USRE47413E1 - Pyrazine derivatives and uses thereof in renal monitoring - Google Patents

Pyrazine derivatives and uses thereof in renal monitoring Download PDF

Info

Publication number
USRE47413E1
USRE47413E1 US15/667,427 US201715667427A USRE47413E US RE47413 E1 USRE47413 E1 US RE47413E1 US 201715667427 A US201715667427 A US 201715667427A US RE47413 E USRE47413 E US RE47413E
Authority
US
United States
Prior art keywords
compound
patient
spectral energy
group
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/667,427
Inventor
Raghavan Rajagopalan
Richard B. Dorshow
William L. Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medibeacon Inc
Original Assignee
Medibeacon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2005/046732 external-priority patent/WO2006071759A2/en
Priority claimed from US12/995,223 external-priority patent/US20110180010A1/en
Priority claimed from US12/721,186 external-priority patent/US20100247368A1/en
Application filed by Medibeacon Inc filed Critical Medibeacon Inc
Priority to US15/667,427 priority Critical patent/USRE47413E1/en
Application granted granted Critical
Publication of USRE47413E1 publication Critical patent/USRE47413E1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D241/26Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with nitrogen atoms directly attached to ring carbon atoms

Definitions

  • the present invention relates to pyrazine derivatives capable of absorbing and emanating spectral energy in the visible and/or near infrared spectrum.
  • the present invention relates to methods of using non-radioactive, exogenous agents such as the previously mentioned pyrazine derivatives in medical procedures (e.g., the monitoring of renal function).
  • Acute renal failure is a common ailment in patients admitted to general medical-surgical hospitals. Approximately half of the patients who develop ARF die, and survivors face marked increases in morbidity and prolonged hospitalization [1]. Early diagnosis is generally believed to be important, because renal failure is often asymptomatic and typically requires careful tracking of renal function markers in the blood. Dynamic monitoring of renal functions of patients is desirable in order to minimize the risk of acute renal failure brought about by various clinical, physiological and pathological conditions [2-6]. Such dynamic monitoring tends to be particularly important in the case of critically ill or injured patients, because a large percentage of these patients tend to face risk of multiple organ failure (MOF) potentially resulting in death [7,8].
  • MOF multiple organ failure
  • MOF is a sequential failure of the lungs, liver and kidneys and is incited by one or more of acute lung injury (ALI), adult respiratory distress syndrome (ARDS), hypermetabolism, hypotension, persistent inflammatory focus and sepsis syndrome.
  • ALI acute lung injury
  • ARDS adult respiratory distress syndrome
  • the common histological features of hypotension and shock leading to MOF generally include tissue necrosis, vascular congestion, interstitial and cellular edema, hemorrhage and microthrombi. These changes generally affect the lungs, liver, kidneys, intestine, adrenal glands, brain and pancreas in descending order of frequency [9].
  • the transition from early stages of trauma to clinical MOF generally corresponds with a particular degree of liver and renal failure as well as a change in mortality risk from about 30% up to about 50% [10].
  • renal function of a patient has been determined using crude measurements of the patient's urine output and plasma creatinine levels [11-13]. These values are frequently misleading because such values are affected by age, state of hydration, renal perfusion, muscle mass, dietary intake, and many other clinical and anthropometric variables. In addition, a single value obtained several hours after sampling may be difficult to correlate with other physiologic events such as blood pressure, cardiac output, state of hydration and other specific clinical events (e.g., hemorrhage, bacteremia, ventilator settings and others).
  • GFR glomerular filtration rate
  • kidneys hydrophilic, anionic substances are generally capable of being excreted by the kidneys [1,4]. Renal clearance typically occurs via two pathways: glomerular filtration and tubular secretion. Tubular secretion may be characterized as an active transport process, and hence, the substances clearing via this pathway typically exhibit specific properties with respect to size, charge and lipophilicity.
  • GFR agents exogenous substances capable of clearing the kidney via glomerular filtration
  • examples of exogenous substances capable of clearing the kidney via glomerular filtration include creatinine (1), o-iodohippuran (2), and 99m Tc-DTPA (3) [15-17].
  • examples of exogenous substances that are capable of undergoing renal clearance via tubular secretion include 99m Tc-MAG3 (4) and other substances known in the art [15, 18, 19].
  • 99m Tc-MAG3 (4) is also widely used to assess renal function though gamma scintigraphy as well as through renal blood flow measurement.
  • o-iodohippuran (2), 99m Tc-DTPA (3) and 99m Tc-MAG3 (4) include radioisotopes to enable the same to be detected. Even if non-radioactive analogs (e.g., such as an analog of o-iodohippuran (2)) or other non-radioactive substances were to be used for renal function monitoring, such monitoring would typically require the use of undesirable ultraviolet radiation for excitation of those substances.
  • the present invention relates to transforming lipophilic fluorescent dyes into hydrophilic molecules.
  • One concept of the present invention relates to molecules whose clearance properties are preferably similar to that of creatinine or o-iodohippuran, and to render such molecules hydrophilic by incorporating appropriate polar functionalities such as hydroxyl, carboxyl, sulfonate, phopshonate and the like into their backbones.
  • Pyrazine dyes of the invention may be characterized by some as being desirable for renal applications because they tend to be cleared from the body via the kidneys, demonstrate absorption and emission/fluorescence in the visible region, and tend to exhibit significant Stokes shifts. These properties allow flexibility in both tuning a molecule to a desired wavelength and introducing a variety of substituents to improve clearance properties.
  • X 1 and X 2 may be characterized as electron withdrawing substituents and may be independently chosen from the group consisting of —CN, —CO 2 R 1 , —CONR 2 R 3 , —COR 4 , —NO 2 , —SOR 5 , —SO 2 R 6 , —SO 2 OR 7 , —PO 3 R 8 R 9 , —CONH(AA) —CO(AA), and —CONH(PS).
  • at least one of X 1 and X 2 is either —CONH(AA) —CO(AA) or —CONH(PS).
  • AA is a single natural or unnatural amino acid or a polypeptide chain that includes one two or more natural or unnatural ⁇ -amino acids linked together by peptide bonds.
  • PS is a sulfated or non-sulfated polysaccharide chain that includes one or more monosaccharide units connected by glycosidic linkages.
  • Y 1 and Y 2 may, at least in some embodiments, be characterized as electron donating substituents and may be independently chosen from the group consisting of —OR 10 , —SR 11 , —NR 12 R 13 , —N(R 14 )COR 15 , —P(R 16 ) 3 , —P(OR 17 ) 3 , and substituents corresponding to Formula A above.
  • At least one of Y 1 and Y 2 is either —P(R 16 ) 3 or —P(OR 17 ) 3 .
  • Z 1 may be a single bond, —CR 18 R 19 , —O, —NR 20 , —NCOR 21 , —S, —SO and —SO 2 .
  • R 1 to R 21 may be any suitable substituents capable of providing and/or enhancing desired biological and/or physicochemical properties of pyrazine derivatives of Formula I.
  • each of the R groups of R 1 to R 21 may independently be any one of a hydrogen atom, an anionic functional group (e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate) or a hydrophilic functional group (e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato).
  • an anionic functional group e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate
  • a hydrophilic functional group e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato.
  • R 1 to R 21 may independently be selected from the group consisting of —H, —(CH 2 ) a OR 43 , —CH 2 (CHOH) a R 44 , —CH 2 (CHOH) a CO 2 H, —(CHCO 2 H) a CO 2 H, —(CH 2 ) a NR 45 R 46 , —CH[(CH 2 ) b NH 2 ] a CO 2 H, —CH[(CH 2 ) b NH 2 ] a CH 2 OH, —CH 2 (CHNH 2 ) a CH 2 NR 47 R 48 , —(CH 2 CH 2 O) c R 49 , —(CH 2 ) d CO(CH 2 CH 2 O) c R 50 , —(CH 2 ) a SO 3 H, —(CH 2 ) a SO 3 ⁇ , —(CH 2 ) a OSO 3 H, —(CH 2 ) a O
  • each of R 43 to R 50 may independently be —H or —CH 3 .
  • ‘a’, ‘b’, ‘c’, ‘d’, ‘m’ and ‘n’ may be any appropriate integers.
  • ‘a’, ‘b’, and ‘d’ may independently vary from 1 to 10
  • ‘c’ may vary from 1 to 100
  • ‘m’ and ‘n’ may independently vary from 1 to 3.
  • a second aspect of the invention is directed to pyrazine derivatives of Formula II.
  • X 3 and X 4 may be characterized as electron withdrawing substituents and may be independently chosen from the group consisting of —CN, —CO 2 R 22 , —CONR 23 R 24 , —COR 25 , —NO 2 , —SOR 26 , —SO 2 R 27 , —SO 2 OR 28 , —PO 3 R 29 R 30 , —CONH(AA) —CO(AA), and —CONH(PS).
  • at least one of X 3 and X 4 is either —CONH(AA) —CO(AA) or —CONH(PS).
  • AA is a single natural or unnatural amino acid or a polypeptide chain that includes one two or more natural or unnatural ⁇ -amino acids linked together by peptide bonds.
  • PS is a sulfated or non-sulfated polysaccharide chain that includes one or more monosaccharide units connected by glycosidic linkages.
  • Y 3 and Y 4 may, at least in some embodiments, be characterized as electron donating substituents and may be independently chosen from the group consisting of —OR 31 , —SR 32 , —NR 33 R 34 , —N(R 35 )COR 36 , —P(R 37 ) 3 , —P(OR 38 ) 3 , and substituents corresponding to Formula B above.
  • At least one of Y 3 and Y 4 is either —P(R 37 ) 3 or —P(OR) 3 .
  • Z 2 may be a single bond, —CR 39 R 40 , —O, —NR 41 , —NCOR 42 , —S, —SO, or —SO 2 .
  • R 22 to R 42 may be any suitable substituents capable of providing and/or enhancing desired biological and/or physicochemical properties of pyrazine derivatives of Formula II.
  • each of the R groups of R 22 to R 42 may independently be any one of a hydrogen atom, an anionic functional group (e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate) or a hydrophilic functional group (e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato).
  • an anionic functional group e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate
  • a hydrophilic functional group e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato.
  • R 22 to R 42 may independently be selected from the group consisting of —H, —(CH 2 ) e OR 51 , —CH 2 (CHOH) e R 52 , —CH 2 (CHOH) e CO 2 H, —(CHCO 2 H) e CO 2 H, —(CH 2 ) e NR 53 R 54 , —CH[(CH 2 )NH 2 ] e CO 2 H, —CH[(CH 2 ) f NH 2 ] e CH 2 OH, —CH 2 (CHNH 2 ) e CH 2 NR 55 R 56 , —(CH 2 CH 2 O) g R 57 , —(CH 2 ) h CO(CH 2 CH 2 O) g R 58 , —(CH 2 ) e SO 3 H, —(CH 2 ) e SO 3 ⁇ , —(CH 2 ) e OSO 3 H, —(CH 2 ) e OSO
  • each of R 5 to R 58 may independently be —H or —CH 3 .
  • ‘e’, ‘f’, ‘g’, ‘h’, ‘p’ and ‘q’ may be any appropriate integers.
  • ‘e’, ‘f’, and ‘h’ may independently vary from 1 to 10
  • ‘g’ may vary from 1 to 100
  • ‘p’ and ‘q’ may independently vary from 1 to 3.
  • compositions each of which includes one or more pyrazine derivatives disclosed herein.
  • pharmaceutically acceptable refers substances which are, within the scope of sound medical judgment, suitable for use in contact with relevant tissues of humans and animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • the compositions of this third aspect may include one or more appropriate excipients such as, but not limited to, suitable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers.
  • composition of this third aspect may include at least one pyrazine derivative of Formula I and at least one pyrazine derivative of Formula II.
  • composition of the third aspect may include one or more pyrazine derivatives of Formula I or one or more pyrazine derivatives of Formula II.
  • Still a fourth aspect of the invention is directed to methods of determining renal function using pyrazine derivatives such as those described above with regard to Formulas I and II.
  • an effective amount of a pyrazine derivative is administered into the body of a patient (e.g., a mammal such as a human or animal subject).
  • an “effective amount” herein generally refers to an amount of pyrazine derivative that is sufficient to enable renal clearance to be analyzed.
  • the pyrazine derivative in the body of the patient is exposed to at least one of visible and near infrared light.
  • the pyrazine derivative Due to this exposure of the pyrazine derivative to the visible and/or infrared light, the pyrazine derivative emanates spectral energy that may be detected by appropriate detection equipment. This spectral energy emanating from the pyrazine derivative may be detected using an appropriate detection mechanism such as an invasive or non-invasive optical probe.
  • an appropriate detection mechanism such as an invasive or non-invasive optical probe.
  • “emanating” or the like refers to spectral energy that is emitted and/or fluoresced from a pyrazine derivative. Renal function can be determined based the spectral energy that is detected.
  • an initial amount of the amount of pyrazine derivative present in the body of a patient may be determined by a magnitude/intensity of light emanated from the pyrazine derivative that is detected (e.g., in the bloodstream). As the pyrazine derivative is cleared from the body, the magnitude/intensity of detected light generally diminishes. Accordingly, a rate at which this magnitude of detected light diminishes may be correlated to a renal clearance rate of the patient. This detection may be done periodically or in substantially real time (providing a substantially continuous monitoring of renal function).
  • methods of the present invention enable renal function/clearance to be determined via detecting one or both a change and a rate of change of the detected magnitude of spectral energy (indicative of an amount of the pyrazine derivative that has not been cleared) from the portion of the pyrazine derivative that remains in the body. While this fourth aspect has been described with regard to use of a single pyrazine derivative of the invention, it should be noted that some embodiments of this fourth aspect include the use of compositions of the invention that may include one or more pyrazine derivatives disclosed herein.
  • FIG. 1 illustrates some structures of conventional renal agents.
  • FIG. 2 illustrates a block diagram of an assembly for assessing renal function.
  • X 1 and X 2 are independently selected from the group consisting of —CN, —CO 2 R 1 , —CONR 2 R 3 , —COR 4 , —NO 2 , —SOR 5 , —SO 2 R 6 , —SO 2 OR 7 , —PO 3 R 8 R 9 , —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of (e.g., one of or both of) X 1 and X 2 is independently either —CONH(AA) —CO(AA) or —CONH(PS).
  • X 1 and X 2 are independently selected from the group consisting of —OR 10 , —SR 11 , —NR 12 R 13 , —N(R 14 )COR 15 , —P(R 16 ) 3 , —P(OR 7 ) 3 , and substituents corresponding to Formula A above.
  • X 1 and X 2 are independently selected from the group consisting of —CN, —CO 2 R 1 , —CONR 2 R 3 , —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of X 1 and X 2 is independently either —CONH(AA) —CO(AA) or —CONH(PS).
  • Y 1 and Y 2 of some embodiments of the first family are independently selected from the group consisting of —NR 12 R 13 and substituents corresponding to Formula A above.
  • X 1 and X 2 are independently selected from the group consisting of —CN, —CO 2 R 1 , —CONR 2 R 3 , —COR 4 , —NO 2 , —SOR 5 , —SO 2 R 6 , —SO 2 OR 7 , —PO 3 R 8 R 9 , —CONH(AA) —CO(AA), and —CONH(PS).
  • Y 1 and Y 2 are independently selected from the group consisting of —OR 10 , —SR 11 , —NR 12 R 13 , —N(R 14 )COR 15 , —P(R 16 ) 3 , —P(OR 17 ) 3 , and substituents corresponding to Formula A above, wherein at least one of (e.g., one of or both of) Y 1 and Y 2 is independently either —P(R 16 ) 3 or —P(OR 17 ) 3 .
  • at least one of Y 1 and Y 2 is —P(R 16 ) 3 .
  • at least one of Y 1 and Y 2 is —P(OR 17 ) 3 .
  • X 1 and X 2 are independently selected from the group consisting of —CN, —CO 2 R 1 , —CONR 2 R 3 ; —CONH(AA) —CO(AA), and —CONH(PS).
  • one of Y 1 and Y 2 is —P(R 16 ) 3 or —P(OR 17 ) 3
  • the other of Y 1 and Y 2 is —NR 12 R 13 or a substituent corresponding to Formula A above.
  • Z 1 is selected from the group consisting of a single bond, —CR 18 R 19 , —O, —NR 20 , —NCOR 21 , —S, —SO and —SO 2 .
  • Z 1 is selected from the group consisting of —O, —NR 20 , —S, —SO, and —SO 2 .
  • Z 1 is selected from the group consisting of —O and —NR 20 .
  • R 1 to R 21 of the first and second families are independently selected from the group consisting of —H, —(CH 2 )OR 43 , —CH 2 (CHOH) a R 44 , —CH 2 (CHOH) a CO 2 H, —(CHCO 2 H) a CO 2 H, —(CH 2 ) a NR 45 R 46 , —CH[(CH 2 ) b NH 2 ] a CO 2 H, —CH[(CH 2 ) b NH 2 ] a CH 2 OH, —CH 2 (CHNH 2 ) a CH 2 NR 47 R 48 , —(CH 2 CH 2 O) c R 49 , —(CH 2 )CO(CH 2 CH 2 O) c R 50 , —(CH 2 ) a SO 3 H, —(CH 2 )SO 3 ⁇ , —(CH 2 ) a OSO 3 H, —(CH 2 ) a OSO 3 ⁇ , —(
  • R 43 to R 50 are independently —H or —CH 3 .
  • R 1 to R 21 of the first and second families are independently selected from the group consisting of —H, —(CH 2 ) a OR 43 , —CH 2 (CHOH) a R 44 , —CH 2 (CHOH) a CO 2 H, —(CHCO 2 H) a CO 2 H, —(CH 2 ) a NR 45 R 46 , —CH[(CH 2 ) b NH 2 ] a CO 2 H, —CH[(CH 2 ) b NH 2 ] a CH 2 OH, —CH 2 (CHNH 2 ) a CH 2 NR 47 R 48 , —(CH 2 CH 2 O) c R 49 , —(CH 2 ) d CO(CH 2 CH 2 O) c R 50 .
  • R 1 to R 21 are independently selected from the group consisting of —H, —(CH 2 ) a OR 43 , —CH 2 (CHOH) a R 44 , —(CH 2 ) a NR 45 R 46 , —(CH 2 CH 2 O) c R 49 , and —(CH 2 ) d CO(CH 2 CH 2 O) d R 50 .
  • R 1 to R 21 are independently selected from the group consisting of —H, —(CH 2 ) a OR 43 , —CH 2 (CHOH) aR 44 , —(CH 2 ) a NR 45 R 46 , and —(CH 2 ) d CO(CH 2 CH 2 O) d R 50 .
  • ‘a’, ‘b’, and ‘d’ independently vary from 1 to 10, ‘c’ varies from 1 to 100, and ‘m’ and ‘n’ independently varies from 1 to 3. In some embodiments, each of ‘a’, ‘b’, and ‘d’ independently varies from 1 to 6. In some embodiments, ‘c’ varies from 1 to 20. In some embodiments, ‘m’ and ‘n’ are independently 0 or 1.
  • AA is a single natural or unnatural amino acid or a polypeptide chain including one two or more natural or unnatural ⁇ -amino acids linked together by peptide bonds.
  • the polypeptide chain (AA) may be a homopolypeptide chain or a heteropolypeptide chain, and may be any appropriate length.
  • the polypeptide chain may include 1 2 to 100 ⁇ -amino acid(s), 1 2 to 90 ⁇ -amino acid(s), 1 2 to 80 ⁇ -amino acid(s), 1 2 to 70 ⁇ -amino acid(s), 1 2 to 60 ⁇ -amino acid(s), 1 2 to 50 ⁇ -amino acid(s), 1 2 to 40 ⁇ -amino acid(s), 1 2 to 30 ⁇ -amino acid(s), 1 2 to 20 ⁇ -amino acid(s), or even 1 2 to 10 ⁇ -amino acid(s).
  • the ⁇ -amino acids of the polypeptide chain (AA) are selected from the group consisting of aspartic acid, asparigine, arginine, histidine, lysine, glutamic acid, glutamine, serine, and homoserine. In some embodiments, the ⁇ -amino acids of the polypeptide chain (AA) are selected from the group consisting of aspartic acid, glutamic acid, serine, and homoserine. In some embodiments, the polypeptide chain (AA) refers to a single amino acid (e.g., either aspartic acid or serine).
  • polysaccharide chain is a sulfated or non-sulfated polysaccharide chain including one or more monosaccharide units connected by glycosidic linkages.
  • the polysaccharide chain (PS) may be any appropriate length.
  • the polysaccharide chain may include 1 to 100 monosaccharide unit(s), 1 to 90 monosaccharide unit(s), 1 to 80 monosaccharide unit(s), 1 to 70 monosaccharide unit(s), 1 to 60 monosaccharide unit(s), 1 to 50 monosaccharide unit(s), 1 to 40 monosaccharide unit(s), 1 to 30 monosaccharide unit(s), 1 to 20 monosaccharide unit(s), or even 1 to 10 monosaccharide unit(s).
  • the polysaccharide chain (PS) is a homopolysaccharide chain consisting of either pentose or hexose monosaccharide units. In other embodiments, the polysaccharide chain (PS) is a heteropolysaccharide chain consisting of one or both pentose and hexose monosaccharide units. In some embodiments, the monosaccharide units of the polysaccharide chain (PS) are selected from the group consisting of glucose, fructose, mannose, xylose and ribose. In some embodiments, the polysaccharide chain (PS) refers to a single monosaccharide unit (e.g., either glucose or fructose).
  • the present invention is also includes pyrazine derivatives corresponding to Formula II above.
  • X 3 and X 4 are independently selected from the group consisting of —CN, —CO 2 R 22 , —CONR 23 R 24 , —COR 25 , —NO 2 , —SOR 26 , —SO 2 R 27 , —SO 2 OR 28 , —PO 3 R 29 R 30 , —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of (e.g., one of or both of) X 3 and X 4 is independently either —CONH(AA) —CO(AA) or —CONH(PS).
  • At least one of X 3 and X 4 is —CONH(AA) —CO(AA). In another group of embodiments, at least one of X 3 and X 4 is —CONH(PS).
