical interconnect between the active and passive circuits of semiconductor die 154 and conductive layer 122 .
- Conductive bumps 164 a are electrically connected to conductive bumps 122 a, and conductive bumps 164 b are electrically connected to contact pads 158 .
- Other portions of conductive layer 164 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
- an insulating or passivation layer 166 is formed over encapsulant 162 and conductive layer 164 using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation.
- the insulating layer 166 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), or other material having similar insulating and structural properties. A portion of insulating layer 166 is removed by an etching process to expose conductive layer 164 .
- An electrically conductive layer 168 is formed over conductive layer 164 and insulating layer 166 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- Conductive layer 168 forms a multi-layer under bump metallization (UBM) including a barrier layer and adhesion layer.
- the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd).
- the adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN).
- UBM 168 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
- An electrically conductive bump material is deposited over UBM 168 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
- the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
- the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
- the bump material is bonded to UBM 168 using a suitable attachment or bonding process.
- the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 170 .
- bumps 170 are reflowed a second time to improve electrical contact to UBM 168 .
- the bumps can also be compression bonded to UBM 168 .
- Bumps 170 represent one type of interconnect structure that can be formed over UBM 168 .
- the interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
- Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of wafer-level PiP 172 . The active and passive circuits of KGD 124 are electrically connected through contact pads 126 , bond wires 134 , conductive layer 122 , conductive layer 144 , conductive bumps 122 a and 164 a, and contact pads 158 to the active and passive circuits of semiconductor die 154 .
- KGD known good die
- the active and passive circuits of KGD 124 and semiconductor die 154 are also electrically connected through bond wires 150 to conductive layer 144 of substrate 142 , and through conductive layer 168 and bumps 170 to external devices.
- the shallow via 121 and 167 with associated conductive bumps 122 a and 164 a have reduced the headroom needed for semiconductor die 154 and to electrically interconnect semiconductor die 124 and 154 in PiP 172 .
- FIG. 4 shows an embodiment of wafer level PiP 174 , similar to the structure described in FIGS. 3a-3j , with IPD 176 formed over encapsulant 162 adjacent to semiconductor die 154 .
- IPD 176 constitutes one or more inductors, capacitors, and resistors for RF signal processing.
- IPD 176 is electrically connected to conductive layer 164 .
- FIG. 5 shows an embodiment of PiP 180 , similar to the structure described in FIGS. 3a-3j , with semiconductor package 138 mounted to support layer 182 (instead of substrate 142 ) by adhesive layer 184 .
- Support layer 182 can be a carrier, stiffener, or heat sink. In the case of a heat sink, support layer 182 can be Al, Cu, or another material with high thermal conductivity to provide heat dissipation for semiconductor die 122 .
- FIG. 6 shows an embodiment of PiP 190 , similar to the structure described in FIGS. 3a-3j , with semiconductor package 138 mounted to electromagnetic interference (EMI) and radio frequency interference (RFI) shielding layer 192 (instead of substrate 142 ) by adhesive layer 194 .
- Shielding layer 192 can be Cu, Al, ferrite or carbonyl iron, stainless steel, nickel silver, low-carbon steel, silicon-iron steel, foil, epoxy, conductive resin, and other metals and composites capable of blocking or absorbing EMI, RFI, and other inter-device interference.
- Shielding layer 192 can also be a non-metal material such as carbon-black or aluminum flake to reduce the effects of EMI and RFI.
- Shielding layer 192 is grounded through bond wires 196 to conductive layer 122 and 164 to bumps 170 .
- FIG. 7a shows an embodiment of PiP 200 , similar to the structure described in FIGS. 3a-3i , with semiconductor package 138 mounted to PCB 202 (instead of substrate 142 ) by adhesive layer 204 .
- PCB 202 includes conductive layer 206 for electrical interconnect. Bond wires 150 are electrically connected to conductive layer 206 . Bumps 208 are formed on conductive layer 206 .
- An insulating or passivation layer 210 is formed over encapsulant 162 and conductive layer 164 a using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation.
- the insulating layer 210 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
- a portion of insulating layer 210 is removed by an etching process to expose conductive layer 164 .
- An electrically conductive layer 212 is formed over conductive layer 164 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- Conductive layer 212 forms a multi-layer UBM including a barrier layer and adhesion layer.
- the barrier layer contains Ni, NiV, TiW, CrCu, Pt, or Pd.