  • Y 3 and Y 4 are independently selected from the group consisting of —OR 31 , —SR 32 , —NR 33 R 34 , —N(R 35 )COR 36 , —P(R 37 ) 3 , —P(OR 38 ) 3 , and substituents corresponding to Formula B above.
  • X 3 and X 4 are independently selected from the group consisting of —CN, —CO 2 R 22 , —CONR 23 R 24 , —CONH(AA) r —CO(AA) r , and —CONH(PS) s , wherein at least one of X 3 and X 4 is independently either —CONH(AA) —CO(AA) or —CONH(PS).
  • Y 3 and Y 4 of some embodiments of the third family are independently selected from the group consisting of —NR 31 R 32 and substituents corresponding to Formula B above.
  • X 3 and X 4 are independently selected from the group consisting of —CN, —C 2 R 22 , —CONR 23 R 24 , —COR 25 , —NO 2 , —SOR 26 , —SO 2 R 27 , —SO 2 OR 28 , —PO 3 R 29 R 30 , —CONH(AA) —CO(AA), and —CONH(PS).
  • Y 3 and Y 4 are independently selected from the group consisting of —OR 31 , —SR 32 , —NR 33 R 34 , —N(R 35 )COR 36 , —P(R 37 ) 3 , —P(OR 38 ) 3 , and substituents corresponding to Formula B above, wherein at least one of Y 3 and Y 4 is independently either —P(R 37 ) 3 or —P(OR 38 ) 3 .
  • at least one of Y 3 and Y 4 is —P(R 37 ) 3 .
  • at least one of Y 3 and Y 4 is —P(OR 38 ) 3 .
  • X 3 and X 4 are independently selected from the group consisting of —CN, —CO 2 R 22 , —CONR 23 R 24 , —CONH(AA) —CO(AA), and —CONH(PS).
  • one of Y 3 and Y 4 is —P(R 37 ) 3 or —P(OR 38 ) 3
  • the other of Y 3 and Y 4 is —NR 31 R 32 or a substituent corresponding to Formula B above.
  • Z 2 is selected from the group consisting of a single bond, —CR 39 R 40 , —O, —NR 41 , —NCOR 42 , —S, —SO, and —SO 2 .
  • Z 2 is selected from the group consisting of —O, —NR 41 , —S, —SO and —SO 2 .
  • Z 2 is selected from the group consisting of —O and —NR 41 .
  • R 22 to R 42 are independently selected from the group consisting of —H, —(CH 2 ) e OR 51 , —CH 2 (CHOH) e R 52 , —CH 2 (CHOH) e CO 2 H, —(CHCO 2 H) e CO 2 H, —(CH 2 ) e NR 53 R 54 , —CH[(CH 2 ) f NH 2 ] e CO 2 H, —CH[(CH 2 ) r NH 2 ] e CH 2 OH, —CH 2 (CHNH 2 ) e CH 2 NR 55 R 56 , —(CH 2 H 2 O) g R 57 , —(CH 2 ) h CO(CH 2 CH 2 O) g R 58 , —(CH 2 ) e SO 3 H, —(CH 2 ) e SO 3 ⁇ , —(CH 2 ) e OSO 3 H, —(CH 2 ) e OSO 3 ⁇ ,
  • R 51 to R 58 are independently —H or —CH 3 .
  • R 22 to R 42 are independently selected from the group consisting of —H, —(CH 2 ) e OR 51 , —CH 2 (CHOH) e R 52 , —CH 2 (CHOH) e CO 2 H, —(CHCO 2 H) e CO 2 H, —(CH 2 ) e NR 53 R 54 , —CH[(CH 2 )NH 2 ] e CO 2 H, —CH[(CH 2 ) f NH 2 ] e CH 2 OH, —CH 2 (CHNH 2 ) e CH 2 NR 55 R 56 , —(CH 2 CH 2 O) g R 57 , and —(CH 2 ) h CO(CH 2 CH 2 O) g R 58 .
  • R 22 to R 42 are independently selected from the group consisting of —H, —(CH 2 ) e OR 51 , —CH 2 (CHOH) e R 52 , —(CH 2 ) e NR 53 R 54 , —(CH 2 CH 2 O) g R 57 , and —(CH 2 ) h CO(CH 2 CH 2 O) g R 58 .
  • R 22 to R 42 are independently selected from the group consisting of —H, —(CH 2 ) e OR 51 , —CH 2 (CHOH) e R 52 , —(CH 2 ) e NR 53 R 54 , and —(CH 2 ) h CO(CH 2 CH 2 O) g R 58 .
  • ‘e’, ‘f’, and ‘h’ independently vary from 1 to 10, ‘g’ varies from 1 to 100, and ‘p’ and ‘q’ independently vary from 1 to 3. In some embodiments, ‘e’, ‘f’, and ‘h’ independently vary from 1 to 6. In some embodiments, ‘g’ varies from 1 to 20. In some embodiments, ‘m’ and ‘n’ are independently 0 or 1.
  • (AA) of the third and fourth families is a single natural or unnatural amino acid or a polypeptide chain including one two or more natural or unnatural ⁇ -amino acids linked together by peptide bonds. Accordingly, the description of (AA) with reference to the first and second families of embodiments above applies to (AA) of the third and fourth families of embodiments as well.
  • (PS) of the third and fourth families is a sulfated or non-sulfated polysaccharide chain including one or more monosaccharide units connected by glycosidic linkages. As such, the description of (PS) with reference to the first and second families of embodiments above applies to (PS) of the third and fourth families of embodiments as well.
  • pyrrolidino and piperidio derivatives exhibit substantial difference in their UV spectra in that the former exhibits a bathochromic shift of about 34 nm.
  • HOMO highest occupied molecular orbital
  • one protocol for assessing physiological function of body cells includes administering an effective amount of a pyrazine derivative represented by Formula I or II into a body of a patient.
  • An appropriate dosage of the pyrazine derivate that is administered to the patient is readily determinable by one of ordinary skill in the art and may vary according to the clinical procedure contemplated, generally ranging from about 1 nanomolar to about 100 micromolar.
  • the administration of the pyrazine derivative to the patient may occur in any of a number of appropriate fashions including, but not limited to: (1) intravenous, intraperitoneal, or subcutaneous injection or infusion; (2) oral administration; (3) transdermal absorption through the skin; and (4) inhalation.
  • Pyrazine derivatives of this invention can be administered as solutions in most pharmaceutically acceptable intravenous vehicles known in the art.
  • Pharmaceutically acceptable vehicles that are well known to those skilled in the art include, but are not limited to, 0.01-0.1M phosphate buffer or 0.8% saline.
  • pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, emulsions, or appropriate combinations thereof.
  • non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
  • aqueous carriers are water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Exemplary parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils.
  • Exemplary intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, collating agents, inert gases and the like.
  • Suitable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers are also suitable excipients.
  • Such compositions are liquids or lyophilized or otherwise dried formulations and include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), complexation with metal ions, or incorporation
  • the pyrazine derivative is exposed to visible and/or near infrared light.
  • This exposure of the pyrazine derivate to light may occur at any appropriate time but preferably occurs while the pyrazine derivative is located in the body.
  • the pyrazine derivate emanates spectral energy (e.g., visible and/or near infrared light) that may be detected by appropriate detection equipment.
  • the spectral energy emanated from the pyrazine derivative tends to exhibit a wavelength range greater than a wavelength range absorbed by the pyrazine derivative. For example, if an embodiment of the pyrazine derivative absorbs light of about 700 nm, the pyrazine derivative may emit light of about 745 nm.
  • Detection of the pyrazine derivate may be achieved through optical fluorescence, absorbance or light scattering procedures known in the art.
  • this detection of the emanated spectral energy may be characterized as a collection of the emanated spectral energy and a generation of electrical signal indicative of the collected spectral energy.
  • the mechanism(s) utilized to detect the spectral energy from the pyrazine derivative that is present in the body may be designed to detect only selected wavelengths (or wavelength ranges) and/or may include one or more appropriate spectral filters.
  • Various catheters, endoscopes, ear clips, hand bands, head bands, surface coils, finger probes and the like may be utilized to expose the pyrazine derivative to light and/or to detect the light emanating therefrom [30]. This detection of spectral energy may be accomplished at one or more times intermittently or may be substantially continuous.
  • Renal function of the patient can be determined based on the detected spectral energy. This can be achieved by using data indicative of the detected spectral energy and generating an intensity/time profile indicative of a clearance of the pyrazine derivative from the body. This profile may be correlated to a physiological or pathological condition. For example, the patient's clearance profiles and/or clearance rates may be compared to known clearance profiles and/or rates to assess the patient's renal function and to diagnose the patient's physiological condition. In the case of analyzing the presence of the pyrazine derivative in bodily fluids, concentration/time curves may be generated and analyzed (preferably in real time) using an appropriate microprocessor to diagnose renal function.
  • Physiological function can be assessed by: (1) comparing differences in manners in which normal and impaired cells remove a pyrazine derivative of the invention from the bloodstream; (2) measuring a rate or an accumulation of a pyrazine derivative of the invention in the organs or tissues; and/or (3) obtaining tomographic images of organs or tissues having a pyrazine derivative of the invention associated therewith.
  • blood pool clearance may be measured non-invasively from convenient surface capillaries such as those found in an ear lobe or a finger or can be measured invasively using an appropriate instrument such as an endovascular catheter. Accumulation of a pyrazine derivative of the invention within cells of interest can be assessed in a similar fashion.
  • a modified pulmonary artery catheter may also be utilized to, inter alia, make the desired measurements [32] of spectral energy emanating from a pyrazine derivative of the invention.
  • the ability for a pulmonary catheter to detect spectral energy emanating from a pyrazine derivative of the invention is a distinct improvement over current pulmonary artery catheters that measure only intravascular pressures, cardiac output and other derived measures of blood flow.
  • critically ill patients have been managed using only the above-listed parameters, and their treatment has tended to be dependent upon intermittent blood sampling and testing for assessment of renal function. These traditional parameters provide for discontinuous data and are frequently misleading in many patient populations.
  • Modification of a standard pulmonary artery catheter only requires making a fiber optic sensor thereof wavelength-specific. Catheters that incorporate fiber optic technology for measuring mixed venous oxygen saturation exist currently. In one characterization, it may be said that the modified pulmonary artery catheter incorporates a wavelength-specific optical sensor into a tip of a standard pulmonary artery catheter. This wavelength-specific optical sensor can be utilized to monitor renal function-specific elimination of a designed optically detectable chemical entity such as the pyrazine derivatives of the present invention. Thus, by a method analogous to a dye dilution curve, real-time renal function can be monitored by the disappearance/clearance of an optically detected compound.
  • the product from Step 1 was dissolved in THF (100 mL) and treated with 1.0N HCl (2 mL). After hydrolysis was complete, the mixture was treated with K 2 CO 3 (1 g) and stirred for 1 h and filtered through a plug of C18 with using methanol. The filtrate was concentrated to dryness and the residue was triturated with MeOH (50 mL). The solids were filtered and discarded and the residue was treated with ether (50 mL). The precipitate was collected by filtration and dried at high vacuum.
  • step 2 To the product from step 2 (353 mg, 0.64 mmol) in methanol (20 mL) was added 5% Pd/C (300 mg) and ammonium formate (600 mg). The resulting reaction was heated at reflux for 2 h. The reaction was cooled to room temperature, filtered through a plug of celite and concentrated.
  • step 1 The product from step 1 (440 mg, 1.36 mmol) was dissolved in DMF (25 mL), treated with HOBt-H 2 O (624 mg, 4.08 mmol), and EDC-HCl (786 mg, 4.10 mmol) and stirred for 30 min at room temperature.
  • Bis(2-methoxylethyl)amine (620 mL, 559 mg, 4.20 mmol) was added and the resulting mixture was stirred at room temperature for 16 h and concentrated. The residue was partitioned with water and EtOAc. The EtOAc layer was separated and the aqueous was extracted again with EtOAc. The combined organic layers were washed with 0.5N HCl, saturated sodium bicarbonate, and brine.
  • step 2 To the product from step 2 (116 mg, 0.19 mmol) was added bis(2-methoxylethyl)amine (3.0 mL, 2.71 g, 20.3 mmol) and a “spatula tip” of Pd(PPh 3 ) 4 . The resulting mixture was heated to 140° C. for 2 h. The reaction was cooled and concentrated. The residue was purified by flash chromatography (SiO 2 , 10/1 CHCl 3 -MeOH).
  • step 1 To the product from step 1 (510 mg, 0.65 mmol) was added THF (20 mL) and water (10 mL). The this stirred mixture was added 10% Pd(C) (500 mg) and ammonium formate (1 g). The resulting mixture was heated to 60° C. for 2 h and allowed to cool to room temperature. The mixture was filtered through celite and concentrated.
  • Example 5 To a solution of Example 5 (77.4 mg, 0.15 mmol) in DMF (5 mL) was added TEA (151 mg, 1.49 mmol) and 2,5-dioxopyrrolidin-1-yl 2,5,8,11-tetraoxatetradecan-14-oate (113 mg, 0.34 mmol) and the reaction was stirred for 16 h at room temperature.
  • TEA 151 mg, 1.49 mmol
  • 2,5-dioxopyrrolidin-1-yl 2,5,8,11-tetraoxatetradecan-14-oate 113 mg, 0.34 mmol
  • Example 5 To a solution of Example 5 (50.3 mg, 0.10 mmol) in DMF (5 mL) was added TEA (109 mg, 1.08 mmol) and 2,5-dioxopyrrolidin-1-yl 2,5,8,11,14,17,20,23-octaoxahexacosan-26-oate (128 mg, 0.25 mmol) and the reaction was stirred for 16 h at room temperature.
  • TEA 109 mg, 1.08 mmol
  • 2,5-dioxopyrrolidin-1-yl 2,5,8,11,14,17,20,23-octaoxahexacosan-26-oate 128 mg, 0.25 mmol
  • Example 5 To a solution of Example 5 (53.1 mg, 0.10 mmol) in DMF (5 mL) was added TEA (114 mg, 1.13 mmol) and 2,5-dioxopyrrolidin-1-yl 2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxaoctatriacontan-38-oate (144 mg, 0.21 mmol) in DMF (2.0 mL) and the resulting mixture was stirred for 16 h thereafter.
  • TEA 114 mg, 1.13 mmol
  • 2,5-dioxopyrrolidin-1-yl 2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxaoctatriacontan-38-oate 144 mg, 0.21 mmol
  • a mixture of CuCN (8.62 g, 96.3 mmol) and NaCN (4.72 g, 96.3 mmol) was heated under high vacuum to 90° C.
  • the resulting mixture was subjected to three Argon/Vacuum cycles and placed under a final positive pressure of Argon.
  • the mixture was allowed to cool to room temperature and DMF (150 mL) was added.
  • the heterogenous mixture was heated to 130° C. for 2.5 hours.
  • To the resulting homogeneous mixture of sodium dicyanocuprate was added a solution of the product from step 1 (15.6 g, 64.2 mmol) dissolved in DMF (150 mL), dropwise, over 1 hour. The temperature was gradually raised to 150° C. and the resulting mixture was stirred at this temperature for 10 hours thereafter.
  • step 2 To the product from step 2 (1.00 g, 5.29 mmol) in ACN (20 mL) was added bis(2-methoxyethyl)amine (3.0 mL, 2.71 g, 20.3 mmol) and the reaction mixture was heated to 70° C. for 16 hours thereafter. The reaction was cooled and concentrated. The residue was partitioned with EtOAc and water. The organic layer was separated and the aqueous was extracted again with EtOAc. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ), filtered and concentrated.
  • step 3 To the product from step 3 (1.39 g, 4.88 mmol) in 48% hydrobromic acid (20 mL) at 0° C. (ice-salt bath), was added a solution of sodium nitrite (673 mg, 9.75 mmol) in water (10 mL) dropwise over 30 min. The resulting mixture was stirred at 0-5° C. for 1 h and poured into a stirred solution of CuBr 2 (1.64 g, 7.34 mmol) in water (100 mL). The resulting mixture was stirred for 16 h at room temperature thereafter. The mixture was extracted with EtOAc (3 ⁇ ). The combined organic layers were dried (Na 2 SO 4 ), filtered and concentrated.
  • step 7 To the product from step 7 (240 mg, 0.39 mmol) was added morpholine (5 mL). The reaction mixture was heated to 70° C. for 2 h. The mixture was cooled and concentrated. The residue was partitioned with EtOAc and water. The EtOAc layer was separated and washed with saturated sodium bicarbonate and brine. The EtOAc layer was dried (Na 2 SO 4 ), filtered and concentrated.
  • the dibenzyl ester (115 mg, 0.17 mmol) in THF (10 mL) was added 1.0N sodium hydroxide (4 mL). The mixture was stirred for 1 h at room temperature. The pH was adjusted to ⁇ 2 with 1.0N HCl and the solution was concentrated.
  • FIG. 2 An example of an in vivo renal monitoring assembly 10 is shown in FIG. 2 and includes a light source 12 and a data processing system 14 .
  • the light source 12 generally includes or is interconnected with an appropriate device for exposing at least a portion of a patient's body to light therefrom.
  • appropriate devices that may be interconnected with or be a part of the light source 12 include, but are not limited to, catheters, endoscopes, fiber optics, ear clips, hand bands, head bands, forehead sensors, surface coils, and finger probes. Indeed, any of a number of devices capable of emitting visible and/or near infrared light of the light source may be employed in the renal monitoring assembly 10 .
  • the data processing system 14 of the renal monitoring assembly may be any appropriate system capable of detecting spectral energy and processing data indicative of the spectral energy.
  • the data processing system 14 may include one or more lenses (e.g., to direct and/or focus spectral energy), one or more filters (e.g., to fitter out undesired wavelengths of spectral energy), a photodiode (e.g., to collect the spectral energy and convert the same into electrical signal indicative of the detected spectral energy), an amplifier (e.g., to amplify electrical signal from the photodiode), and a processing unit (e.g., to process the electrical signal from the photodiode).
  • lenses e.g., to direct and/or focus spectral energy
  • filters e.g., to fitter out undesired wavelengths of spectral energy
  • a photodiode e.g., to collect the spectral energy and convert the same into electrical signal indicative of the detected spectral energy
  • This data processing system 14 is preferably configured to manipulate collected spectral data and generate an intensity/time profile and/or a concentration/time curve indicative of renal clearance of a pyrazine derivative of the present invention from the patient 20 .
  • the data processing system 14 may be configured to generate appropriate renal function data by comparing differences in manners in which normal and impaired cells remove the pyrazine derivative from the bloodstream, to determine a rate or an accumulation of the pyrazine derivative in organs or tissues of the patient 20 , and/or to provide tomographic images of organs or tissues having the pyrazine derivative associated therewith.
  • an effective amount of a pyrazine derivative of the invention is administered to the patient (e.g., in the form for a pharmaceutically acceptable composition). At least a portion of the body of the patient 20 is exposed to visible and/or near infrared light from the light source 12 as indicated by arrow 16 .
  • the light from the light source 12 may be delivered via a fiber optic that is affixed to an ear of the patient 20 .
  • the patient may be exposed to the light from the light source 12 before or after administration of the pyrazine derivative to the patient 20 .
  • the pyrazine derivative that is in the body of the patient 20 is exposed to the light from the light source 12 , the pyrazine derivative emanates light (indicated by arrow 18 ) that is detected/collected by the data processing system 14 .
  • administration of the pyrazine derivative to the patient 20 generally enables an initial spectral signal indicative of the initial content of the pyrazine derivative in the patient 20 .
  • the spectral signal then tends to decay as a function of time as the pyrazine derivative is cleared from the patient 20 .
  • This decay in the spectral signal as a function of time is indicative of the patient's renal function.
  • the spectral signal may decay back to a baseline in a time of T.
  • a spectral signal indicative of a second patient exhibiting deficient renal function may decay back to a baseline in a time of T+4 hours.
  • the patient 20 may be exposed to the light from the light source 12 for any amount of time appropriate for providing the desired renal function data.
  • the data processing system 14 may be allowed to collect/detect spectral energy for any amount of time appropriate for providing the desired renal function data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to pyrazine derivatives such as those represented by Formulas I and II below.
Figure USRE047413-20190604-C00001

X1 to X4 of the compounds of Formulas I and II may be characterized as electron withdrawing groups. In contrast, Y1 to Y4 of the compounds of Formulas I and II may be characterized as electron donating groups. Pyrazine derivatives of the present invention may be utilized in assessing renal function. In particular, an effective amount of a pyrazine derivative of the invention may be administered into a body of a patient. The pyrazine derivative that is in the body may be exposed to visible and/or infrared light to cause spectral energy to emanate from the pyrazine derivative. This emanating spectral energy may be detected and utilized to determine renal function of the patient.