- the adhesion layer contains Al, Ti, Cr, or TiN.
- UBM 168 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
- FIGS. 8a-8h illustrate, in relation to FIGS. 1 and 2a-2c , a process of forming PiP mounted to a carrier with inner known good die interconnected with conductive bumps formed in shallow vias.
- a substrate or carrier 220 contains temporary or sacrificial base material such as silicon, polymer, polymer composite, metal, ceramic, glass, glass epoxy, beryllium oxide, or other suitable low-cost, rigid material or bulk semiconductor material for structural support.
- carrier 120 is Cu.
- An adhesive layer 222 such as thermal epoxy or epoxy resin, is formed over a surface of carrier 220 .
- the semiconductor package 138 from FIG. 3d is mounted to carrier 220 with encapsulant 136 contacting adhesive layer 222 , as shown in FIGS. 8a-8b .
- an adhesive layer 224 is formed over a portion of conductive layer 122 opposite semiconductor die 124 .
- a semiconductor die or component 226 is mounted with back surface 228 to conductive layer 122 and contact pads 230 on active surface 232 oriented upward away from conductive layer 122 .
- Active surface 232 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
- the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 232 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
- Semiconductor die 226 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
- an encapsulant or molding compound 234 is deposited over semiconductor package 138 and carrier 220 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
- Encapsulant 234 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
- Encapsulant 234 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
- a plurality of shallow vias 236 a and 236 b is formed in the surface of encapsulant 234 by an etching process to expose conductive bumps 122 a and contact pads 230 .
- an electrically conductive layer 238 is formed over encapsulant 234 , conductive bumps 122 a, and contact pads 230 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- a portion of conductive layer 238 denoted as conductive bumps 238 a and 238 b, resides in vias 236 a and 236 b.
- Conductive layer 238 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
- Conductive layer 238 operates as an RDL and provides electrical interconnect between the active and passive circuits of semiconductor die 226 and conductive layer 122 .
- Conductive bumps 238 a are electrically connected to conductive bumps 122 a and contact pads 230 .
- Other portions of conductive layer 238 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
- an insulating or passivation layer 240 is formed over encapsulant 234 and conductive layer 238 using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation.
- the insulating layer 240 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 240 is removed by an etching process to expose conductive layer 238 .
- An electrically conductive layer 242 is formed over conductive layer 238 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating.
- Conductive layer 242 forms a multi-layer UBM including a barrier layer and adhesion layer.
- the barrier layer contains Ni, NiV, TiW, CrCu, Pt, or Pd.
- the adhesion layer contains Al, Ti, Cr, or TiN.
- UBM 242 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
- An electrically conductive bump material is deposited over UBM 242 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
- the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
- the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
- the bump material is bonded to UBM 242 using a suitable attachment or bonding process.
- the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 244 .
- bumps 244 are reflowed a second time to improve electrical contact to UBM 242 .
- the bumps can also be compression bonded to UBM 242 .
- Bumps 244 represent one type of interconnect structure that can be formed over UBM 242 .
- the interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
- FIG. 8g temporary carrier 220 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping.
- Adhesive layer 222 remains exposed in PiP 246 .
- FIG. 8h shows PiP 248 with both carrier 220 and adhesive layer 222 removed.
- Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of PiP 246 .
- the active and passive circuits of KGD 124 are electrically connected through contact pads 126 , bond wires 134 , conductive layer 122 , conductive layer 144 , conductive bumps 122 a and 238 a, and contact pads 230 to the active and passive circuits of semiconductor die 226 .
- the active and passive circuits of KGD 124 and semiconductor die 226 are also electrically connected through conductive layer 242 and bumps 244 to external devices.
- the shallow vias 121 , 167 , and 236 with associated conductive bumps 122 a, 164 a, and 238 a have reduced the headroom needed for semiconductor die 226 and to electrically interconnect semiconductor die 124 and 226 in PiP 246 .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
A PiP semiconductor device has an inner known good semiconductor package. In the semiconductor package, a first via is formed in a temporary carrier. A first conductive layer is formed over the carrier and into the first via. The first conductive layer in the first via forms a conductive bump. A first semiconductor die is mounted to the first conductive layer. A first encapsulant is deposited over the first die and carrier. The semiconductor package is mounted to a substrate. A second semiconductor die is mounted to the first conductive layer opposite the first die. A second encapsulant is deposited over the second die and semiconductor package. A second via is formed in the second encapsulant to expose the conductive bump. A second conductive layer is formed over the second encapsulant and into the second via. The second conductive layer is electrically connected to the second die.