Description

REFERENCE TO RELATED APPLICATIONS
This application is a reissue application of U.S. Pat. No. 9,114,160 which is a divisional of U.S. application Ser. No. 13/343,231, now U.S. Pat. No. 8,722,685, filed on 4 Jan. 2012, which is a continuation of U.S. application Ser. No. 11/995,223, filed on 10 Jan. 2008, now U.S. Pat. No. 8,115,000, which is a U.S. National Stage Application under 35 U.S.C. §371 of International Application No. PCT/US07/14370, filed 20 Jun. 2007, and which claims the benefit of priority to U.S. Provisional Application No. 60/815,712 filed on 22 Jun. 2006; and which is a continuation-in-part of U.S. patent application Ser. No. 11/721,186 filed on 8 Jun. 2007, which is a U.S. National Stage Application under 35 U.S.C. §371 of International Application No. PCT/US2005/046732 filed on 22 Dec. 2005, which claims priority to U.S. Provisional Application No. 60/638,611 filed on 23 Dec. 2004. Each of the above-referenced applications is expressly incorporated by reference herein in its entirety.
FIELD OF THE INVENTION
The present invention relates to pyrazine derivatives capable of absorbing and emanating spectral energy in the visible and/or near infrared spectrum. In addition, the present invention relates to methods of using non-radioactive, exogenous agents such as the previously mentioned pyrazine derivatives in medical procedures (e.g., the monitoring of renal function).
BACKGROUND
As a preliminary note, various publications are referenced throughout this disclosure by Arabic numerals in brackets. A citation corresponding to each reference number is listed following the detailed description.
Acute renal failure (ARF) is a common ailment in patients admitted to general medical-surgical hospitals. Approximately half of the patients who develop ARF die, and survivors face marked increases in morbidity and prolonged hospitalization [1]. Early diagnosis is generally believed to be important, because renal failure is often asymptomatic and typically requires careful tracking of renal function markers in the blood. Dynamic monitoring of renal functions of patients is desirable in order to minimize the risk of acute renal failure brought about by various clinical, physiological and pathological conditions [2-6]. Such dynamic monitoring tends to be particularly important in the case of critically ill or injured patients, because a large percentage of these patients tend to face risk of multiple organ failure (MOF) potentially resulting in death [7,8]. MOF is a sequential failure of the lungs, liver and kidneys and is incited by one or more of acute lung injury (ALI), adult respiratory distress syndrome (ARDS), hypermetabolism, hypotension, persistent inflammatory focus and sepsis syndrome. The common histological features of hypotension and shock leading to MOF generally include tissue necrosis, vascular congestion, interstitial and cellular edema, hemorrhage and microthrombi. These changes generally affect the lungs, liver, kidneys, intestine, adrenal glands, brain and pancreas in descending order of frequency [9]. The transition from early stages of trauma to clinical MOF generally corresponds with a particular degree of liver and renal failure as well as a change in mortality risk from about 30% up to about 50% [10].
Traditionally, renal function of a patient has been determined using crude measurements of the patient's urine output and plasma creatinine levels [11-13]. These values are frequently misleading because such values are affected by age, state of hydration, renal perfusion, muscle mass, dietary intake, and many other clinical and anthropometric variables. In addition, a single value obtained several hours after sampling may be difficult to correlate with other physiologic events such as blood pressure, cardiac output, state of hydration and other specific clinical events (e.g., hemorrhage, bacteremia, ventilator settings and others).
With regard to conventional renal monitoring procedures, an approximation of a patient's glomerular filtration rate (GFR) can be made via a 24 hour urine collection procedure that (as the name suggests) typically requires about 24 hours for urine collection, several more hours for analysis, and a meticulous bedside collection technique. Unfortunately, the undesirably late timing and significant duration of this conventional procedure can reduce the likelihood of effectively treating the patient and/or saving the kidney(s). As a further drawback to this type of procedure, repeat data tends to be equally as cumbersome to obtain as the originally acquired data.
Occasionally, changes in serum creatinine of a patient must be adjusted based on measurement values such as the patient's urinary electrolytes and osmolality as well as derived calculations such as “renal failure index” and/or “fractional excretion of sodium.” Such adjustments of serum creatinine undesirably tend to require contemporaneous collection of additional samples of serum and urine and, after some delay, further calculations. Frequently, dosing of medication is adjusted for renal function and thus can be equally as inaccurate, equally delayed, and as difficult to reassess as the measurement values and calculations upon which the dosing is based. Finally, clinical decisions in the critically ill population are often equally as important in their timing as they are in their accuracy.
It is known that hydrophilic, anionic substances are generally capable of being excreted by the kidneys [1,4]. Renal clearance typically occurs via two pathways: glomerular filtration and tubular secretion. Tubular secretion may be characterized as an active transport process, and hence, the substances clearing via this pathway typically exhibit specific properties with respect to size, charge and lipophilicity.
Most of the substances that pass through the kidneys are filtered through the glomerulus (a small intertwined group of capillaries in the malpighian body of the kidney). Examples of exogenous substances capable of clearing the kidney via glomerular filtration (hereinafter referred to as “GFR agents”) are shown in FIG. 1 and include creatinine (1), o-iodohippuran (2), and 99mTc-DTPA (3) [15-17]. Examples of exogenous substances that are capable of undergoing renal clearance via tubular secretion include 99mTc-MAG3 (4) and other substances known in the art [15, 18, 19]. 99mTc-MAG3 (4) is also widely used to assess renal function though gamma scintigraphy as well as through renal blood flow measurement. As one drawback to the substances illustrated in FIG. 1, o-iodohippuran (2), 99mTc-DTPA (3) and 99mTc-MAG3 (4) include radioisotopes to enable the same to be detected. Even if non-radioactive analogs (e.g., such as an analog of o-iodohippuran (2)) or other non-radioactive substances were to be used for renal function monitoring, such monitoring would typically require the use of undesirable ultraviolet radiation for excitation of those substances.
SUMMARY
In one regard, the present invention relates to transforming lipophilic fluorescent dyes into hydrophilic molecules. One concept of the present invention relates to molecules whose clearance properties are preferably similar to that of creatinine or o-iodohippuran, and to render such molecules hydrophilic by incorporating appropriate polar functionalities such as hydroxyl, carboxyl, sulfonate, phopshonate and the like into their backbones. Pyrazine dyes of the invention may be characterized by some as being desirable for renal applications because they tend to be cleared from the body via the kidneys, demonstrate absorption and emission/fluorescence in the visible region, and tend to exhibit significant Stokes shifts. These properties allow flexibility in both tuning a molecule to a desired wavelength and introducing a variety of substituents to improve clearance properties.
Figure USRE047413-20190604-C00002
In a first aspect, the present invention is directed to pyrazine derivatives of Formula I. With regard to Formula I, X1 and X2 may be characterized as electron withdrawing substituents and may be independently chosen from the group consisting of —CN, —CO2R1, —CONR2R3, —COR4, —NO2, —SOR5, —SO2R6, —SO2OR7, —PO3R8R9, —CONH(AA) —CO(AA), and —CONH(PS). In some embodiments, at least one of X1 and X2 is either —CONH(AA) —CO(AA) or —CONH(PS). (AA) is a single natural or unnatural amino acid or a polypeptide chain that includes one two or more natural or unnatural α-amino acids linked together by peptide bonds. (PS) is a sulfated or non-sulfated polysaccharide chain that includes one or more monosaccharide units connected by glycosidic linkages. Y1 and Y2 may, at least in some embodiments, be characterized as electron donating substituents and may be independently chosen from the group consisting of —OR10, —SR11, —NR12R13, —N(R14)COR15, —P(R16)3, —P(OR17)3, and substituents corresponding to Formula A above. In some embodiments, at least one of Y1 and Y2 is either —P(R16)3 or —P(OR17)3. Z1 may be a single bond, —CR18R19, —O, —NR20, —NCOR21, —S, —SO and —SO2. R1 to R21 may be any suitable substituents capable of providing and/or enhancing desired biological and/or physicochemical properties of pyrazine derivatives of Formula I. For instance, for renal function assessment, each of the R groups of R1 to R21 may independently be any one of a hydrogen atom, an anionic functional group (e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate) or a hydrophilic functional group (e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato). As an example, in some embodiments, R1 to R21 may independently be selected from the group consisting of —H, —(CH2)aOR43, —CH2(CHOH)aR44, —CH2(CHOH)aCO2H, —(CHCO2H)aCO2H, —(CH2)aNR45R46, —CH[(CH2)bNH2]aCO2H, —CH[(CH2)bNH2]aCH2OH, —CH2(CHNH2)aCH2NR47R48, —(CH2CH2O)cR49, —(CH2)dCO(CH2CH2O)cR50, —(CH2)aSO3H, —(CH2)aSO3 , —(CH2)aOSO3H, —(CH2)aOSO3 , —(CH2)aNHSO3H, —(CH2)aNHSO3 , —(CH2)aPO3H2, —(CH2)aPO3H, —(CH2)aPO3 =, —(CH2)aOPO3H2, —(CH2)aOPO3H and —(CH2)OPO3. In such embodiments, each of R43 to R50 may independently be —H or —CH3. ‘a’, ‘b’, ‘c’, ‘d’, ‘m’ and ‘n’ may be any appropriate integers. For instance, in some embodiments, ‘a’, ‘b’, and ‘d’ may independently vary from 1 to 10, ‘c’ may vary from 1 to 100, and ‘m’ and ‘n’ may independently vary from 1 to 3.
Figure USRE047413-20190604-C00003
A second aspect of the invention is directed to pyrazine derivatives of Formula II. With regard to Formula II, X3 and X4 may be characterized as electron withdrawing substituents and may be independently chosen from the group consisting of —CN, —CO2R22, —CONR23R24, —COR25, —NO2, —SOR26, —SO2R27, —SO2OR28, —PO3R29R30, —CONH(AA) —CO(AA), and —CONH(PS). In some embodiments, at least one of X3 and X4 is either —CONH(AA) —CO(AA) or —CONH(PS). (AA) is a single natural or unnatural amino acid or a polypeptide chain that includes one two or more natural or unnatural α-amino acids linked together by peptide bonds. (PS) is a sulfated or non-sulfated polysaccharide chain that includes one or more monosaccharide units connected by glycosidic linkages. Y3 and Y4 may, at least in some embodiments, be characterized as electron donating substituents and may be independently chosen from the group consisting of —OR31, —SR32, —NR33R34, —N(R35)COR36, —P(R37)3, —P(OR38)3, and substituents corresponding to Formula B above. In some embodiments, at least one of Y3 and Y4 is either —P(R37)3 or —P(OR)3. Z2 may be a single bond, —CR39R40, —O, —NR41, —NCOR42, —S, —SO, or —SO2. R22 to R42 may be any suitable substituents capable of providing and/or enhancing desired biological and/or physicochemical properties of pyrazine derivatives of Formula II. For instance, for renal function assessment, each of the R groups of R22 to R42 may independently be any one of a hydrogen atom, an anionic functional group (e.g., carboxylate, sulfonate, sulfate, phopshonate and phosphate) or a hydrophilic functional group (e.g., hydroxyl, carboxyl, sulfonyl, sulfonato and phosphonato). As an example, in some embodiments, R22 to R42 may independently be selected from the group consisting of —H, —(CH2)eOR51, —CH2(CHOH)eR52, —CH2(CHOH)eCO2H, —(CHCO2H)eCO2H, —(CH2)eNR53R54, —CH[(CH2)NH2]eCO2H, —CH[(CH2)fNH2]eCH2OH, —CH2(CHNH2)eCH2NR55R56, —(CH2CH2O)gR57, —(CH2)hCO(CH2CH2O)gR58, —(CH2)eSO3H, —(CH2)eSO3 , —(CH2)eOSO3H, —(CH2)eOSO3 , —(CH2)eNHSO3H, —(CH2)eNHSO3 , —(CH2)ePO3H2, —(CH2)ePO3H, —(CH2)ePO3 =, —(CH2)eOPO3H2, —(CH2)eOPO3H end —(CH2)eOPO3. In such embodiments, each of R5 to R58 may independently be —H or —CH3. ‘e’, ‘f’, ‘g’, ‘h’, ‘p’ and ‘q’ may be any appropriate integers. For instance, in some embodiments, ‘e’, ‘f’, and ‘h’ may independently vary from 1 to 10, ‘g’ may vary from 1 to 100, and ‘p’ and ‘q’ may independently vary from 1 to 3.
Yet a third aspect of the invention is directed to pharmaceutically acceptable compositions, each of which includes one or more pyrazine derivatives disclosed herein. Incidentally, the phrase “pharmaceutically acceptable” herein refers substances which are, within the scope of sound medical judgment, suitable for use in contact with relevant tissues of humans and animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. The compositions of this third aspect may include one or more appropriate excipients such as, but not limited to, suitable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers. One example of a composition of this third aspect may include at least one pyrazine derivative of Formula I and at least one pyrazine derivative of Formula II. Another example of a composition of the third aspect may include one or more pyrazine derivatives of Formula I or one or more pyrazine derivatives of Formula II.
Still a fourth aspect of the invention is directed to methods of determining renal function using pyrazine derivatives such as those described above with regard to Formulas I and II. In these methods, an effective amount of a pyrazine derivative is administered into the body of a patient (e.g., a mammal such as a human or animal subject). Incidentally, an “effective amount” herein generally refers to an amount of pyrazine derivative that is sufficient to enable renal clearance to be analyzed. The pyrazine derivative in the body of the patient is exposed to at least one of visible and near infrared light. Due to this exposure of the pyrazine derivative to the visible and/or infrared light, the pyrazine derivative emanates spectral energy that may be detected by appropriate detection equipment. This spectral energy emanating from the pyrazine derivative may be detected using an appropriate detection mechanism such as an invasive or non-invasive optical probe. Herein, “emanating” or the like refers to spectral energy that is emitted and/or fluoresced from a pyrazine derivative. Renal function can be determined based the spectral energy that is detected. For example, an initial amount of the amount of pyrazine derivative present in the body of a patient may be determined by a magnitude/intensity of light emanated from the pyrazine derivative that is detected (e.g., in the bloodstream). As the pyrazine derivative is cleared from the body, the magnitude/intensity of detected light generally diminishes. Accordingly, a rate at which this magnitude of detected light diminishes may be correlated to a renal clearance rate of the patient. This detection may be done periodically or in substantially real time (providing a substantially continuous monitoring of renal function). Indeed, methods of the present invention enable renal function/clearance to be determined via detecting one or both a change and a rate of change of the detected magnitude of spectral energy (indicative of an amount of the pyrazine derivative that has not been cleared) from the portion of the pyrazine derivative that remains in the body. While this fourth aspect has been described with regard to use of a single pyrazine derivative of the invention, it should be noted that some embodiments of this fourth aspect include the use of compositions of the invention that may include one or more pyrazine derivatives disclosed herein.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 illustrates some structures of conventional renal agents.
FIG. 2 illustrates a block diagram of an assembly for assessing renal function.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
Figure USRE047413-20190604-C00004
As mentioned above, the present invention includes pyrazine derivatives of Formula I. In a first family of embodiments, X1 and X2 are independently selected from the group consisting of —CN, —CO2R1, —CONR2R3, —COR4, —NO2, —SOR5, —SO2R6, —SO2OR7, —PO3R8R9, —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of (e.g., one of or both of) X1 and X2 is independently either —CONH(AA) —CO(AA) or —CONH(PS). For instance, in one groups of embodiments, at least one of X1 and X2 is —CONH(AA) —CO(AA). In another group of embodiments, at least one of X1 and X2 is —CONH(PS). With further regard to this first family of embodiments, Y1 and Y2 are independently selected from the group consisting of —OR10, —SR11, —NR12R13, —N(R14)COR15, —P(R16)3, —P(OR7)3, and substituents corresponding to Formula A above.
In some embodiments of this first family, X1 and X2 are independently selected from the group consisting of —CN, —CO2R1, —CONR2R3, —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of X1 and X2 is independently either —CONH(AA) —CO(AA) or —CONH(PS). Y1 and Y2 of some embodiments of the first family are independently selected from the group consisting of —NR12R13 and substituents corresponding to Formula A above.
In a second family of embodiments, X1 and X2 are independently selected from the group consisting of —CN, —CO2R1, —CONR2R3, —COR4, —NO2, —SOR5, —SO2R6, —SO2OR7, —PO3R8R9, —CONH(AA) —CO(AA), and —CONH(PS). Further, Y1 and Y2 are independently selected from the group consisting of —OR10, —SR11, —NR12R13, —N(R14)COR15, —P(R16)3, —P(OR17)3, and substituents corresponding to Formula A above, wherein at least one of (e.g., one of or both of) Y1 and Y2 is independently either —P(R16)3 or —P(OR17)3. For instance, in one group of embodiments, at least one of Y1 and Y2 is —P(R16)3. In another group of embodiments, at least one of Y1 and Y2 is —P(OR17)3.