Description
The present application is a reissue of U.S. patent application Ser. No. 13/606,451, now U.S. Pat. No. 8,884,418, filed Sep. 7, 2012, which is a division of U.S. patent application Ser. No. 12/635,631, now U.S. Pat. No. 8,283,209, filed Dec. 10, 2009, which application is incorporated herein by reference and which is a continuation-in-part of U.S. patent application Ser. No. 12/136,768, now U.S. Pat. No. 7,977,779, filed Jun. 10, 2008.
The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a package-in-package configuration with an inner known good die interconnected with conductive bumps formed in shallow vias.
Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
Some semiconductor devices are configured as a package-in-package (PiP). The semiconductor die are interconnected by bond wires or deep conductive through silicon vias (TSV) or deep conductive through hole vias (THV). The interconnect structure increases the PiP thickness and manufacturing costs.
A need exists to electrically interconnect PiP without deep TSV or THV. Accordingly, in one embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over the first encapsulant including the encapsulant bump to form a conductive bump. A second encapsulant is deposited over the semiconductor package and support layer.
In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die or component. A first encapsulant is deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant. A first conductive layer is disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
In another embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
In another embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a bump comprising an inner insulating material and outer conductive material.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
In FIG. 1 , PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flip chip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
In FIG. 2c , semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.
In FIG. 3b , an electrically conductive layer 122 is formed over surface 123 of carrier 120, including following the contour of vias 121, using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. A portion of conductive layer 122, denoted as conductive bumps 122a, resides in vias 121. Conductive layer 122 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Portions of conductive layer 122 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
In FIG. 3c , semiconductor die or component 124 is mounted to conductive layer 122 with contact pads 126 on active surface 128 oriented upward away from carrier 120. Active surface 128 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 128 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit. Semiconductor die 124 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing. Back surface 130 is secured to conductive layer 122 with an adhesive material 132, such as thermal epoxy or epoxy resin. Bond wires 134 are formed between contact pads 126 to conductive layer 122 for electrical interconnect.
An encapsulant or molding compound 136 is deposited over semiconductor die 124, conductive layer 122, and bond wires 134 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 136 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 136 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
In another embodiment, semiconductor wafer 140 may also contain a plurality of semiconductor die each having an active region 148 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 148 to implement baseband analog circuits or digital circuits, such as DSP, memory, or other signal processing circuit. Semiconductor wafer 140 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing. Conductive layer 144 is electrically connected to the active and passive circuits in active region 148.
The temporary carrier 120 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping to expose conductive bumps 122a. The semiconductor package 138 is inverted and mounted to substrate 142 with encapsulant 136 contacting adhesive layer 146, as shown in FIGS. 3d-3e .
In FIG. 3f , bond wires 150 are formed between conductive layer 122 and conductive layer 144. The active and passive circuits of semiconductor die 124 are electrically connected through contact pads 126, bond wires 134, conductive layer 122, and bond wires 150 to conductive layer 144 of substrate 142.
An adhesive layer 152, such as thermal epoxy or epoxy resin, is formed over a portion of conductive layer 122 opposite semiconductor die 124. A semiconductor die or component 154 is mounted with back surface 156 to conductive layer 122 and contact pads 158 on active surface 160 oriented upward away from conductive layer 122. Active surface 160 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 160 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 154 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
In FIG. 3g , an encapsulant or molding compound 162 is deposited over semiconductor package 138, bond wires 150, and substrate 142 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 162 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 162 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
In FIG. 3h , a plurality of shallow vias 167a and 167b is formed in the surface of encapsulant 162 by an etching process to expose conductive bumps 122a and contact pads 158.
In FIG. 3i , an electrically conductive layer 164 is formed over encapsulant 162, conductive bumps 122a, and contact pads 158 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. A portion of conductive layer 164, denoted as conductive bumps 164a and 164b, resides in vias 167a and 167b. Conductive layer 164 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 164 operates as a redistribution layer (RDL) and provides electrical interconnect between the active and passive circuits of semiconductor die 154 and conductive layer 122. Conductive bumps 164a are electrically connected to conductive bumps 122a, and conductive bumps 164b are electrically connected to contact pads 158. Other portions of conductive layer 164 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
In FIG. 3j , an insulating or passivation layer 166 is formed over encapsulant 162 and conductive layer 164 using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation. The insulating layer 166 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), or other material having similar insulating and structural properties. A portion of insulating layer 166 is removed by an etching process to expose conductive layer 164.