In some embodiments of this second family, X1 and X2 are independently selected from the group consisting of —CN, —CO2R1, —CONR2R3; —CONH(AA) —CO(AA), and —CONH(PS). In some embodiments of the second family, one of Y1 and Y2 is —P(R16)3 or —P(OR17)3, and the other of Y1 and Y2 is —NR12R13 or a substituent corresponding to Formula A above.
With regard to the above-described first and second families, Z1 is selected from the group consisting of a single bond, —CR18R19, —O, —NR20, —NCOR21, —S, —SO and —SO2. In some embodiments, Z1 is selected from the group consisting of —O, —NR20, —S, —SO, and —SO2. In other embodiments, Z1 is selected from the group consisting of —O and —NR20.
R1 to R21 of the first and second families are independently selected from the group consisting of —H, —(CH2)OR43, —CH2(CHOH)aR44, —CH2(CHOH)aCO2H, —(CHCO2H)aCO2H, —(CH2)aNR45R46, —CH[(CH2)bNH2]aCO2H, —CH[(CH2)bNH2]aCH2OH, —CH2(CHNH2)aCH2NR47R48, —(CH2CH2O)cR49, —(CH2)CO(CH2CH2O)cR50, —(CH2)aSO3H, —(CH2)SO3 , —(CH2)aOSO3H, —(CH2)aOSO3 , —(CH2)aNHSO3H, —(CH2)aNHSO3 , —(CH2)aPO3H2, —(CH2)aPO3H, —(CH2)aPO3 =, —(CH2)OPO3H2, —(CH2)aOPO3H and —(CH2)aOPO3. In such embodiments, R43 to R50 are independently —H or —CH3. In one group of embodiments, R1 to R21 of the first and second families are independently selected from the group consisting of —H, —(CH2)aOR43, —CH2(CHOH)aR44, —CH2(CHOH)aCO2H, —(CHCO2H)aCO2H, —(CH2)aNR45R46, —CH[(CH2)bNH2]aCO2H, —CH[(CH2)bNH2]aCH2OH, —CH2(CHNH2)aCH2NR47R48, —(CH2CH2O)cR49, —(CH2)dCO(CH2CH2O)cR50. In another group of embodiments, R1 to R21 are independently selected from the group consisting of —H, —(CH2)aOR43, —CH2(CHOH)aR44, —(CH2)aNR45R46, —(CH2CH2O)cR49, and —(CH2)dCO(CH2CH2O)dR50. In still another group of embodiments, R1 to R21 are independently selected from the group consisting of —H, —(CH2)aOR43, —CH2(CHOH)aR 44, —(CH2)aNR45R46, and —(CH2)dCO(CH2CH2O)dR50.
Still with regard to these first and second families, ‘a’, ‘b’, and ‘d’ independently vary from 1 to 10, ‘c’ varies from 1 to 100, and ‘m’ and ‘n’ independently varies from 1 to 3. In some embodiments, each of ‘a’, ‘b’, and ‘d’ independently varies from 1 to 6. In some embodiments, ‘c’ varies from 1 to 20. In some embodiments, ‘m’ and ‘n’ are independently 0 or 1.
(AA) is a single natural or unnatural amino acid or a polypeptide chain including one two or more natural or unnatural α-amino acids linked together by peptide bonds. The polypeptide chain (AA) may be a homopolypeptide chain or a heteropolypeptide chain, and may be any appropriate length. For instance, in some embodiments, the polypeptide chain may include 1 2 to 100α-amino acid(s), 1 2 to 90α-amino acid(s), 1 2 to 80α-amino acid(s), 1 2 to 70α-amino acid(s), 1 2 to 60α-amino acid(s), 1 2 to 50α-amino acid(s), 1 2 to 40α-amino acid(s), 1 2 to 30α-amino acid(s), 1 2 to 20α-amino acid(s), or even 1 2 to 10α-amino acid(s). In some embodiments, the α-amino acids of the polypeptide chain (AA) are selected from the group consisting of aspartic acid, asparigine, arginine, histidine, lysine, glutamic acid, glutamine, serine, and homoserine. In some embodiments, the α-amino acids of the polypeptide chain (AA) are selected from the group consisting of aspartic acid, glutamic acid, serine, and homoserine. In some embodiments, the polypeptide chain (AA) refers to a single amino acid (e.g., either aspartic acid or serine).
(PS) is a sulfated or non-sulfated polysaccharide chain including one or more monosaccharide units connected by glycosidic linkages. The polysaccharide chain (PS) may be any appropriate length. For instance, in some embodiments, the polysaccharide chain may include 1 to 100 monosaccharide unit(s), 1 to 90 monosaccharide unit(s), 1 to 80 monosaccharide unit(s), 1 to 70 monosaccharide unit(s), 1 to 60 monosaccharide unit(s), 1 to 50 monosaccharide unit(s), 1 to 40 monosaccharide unit(s), 1 to 30 monosaccharide unit(s), 1 to 20 monosaccharide unit(s), or even 1 to 10 monosaccharide unit(s). In some embodiments, the polysaccharide chain (PS) is a homopolysaccharide chain consisting of either pentose or hexose monosaccharide units. In other embodiments, the polysaccharide chain (PS) is a heteropolysaccharide chain consisting of one or both pentose and hexose monosaccharide units. In some embodiments, the monosaccharide units of the polysaccharide chain (PS) are selected from the group consisting of glucose, fructose, mannose, xylose and ribose. In some embodiments, the polysaccharide chain (PS) refers to a single monosaccharide unit (e.g., either glucose or fructose).
Figure USRE047413-20190604-C00005
The present invention is also includes pyrazine derivatives corresponding to Formula II above. In a third family of embodiments of the invention, X3 and X4 are independently selected from the group consisting of —CN, —CO2R22, —CONR23R24, —COR25, —NO2, —SOR26, —SO2R27, —SO2OR28, —PO3R29R30, —CONH(AA) —CO(AA), and —CONH(PS), wherein at least one of (e.g., one of or both of) X3 and X4 is independently either —CONH(AA) —CO(AA) or —CONH(PS). For instance, in one groups of embodiments, at least one of X3 and X4 is —CONH(AA) —CO(AA). In another group of embodiments, at least one of X3 and X4 is —CONH(PS). With further regard to this first family of embodiments, Y3 and Y4 are independently selected from the group consisting of —OR31, —SR32, —NR33R34, —N(R35)COR36, —P(R37)3, —P(OR38)3, and substituents corresponding to Formula B above.
In some embodiments of this third family, X3 and X4 are independently selected from the group consisting of —CN, —CO2R22, —CONR23R24, —CONH(AA)r —CO(AA)r, and —CONH(PS)s, wherein at least one of X3 and X4 is independently either —CONH(AA) —CO(AA) or —CONH(PS). Y3 and Y4 of some embodiments of the third family are independently selected from the group consisting of —NR31R32 and substituents corresponding to Formula B above.
In still a fourth family of embodiments, X3 and X4 are independently selected from the group consisting of —CN, —C2R22, —CONR23R24, —COR25, —NO2, —SOR26, —SO2R27, —SO2OR28, —PO3R29R30, —CONH(AA) —CO(AA), and —CONH(PS). Further, Y3 and Y4 are independently selected from the group consisting of —OR31, —SR32, —NR33R34, —N(R35)COR36, —P(R37)3, —P(OR38)3, and substituents corresponding to Formula B above, wherein at least one of Y3 and Y4 is independently either —P(R37)3 or —P(OR38)3. For instance, in one group of embodiments, at least one of Y3 and Y4 is —P(R37)3. In another group of embodiments, at least one of Y3 and Y4 is —P(OR38)3.
In some embodiments of this fourth family, X3 and X4 are independently selected from the group consisting of —CN, —CO2R22, —CONR23R24, —CONH(AA) —CO(AA), and —CONH(PS). In some embodiments of the fourth family, one of Y3 and Y4 is —P(R37)3 or —P(OR38)3, and the other of Y3 and Y4 is —NR31R32 or a substituent corresponding to Formula B above.
With regard to the above-described third and fourth families, Z2 is selected from the group consisting of a single bond, —CR39R40, —O, —NR41, —NCOR42, —S, —SO, and —SO2. In some embodiments, Z2 is selected from the group consisting of —O, —NR41, —S, —SO and —SO2. In some embodiments, Z2 is selected from the group consisting of —O and —NR41.
R22 to R42 are independently selected from the group consisting of —H, —(CH2)eOR51, —CH2(CHOH)eR52, —CH2(CHOH)eCO2H, —(CHCO2H)eCO2H, —(CH2)eNR53R54, —CH[(CH2)fNH2]eCO2H, —CH[(CH2)rNH2]eCH2OH, —CH2(CHNH2)eCH2NR55R56, —(CH2H2O)gR57, —(CH2)hCO(CH2CH2O)gR58, —(CH2)eSO3H, —(CH2)eSO3 , —(CH2)eOSO3H, —(CH2)eOSO3 , —(CH2)eNHSO3H, —(CH2)eNHSO—, —(CH2)ePO3H2, —(CH2)ePO3H, —(CH2)ePO3 =, —(CH2)eOPO3H2, —(CH2)eOPO3H end —(CH2)eOPO3. In such embodiments, R51 to R58 are independently —H or —CH3. In one group of embodiments, R22 to R42 are independently selected from the group consisting of —H, —(CH2)eOR51, —CH2(CHOH)eR52, —CH2(CHOH)eCO2H, —(CHCO2H)eCO2H, —(CH2)eNR53R54, —CH[(CH2)NH2]eCO2H, —CH[(CH2)fNH2]eCH2OH, —CH2(CHNH2)eCH2NR55R56, —(CH2CH2O)gR57, and —(CH2)hCO(CH2CH2O)gR58. In another group of embodiments, R22 to R42 are independently selected from the group consisting of —H, —(CH2)eOR51, —CH2(CHOH)eR52, —(CH2)eNR53R54, —(CH2CH2O)gR57, and —(CH2)hCO(CH2CH2O)gR58. In still another group of embodiments, R22 to R42 are independently selected from the group consisting of —H, —(CH2)eOR51, —CH2(CHOH)eR52, —(CH2)eNR53R54, and —(CH2)hCO(CH2CH2O)gR58.
Still with regard to the third and fourth families, ‘e’, ‘f’, and ‘h’ independently vary from 1 to 10, ‘g’ varies from 1 to 100, and ‘p’ and ‘q’ independently vary from 1 to 3. In some embodiments, ‘e’, ‘f’, and ‘h’ independently vary from 1 to 6. In some embodiments, ‘g’ varies from 1 to 20. In some embodiments, ‘m’ and ‘n’ are independently 0 or 1.
As with the first and second families of embodiments described above, (AA) of the third and fourth families is a single natural or unnatural amino acid or a polypeptide chain including one two or more natural or unnatural α-amino acids linked together by peptide bonds. Accordingly, the description of (AA) with reference to the first and second families of embodiments above applies to (AA) of the third and fourth families of embodiments as well. Likewise, (PS) of the third and fourth families is a sulfated or non-sulfated polysaccharide chain including one or more monosaccharide units connected by glycosidic linkages. As such, the description of (PS) with reference to the first and second families of embodiments above applies to (PS) of the third and fourth families of embodiments as well.
Syntheses of pyrazine derivatives, in general, have been previously studied [27] and described [25, 26, 28, 29]. Preparation procedures for some of the pyrazine derivatives of the present invention, using procedures similar to the above references, are described later in Examples 1 to 11. It is noteworthy that the alkylation of the electron donating amino group in cyano- or carboxypyrazines has a profound effect on electronic transition of the pyrazine chromophore in that the dialkylation of the amino group in 2,5-diamino-3,5-dicyanopyrazine produces large bathochromic shift of about 40-60 nm. It is also noteworthy that the pyrrolidino and piperidio derivatives exhibit substantial difference in their UV spectra in that the former exhibits a bathochromic shift of about 34 nm. These results could be explained on the basis that the highest occupied molecular orbital (HOMO) of the alkylated aminopyrazine is destabilized compared to the parent amino compound. Therefore, based on the above premise, it is predicted that pyrazine derivatives containing highly strained azacycloalkyl substituents, which were not disclosed previously, exhibit larger bathochromic shifts compared to unstrained cyclic analogs.
In accordance with the present invention, one protocol for assessing physiological function of body cells includes administering an effective amount of a pyrazine derivative represented by Formula I or II into a body of a patient. An appropriate dosage of the pyrazine derivate that is administered to the patient is readily determinable by one of ordinary skill in the art and may vary according to the clinical procedure contemplated, generally ranging from about 1 nanomolar to about 100 micromolar. The administration of the pyrazine derivative to the patient may occur in any of a number of appropriate fashions including, but not limited to: (1) intravenous, intraperitoneal, or subcutaneous injection or infusion; (2) oral administration; (3) transdermal absorption through the skin; and (4) inhalation.
Pyrazine derivatives of this invention can be administered as solutions in most pharmaceutically acceptable intravenous vehicles known in the art. Pharmaceutically acceptable vehicles that are well known to those skilled in the art include, but are not limited to, 0.01-0.1M phosphate buffer or 0.8% saline. Additionally, pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, emulsions, or appropriate combinations thereof. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Examples of aqueous carriers are water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Exemplary parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Exemplary intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, collating agents, inert gases and the like.
Suitable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers are also suitable excipients. Such compositions are liquids or lyophilized or otherwise dried formulations and include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), complexation with metal ions, or incorporation of the material into or onto particulate preparations of polymeric compounds such as polylactic acid, polglycolic acid, hydrogels, etc, or onto liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions may likely influence the physical state, solubility, stability, rate of in vivo release, and/or rate of in vivo clearance.
Still referring to the above-mentioned protocol, the pyrazine derivative is exposed to visible and/or near infrared light. This exposure of the pyrazine derivate to light may occur at any appropriate time but preferably occurs while the pyrazine derivative is located in the body. Due to this exposure of the pyrazine derivate to the visible and/or infrared light, the pyrazine derivate emanates spectral energy (e.g., visible and/or near infrared light) that may be detected by appropriate detection equipment. The spectral energy emanated from the pyrazine derivative tends to exhibit a wavelength range greater than a wavelength range absorbed by the pyrazine derivative. For example, if an embodiment of the pyrazine derivative absorbs light of about 700 nm, the pyrazine derivative may emit light of about 745 nm.
Detection of the pyrazine derivate (or more particularly, the light emanating therefrom) may be achieved through optical fluorescence, absorbance or light scattering procedures known in the art. In one embodiment, this detection of the emanated spectral energy may be characterized as a collection of the emanated spectral energy and a generation of electrical signal indicative of the collected spectral energy. The mechanism(s) utilized to detect the spectral energy from the pyrazine derivative that is present in the body may be designed to detect only selected wavelengths (or wavelength ranges) and/or may include one or more appropriate spectral filters. Various catheters, endoscopes, ear clips, hand bands, head bands, surface coils, finger probes and the like may be utilized to expose the pyrazine derivative to light and/or to detect the light emanating therefrom [30]. This detection of spectral energy may be accomplished at one or more times intermittently or may be substantially continuous.
Renal function of the patient can be determined based on the detected spectral energy. This can be achieved by using data indicative of the detected spectral energy and generating an intensity/time profile indicative of a clearance of the pyrazine derivative from the body. This profile may be correlated to a physiological or pathological condition. For example, the patient's clearance profiles and/or clearance rates may be compared to known clearance profiles and/or rates to assess the patient's renal function and to diagnose the patient's physiological condition. In the case of analyzing the presence of the pyrazine derivative in bodily fluids, concentration/time curves may be generated and analyzed (preferably in real time) using an appropriate microprocessor to diagnose renal function.
Physiological function can be assessed by: (1) comparing differences in manners in which normal and impaired cells remove a pyrazine derivative of the invention from the bloodstream; (2) measuring a rate or an accumulation of a pyrazine derivative of the invention in the organs or tissues; and/or (3) obtaining tomographic images of organs or tissues having a pyrazine derivative of the invention associated therewith. For example, blood pool clearance may be measured non-invasively from convenient surface capillaries such as those found in an ear lobe or a finger or can be measured invasively using an appropriate instrument such as an endovascular catheter. Accumulation of a pyrazine derivative of the invention within cells of interest can be assessed in a similar fashion.
A modified pulmonary artery catheter may also be utilized to, inter alia, make the desired measurements [32] of spectral energy emanating from a pyrazine derivative of the invention. The ability for a pulmonary catheter to detect spectral energy emanating from a pyrazine derivative of the invention is a distinct improvement over current pulmonary artery catheters that measure only intravascular pressures, cardiac output and other derived measures of blood flow. Traditionally, critically ill patients have been managed using only the above-listed parameters, and their treatment has tended to be dependent upon intermittent blood sampling and testing for assessment of renal function. These traditional parameters provide for discontinuous data and are frequently misleading in many patient populations.
Modification of a standard pulmonary artery catheter only requires making a fiber optic sensor thereof wavelength-specific. Catheters that incorporate fiber optic technology for measuring mixed venous oxygen saturation exist currently. In one characterization, it may be said that the modified pulmonary artery catheter incorporates a wavelength-specific optical sensor into a tip of a standard pulmonary artery catheter. This wavelength-specific optical sensor can be utilized to monitor renal function-specific elimination of a designed optically detectable chemical entity such as the pyrazine derivatives of the present invention. Thus, by a method analogous to a dye dilution curve, real-time renal function can be monitored by the disappearance/clearance of an optically detected compound.
The following examples illustrate specific embodiments of the invention. As would be apparent to skilled artisans, various changes and modifications are possible and are contemplated within the scope of the invention described.
Example 1 Preparation of 3,6-diamino-N2,N2,N5,N5-tetrakis(2-methoxyethyl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00006
A mixture of 3,6-diaminopyrazine-2,5-dicarboxylic acid (200 mg, 1.01 mmol), bis-2-(methoxyethyl)amine (372 μL, 335.5 mg, 2.52 mmol), HOBt-H2O (459 mg, 3.00 mmol), and EDC-HCl (575 mg, 3.00 mmol) were stirred together in DMF (20 mL) for 1 h at room temperature. The mixture was concentrated to dryness and the residue was partitioned with EtOAc and water. The layers were separated and the EtOAc solution was washed with saturated NaHCO3 and brine. The solution was dried over anhydrous Na2SO4, filtered and concentrated. Purification by radial flash chromatography (SiO2, 10/1 CHCl3-MeOH) afforded 228.7 mg (53% yield) of Example 1 as an orange foam: 1H NMR (300 MHz, CDCl3), δ 4.92 (s, 4H), 3.76 (apparent t, J=5.4 Hz, 4H), 3.70 (apparent t, J=5.6 Hz, 4H), 3.64 (apparent t, J=5.4 Hz, 4H), 3.565 (apparent t, J=5.4 Hz), 3.67 (s, 6H), 3.28 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 167.6 (s), 145.6 (s), 131.0 (s), 72.0 (t), 70.8 (t), 59.2 (q), 49.7 (t), 47.1 (t). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=3.14 min on 30 mm column, (M+H)+=429. UV/vis (100 μM in PBS) λabs=394 nm. Fluorescence (100 nm) λex=394 nm λem=550 nm.
Example 2 3,6-diamino-N2,N5-bis(2,3-dihydroxypropyl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00007
Step 1 Synthesis of 3,6-diamino-N2,N5-bis((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00008
A mixture of 3,6-diaminopyrazine-2,5-dicarboxylic acid (350 mg, 1.77 mmol), racemic (2,2-dimethyl-1,3-dioxolan-4-yl)methanamine (933 μL, 944 mg, 7.20 mmol), HOBt-H2O (812 mg, 5.3 mmol), and EDC-HCl (1.02 g, 5.32 mmol) were stirred together in DMF (20 mL) for 16 h at room temperature. The mixture was concentrated to dryness and the residue was partitioned with EtOAc and water. The layers were separated and the EtOAc solution was washed with saturated NaHCO3 and brine. The solution was dried over anhydrous Na2SO4, filtered and concentrated to afford 665 mg (88% yield) of the bis-amide diastereomeric pair as a yellow solid: 1NMR (300 MHz, CDC3) δ 8.38 (t, J=5.8 Hz, 2H), 6.55 (s, 4H), 4.21 (quintet, J=5.8 Hz, 2H), 3.98 (dd, J=8.4 Hz, 6.3 Hz, 2H), 3.65 (dd, J=8.4 Hz, J=5.8 Hz, 2H), 3.39 (apparent quartet—diastereotopic mixture, J=5.9 Hz, 4H), 1.35 (s, 6H), 1.26 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 165.7 (s), 146.8 (s), 126.8 (s), 109.2 (s), 74.8 (d), 67.2 (t), 42.2, 41.1 (t—diastereotopic pair), 27.6 (q), 26.1 (q).
Step 2
The product from Step 1 was dissolved in THF (100 mL) and treated with 1.0N HCl (2 mL). After hydrolysis was complete, the mixture was treated with K2CO3 (1 g) and stirred for 1 h and filtered through a plug of C18 with using methanol. The filtrate was concentrated to dryness and the residue was triturated with MeOH (50 mL). The solids were filtered and discarded and the residue was treated with ether (50 mL). The precipitate was collected by filtration and dried at high vacuum. This material was purified by radial flash chromatography to afford 221 mg (36% yield) of Example 2 as a orange solid: 1NMR (300 MHz, DMSO-d6) δ 8.00 (bm, 6H), 5.39 (bs, 2H), 4.88 (bs, 2H), 3.63-3.71 (complex m, 2H), 3.40 (dd, J=11.1, 5.10 Hz, 2H), 3.28 (dd, J=11.1, 6.60 Hz, 2H), 2.92 (dd, J=12.6, 3.3 Hz, 2H), 2.65 (dd, J=12.6, 8.4 Hz, 2H). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.13 min on 30 mm column, (M+H)+=345. UV/vis (100 μM in H2O) λabs=432 nm. Fluorescence λex=432 nm, λem=558 nm.
Example 3 3,6-Diamino-N2,N5-bis(serine)-pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00009
Step 1 Synthesis of 3,6-Diamino-N2,N5-bis(O-benzylserine methyl ester)-pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00010
A mixture of sodium 3,6-diaminopyrazine-2,5-dicarboxylate (300 mg, 1.24 mmol), Ser(OBn)-OMe-HCl salt (647 mg, 2.64 mmol), HOBt-H2O (570 mg, 3.72 mmol) and EDC-HCl (690 mg, 3.60 mmol) in DMF (25 mL) was treated with TEA (2 mL). The resulting mixture was stirred for 16 h and concentrated. Work up as in Example 1 afforded 370 mg (51% yield) of the bisamide as a bright yellow powder: 1H NMR (300 MHz, CDCl3) δ 8.47 (d, J=8.74 Hz, 2H), 7.25-7.37 (complex m, 10H), 5.98 (bs, 4H), 4.85 (dt, J=8.7, 3.3 Hz, 2H), 4.56 (ABq, J=12.6, Hz, Δν=11.9 Hz, 4H), 3.99 (one half of an ABq of d, J=8.7, 3.3, Δν obscured, 2H), 3.76-3.80 (one half of an ABq—obscured, 2H), 3.78 (s, 6H). 13C NMR (75 MHz, CDCl3) □ 170.5 (s), 165.1 (s), 146.8 (s), 138.7 (s) 128.6 (d), 128.1 (d), 127.8 (d), 126.9 (s), 73.5 (t), 69.8 (t), 53.0 (q), 52.9 (q). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.93 min on 30 mm column, (M+H)+=581.
Step 2 Synthesis of 3,6-Diamino-N2,N5-bis(O-benzylserine)-pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00011
The product from step 1 (370 mg, 0.64 mmol) in THF (10 mL) was treated with 1.0N sodium hydroxide (2.5 mL). After stirring at room temperature for 30 min, the reaction was judged complete by TLC. The pH was adjusted to approximately 2 by the addition of 1.0N HCl and the resulting solution was extracted (3×) with EtOAc. The layers were combined, dried over sodium sulfate, filtered and concentrated to afford 353 mg (100% yield) of the diacid as an orange foam: LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), retention time=4.41 min on 30 mm column, (M+H)4=553.
Step 3
To the product from step 2 (353 mg, 0.64 mmol) in methanol (20 mL) was added 5% Pd/C (300 mg) and ammonium formate (600 mg). The resulting reaction was heated at reflux for 2 h. The reaction was cooled to room temperature, filtered through a plug of celite and concentrated. The residue was recrystallized from methanol-ether to provide 191 mg (80% yield) of Example 3 as a yellow foam: 1NMR (300 MHz, DMSO-d6) δ 8.48 (d, J=6.9 Hz, 2H), 6.72 (bs, 4H), 3.95 (apparent quartet, J=5.1 Hz, 2H), 3.60 (apparent ABq of doublets; down-field group centered at 3.71, J=9.9, 5.1 Hz, 2H; up-field group centered at 3.48, J=9.9, 6.3 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 172.9 (s), 164.9 (s), 147.0 (s), 127.0 (s), 62.9 (d), 55.7 (t). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=1.45 min on 30 mm column, (M+H)+=373. UV/vis (100 μM in PBS) λabs=434 nm. Fluorescence λex=449 nm, λem=559 nm.
Example 4 3,6-bis(bis(2-methoxyethyl)amino)-N2,N2,N5,N5-tetrakis(2-methoxyethyl) pyrazine-2,5-dicarboxamide bis TFA salt
Figure USRE047413-20190604-C00012
Step 1 Synthesis of 3,6-dibromopyrazine-2,5-dicarboxylic acid
Figure USRE047413-20190604-C00013
3,6-Diaminopyrazine-2,5-dicarboxylic acid (499 mg, 2.52 mmol) was dissolved in 48% hydrobromic acid (10 mL) and cooled to 0° C. in an ice-salt bath. To this stirred mixture was added a solution of sodium nitrite (695 mg, 10.1 mmol) in water (10 mL) dropwise so that the temperature remains below 5° C. The resulting mixture was stirred for 3 h at 5-15° C., during which time the red mixture became a yellow solution. The yellow solution was poured into a solution of cupric bromide (2.23 g, 10.1 mmol) in water (100 mL) and the resulting mixture was stirred at room temperature. After an addition 3 h, the aqueous mixture was extracted with EtOAc (3×). The combined extracts were dried (Na2SO4), filtered and concentrated to afford 440 mg (54% yield) 3,6-dibromopyrazine-2,5-dicarboxylic acid as a pale yellow solid: 13C NMR (75 MHz, CDCl3) δ 164.3 (s), 148.8 (s), 134.9 (s). HPLC (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=2.95 min on 250 mm column.
Step 2 Synthesis of 3-(Bis(2-methoxyethyl)amino)-6-bromo-N2,N2,N5,N5-tetrakis(2-methoxyethyl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00014
The product from step 1 (440 mg, 1.36 mmol) was dissolved in DMF (25 mL), treated with HOBt-H2O (624 mg, 4.08 mmol), and EDC-HCl (786 mg, 4.10 mmol) and stirred for 30 min at room temperature. Bis(2-methoxylethyl)amine (620 mL, 559 mg, 4.20 mmol) was added and the resulting mixture was stirred at room temperature for 16 h and concentrated. The residue was partitioned with water and EtOAc. The EtOAc layer was separated and the aqueous was extracted again with EtOAc. The combined organic layers were washed with 0.5N HCl, saturated sodium bicarbonate, and brine. The organic layer was dried (Na2SO4), filtered and concentrated to afford 214 mg of 3-(bis(2-methoxyethyl)amino)-6-bromo-N2,N2,N5,N5-tetrakis(2-methoxyethyl)pyrazine-2,5-dicarboxamide (26% yield) as a brown oil: LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=3.85 min on 30 mm column, (M+H)+=608.
Step 3
To the product from step 2 (116 mg, 0.19 mmol) was added bis(2-methoxylethyl)amine (3.0 mL, 2.71 g, 20.3 mmol) and a “spatula tip” of Pd(PPh3)4. The resulting mixture was heated to 140° C. for 2 h. The reaction was cooled and concentrated. The residue was purified by flash chromatography (SiO2, 10/1 CHCl3-MeOH). The resulting material was purified again by reverse phase medium pressure chromatography (C18, 10-50% manual gradient acetonitrile in 0.1% TFA) to afford 12 mg (10% yield) of Example 4 as an orange-brown film: LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=3.85 min on 250 mm column, (M+H)+=661. UV/vis (100 kM in PBS) λabs=434 nm. Fluorescence λex=449 nm, λem=559 nm.
Example 5 3,6-diamino-N2,N5-bis(2-aminoethyl)pyrazine-2,5-dicarboxamide bis TFA salt
Figure USRE047413-20190604-C00015
Step 1 Synthesis of 3,6-diamino-N2,N5-bis[2-(tert-butoxycarbonyl)aminoethyl]pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00016
A mixture of sodium 3,6-diaminopyrazine-2,5-dicarboxylate (500 mg, 2.07 mmol), tert-butyl 2-aminoethylcarbamate (673 mg, 4.20 mmol), HOBt-H2O (836 mg, 5.46 mmol) and EDC-HCl (1.05 g, 5.48 mmol) in DMF (25 mL) was stirred for 16 h and concentrated. Work up as in Example 1 afforded 770 mg (76% yield) of the bisamide as an orange foam: 1NMR (300 MHz, DMSO-d6) major comformer, δ 8.44 (t, J=5.7 Hz, 2H), 6.90 (t, J=5.7 Hz, 2H), 6.48 (bs, 4H), 2.93-3.16 (complex m, 8H), 1.37 (s, 9H), 1.36 (s, 9H). 13C NMR (75 MHz, DMSO-d6), conformational isomers δ 165.1 (s), 155.5 (bs), 155.4 (bs), 146.0 (s), 126.2 (s), 77.7 (bs), 77.5 (bs), 45.2 (bt), 44.5 (bt), 28.2 (q).
Step 2
To the product from step 1 (770 mg, 1.60 mmol) in methylene chloride (100 mL) was added TFA (25 mL) and the reaction was stirred at room temperature for 2 h. The mixture was concentrated and the residue taken up into methanol (15 mL). Ether (200 mL) was added and the orange solid precipitate was isolated by filtration and dried at high vacuum to afford 627 mg (77% yield) of Example 5 as an orange powder: 1NMR (300 MHz, DMSO-d6) δ 8.70 (t, J=6 Hz, 2H), 7.86 (bs, 6H), 6.50 (bs, 4H), 3.46-3.58 (m, 4H), 3.26-3.40 (m, 4H). 13C NMR (75 MHz, DMSO-d6) δ 166.4 (s), 146.8 (s), 127.0 (s), 39.4 (t), 37.4 (t). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=3.62 min on 30 mm column, (M+H)+=283. UV/vis (100 μM in PBS) λabs=435 nm. Fluorescence (100 nM) λex=449 nm, λem=562 nm.
Example 6 3,6-Diamino-N2,N5-bis(D-Aspartate)-pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00017
Step 1 Synthesis of 3,6-Diamino-N2,N5-bis(benzyl D-Obenzyl-Aspartate)-pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00018
A mixture of sodium 3,6-diaminopyrazine-2,5-dicarboxylate (600 mg, 2.48 mmol), Asp(OBn)-OMe-p-TosH salt (2.43 g, 5.00 mmol), HOBt-H2O (919 mg, 6.00 mmol) and EDC-HCl (1.14 g, 5.95 mmol) in DMF (50 mL) was treated with TEA (4 mL). The resulting mixture was stirred over night at room temperature. The reaction mixture was concentrated and the residue was partitioned with water and EtOAc. The EtOAc layer was separated and washed successively with saturated sodium bicarbonate, water and brine. The EtOAc solution was dried (Na2SO4), filtered and concentrated. The residue was purified by flash chromatography (SiO2, 50/1 CHCl3-MeOH to 10/1) to afford 1.15 g of the bis-amide (58% yield) as a yellow foam: 1NMR (500 MHz, CDCl3) δ 8.61 (d, J=8.4 Hz, 2H), 7.29-7.39 (m, 20H), 5.85 (bs, 4H), 5.22 (ABq, J=10.0 Hz, Δν=17.3 Hz, 4H), 5.10 (ABq, J=12.2 Hz, Δν=34.3 Hz, 4H), 5.06-5.09 (obs m, 2H), 3.11 (ABq of d, J=17.0, 5.14 Hz, Δν=77.9 Hz, 4H). 13C NMR (75 MHz, CDCl3) δ 170.7 (s), 170.7 (s), 165.4 (s), 147.0 (s), 135.7 (s), 135.6 (s), 129.0 (d), 128.9 (d), 128.8 (d), 128.75 (d), 128.7 (d), 126.9 (s), 68.0 (t), 67.3 (t), 49.1 (d), 37.0 (t). LCMS (50-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=5.97 min on 250 mm column, (M+H)+=789.
Step 2
To the product from step 1 (510 mg, 0.65 mmol) was added THF (20 mL) and water (10 mL). The this stirred mixture was added 10% Pd(C) (500 mg) and ammonium formate (1 g). The resulting mixture was heated to 60° C. for 2 h and allowed to cool to room temperature. The mixture was filtered through celite and concentrated. The resulting material was purified again by reverse phase medium pressure chromatography (C18, 10-70% manual gradient acetonitrile in 0.1% TFA) to afford 137.8 mg (54% yield) of Example 6 as an orange solid: 1NMR (300 MHz, DMSO-d6) δ 8.62 (d, J=8.4 Hz, 2H), 6.67 (bs, 4H), 4.725 (dt, J=8.4, 5.4 Hz, 2H), 2.74-2.88 (complex m, 4H). 13C NMR (75 MHz, DMSO-d6) δ 172.6 (s), 165.2 (s), 147.0 (s), 126.6 (s), 60.8 (t), 49.1 (d). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.01 min on 250 mm column, (M+H)+=429. UV/vis (100 μM in PBS) λabs=433 nm. Fluorescence (100 nM) λex=449 nm, λem=558 nm.
Example 7 3,6-Diamino-N2,N5-bis(14-oxo-2,5,8,11-tetraoxa-15-azaheptadecan-17-yl) pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00019
To a solution of Example 5 (77.4 mg, 0.15 mmol) in DMF (5 mL) was added TEA (151 mg, 1.49 mmol) and 2,5-dioxopyrrolidin-1-yl 2,5,8,11-tetraoxatetradecan-14-oate (113 mg, 0.34 mmol) and the reaction was stirred for 16 h at room temperature. The reaction was concentrated and the residue was purified by medium pressure revered phase chromagraphy (LiChroprep RP-18 Lobar (B) 25×310 mm—EMD chemicals 40-63 μm, 70 g, 90/10 to 80/20 0.1% TFA-ACN) to afford 37.4 mg (35% yield) of example 7 as an orange film: 1NMR (300 MHz, DMSO-d6) δ 8.47 (t, J=5.7 Hz, 2H), 7.96 (t, J=5.4 Hz, 2H), 3.20-3.60 (complex m, 36H), 3.47 (s, 3H), 3.46 (s, 3H), 2.30 (t, J=6.3 Hz, 4H). 13C NMR (75 MHz, DMSO-d6) δ 170.2 (s), 165.1 (s), 146.0 (s), 126.2 (s), 71.2 (t), 69.7 (t), 69.6 (t), 69.5 (t), 69.4 (t), 66.7 (t), 58.0 (q), 38.2 (t), 36.2 (t). LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.01 min on 250 mm column, (M+H)+=719, (M+Na)+=741. UV/vis (100 μM in PBS) λabs=437 nm. Fluorescence (100 nM) λex=437 nm, λem=559 nm.
Example 8 3,6-Diamino-N2,N5-bis(26-oxo-2,5,8,11,14,17,20,23-octaoxa-27-azanonacosan-29-yl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00020
To a solution of Example 5 (50.3 mg, 0.10 mmol) in DMF (5 mL) was added TEA (109 mg, 1.08 mmol) and 2,5-dioxopyrrolidin-1- yl 2,5,8,11,14,17,20,23-octaoxahexacosan-26-oate (128 mg, 0.25 mmol) and the reaction was stirred for 16 h at room temperature. The reaction was concentrated and the residue was purified by medium pressure revered phase chromagraphy (LiChroprep RP-18 Lobar (B) 25×310 mm—EMD chemicals 40-63 μm, ˜70 g, 90/10 to 80/20 0.1% TFA-ACN) to afford 87.9 mg (82% yield) of example 8 as an orange film: 1NMR (300 MHz, DMSO-d6) δ 8.46 (t, J=5.7 Hz, 2H), 7.96 (t, J=5.4 Hz, 2H), 3.16-3.73 (complex m, 74H), 2.28-2.32 (m, 2H). 13C NMR (75 MHz, DMSO-d6)—multiple conformations—δ 170.1 (s), 169.9 (s) 169.8 (s), 165.1 (s), 146.0 (s), 126.2 (s), 71.2 (t), 69.7 (t), 69.6 (t), 69.5 (t), 66.7 (t), 58.0 (q), 38.2 (t), 36.2 (t). LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=5.90 min on 250 mm column, (M+H)+=1071, (M+2H)+=536. UV/vis (100 μM in PBS) λabs=438 nm. Fluorescence (100 nM) λex=438 nm, λem=560 nm.
Example 9 3,6-Diamino-N2,N5-bis(38-oxo-2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxa-39-azahentetracontan-41-yl)pyrazine-2,5-dicarboxamide
Figure USRE047413-20190604-C00021
To a solution of Example 5 (53.1 mg, 0.10 mmol) in DMF (5 mL) was added TEA (114 mg, 1.13 mmol) and 2,5-dioxopyrrolidin-1- yl 2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxaoctatriacontan-38-oate (144 mg, 0.21 mmol) in DMF (2.0 mL) and the resulting mixture was stirred for 16 h thereafter. The reaction was concentrated and the residue was purified by medium pressure revered phase chromagraphy (LiChroprep RP-18 Lobar (B) 25×310 mm—EMD chemicals 40-63 μm, ˜70 g, 90/10 to 80/20 0.1% TFA-ACN) to afford 87.5 mg (61% yield) of example 9 as an orange film: 1NMR (300 MHz, DMSO-d6) δ 8.48 (t, J=5.7 Hz, 2H), 7.96 (t, J=5.4 Hz, 2H), 7.80-7.86 (m, 2H), 5.94 (bm, 2H), 3.30-3.60 (complex m, 106H), 2.26-2.33 (m, 4H). 13C NMR (75 MHz, DMSO-d6) δ 170.2 (s), 165.1 (s), 146.0 (s), 126.2 (s), 71.2 (t), 69.7 (t), 69.6 (t), 69.5 (t), 66.7 (t), 58.0 (q), 38.2 (t), 36.2 (t). LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=5.90 min on 250 mm column, (M+2H)++=712. UV/vis (100 μM in PBS) λabs=449 nm. Fluorescence (100 nM) λex=449 nm, λem=559 nm.
Example 10 Bis(2-(PEG-5000)ethyl) 6-(2-(3,6-diamino-5-(2-aminoethylcarbamoyl)pyrazine-2-carboxamido)ethylamino)-6-oxohexane-1,5-diyldicarbamate
Figure USRE047413-20190604-C00022
A solution of Example 5 (25 mg, 0.049 mmol) in DMF (30 mL) was treated with TEA (1 mL) and m-PEG2-NHS (1 g, 0.1 mmol) and the resulting mixture was stirred for 48 h at room temperature. The mixture was concentrated and the residue was partially purified by gel filtration chromatography (G-25 resin, water). The product was concentrated and further purified by reverse phase medium pressure chromatography (C18, 10-70% manual gradient acetonitrile in 0.1% TFA) to afford 137.8 mg (54% yield) of Example 10 as a tan waxy solid: Maldi MS m/z=11393.
Example 11 (R)-2-(6-(bis(2-methoxyethyl)amino)-5-cyano-3-morpholinoprazine-2-carboxamido)succinic acid
Figure USRE047413-20190604-C00023
Step 1 Synthesis of 2-amino-5-bromo-3,6-dichloropyrazine
Figure USRE047413-20190604-C00024
A solution of 2-amino-6-chloropyrazine (25 g, 193.1 mmol) in MeOH (500 mL) was treated with NBS (34.3 g, 193.1 mmol), portion-wise, over 1 hour. The resulting mixture was stirred for 16 hours thereafter. TLC analysis at this time shows a small amount of starting material remaining. Another 1.4 g NBS added and reaction heated to 50° C. for 2 hours. The mixture was then cooled to 38° C. and treated with NCS (25.8 g, 193.1 mmol). The reaction mixture was heated to 50° C. for 16 hours thereafter. The mixture was then cooled to room temperature and treated with water (500 mL). The precipitate was collected by filtration and dried in a vacuum dessicator to afford 45.4 g (97% yield) of 2-amino-5-bromo-3,6-dichloropyrazine as a white solid: 13C NMR (75 MHz, CDCl3) δ 149.9 (s), 145.6 (s), 129.6 (s), 121.5 (s). LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.51 min on 30 mm column, (M+H)+=244, (M+H+ACN)+=285.