An electrically conductive layer 168 is formed over conductive layer 164 and insulating layer 166 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 168 forms a multi-layer under bump metallization (UBM) including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd). The adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN). UBM 168 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
An electrically conductive bump material is deposited over UBM 168 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to UBM 168 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 170. In some applications, bumps 170 are reflowed a second time to improve electrical contact to UBM 168. The bumps can also be compression bonded to UBM 168. Bumps 170 represent one type of interconnect structure that can be formed over UBM 168. The interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of wafer-level PiP 172. The active and passive circuits of KGD 124 are electrically connected through contact pads 126, bond wires 134, conductive layer 122, conductive layer 144, conductive bumps 122a and 164a, and contact pads 158 to the active and passive circuits of semiconductor die 154. The active and passive circuits of KGD 124 and semiconductor die 154 are also electrically connected through bond wires 150 to conductive layer 144 of substrate 142, and through conductive layer 168 and bumps 170 to external devices. The shallow via 121 and 167 with associated conductive bumps 122a and 164a have reduced the headroom needed for semiconductor die 154 and to electrically interconnect semiconductor die 124 and 154 in PiP 172.
In FIG. 7b , a portion of insulating layer 210 is removed by an etching process to expose conductive layer 164. An electrically conductive layer 212 is formed over conductive layer 164 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 212 forms a multi-layer UBM including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, NiV, TiW, CrCu, Pt, or Pd. The adhesion layer contains Al, Ti, Cr, or TiN. UBM 168 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
In FIG. 8c , an adhesive layer 224, such as thermal epoxy or epoxy resin, is formed over a portion of conductive layer 122 opposite semiconductor die 124. A semiconductor die or component 226 is mounted with back surface 228 to conductive layer 122 and contact pads 230 on active surface 232 oriented upward away from conductive layer 122. Active surface 232 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 232 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 226 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
In FIG. 8d , an encapsulant or molding compound 234 is deposited over semiconductor package 138 and carrier 220 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 234 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 234 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. A plurality of shallow vias 236a and 236b is formed in the surface of encapsulant 234 by an etching process to expose conductive bumps 122a and contact pads 230.
In FIG. 8e , an electrically conductive layer 238 is formed over encapsulant 234, conductive bumps 122a, and contact pads 230 using a patterning and metal deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. A portion of conductive layer 238, denoted as conductive bumps 238a and 238b, resides in vias 236a and 236b. Conductive layer 238 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 238 operates as an RDL and provides electrical interconnect between the active and passive circuits of semiconductor die 226 and conductive layer 122. Conductive bumps 238a are electrically connected to conductive bumps 122a and contact pads 230. Other portions of conductive layer 238 can be electrically common or electrically isolated depending on the design and function of the semiconductor device.
In FIG. 8f , an insulating or passivation layer 240 is formed over encapsulant 234 and conductive layer 238 using PVD, CVD, printing, spin coating, spray coating, sintering or thermal oxidation. The insulating layer 240 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 240 is removed by an etching process to expose conductive layer 238.
An electrically conductive layer 242 is formed over conductive layer 238 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 242 forms a multi-layer UBM including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, NiV, TiW, CrCu, Pt, or Pd. The adhesion layer contains Al, Ti, Cr, or TiN. UBM 242 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
An electrically conductive bump material is deposited over UBM 242 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to UBM 242 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 244. In some applications, bumps 244 are reflowed a second time to improve electrical contact to UBM 242. The bumps can also be compression bonded to UBM 242. Bumps 244 represent one type of interconnect structure that can be formed over UBM 242. The interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
In FIG. 8g , temporary carrier 220 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping. Adhesive layer 222 remains exposed in PiP 246. FIG. 8h shows PiP 248 with both carrier 220 and adhesive layer 222 removed.
Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of PiP 246. The active and passive circuits of KGD 124 are electrically connected through contact pads 126, bond wires 134, conductive layer 122, conductive layer 144, conductive bumps 122a and 238a, and contact pads 230 to the active and passive circuits of semiconductor die 226. The active and passive circuits of KGD 124 and semiconductor die 226 are also electrically connected through conductive layer 242 and bumps 244 to external devices. The shallow vias 121, 167, and 236 with associated conductive bumps 122a, 164a, and 238a have reduced the headroom needed for semiconductor die 226 and to electrically interconnect semiconductor die 124 and 226 in PiP 246.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
Claims (25)
1. A semiconductor device, comprising:
a support layer;
a semiconductor package disposed over the support layer, the semiconductor package including,
(a) a first semiconductor die or component,
(b) a first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and
(c) a first conductive layer disposed over the first encapsulant including the encapsulant bump to form a conductive bump;
a second encapsulant deposited over a surface of the semiconductor package opposite the support layer, the second encapsulant including an opening over the conductive bump; and
a second conductive layer formed in the opening over the conductive bump.
2. The semiconductor device of claim 1 , further including an interconnect structure formed over the second encapsulant, the interconnect structure being electrically connected to the conductive bump.
3. The semiconductor device of claim 1 , further including a second semiconductor die or component disposed over the semiconductor package.
4. The semiconductor device of claim 1 , wherein the semiconductor package further includes a bond wire formed between the conductive bump and first semiconductor die or component.
5. The semiconductor device of claim 1 , wherein the first semiconductor die or component includes a known good die or component.
6. The semiconductor device of claim 1 , wherein the support layer operates as a substrate, stiffener, heat sink, shielding layer, printed circuit board, or carrier.
7. A semiconductor device, comprising:
a first semiconductor die or component;
a first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant;
a first conductive layer disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump; and
a second encapsulant deposited over and around the first encapsulant, the second encapsulant including a via formed through a surface of the second encapsulant and extending to conductive bump.
8. The semiconductor device of claim 7 , further including a bond wire formed between the conductive bump and first semiconductor die or component.
9. The semiconductor device of claim 7 , further including:
a support layer disposed over a second surface of the first encapsulant opposite the first surface of the first encapsulant;
the second encapsulant deposited over the support layer; and
an interconnect structure formed over the second encapsulant and within the via.
10. The semiconductor device of claim 9 , further including a second semiconductor die or component disposed over the first surface of the first encapsulant.
11. The semiconductor device of claim 9 , wherein the interconnect structure includes:
a second conductive layer formed over the second encapsulant;
an insulating layer formed over the second conductive layer; and
a third conductive layer formed over the second conductive layer.
12. The semiconductor device of claim 9 , wherein the support layer operates as a substrate, stiffener, heat sink, shielding layer, printed circuit board, or carrier.
13. The semiconductor device of claim 7 , wherein the first semiconductor die or component includes a known good die or component.
14. A semiconductor device, comprising:
a support layer; and
a semiconductor package disposed over the support layer, the semiconductor package including,
(a) a first semiconductor die or component,
(b) a first non-conductive encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first nonconductive encapsulant, and
(c) a first conductive layer disposed over a first surface of the first non-conductive encapsulant including the encapsulant bump to form a conductive bump.
15. The semiconductor device of claim 14 , wherein the semiconductor package further includes a bond wire formed between the conductive bump and first semiconductor die or component.
16. The semiconductor device of claim 14 , further including:
a second encapsulant deposited over the support layer and semiconductor package; and
an interconnect structure formed over the second encapsulant.
17. The semiconductor device of claim 16 , wherein the interconnect structure includes:
a second conductive layer formed over the second encapsulant;
an insulating layer formed over the second conductive layer; and
a third conductive layer formed over the second conductive layer.
18. The semiconductor device of claim 14 , further including a second semiconductor die or component disposed over the semiconductor package.
19. The semiconductor device of claim 14 , wherein the support layer operates as a substrate, stiffener, heat sink, shielding layer, printed circuit board, or carrier.
20. The semiconductor device of claim 14 , wherein the first semiconductor die or component includes a known good die or component.
21. A semiconductor device, comprising:
a support layer; and
a semiconductor package disposed over the support layer, the semiconductor package including a bump comprising an inner insulating material and outer conductive material.
22. The semiconductor device of claim 21 , wherein the semiconductor package includes:
a first semiconductor die or component;
an encapsulant deposited over the first semiconductor die or component, wherein a portion of the encapsulant constitutes the inner insulating material of the bump; and
a conductive layer formed over the encapsulant, wherein a portion of the conductive layer constitutes the outer conductive material of the bump.