Step 2 Synthesis of 5-amino-3,6-dichloropyrazine-2-carbonitrile
Figure USRE047413-20190604-C00025
A mixture of CuCN (8.62 g, 96.3 mmol) and NaCN (4.72 g, 96.3 mmol) was heated under high vacuum to 90° C. The resulting mixture was subjected to three Argon/Vacuum cycles and placed under a final positive pressure of Argon. The mixture was allowed to cool to room temperature and DMF (150 mL) was added. The heterogenous mixture was heated to 130° C. for 2.5 hours. To the resulting homogeneous mixture of sodium dicyanocuprate was added a solution of the product from step 1 (15.6 g, 64.2 mmol) dissolved in DMF (150 mL), dropwise, over 1 hour. The temperature was gradually raised to 150° C. and the resulting mixture was stirred at this temperature for 10 hours thereafter. The reaction was then allowed to cool to room temperature and poured into water (1 L). The resulting mixture was extracted with EtOAc (3×) and the combined extracts were filtered to remove a flocculant dark solid, washed with brine, dried (Na2SO4), filtered again and concentrated. Purification by flash column chromatography (SiO2, 10/1 hexanes-EtOAc to 3/1) to afford 6.70 g (55% yield) of the nitrile product as a tan solid: 13C NMR (75 MHz, CDCl3) δ 153.9 (s), 149.1 (s), 131.7 (s), 115.4 (s), 111.0 (s). GCMS (inj. temperature=280° C., 1.0 mL/min helium flow rate, temperature program: 100° C. (2 min hold), ramp to 300° C. 10° C./min (2 min hold), major peak retention time=16.556 min, m/z (EI)=188, 190.
Step 3 Synthesis of 5-amino-3-(bis(2-methoxyethyl)amino)-6-chloropyrazine-2-carbonitrile
Figure USRE047413-20190604-C00026
To the product from step 2 (1.00 g, 5.29 mmol) in ACN (20 mL) was added bis(2-methoxyethyl)amine (3.0 mL, 2.71 g, 20.3 mmol) and the reaction mixture was heated to 70° C. for 16 hours thereafter. The reaction was cooled and concentrated. The residue was partitioned with EtOAc and water. The organic layer was separated and the aqueous was extracted again with EtOAc. The combined organic extracts were washed with brine, dried (Na2SO4), filtered and concentrated. Purification by flash column chromatography (SiO2, 10/1 hexanes-EtOAc to 1/1) afforded 950 mg (63% yield) of the desired adduct as a yellow solid: 1NMR (300 MHz, CDCl3) δ 7.47 (bs, 2H), 3.77 (t, J=5.7 Hz, 4H), 3.52 (t, J=5.4 Hz, 4H), 3.25 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 154.7 (s), 152.0 (s), 120.9 (s), 119.5 (s), 95.8 (s), 71.0 (t), 59.1 (q), 50.0 (t). LCMS (50-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.91 min on 250 mm column, (M+H)+=286, (M+Na)+=308, (M+Na+ACN)+=349.
Step 4 Synthesis of 3-(bis(2-methoxyethyl)amino)-5-bromo-6-chloropyrazine-2-carbonitrile
Figure USRE047413-20190604-C00027
To the product from step 3 (1.39 g, 4.88 mmol) in 48% hydrobromic acid (20 mL) at 0° C. (ice-salt bath), was added a solution of sodium nitrite (673 mg, 9.75 mmol) in water (10 mL) dropwise over 30 min. The resulting mixture was stirred at 0-5° C. for 1 h and poured into a stirred solution of CuBr2 (1.64 g, 7.34 mmol) in water (100 mL). The resulting mixture was stirred for 16 h at room temperature thereafter. The mixture was extracted with EtOAc (3×). The combined organic layers were dried (Na2SO4), filtered and concentrated. Purification by flash column chromatography (SiO2, 50/1 CHCl3-MeOH) afforded 1.00 g (58% yield) of the bromide as a orange-brown solid: 1NMR (300 MHz, CDCl3) δ 3.99 (t, J=5.4 Hz, 4H), 3.64 (t, J=5.4 Hz, 4H), 3.35 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 152.8 (s), 140.8 (s), 133.4 (s), 117.2 (s), 108.3 (s), 70.4 (t), 59.1 (t), 50.5 (q). LCMS (50-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.55 min on 250 mm column, (M+H)+=349, 351.
Step 5 Synthesis of 3-(bis(2-methoxethyl)amino)-6-chloro-5-(furan-2-yl)pyrazine-2-carbonitrile
Figure USRE047413-20190604-C00028
A mixture of the product from step 4 (1.0 g, 2.87 mmol), 2-furanboronic acid (643 mg, 5.75 mmol), Cs2CO3 (3.31 g, 10.2 mmol), TFP (35 mol %, 236 mg, 1.02 mmol), and Pd2 dba3-CHCl3 (5 mol %, 10 mol % Pd, 150 mg) was subjected to 3 vacuum/Argon cycles and placed under a positive pressure of Argon. Anhydrous dioxane (50 mL) was added and the reaction mixture was heated to 75° C. for 16 h thereafter. The reaction mixture was cooled to room temperature, diluted with EtOAc (100 mL) and filtered through a medium frit. Concentration and purification of the residue by flash chromatography (SiO2, 50/1 CHCl3-MeOH) afforded the 757 mg of the furan adduct (78% yield) as a tan powder: LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=6.41 min on 250 mm column, (M+H)+=337.
Step 6 Synthesis of 6-(bis(2-methoxyethyl)amino)-3-chloro-5-cyanopyrazine-2-carboxylic acid
Figure USRE047413-20190604-C00029
To a well stirred mixture of ACN (11 mL), CCl4 (7 mL), and water (11 mL) were added sodium periodate (1.07 g, 5.00 mmol) and RuO2.H2O (13.3 mg, 0.10 mmol), sequentially. The resulting mixture was stirred vigorously at room temperature for 30 min and treated with sodium bicarbonate (2.10 g, 25.0 mmol) followed by water (5 mL). Vigorous stirring for another 15 minutes was followed by the addition of a solution of the product from Step 5 (276 mg, 0.82 mmol) dissolved in ACN (1 mL). The green mixture was stirred at room temperature for 5.5 h. The mixture was transferred to a separatory funnel and extracted with EtOAc. The aqueous layer was adjusted to pH˜3.5 and extracted again with EtOAc (2×). The combined extracts were washed with 20% sodium bisulfite and brine and dried (Na2SO4). Filtration and concentration afforded 140 mg (54% yield) of carboxylic acid as a pale yellow solid: LCMS (5-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=5.05 min on 250 mm column, (M+H)+=315.
Step 7 Synthesis of (R)-dibenzyl 2-(6-(bis(2-methoxyethyl)amino)-3-chloro-5-cyanopyrazine-2-carboxamido)succinate
Figure USRE047413-20190604-C00030
A mixture of the product from step 6 (140 mg, 0.45 mmol), EDC-HCl (128 mg, 0.67 mmol) and HOBt.H2O (102 mg, 0.67 mmol) in anhydrous DMF (25 mL) was stirred together at room temperature for 30 min. To this stirred mixture was added (R)-dibenzyl 2-aminosuccinate p-TsOH salt (213 mg, 0.44 mmol) followed by TEA (1 mL). The resulting mixture was stirred for 16 h thereafter. The reaction mixture was concentrated and partitioned with EtOAc and saturated sodium bicarbonate solution. The EtOAc layer was separated and washed with saturated sodium bicarbonate and brine, dried (Na2SO4), filtered and concentrated to afford 240 mg (88% yield) of the pyrazine amide as an orange foam: LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=8.76 min on 250 mm column, (M+H)=610, (M+Na)+=632.
Step 8 (R)-dibenzyl 2-(6-(bis(2-methoxyethyl)amino)-5-cyano-3-morpholinopyrazine-2-carboxamido)succinate
Figure USRE047413-20190604-C00031
To the product from step 7 (240 mg, 0.39 mmol) was added morpholine (5 mL). The reaction mixture was heated to 70° C. for 2 h. The mixture was cooled and concentrated. The residue was partitioned with EtOAc and water. The EtOAc layer was separated and washed with saturated sodium bicarbonate and brine. The EtOAc layer was dried (Na2SO4), filtered and concentrated. Purification by flash column chromatography (SiO2, 3:1 to 1:1 hexanes-EtOAc) afforded 199 mg (75% yield) of the morpholine adduct as an orange foam: LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=8.76 min on 250 mm column, (M+H)+=661, (M+Na)+=683.
Step 9 Synthesis of Example 11
Figure USRE047413-20190604-C00032
The dibenzyl ester (115 mg, 0.17 mmol) in THF (10 mL) was added 1.0N sodium hydroxide (4 mL). The mixture was stirred for 1 h at room temperature. The pH was adjusted to ˜2 with 1.0N HCl and the solution was concentrated. Purification of the residue by medium pressure reversed phase chromatography (LiChroprep RP-18 Lobar (B) 25×310 mm—EMD chemicals 40-63 μm, ˜70 g, 90/10 to 50/50 0.1% TFA-ACN) afforded 32 mg (27% yield) of example 11 as an orange solid: LCMS (15-95% gradient acetonitrile in 0.1% TFA over 10 min), single peak retention time=4.47 min on 250 mm column, (M+H)+=481. UV/vis (100 μM in PBS) λabs=438 nm. Fluorescence (100 nM) λex=449 nm, λem=570 nm.
Example 12 Protocol for Assessing Renal Function
An example of an in vivo renal monitoring assembly 10 is shown in FIG. 2 and includes a light source 12 and a data processing system 14. The light source 12 generally includes or is interconnected with an appropriate device for exposing at least a portion of a patient's body to light therefrom. Examples of appropriate devices that may be interconnected with or be a part of the light source 12 include, but are not limited to, catheters, endoscopes, fiber optics, ear clips, hand bands, head bands, forehead sensors, surface coils, and finger probes. Indeed, any of a number of devices capable of emitting visible and/or near infrared light of the light source may be employed in the renal monitoring assembly 10.
Still referring to FIG. 2, the data processing system 14 of the renal monitoring assembly may be any appropriate system capable of detecting spectral energy and processing data indicative of the spectral energy. For instance, the data processing system 14 may include one or more lenses (e.g., to direct and/or focus spectral energy), one or more filters (e.g., to fitter out undesired wavelengths of spectral energy), a photodiode (e.g., to collect the spectral energy and convert the same into electrical signal indicative of the detected spectral energy), an amplifier (e.g., to amplify electrical signal from the photodiode), and a processing unit (e.g., to process the electrical signal from the photodiode). This data processing system 14 is preferably configured to manipulate collected spectral data and generate an intensity/time profile and/or a concentration/time curve indicative of renal clearance of a pyrazine derivative of the present invention from the patient 20. Indeed, the data processing system 14 may be configured to generate appropriate renal function data by comparing differences in manners in which normal and impaired cells remove the pyrazine derivative from the bloodstream, to determine a rate or an accumulation of the pyrazine derivative in organs or tissues of the patient 20, and/or to provide tomographic images of organs or tissues having the pyrazine derivative associated therewith.
In one protocol for determining renal function, an effective amount of a pyrazine derivative of the invention is administered to the patient (e.g., in the form for a pharmaceutically acceptable composition). At least a portion of the body of the patient 20 is exposed to visible and/or near infrared light from the light source 12 as indicated by arrow 16. For instance, the light from the light source 12 may be delivered via a fiber optic that is affixed to an ear of the patient 20. The patient may be exposed to the light from the light source 12 before or after administration of the pyrazine derivative to the patient 20. In some cases, it may be beneficial to generate a background or baseline reading of light being emitted from the body of the patient 20 (due to exposure to the light from the light source 12) before administering the pyrazine derivative to the patient 20. When the pyrazine derivative that is in the body of the patient 20 is exposed to the light from the light source 12, the pyrazine derivative emanates light (indicated by arrow 18) that is detected/collected by the data processing system 14. Initially, administration of the pyrazine derivative to the patient 20 generally enables an initial spectral signal indicative of the initial content of the pyrazine derivative in the patient 20. The spectral signal then tends to decay as a function of time as the pyrazine derivative is cleared from the patient 20. This decay in the spectral signal as a function of time is indicative of the patient's renal function. For example, in a first patient exhibiting healthy/normal renal function, the spectral signal may decay back to a baseline in a time of T. However, a spectral signal indicative of a second patient exhibiting deficient renal function may decay back to a baseline in a time of T+4 hours. As such, the patient 20 may be exposed to the light from the light source 12 for any amount of time appropriate for providing the desired renal function data. Likewise, the data processing system 14 may be allowed to collect/detect spectral energy for any amount of time appropriate for providing the desired renal function data.
REFERENCES
  • 1. Nally, J. V. Acute renal failure in hospitalized patients. Cleveland Clinic Journal of Medicine 2002, 69(7), 569-574.
  • 2. C. A. Rabito, L. S. T. Fang, and A. C. Waltman. Renal function in patients at risk with contrast material-induced acute renal failure: Noninvasive real-time monitoring. Radiology 1993, 186, 851-854.
  • 3. N. L. Tilney, and J. M. Lazarus. Acute renal failure in surgical patients: Causes, clinical patterns, and care. Surgical Clinics of North America 1983, 63, 357-377.
  • 4. B. E. VanZee, W. E. Hoy, and J. R. Jaenike. Renal injury associated with intravenous pyelography in non-diabetic and diabetic patients. Annals of Internal Medicine 1978, 89, 51-54.
  • 5. S. Lundqvist, G. Edbom, S. Groth, U. Stendahl, and S.-O. Hietala. Iohexyl clearance for renal function measurement in gynecologic cancer patients. Acta Radiologica 1996, 37, 582-586.
  • 6. P. Guesry, L. Kaufman, S. Orloff, J. A. Nelson, S. Swann, and M. Holliday. Measurement of glomerular filtration rate by fluorescent excitation of non-radioactive meglumine iothalamate. Clinical Nephrology 1975, 3, 134-138).
  • 7. C. C. Baker et al. Epidemiology of Trauma Deaths. American Journal of Surgery 1980, 144-150.
  • 8. R. G. Lobenhoffer et al. Treatment Results of Patients with Multiple Trauma: An Analysis of 3406 Cases Treated Between 1972 and 1991 at a German Level I Trauma Center. Journal of Trauma 1995, 38, 70-77.
  • 9. J. Coalson, Pathology of Sepsis, Septic Shock, and Multiple Organ Failure. In New Horizons: Multiple Organ Failure, D. J. Bihari and F. B. Cerra, (Eds). Society of Critical Care Medicine, Fullerton, Calif., 1986, pp. 27-59.
  • 10. F. B. Cerra, Multiple Organ Failure Syndrome. In New Horizons: Multiple Organ Failure, D. J. Bihari and F. B. Cerra, (Eds). Society of Critical Care Medicine, Fullerton, Calif., 1989, pp. 1-24.
  • 11. R. Muller-Suur, and C. Muller-Suur. Glomerular filtration and tubular secretion of MAG3 in rat kidney. Journal of Nuclear Medicine 1989, 30, 1986-1991).
  • 12. P. D. Dollan, E. L. Alpen, and G. B. Theil. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. American Journal of Medicine 1962, 32, 65-79.
  • 13. J. B. Henry (Ed). Clinical Diagnosis and Management by Laboratory Methods, 17th Edition, W.B. Saunders, Philadelphia, Pa., 1984.
  • 14. F. Roch-Ramel, K. Besseghir, and H. Murer. Renal excretion and tubular transport of organic anions and cations. In Handbook of Physiology, Section 8, Neurological Physiology, Vol. II, E. E. Windhager, Editor, pp. 2189-2262. Oxford University Press: New York, 1992
  • 15. D. L. Nosco and J. A. Beaty-Nosco. Chemistry of technetium radiopharmaceuticals 1: Chemistry behind the development of technetium-99m compounds to determine kidney function. Coordination Chemistry Reviews 1999, 184, 91-123.
  • 16. P. L. Choyke, H. A. Austin, and J. A. Frank. Hydrated clearance of gadolinium-DTPA as a measurement of glomerular filtration rate. Kidney International 1992, 41, 1595-1598.
  • 17. N. Lewis, R. Kerr, and C. Van Buren. Comparative evaluation of urographic contrast media, inulin, and 99mTc-DTPA clearance methods for determination of glomerular filtration rate in clinical transplantation. Transplantation 1989, 48, 790-796).
  • 18. W. N. Tauxe. Tubular Function. In Nuclear Medicine in Clinical Urology and Nephrology, W. N. Tauxe and E. V. Dubovsky, Editors, pp. 77-105, Appleton Century Crofts: East Norwalk, 1985.
  • 19. A. R. Fritzberg et al. Mercaptoacetylglycylglycyglycine. Journal of Nuclear Medicine 1986, 27, 111-120.
  • 20. G. Ekanoyan and N. W. Levin. In Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification (K/DOQI). National Kidney Foundation: Washington, D.C. 2002, pp. 1-22.
  • 21. Ozaki, H. et al. Sensitization of europium(III) luminescence by DTPA derivatives. Chemistry Letters 2000, 312-313.
  • 22. Rabito, C. Fluorescent agents for real-time measurement of organ function. U.S. Patent 2002; U.S. Pat. No. 6,440,389.
  • 23. R. Rajagopalan, R. et al. Polyionic fluorescent bioconjugates as composition agents for continuous monitoring of renal function. In Molecular Imaging: Reporters, Dyes, Markers, and Instrumentation, A. Priezzhev, T. Asakura, and J. D. Briers, Editors, Proceedings of SPIE, 2000, 3924.
  • 24. Dorshow, R. B. et al. Noninvasive renal function assessment by fluorescence detection. In Biomedical Optical Spectroscopy and Diagnostics, Trends in Optics and Photonics Series 22, E. M Sevick-Muraca, J. A. Izatt, and M. N. Ediger, Editors, pp. 54-56, Optical Society of America, Washington D.C., 1998.
  • 25. Shirai, K. et al Synthesis and fluorescent properties of 2,5-diamino-3,6-dicyanopyrazine dyes. Dyes and Pigments 1998, 39(1), 49-68.
  • 26. Kim, J. H. et al. Self-assembling of aminopyrazine fluorescent dyes and their solid state spectra. Dyes and Pigments 1998, 39(4), 341-357.
  • 27. Barlin, G. B. The pyrazines. In The Chemistry of Heterocyclic Compounds. A. Weissberger and E. C. Taylor, Eds. John Wiley & Sons, New York: 1982.
  • 28. Donald, D. S. Synthesis of 3,5-diaminopyrazinoic acid from 3,5-diamino-2,6-dicyanopyrazine and intermediates. U.S. Patent 1976; U.S. Pat. No. 3,948,895.
  • 29. Donald, D. S. Diaminosubstituted dicyanopyrzines and process. U.S. Patent 1974; U.S. Pat. No. 3,814,757.
  • 30. Muller et al. Eds, Medical Optical Tomography, SPIE Volume IS11, 1993.
  • 31. R. B. Dorshow et al. Non-Invasive Fluorescence Detection of Hepatic and Renal Function, Bull. Am. Phys. Soc. 1997, 42, 681.
  • 32. R. B. Dorshow et al. Monitoring Physiological Function by Detection of Exogenous Fluorescent Contrast Agents. In Optical Diagnostics of Biological Fluids IV, A. Priezzhevand T. Asakura, Editors, Proceedings of SPIE 1999, 3599, 2-8).

Claims (36)

What is claimed is:
1. A method of using a compound, the method comprising:
administering the compound into a body of a patient;
exposing the compound that is in the body of the patient to visible or infrared red light, thereby causing spectral energy to emanate from the compound;
detecting the spectral energy emanated from the compound in the body; and
assessing renal function of the patient based on the detected spectral energy, the compound being of Formula I, wherein:
Figure USRE047413-20190604-C00033
each of X1 and X2 is independently —CN, —CO2R1, —CONR2R3, CO(AA) or —CONH(PS);
each of Y1 and Y2 is independently —NR4R5 or
Figure USRE047413-20190604-C00034
Z1 is a single bond, —CR18R19—, —O—, —NR20—, —NCOR21—, —S—, —SO—, or —SO2—;
each of R1 to R5 and R18 to R21 is independently —H, —CH2(CHOH)aR44, —CH2(CHOH)aCO2H, —(CHCO2H)aCO2H, —(CH2CH2O)cR49, —(CH2)aSO3H, —(CH2)aSO3 , —(CH2)aNHSO3H, —(CH2)aNHSO3 , —(CH2)aPO3H2, —(CH2)aPO3H, or —(CH2)aPO3 =;
each of R44 and R49 is independently —H or —CH3;
AA comprises a single natural or unnatural amino acid or a polypeptide comprising two or more natural and/or unnatural amino acids linked together by peptide bonds and each instance of AA may be the same or different than each other instance;
(PS) is a sulfated or non-sulfated polysaccharide chain comprising one or more monosaccharide units connected by glycosidic linkages; and
‘a’ is an integer from 1 to 10, ‘c’ is an integer from 1 to 100, and each of ‘m’ and ‘n’ independently is an integer from 1 to 3.
2. The method of claim 1, wherein said spectral energy is fluorescence from said compound comprising visible or infrared light.
3. The method of claim 1, wherein said step of assessing renal function of the patient based on the detected spectral energy comprises using data indicative of the detected spectral energy and generating an intensity/time profile indicative of clearance of the compound from the body of the patient.
4. The method of claim 1, wherein said step of assessing renal function of the patient based on the detected spectral energy comprises:
comparing differences in which normal and impaired cells of the patient remove the compound from the bloodstream;
measuring a rate or an accumulation of the compound in an organ or a tissue of the patient; or
obtaining a tomographic image of an organ or a tissue of the patient having the compound associated therewith.
5. The method of claim 1, wherein each of X1 and X2 are —CONR2R3, and each of Y1 and Y2 is —NR4R5.
6. The method of claim 5, wherein each of R2 and R4 is —H, and R3 is —CH2(CHOH)aR44 or —(CH2CH2O)cR49, and R5 is —H or —(CH2CH2O)cR49.
7. The method of claim 6, wherein R3 is —(CH2CH2O)cR49, and R5 is —H.
8. The method of claim 7, wherein R49 is —CH3, and ‘c’ is an integer from 1 to 20.
9. The method of claim 1, wherein each of X1 and X2 is —CO2R1, and each of Y1 and Y2 is —NR4R5.
10. The method of claim 9, wherein each of R1 and R4 is —H, and R5 is —CH2(CHOH)aR44 or —(CH2CH2O)cR49.
11. The method of claim 10, wherein R44 is —H, R49 is —CH3, ‘a’ is an integer from 1 to 6, and ‘c’ is an integer from 1 to 20.
12. The method of claim 1, wherein each of X1 and X2 is —CN, and each of Y1 and Y2 is —NR4R5.
13. The method of claim 12, wherein R4 is —H, and R5 is —CH2(CHOH)aR44 or —(CH2CH2O)cR49.
14. The method of claim 13, wherein R44 is —H, R49 is —CH3, ‘a’ is an integer from 1 to 6, and ‘c’ is an integer from 1 to 20.
15. The method of claim 1, each of X1 and X2 is —CONH(PS), and each of Y1 and Y2 is —NR4R5.
16. The method of claim 15, wherein each of R4 and R5 is independently —H or —CH2(CHOH)aR44.
17. The method of claim 16, wherein each of R4, and R5 is —H.
18. The method of claim 15, wherein the one or more monosaccharide units of the polysaccharide chain (PS) are selected from the group consisting of glucose, fructose, mannose, xylose, and ribose.
19. The method of claim 1, wherein at least one of X1 and X2 is —CONH(PS) or —CO(AA).
20. The method of claim 1, wherein both X1 and X2 are —CO(AA).
21. The method of claim 20, wherein each instance of AA is one or more of D-α-amino acids.
22. The method of claim 21, wherein each instance of AA is a single D-α-amino acid.
23. The method of claim 21, wherein AA is selected from the group consisting of D-aspartic acid, D-asparagine, D-arginine, D-histidine, D-lysine, D-glutamic acid, D-glutamine, D-serine, and D-homoserine.
24. The method of claim 21, wherein AA is selected from the group consisting of D-serine and D-aspartic acid.
25. The method of claim 21, wherein AA is D-serine.
26. The method of claim 20, wherein each instance of AA is one or more of L-α-amino acids.
27. The method of claim 26, wherein each instance of AA is a single L-α-amino acid.
28. The method of claim 26, wherein AA is selected from the group consisting of L-aspartic acid, L-asparagine, L-arginine, L-histidine, L-lysine, L-glutamic acid, L-glutamine, L-serine, and L-homoserine.
29. The method of claim 26, wherein AA is selected from the group consisting of L-serine and L-aspartic acid.
30. The method of claim 26, wherein AA is L-serine.
31. The method of claim 27, wherein AA is L-serine, Y1 and Y2 are each —NR4R5 with R4═R5═H.
32. The method of claim 31, wherein the compound of Formula I is combined with at least one pharmaceutically acceptable excipients before administering the compound of Formula I to a patient.
33. The method of claim 32, wherein one of the pharmaceutically acceptable excipients is phosphate buffered saline.
34. A method of using a compound, the method comprising:
administering the compound into a body of a patient;
exposing the compound that is in the body of the patient to visible or infrared light, thereby causing spectral energy to emanate from the compound;
detecting the spectral energy emanated from the compound in the body; and
assessing renal function of the patient based on the detected spectral energy, wherein the compound is
Figure USRE047413-20190604-C00035
(2R,2′R)-2,2′-((3,6-diaminopyrazine-2,5-dicarbonyl)bis(azanediyl))-bis(3-hydroxypropanoic acid).
35. The method of claim 34, wherein the compound is combined with at least one pharmaceutically acceptable excipients before administering the compound to a patient.
36. The method of claim 35, wherein one of the pharmaceutically acceptable excipients is phosphate buffered saline.
US15/667,427 2004-12-23 2017-08-02 Pyrazine derivatives and uses thereof in renal monitoring Active USRE47413E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/667,427 USRE47413E1 (en) 2004-12-23 2017-08-02 Pyrazine derivatives and uses thereof in renal monitoring

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US63861104P 2004-12-23 2004-12-23
PCT/US2005/046732 WO2006071759A2 (en) 2004-12-23 2005-12-22 Fluorescent pyrazine derivatives and methods of using the same in assessing renal function
US81571206P 2006-06-22 2006-06-22
PCT/US2007/014370 WO2007149479A1 (en) 2006-06-22 2007-06-20 Pyrazine derivatives and uses thereof in renal monitoring
US12/995,223 US20110180010A1 (en) 2008-05-30 2009-06-02 Crystal forms of astaxanthin
US12/721,186 US20100247368A1 (en) 2009-03-27 2010-03-10 Alloy and a method of making an alloy
US13/343,231 US8722685B2 (en) 2004-12-23 2012-01-04 Pyrazine derivatives and uses thereof in renal monitoring
US14/223,042 US9114160B2 (en) 2004-12-23 2014-03-24 Pyrazine derivatives and uses thereof in renal monitoring
US15/667,427 USRE47413E1 (en) 2004-12-23 2017-08-02 Pyrazine derivatives and uses thereof in renal monitoring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/223,042 Reissue US9114160B2 (en) 2004-12-23 2014-03-24 Pyrazine derivatives and uses thereof in renal monitoring

Publications (1)

Publication Number Publication Date
USRE47413E1 true USRE47413E1 (en) 2019-06-04

Family

ID=38577613

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/995,223 Active US8115000B2 (en) 2006-06-22 2007-06-20 Pyrazine derivatives and uses thereof in renal monitoring
US13/343,231 Active 2026-03-03 US8722685B2 (en) 2004-12-23 2012-01-04 Pyrazine derivatives and uses thereof in renal monitoring
US14/223,042 Ceased US9114160B2 (en) 2004-12-23 2014-03-24 Pyrazine derivatives and uses thereof in renal monitoring
US14/805,048 Ceased US9480687B2 (en) 2004-12-23 2015-07-21 Pyrazine derivatives and uses thereof in renal monitoring
US15/667,427 Active USRE47413E1 (en) 2004-12-23 2017-08-02 Pyrazine derivatives and uses thereof in renal monitoring
US15/668,254 Active USRE47255E1 (en) 2004-12-23 2017-08-03 Pyrazine derivatives and uses thereof in renal monitoring

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/995,223 Active US8115000B2 (en) 2006-06-22 2007-06-20 Pyrazine derivatives and uses thereof in renal monitoring
US13/343,231 Active 2026-03-03 US8722685B2 (en) 2004-12-23 2012-01-04 Pyrazine derivatives and uses thereof in renal monitoring
US14/223,042 Ceased US9114160B2 (en) 2004-12-23 2014-03-24 Pyrazine derivatives and uses thereof in renal monitoring
US14/805,048 Ceased US9480687B2 (en) 2004-12-23 2015-07-21 Pyrazine derivatives and uses thereof in renal monitoring

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/668,254 Active USRE47255E1 (en) 2004-12-23 2017-08-03 Pyrazine derivatives and uses thereof in renal monitoring

Country Status (10)

Country Link
US (6) US8115000B2 (en)
EP (1) EP2029554B1 (en)
JP (1) JP2009534396A (en)
CN (1) CN101351454A (en)
AU (1) AU2007261398A1 (en)
CA (1) CA2628661A1 (en)
DK (1) DK2029554T3 (en)
ES (1) ES2456042T3 (en)
IL (1) IL189221A0 (en)
WO (1) WO2007149479A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149479A1 (en) * 2006-06-22 2007-12-27 Mallinckrodt Inc. Pyrazine derivatives and uses thereof in renal monitoring
CN101472903A (en) * 2006-06-22 2009-07-01 马林克罗特公司 Pyrazine derivatives with extended conjugation and uses thereof
CN101687040A (en) * 2007-03-01 2010-03-31 马林克罗特公司 Integrated photoactive small molecules and uses thereof
WO2009061473A2 (en) * 2007-11-07 2009-05-14 Mallinckrodt Inc. Photonic shell-core cross linked and functionalized nanostructures for biological applications
CA2641297A1 (en) * 2008-07-11 2010-01-11 Richard B. Dorshow Pyrazine derivatives, methods of use, and methods for preparing same
JP2012512258A (en) * 2008-12-17 2012-05-31 マリンクロッド エルエルシー Modified pyrazine derivatives and uses thereof
WO2010129258A2 (en) 2009-04-27 2010-11-11 Mallinckrodt Inc. Tissue sealant compositions, vascular closure devices, and uses thereof
CN103002921A (en) 2010-05-14 2013-03-27 马林克罗特有限公司 Functional, cross-linked nanostructures for tandem optical imaging and therapy
US11077211B2 (en) 2013-11-11 2021-08-03 Medibeacon Inc. Compositions and methods for assessing gut function
EP3392244A1 (en) 2014-02-13 2018-10-24 Incyte Corporation Cyclopropylamines as lsd1 inhibitors
US9670210B2 (en) 2014-02-13 2017-06-06 Incyte Corporation Cyclopropylamines as LSD1 inhibitors
WO2015123437A1 (en) 2014-02-13 2015-08-20 Incyte Corporation Cyclopropylamines as lsd1 inhibitors
TWI720451B (en) 2014-02-13 2021-03-01 美商英塞特控股公司 Cyclopropylamines as lsd1 inhibitors
US9758523B2 (en) 2014-07-10 2017-09-12 Incyte Corporation Triazolopyridines and triazolopyrazines as LSD1 inhibitors
WO2016007736A1 (en) 2014-07-10 2016-01-14 Incyte Corporation Imidazopyrazines as lsd1 inhibitors
US9695167B2 (en) 2014-07-10 2017-07-04 Incyte Corporation Substituted triazolo[1,5-a]pyridines and triazolo[1,5-a]pyrazines as LSD1 inhibitors
TWI687419B (en) 2014-07-10 2020-03-11 美商英塞特公司 Imidazopyridines and imidazopyrazines as LSD1 inhibitors
EA201792205A1 (en) 2015-04-03 2018-02-28 Инсайт Корпорейшн HETEROCYCLIC COMPOUNDS AS LSD1 INHIBITORS
US10525149B2 (en) * 2015-05-12 2020-01-07 Medibeacon Inc. Compositions and methods for assessing eye vasculature
AU2016306555B2 (en) 2015-08-12 2021-01-28 Incyte Holdings Corporation Salts of an LSD1 inhibitor
US10166221B2 (en) 2016-04-22 2019-01-01 Incyte Corporation Formulations of an LSD1 inhibitor
EP3573518A4 (en) 2017-01-30 2020-11-04 Medibeacon Inc. Method for non-invasive monitoring of fluorescent tracer agent with diffuse reflection corrections
RU2021133174A (en) * 2017-10-27 2021-12-02 Медибикон Инк. COMPOSITIONS AND SYSTEMS FOR ASSESSING KIDNEY FUNCTION
US11590244B2 (en) * 2017-10-27 2023-02-28 Medibeacon Inc. Methods for renal function determination
AU2018369913B2 (en) 2017-11-20 2020-08-20 Medibeacon Inc. Method for preparing and analyzing fluorescent compounds in plasma
WO2020047198A1 (en) 2018-08-31 2020-03-05 Incyte Corporation Salts of an lsd1 inhibitor and processes for preparing the same
CN111298136A (en) * 2018-12-12 2020-06-19 麦迪贝肯有限公司 Use of transdermal glomerular filtration rate measurements in continuous renal replacement therapy
CA3125119A1 (en) 2019-01-16 2020-07-23 Medibeacon Inc. Two piece sensor assembly and method of use
US20200237282A1 (en) 2019-01-28 2020-07-30 Medibeacon Inc. Systems and methods for home transdermal gfr monitoring
WO2023016483A1 (en) * 2021-08-11 2023-02-16 杭州中美华东制药有限公司 Method for preparing pyrazine carboxylic acid derivative as fluorescent tracer

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216925A1 (en) 1971-04-13 1972-10-19 E.I. Du Pont De Nemours And Co., Wilmington, Del. (V.St.A.) Pyrazine derivatives and processes for their preparation
US3808209A (en) 1972-07-14 1974-04-30 Du Pont Tetraaminopyrazine,2,3,5-triamino-6-nitropyrazine,2,6-diamino-3,5-dinitropyrazine
US3814757A (en) 1971-04-13 1974-06-04 Du Pont Diamino substituted dicyano pyrazines and process
US3948895A (en) 1971-09-28 1976-04-06 E. I. Du Pont De Nemours And Company Synthesis of 3,5-diaminopyrazinoic acid from 3,5-diamino-2,6-dicyanopyrazine and intermediates
US4517186A (en) 1982-09-30 1985-05-14 Merck & Co., Inc. 2-Amino-3,5-dicyano-6-(substituted)pyrazine antimicrobial compounds
WO1988001264A1 (en) 1986-08-13 1988-02-25 Nippon Soda Co., Ltd. 2,3-diaminoacrylonitrile derivatives
JPH0217163A (en) 1988-07-05 1990-01-22 Nippon Soda Co Ltd Production of diaminomaleonitrile and diaminoacrylonitrile derivative
JPH0249775A (en) 1988-05-19 1990-02-20 Nippon Soda Co Ltd Heterocyclic compound having 6-membered or 7-membered ring and production thereof
EP0402472A1 (en) 1988-09-06 1990-12-19 Nippon Soda Co., Ltd. Pyrrole derivatives and process for their preparation
WO1991003469A1 (en) 1989-08-31 1991-03-21 Nippon Soda Co., Ltd. 3,6-diamino-2,5-pyrazinedicarbonitrile and production thereof
WO1991008510A2 (en) 1989-11-27 1991-06-13 E.I. Du Pont De Nemours And Company Organic optical elements and nonlinear optical devices
JPH04112877A (en) 1990-09-04 1992-04-14 Nippon Soda Co Ltd New cyanopyrazine derivative and production thereof
EP0579835A1 (en) 1991-11-12 1994-01-26 Nippon Soda Co., Ltd. Wavelength conversion material for agriculture
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
JPH07143168A (en) 1993-11-19 1995-06-02 Hitachi Ltd Network address management system
JPH07149736A (en) 1993-10-07 1995-06-13 Nippon Soda Co Ltd Cyanopyrazine derivative and molding
JPH07278456A (en) 1994-04-12 1995-10-24 Nippon Soda Co Ltd Fluorescent colorant
JPH09143168A (en) 1995-11-22 1997-06-03 Nippon Soda Co Ltd Production of 2,3-diaminoacrylonitrile derivative and 3,6-diamino-2,5-pyrazinedicarbonitrile
JPH09202765A (en) 1996-01-25 1997-08-05 Nippon Soda Co Ltd Production of 2,3-diaminoacrylonitrile derivative
JPH09249773A (en) 1996-03-19 1997-09-22 Nippon Soda Co Ltd Polyolefin resin composition having capacity of changing wavelength, masterbatch for the same and agricultural film made from the same
US5714342A (en) 1994-10-28 1998-02-03 Oncoimmunin, Inc. Compositions for the detection of protease in biological samples and methods of use therefo
JPH1045272A (en) 1996-08-05 1998-02-17 Ricoh Co Ltd Sheet separating device
JPH1045727A (en) 1996-07-30 1998-02-17 Nippon Soda Co Ltd Pyrazinedicarboxylic acid derivative and its production
JPH1192462A (en) 1997-09-25 1999-04-06 Nippon Soda Co Ltd Polyester-based compound having pyrazine ring in main chain, its production and polymeric coloring matter
CA2340250A1 (en) 1998-08-20 2000-03-02 Kelley L. Ford Process for preparing regiospecific substituted pyrazine isomers
US6258378B1 (en) 1998-02-09 2001-07-10 Bracco Research S.A. Delivery of biologically active substance to target sites in the body of patients
US6277403B1 (en) 1997-01-20 2001-08-21 Consejo Superior De Investigaciones Cientificas Production of new polymer liquid crystals capable of having an interaction with liposomes
US6406713B1 (en) 1987-03-05 2002-06-18 The Liposome Company, Inc. Methods of preparing low-toxicity drug-lipid complexes
GB2370581A (en) 2000-12-28 2002-07-03 Council Scient Ind Res Bis(3,5-di[heavier halogen atom]-2,4,6-trihydroxyphenyl)squaraine based dyes, & use thereof as sensitizers for photodynamic therapy & in water sterilisation
US6440389B1 (en) 2000-07-19 2002-08-27 The General Hospital Corporation Fluorescent agents for real-time measurement of organ function
US6610322B1 (en) 2000-12-20 2003-08-26 Brian Charles Keller Self forming, thermodynamically stable liposomes and their applications
DE10222738A1 (en) 2002-05-23 2003-12-11 Johannes Wohlrab Photodynamic therapy of epithelial and/or non-epithelial tumors or psoriasis, using UV-light in presence of topically and/or systemically administered ketoprofen as photosensitizer
US20040081622A1 (en) 2000-10-16 2004-04-29 Mallinckrodt Inc. Minimally invasive physiological function monitoring agents
WO2006026038A1 (en) 2004-08-26 2006-03-09 Mallinckrodt Inc. Luminescent metal complexes for monitoring renal function
WO2006071759A2 (en) 2004-12-23 2006-07-06 Mallinckrodt Inc. Fluorescent pyrazine derivatives and methods of using the same in assessing renal function
WO2007106436A2 (en) 2006-03-10 2007-09-20 Mallinckrodt Inc. Photoactive compounds and compositions and uses thereof
JP4112877B2 (en) 2001-03-09 2008-07-02 ダイセル化学工業株式会社 Catalyst composed of cyclic imide compound and method for producing organic compound using the catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716413B1 (en) * 2000-10-16 2004-04-06 Mallinckrodt, Inc. Indole compounds as tissue-specific exogenous optical agents
US6733744B1 (en) * 2000-10-16 2004-05-11 Mallinckrodt Inc. Indole compounds as minimally invasive physiological function monitoring agents
JP2005304473A (en) * 2004-03-24 2005-11-04 Nippon Soda Co Ltd Dyeing method for coloring living body surface
WO2007149479A1 (en) * 2006-06-22 2007-12-27 Mallinckrodt Inc. Pyrazine derivatives and uses thereof in renal monitoring
CA2641297A1 (en) * 2008-07-11 2010-01-11 Richard B. Dorshow Pyrazine derivatives, methods of use, and methods for preparing same