23. The semiconductor device of claim 21 , further including:
an encapsulant deposited over the support layer and semiconductor package; and
an interconnect structure formed over the encapsulant.
24. The semiconductor device of claim 21 , further including a second semiconductor die or component disposed over the semiconductor package.
25. The semiconductor device of claim 21 , wherein the support layer operates as a substrate, stiffener, heat sink, shielding layer, printed circuit board, or carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/058,005 USRE47923E1 (en) | 2008-06-10 | 2016-03-01 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/136,768 US7977779B2 (en) | 2008-06-10 | 2008-06-10 | Mountable integrated circuit package-in-package system |
US12/635,631 US8283209B2 (en) | 2008-06-10 | 2009-12-10 | Semiconductor device and method of forming PiP with inner known good die interconnected with conductive bumps |
US13/606,451 US8884418B2 (en) | 2008-06-10 | 2012-09-07 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
US15/058,005 USRE47923E1 (en) | 2008-06-10 | 2016-03-01 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/606,451 Reissue US8884418B2 (en) | 2008-06-10 | 2012-09-07 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE47923E1 true USRE47923E1 (en) | 2020-03-31 |
Family
ID=44141995
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/635,631 Active 2030-12-21 US8283209B2 (en) | 2008-06-10 | 2009-12-10 | Semiconductor device and method of forming PiP with inner known good die interconnected with conductive bumps |
US13/606,451 Ceased US8884418B2 (en) | 2008-06-10 | 2012-09-07 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
US15/058,005 Active 2028-07-08 USRE47923E1 (en) | 2008-06-10 | 2016-03-01 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/635,631 Active 2030-12-21 US8283209B2 (en) | 2008-06-10 | 2009-12-10 | Semiconductor device and method of forming PiP with inner known good die interconnected with conductive bumps |
US13/606,451 Ceased US8884418B2 (en) | 2008-06-10 | 2012-09-07 | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps |
Country Status (1)
Country | Link |
---|---|
US (3) | US8283209B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI421993B (en) * | 2010-04-27 | 2014-01-01 | Aptos Technology Inc | Quad flat no-lead package, method for forming the same, and metal plate for forming the package |
TWI508245B (en) * | 2010-10-06 | 2015-11-11 | 矽品精密工業股份有限公司 | Package of embedded chip and manufacturing method thereof |
US8735224B2 (en) * | 2011-02-14 | 2014-05-27 | Stats Chippac Ltd. | Integrated circuit packaging system with routed circuit lead array and method of manufacture thereof |
US9704766B2 (en) * | 2011-04-28 | 2017-07-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposers of 3-dimensional integrated circuit package systems and methods of designing the same |
US20130181359A1 (en) * | 2012-01-13 | 2013-07-18 | TW Semiconductor Manufacturing Company, Ltd. | Methods and Apparatus for Thinner Package on Package Structures |
US9385006B2 (en) | 2012-06-21 | 2016-07-05 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming an embedded SOP fan-out package |
US9978654B2 (en) | 2012-09-14 | 2018-05-22 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming dual-sided interconnect structures in Fo-WLCSP |
US9953907B2 (en) * | 2013-01-29 | 2018-04-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | PoP device |
US8778738B1 (en) | 2013-02-19 | 2014-07-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packaged semiconductor devices and packaging devices and methods |
US9368423B2 (en) * | 2013-06-28 | 2016-06-14 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of using substrate with conductive posts and protective layers to form embedded sensor die package |
US9893017B2 (en) * | 2015-04-09 | 2018-02-13 | STATS ChipPAC Pte. Ltd. | Double-sided semiconductor package and dual-mold method of making same |
US9842820B1 (en) * | 2015-12-04 | 2017-12-12 | Altera Corporation | Wafer-level fan-out wirebond packages |
ITUB20160027A1 (en) * | 2016-02-01 | 2017-08-01 | St Microelectronics Srl | PROCEDURE FOR PRODUCING SEMICONDUCTOR AND CORRESPONDING DEVICES |
US10014260B2 (en) * | 2016-11-10 | 2018-07-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Package structure and method for forming the same |
US20190013214A1 (en) * | 2017-07-10 | 2019-01-10 | Powertech Technology Inc. | Package structure and manufacturing method thereof |
IT201700087174A1 (en) | 2017-07-28 | 2019-01-28 | St Microelectronics Srl | SEMICONDUCTOR AND CORRESPONDING DEVICE MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES |
IT201700087318A1 (en) | 2017-07-28 | 2019-01-28 | St Microelectronics Srl | INTEGRATED ELECTRONIC DEVICE WITH REDISTRIBUTION AND HIGH RESISTANCE TO MECHANICAL STRESS AND ITS PREPARATION METHOD |
IT201700087201A1 (en) | 2017-07-28 | 2019-01-28 | St Microelectronics Srl | SEMICONDUCTOR AND CORRESPONDING DEVICE MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES |
US11328984B2 (en) * | 2017-12-29 | 2022-05-10 | Texas Instruments Incorporated | Multi-die integrated circuit packages and methods of manufacturing the same |
US11145621B2 (en) * | 2018-06-06 | 2021-10-12 | Advanced Semiconductor Engineering, Inc. | Semiconductor package device and method of manufacturing the same |
US11469194B2 (en) | 2018-08-08 | 2022-10-11 | Stmicroelectronics S.R.L. | Method of manufacturing a redistribution layer, redistribution layer and integrated circuit including the redistribution layer |
US12082334B2 (en) * | 2022-04-14 | 2024-09-03 | Hamilton Sundstrand Corporation | Devices and methods to improve thermal conduction from SMT and chip on board components to chassis heat sinking |
US20230352361A1 (en) * | 2022-04-28 | 2023-11-02 | Industrial Technology Research Institute | Power module and manufacturing method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072239A (en) | 1995-11-08 | 2000-06-06 | Fujitsu Limited | Device having resin package with projections |
US6191494B1 (en) * | 1998-06-30 | 2001-02-20 | Fujitsu Limited | Semiconductor device and method of producing the same |
US6759739B2 (en) * | 2001-10-31 | 2004-07-06 | Shinko Electric Industries Co., Ltd. | Multilayered substrate for semiconductor device |
US6774449B1 (en) | 1999-09-16 | 2004-08-10 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US6815254B2 (en) | 2003-03-10 | 2004-11-09 | Freescale Semiconductor, Inc. | Semiconductor package with multiple sides having package contacts |
US6894382B1 (en) * | 2004-01-08 | 2005-05-17 | International Business Machines Corporation | Optimized electronic package |
US6906416B2 (en) * | 2002-10-08 | 2005-06-14 | Chippac, Inc. | Semiconductor multi-package module having inverted second package stacked over die-up flip-chip ball grid array (BGA) package |
US20070178667A1 (en) | 2006-01-31 | 2007-08-02 | Stats Chippac Ltd. | Wafer level chip scale package system |
US20070187826A1 (en) | 2006-02-14 | 2007-08-16 | Stats Chippac Ltd. | 3-d package stacking system |
US20070257348A1 (en) | 2006-05-08 | 2007-11-08 | Advanced Semiconductor Engineering, Inc. | Multiple chip package module and method of fabricating the same |
US7364945B2 (en) * | 2005-03-31 | 2008-04-29 | Stats Chippac Ltd. | Method of mounting an integrated circuit package in an encapsulant cavity |
US7687897B2 (en) | 2006-12-28 | 2010-03-30 | Stats Chippac Ltd. | Mountable integrated circuit package-in-package system with adhesive spacing structures |
US7855342B2 (en) * | 2000-09-25 | 2010-12-21 | Ibiden Co., Ltd. | Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board |
US7919850B2 (en) | 2008-12-09 | 2011-04-05 | Stats Chippac Ltd. | Integrated circuit packaging system with exposed terminal interconnects and method of manufacturing thereof |
US7944043B1 (en) * | 2008-07-08 | 2011-05-17 | Amkor Technology, Inc. | Semiconductor device having improved contact interface reliability and method therefor |
US7964450B2 (en) * | 2008-05-23 | 2011-06-21 | Stats Chippac, Ltd. | Wirebondless wafer level package with plated bumps and interconnects |
US7977779B2 (en) * | 2008-06-10 | 2011-07-12 | Stats Chippac Ltd. | Mountable integrated circuit package-in-package system |
-
2009
- 2009-12-10 US US12/635,631 patent/US8283209B2/en active Active
-
2012
- 2012-09-07 US US13/606,451 patent/US8884418B2/en not_active Ceased
-
2016
- 2016-03-01 US US15/058,005 patent/USRE47923E1/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072239A (en) | 1995-11-08 | 2000-06-06 | Fujitsu Limited | Device having resin package with projections |