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216925A1 (en) 1971-04-13 1972-10-19 E.I. Du Pont De Nemours And Co., Wilmington, Del. (V.St.A.) Pyrazine derivatives and processes for their preparation
US3814757A (en) 1971-04-13 1974-06-04 Du Pont Diamino substituted dicyano pyrazines and process
US3948895A (en) 1971-09-28 1976-04-06 E. I. Du Pont De Nemours And Company Synthesis of 3,5-diaminopyrazinoic acid from 3,5-diamino-2,6-dicyanopyrazine and intermediates
US3808209A (en) 1972-07-14 1974-04-30 Du Pont Tetraaminopyrazine,2,3,5-triamino-6-nitropyrazine,2,6-diamino-3,5-dinitropyrazine
US4517186A (en) 1982-09-30 1985-05-14 Merck & Co., Inc. 2-Amino-3,5-dicyano-6-(substituted)pyrazine antimicrobial compounds
WO1988001264A1 (en) 1986-08-13 1988-02-25 Nippon Soda Co., Ltd. 2,3-diaminoacrylonitrile derivatives
US6406713B1 (en) 1987-03-05 2002-06-18 The Liposome Company, Inc. Methods of preparing low-toxicity drug-lipid complexes
JPH0249775A (en) 1988-05-19 1990-02-20 Nippon Soda Co Ltd Heterocyclic compound having 6-membered or 7-membered ring and production thereof
JPH0217163A (en) 1988-07-05 1990-01-22 Nippon Soda Co Ltd Production of diaminomaleonitrile and diaminoacrylonitrile derivative
EP0402472A1 (en) 1988-09-06 1990-12-19 Nippon Soda Co., Ltd. Pyrrole derivatives and process for their preparation
WO1991003469A1 (en) 1989-08-31 1991-03-21 Nippon Soda Co., Ltd. 3,6-diamino-2,5-pyrazinedicarbonitrile and production thereof
WO1991008510A2 (en) 1989-11-27 1991-06-13 E.I. Du Pont De Nemours And Company Organic optical elements and nonlinear optical devices
JPH04112877A (en) 1990-09-04 1992-04-14 Nippon Soda Co Ltd New cyanopyrazine derivative and production thereof
EP0579835A1 (en) 1991-11-12 1994-01-26 Nippon Soda Co., Ltd. Wavelength conversion material for agriculture
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
US5631018A (en) 1993-03-03 1997-05-20 Sequus Pharmaceuticals, Inc. Lipid-polymer conjugates and liposomes
JPH07149736A (en) 1993-10-07 1995-06-13 Nippon Soda Co Ltd Cyanopyrazine derivative and molding
JPH07143168A (en) 1993-11-19 1995-06-02 Hitachi Ltd Network address management system
JPH07278456A (en) 1994-04-12 1995-10-24 Nippon Soda Co Ltd Fluorescent colorant
US5714342A (en) 1994-10-28 1998-02-03 Oncoimmunin, Inc. Compositions for the detection of protease in biological samples and methods of use therefo
JPH09143168A (en) 1995-11-22 1997-06-03 Nippon Soda Co Ltd Production of 2,3-diaminoacrylonitrile derivative and 3,6-diamino-2,5-pyrazinedicarbonitrile
JPH09202765A (en) 1996-01-25 1997-08-05 Nippon Soda Co Ltd Production of 2,3-diaminoacrylonitrile derivative
JPH09249773A (en) 1996-03-19 1997-09-22 Nippon Soda Co Ltd Polyolefin resin composition having capacity of changing wavelength, masterbatch for the same and agricultural film made from the same
JPH1045727A (en) 1996-07-30 1998-02-17 Nippon Soda Co Ltd Pyrazinedicarboxylic acid derivative and its production
JPH1045272A (en) 1996-08-05 1998-02-17 Ricoh Co Ltd Sheet separating device
US6277403B1 (en) 1997-01-20 2001-08-21 Consejo Superior De Investigaciones Cientificas Production of new polymer liquid crystals capable of having an interaction with liposomes
JPH1192462A (en) 1997-09-25 1999-04-06 Nippon Soda Co Ltd Polyester-based compound having pyrazine ring in main chain, its production and polymeric coloring matter
US6258378B1 (en) 1998-02-09 2001-07-10 Bracco Research S.A. Delivery of biologically active substance to target sites in the body of patients
CA2340250A1 (en) 1998-08-20 2000-03-02 Kelley L. Ford Process for preparing regiospecific substituted pyrazine isomers
US6440389B1 (en) 2000-07-19 2002-08-27 The General Hospital Corporation Fluorescent agents for real-time measurement of organ function
US20040081622A1 (en) 2000-10-16 2004-04-29 Mallinckrodt Inc. Minimally invasive physiological function monitoring agents
US6610322B1 (en) 2000-12-20 2003-08-26 Brian Charles Keller Self forming, thermodynamically stable liposomes and their applications
GB2370581A (en) 2000-12-28 2002-07-03 Council Scient Ind Res Bis(3,5-di[heavier halogen atom]-2,4,6-trihydroxyphenyl)squaraine based dyes, & use thereof as sensitizers for photodynamic therapy & in water sterilisation
JP4112877B2 (en) 2001-03-09 2008-07-02 ダイセル化学工業株式会社 Catalyst composed of cyclic imide compound and method for producing organic compound using the catalyst
DE10222738A1 (en) 2002-05-23 2003-12-11 Johannes Wohlrab Photodynamic therapy of epithelial and/or non-epithelial tumors or psoriasis, using UV-light in presence of topically and/or systemically administered ketoprofen as photosensitizer
WO2006026038A1 (en) 2004-08-26 2006-03-09 Mallinckrodt Inc. Luminescent metal complexes for monitoring renal function
WO2006071759A2 (en) 2004-12-23 2006-07-06 Mallinckrodt Inc. Fluorescent pyrazine derivatives and methods of using the same in assessing renal function
WO2007106436A2 (en) 2006-03-10 2007-09-20 Mallinckrodt Inc. Photoactive compounds and compositions and uses thereof

Non-Patent Citations (68)

* Cited by examiner, † Cited by third party
Title
230. Wolfgang Pfeiderer: Ein Beitrag zum Mechanismus der Kondensation von o-Diaminen mit Alloxan und dimethyl-alloxan, Jul. 11, 1955, pp. 1625-1631.
Abushanab et al., "Studies in the Imidazio[1,5-alpha]pyrazine System", J. Org. Chemistry, 1973, vol. 38, No. 11, pp. 2049-2052.
Achilefu et al., "Novel Receptor-Targeted Fluorescent Contrast Agents for In Vivo Tumor Imaging", Investigative Radiology, 2000, vol. 35, No. 8, pp. 479-485.
Baker et al., "Epidemiology of Trauma Deaths", The American Journal of Surgery, vol. 140, Jul. 1980, pp. 144-150.
Ballou et al., "Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies", Cancer Immunol Immunother, 1995, vol. 41, pp. 257-263.
Barlin, G.B., The pyrazines. In the Chemistry of Heterocyclic Compounds., Weissberger and Taylor, Editors, John Wiley & Sons, New York: 1982.
Cantrell et al., "Repair Synthesis in Human Lymphocytes Provoked by Photolysis of Ethidium Azide", Photochemistry and Photobiology, 1977, vol. 25, pp. 189-191.
Cerra, "Multiple Organ Failure Syndrome", In New Horizons, Multiple Organ Failure, 1989, 1-24.
Choyke et al., "Hydrated clearance of gadolinium-DTPA as a measurement of glomerular filtration rate", Kidney International, 1992, vol. 41, pp. 1595-1598.
Coalson, Pathology of Sepsis, Septic Shock and Multiple Organ Failure, Society of Critical Care Medicine, 1986, 27-59.
Doolan et al., "A Clinical Appraisal of the Plasma Concentration and Endogenous Clearance of Creatinine", American Journal of Medicine, 1962, vol. 32, pp. 65-79.
Dorshow et al., "Monitoring physiological function by detection of exogenous fluorescent contrast agents", Part of the SPIE Conference on Optical Diagnostics of Biological Fluids IV, Jan. 1999, SPIE vol. 3599, pp. 2-8.
Dorshow et al., "Non-invasive fluorescence detection of hepatic and renal function", Bulletin of the American Physical Society, 1997, vol. 42, No. 1, 681.
Dorshow et al., "Noninvasive Fluorescence Detection of Hepatic and Renal Function", Journal of Biomedical Optics, Jul. 1998, vol. 3, No. 3, pp. 340-345.
Dorshow et al., "Non-invasive fluorescence detection of physiological function", Part of the SPIE Conference on Optical diagnostics of Biological Fluids 111, San Jose, California, Jan. 1998, vol. 3252, pp. 124-130.
Dorshow et al., Noninvasive renal function assessment by fluorescence detection, Biomedical Optical Spectroscopy and Diagnostics, Trends in Optics and Photonics Series 22, Sevick-Muraca, Izatt, and Ediger Eidtors, Optical Society_of America, Washington D.C., 1998, 54-56.
Dyall et al., "Pyrolysis of Aryl Azides. Xlt Enhanced Neighbouring Group Effects of Carbonyl in a Locked Conformation", Aust. J. Chem., 1992, vol. 45, pp. 1991-2002.
Ekanoyan et al., In Clinical Practice Guidelines for Chronic Kidney Disease: Evaulation, Classification, and Stratification (KIDOQI) National Kidney Foundation: Washington, DC 2002, 1-22.
El-Shafei et al., "Synthesis and Reactions of Some Pyrazine Derivatives", Synthetic Communications, 1994, vol. 24, No. 13, pp. 1895-1916.
Fritzberg et al., "Synthesis and Biological Evaluation of Technetium-99m MAG3 as a Hippuran Replacement", The Journal of Nuclear Medicine, 1986, vol. 27, No. 1, pp. 111-116.
Guesry et al., Measurement of glomerular filtration rate by fluorescent excitation of non-radioactive meglumine othalamate, Clinical Nephrology, 1975, vol. 3, No. 4, pp. 134-138.
Hartman et al., "Synthesis and Reactions of 5,6-Dichloro-3-nitropyrazinamine", Jul.-Aug. 1983, J. Heterocyclic Chem., vol. 20, pp. 1089-1091.
Henry {Ed.), Clinical Diagnosis and Mangement by Laboratory Methods, 215 Edition, WB Saunders, Philadelphia, PA, 1984, Chapter 8 76-90, Chapter 14 147-169.
Henry et al. (Ed.), Clinical Diagnosis and Management by Laboratory Methods, 17th Edition, WB Saunders, Philadelphia, PA, 1984, Chapter 1, 28 pages.
Hnatowich et al., "Radioactive Labeling of Antibody: A Simple and Efficient Method", Science, vol. 220, May 1983, pp. 613-615.
Kaminsky et al., Some Congeners and Analogs of Dipyridamole, Journal Med. Chem. Soc., Jul. 1996, vol. 9, pp. 610-612.
Kim et al., "Self-Assembling of Aminopyrazine Fluorescent Dyes and Their Solid State Spectra", Dyes & Pigments, 1999, vol. 41, pp. 183-191.
Kim et al., "Self-Assembling of Aminopyrazine Fluorescent Dyes and Their Solid State Spectra", Dyes and Pigments, 1998, vol. 39, No. 4, pp. 341-357.
Kolendo, "Unusual Product in the Photolysate of 2-Azidoxanthone", Chemistry of Heteroycyclic Compounds, 1998, vol. 34, No. 10, p. 1216.
Lee et al., "Analysis of structure-activity relationships for the ‘A-region’ of N-(4-t-butylbenzyi)-N′-[4-(methylsulfonylamino)benzyl]thiourea analogues as TRPV1 antagonists", Bioorganic & Medicinal Chemistry Letters, Oxford, GB, 2005, vol. 15, No. 18, pp. 4136-4142.
Lewis et al., "Comparative Evaluation of Urographic Contrast Media, Inulin, and 99mTc-DTPA Clearance Methods for Determination of Glomerular Filtration Rate in Clinical Transplantation", Transplantation, Nov. 1989, vol. 48, pp. 790-796.
Licha et al., "New contrast Agents for Optical Imaging: Acid-Cleavable conjugates of Cyanine Dyes with Biomolucules", Part of the SPIE conference on Molucular Imaging: Reporters, Dyes, Markers, and Instrumentation, San Jose, California, Jan. 1999, SPIE vol. 3600, pp. 29-35.
Lobenhoffer et al., "Treatment Results of Patients and Multiple Trauma: An Analysis of 3406 Cases Treated between 1972-1991 at a German Levell Trauma Center", 1995, 38, 70-77.
Lundqvist et al., "Iohexol Clearance for Renal Function Measurement in Gynaecologic Cancer Patients", Acta Radiologica, 1996, vol. 37, pp. 582-586.
Moustafa et al., "Synthesis of new pyridoquinoxalines, thienopyridoquinoxalines and pyrimidothienopyridoquinoxalines", Pharmazie, Die, Govi Verlag, Eschborn, DE, 2000, vol. 55, No. 12, pp. 896-899, XP001536673.
MOUSTAFA O S, BADR M Z A, KAMEL E M: "SYNTHESIS OF NEW PYRIDOQUINOXALINES, THIENOPYRIDOQUINOXALINES AND PYRIMIDOTHIENOPYRIDOQUINOXALINES", PHARMAZIE, GOVI VERLAG PHARMAZEUTISCHER VERLAG GMBH, DE, vol. 55, no. 12, 1 January 2000 (2000-01-01), DE, pages 896 - 899, XP001536673, ISSN: 0031-7144
Muller et al., Medical Optical Tomography, SPIE vol. IS11, 1993.
Muller-Suur et al., "Glomerular Filtration and Tubular Secretion of MAG-3 in the Rat Kidney", The Journal of Nuclear Medicine, 1989, vol. 30, No. 12, pp. 1986-1991.
Nally, Jr., "Acute renal failure in hospitalized patients", Cleveland Clinic Journal of Medicine, Jul. 2002, vol. 69, No. 7, pp. 569-574.
Nosco et al., "Chemistry of technetium radiopharmaceuticals 1: Chemistry behind the development of technetium-99m compounds to determine kidney function", Coordination ChemistryReviews, 1999, 184, 91⋅-123.
Ozaki et al., "Sensitization of Europium(III) Luminescence by DTPA Derivatives", Chemistry Letters, 2000, pp. 312-313.
Pandurangi et al., "Chemistry of Bifunctional Photoprobes. 3. Correlation between the Efficiency of CH Insertion by Photolabile Chelating Agents and Lifetimes of Singlet Nitrenes by Flash Photolysis: First Example of Photochemical Attachment of 99m-Tc-Complex with Human Serum Albumin", J. Org. Chem., 1998, vol. 63, pp. 9019-9030.
Pelegrin et al., "Photoimmunodiagnosis with antibody-fluorescein conjugates: in vitro and in vivo preclinical studies", J. Cell Pharmacol, 1992, vol. 3, pp. 141-145.
Perchais et al., Carboacides Polycyanes—V; Preparation et Proprietes des Sels D'Aza-2 Propenures Polycyanes, Tetrahedron, 1974, vol. 30, pp. 999-1009.
Philbin et al., "Preparation of 2,5-Diamino-3,6-Dinitropyrazine (ANPZ-i): A Novel Candidate High Energy Insensitive Explosive", Propellants, Explosives, Pyrotechnics 25, 2000, pp. 302-306.
Rabito et al., "Renal Function in Patients at Risk of Contrast Material-induced Acute Renal Failure: Noninvasive, Real-Time Monitoring", Radiology, Mar. 1993, vol. 186, pp. 851-854.
Rajagopalan et al., "Polyionic fluorescent bioconjugates as tracer agents for continuous monitoring of renal function", Molecular Imaging: Reporters, Dyes, Markers, and Instrumentation, Proceedings of SPIE, vol. 3924, No. 2000, pp. 28-34.
Regel et al., Treatment Results of Patients and Multiple Trauma: An Analysis of 3406 Cases Treated between 1972 and 1991 at a German Level I Trauma Center, 1995, vol. 38, No. 1, pp. 70-77.
Roch-Ramel et al., Renal excretion and tubular transport of organic anions and cations, In Handbook of Physiology, Section 8, Neurological Physiology, 1992, vol. II, EE, 189-262.
Sandler et al., "Azides", Organic Functional Group Preparations, 1986, pp. 323-349.
Sasalo et al., "Tetrazolo-azido-Isomerisation in Heteroaromatics. I. Syntheses and Reactivities of Some Tetrazolopolyazines", Tetrahedron, 1972, vol. 28, pp. 446-449, XP002450128.
Sato, "Product clas 14: pyrazines", 2004, 16, pp. 751-844.
Sato, Studies on Pyrazines. 24[1]. A Simple and Versatile Synthetic Method for 3-Aikozy-and 3-Aminopyrazinecarbonitriles, Heteroycyclic Chem., Dec. 1992, vol. 29, pp. 1689-1692.
Sekar, Pyrazine dyes: An Update, Colourage, Jan. 1999, 41, 42, 44.
Shirai et al., "Syntheses and Fluorescent Properties of 2,5-Diamino-3,6-dicyanopyrazine Dyes", Dyes and Pigments, 1998, vol. 39, No. 1, pp. 49-68.
Sohtell et al., "FITC-inulin as a kidney tubule marker in the rat", Acta Physiol Scand, 1983, vol. 119, pp. 313-316.
T. SASAKI, K. KANEMATSU, M MURATA: "Tetrazolo-azido-Isomerisation in Heteroaromatics. I. Syntheses and Reactivities of Some Tetrazolopolyazines", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 28, 1 January 1972 (1972-01-01), AMSTERDAM, NL, pages 446 - 449, XP002450128, ISSN: 0040-4020
T. WATANABE ET AL: "Synthesis of Some Alkyl- and Arylimidazoles", JOURNAL OF HETEROCYCLIC CHEMISTRY, WILEY-BLACKWELL PUBLISHING, INC., US, vol. 20, 1 January 1983 (1983-01-01), US, pages 1277 - 1281, XP002450127, ISSN: 0022-152X, DOI: 10.1002/jhet.5570200526
Tauxe et al. (Ed.), Nuclear Medicine in Clinical Urology and Nephrology, Chapter 6, Tubular Function, Appleton Century Crofts: East Norwalk, 1985, pp. 77-105.
Taylor et al., "Pyrimidopteridines by Oxidative Self-condensation of Aminopyrimidines", Contribution from the Noyes Chemical Laboratory, University of Illinois, and the Welcome Research Laboratories, Apr. 20, 1955, vol. 77, pp. 2243-2248.
Theiler, "Effect of Infrared and Visible Light on 2-Azidoanthraquinone in the QA Binding Site of Photosynthetic Reaction Centres", Biol. Chem. Hoppe-Seyler, Dec. 1986, vol. 367, pp. 1197-1207.
Tilney et al., "Acute Renal Failure in Surgical Patients: Causes, Clinical Patterns, and Care", The Surgical Clinics of North America, Apr. 1983, vol. 63, No. 2, pp. 357-377.
Vanzee et al., "Renal Injury Associated with Intravenous Pyelography in Nondiabetic and Diabetic Patients", Annals of Internal Medicine, 1978, vol. 89, pp. 51-54.
Wang et al., "Design of novel nonlinear optical chromophores with multiple substitutions", Phys. Chem. Chem. Phys., 1999, vol. 1, pp. 3519-3525.
Watanabe et al., Synthesis of Some Alkyl- and Arylimidazoles, J. Heterocycl. Chemistry, 1983, vol. 20, pp. 1277-1281 XP002450127.
Wentrup, "Hetarylnitrenes-11, Azido/Tetrazoloazine Tautomerisation, and Evidence for Nitrene Formation in the Gas-Phase", Tetrahedron, 1970, vol. 26, pp. 4969-4983.
Yu, "Unusual Product in the Photolysate of 2-Azidoxanthone", Chemistry of Heteroycyclic Compounds, 1998, 34(10), p. 1216.
Zhang et al., "A regioselective synthesis of methyl 7-amino-3-phenylthieno [2m3-b]pyrazine-6-carboxylate", Synthetic Communications, 2001, 32(5), pp. 725-730.

Also Published As

Publication number Publication date
ES2456042T3 (en) 2014-04-21
EP2029554A1 (en) 2009-03-04
US9114160B2 (en) 2015-08-25
US20140286874A1 (en) 2014-09-25
IL189221A0 (en) 2008-06-05
US8115000B2 (en) 2012-02-14
US9480687B2 (en) 2016-11-01
CA2628661A1 (en) 2007-12-27
EP2029554B1 (en) 2014-03-19
US8722685B2 (en) 2014-05-13
JP2009534396A (en) 2009-09-24
US20090198053A1 (en) 2009-08-06
US20120100078A1 (en) 2012-04-26
USRE47255E1 (en) 2019-02-26
AU2007261398A1 (en) 2007-12-27
WO2007149479A1 (en) 2007-12-27
CN101351454A (en) 2009-01-21
DK2029554T3 (en) 2014-06-10
US20150320745A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
USRE47413E1 (en) Pyrazine derivatives and uses thereof in renal monitoring
US20220127237A1 (en) Fluorescent pyrazine derivatives and methods of using the same in assessing renal function
US8481734B2 (en) Pyrazine derivatives and uses thereof, including in medical imaging and visualization applications
US20100113756A1 (en) Luminescent metal complexes for monitoring renal function
Class et al. Patent application title: Pyrazine Derivatives and Uses Thereof in Renal Monitoring Inventors: Raghavan Rajagopalan (St. Peters, MO, US) Raghavan Rajagopalan (St. Peters, MO, US) Richard B. Dorshow (Saint Charles, MO, US) William L. Neumann (St. Louis, MO, US)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8