US6191494B1 (en) * | 1998-06-30 | 2001-02-20 | Fujitsu Limited | Semiconductor device and method of producing the same |
US6774449B1 (en) | 1999-09-16 | 2004-08-10 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US7855342B2 (en) * | 2000-09-25 | 2010-12-21 | Ibiden Co., Ltd. | Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board |
US6759739B2 (en) * | 2001-10-31 | 2004-07-06 | Shinko Electric Industries Co., Ltd. | Multilayered substrate for semiconductor device |
US6906416B2 (en) * | 2002-10-08 | 2005-06-14 | Chippac, Inc. | Semiconductor multi-package module having inverted second package stacked over die-up flip-chip ball grid array (BGA) package |
US6815254B2 (en) | 2003-03-10 | 2004-11-09 | Freescale Semiconductor, Inc. | Semiconductor package with multiple sides having package contacts |
US6894382B1 (en) * | 2004-01-08 | 2005-05-17 | International Business Machines Corporation | Optimized electronic package |
US7364945B2 (en) * | 2005-03-31 | 2008-04-29 | Stats Chippac Ltd. | Method of mounting an integrated circuit package in an encapsulant cavity |
US20070178667A1 (en) | 2006-01-31 | 2007-08-02 | Stats Chippac Ltd. | Wafer level chip scale package system |
US20070187826A1 (en) | 2006-02-14 | 2007-08-16 | Stats Chippac Ltd. | 3-d package stacking system |
US20070257348A1 (en) | 2006-05-08 | 2007-11-08 | Advanced Semiconductor Engineering, Inc. | Multiple chip package module and method of fabricating the same |
US7687897B2 (en) | 2006-12-28 | 2010-03-30 | Stats Chippac Ltd. | Mountable integrated circuit package-in-package system with adhesive spacing structures |
US7964450B2 (en) * | 2008-05-23 | 2011-06-21 | Stats Chippac, Ltd. | Wirebondless wafer level package with plated bumps and interconnects |
US7977779B2 (en) * | 2008-06-10 | 2011-07-12 | Stats Chippac Ltd. | Mountable integrated circuit package-in-package system |
US7944043B1 (en) * | 2008-07-08 | 2011-05-17 | Amkor Technology, Inc. | Semiconductor device having improved contact interface reliability and method therefor |
US7919850B2 (en) | 2008-12-09 | 2011-04-05 | Stats Chippac Ltd. | Integrated circuit packaging system with exposed terminal interconnects and method of manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
US8884418B2 (en) | 2014-11-11 |
US8283209B2 (en) | 2012-10-09 |
US20140284788A9 (en) | 2014-09-25 |
US20110140263A1 (en) | 2011-06-16 |
US20120326302A1 (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE47923E1 (en) | Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps | |
US9443829B2 (en) | Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure | |
US8241956B2 (en) | Semiconductor device and method of forming wafer level multi-row etched lead package | |
US9177901B2 (en) | Semiconductor device and method of stacking die on leadframe electrically connected by conductive pillars | |
US9305897B2 (en) | Semiconductor package and method of mounting semiconductor die to opposite sides of TSV substrate | |
US9142515B2 (en) | Semiconductor device with protective layer over exposed surfaces of semiconductor die | |
US9508626B2 (en) | Semiconductor device and method of forming openings in thermally-conductive frame of FO-WLCSP to dissipate heat and reduce package height | |
US9263301B2 (en) | Semiconductor device and method of forming Fo-WLCSP with discrete semiconductor components mounted under and over semiconductor die | |
US9048306B2 (en) | Semiconductor device and method of forming open cavity in TSV interposer to contain semiconductor die in WLCSMP | |
US9324672B2 (en) | Semiconductor device and method of forming dual-active sided semiconductor die in fan-out wafer level chip scale package | |
US8003496B2 (en) | Semiconductor device and method of mounting semiconductor die to heat spreader on temporary carrier and forming polymer layer and conductive layer over the die | |
US20120049334A1 (en) | Semiconductor Device and Method of Forming Leadframe as Vertical Interconnect Structure Between Stacked Semiconductor Die | |
US8916452B2 (en) | Semiconductor device and method of forming WLCSP using wafer sections containing multiple die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |