USRE47265E1 - Charging device of robot cleaner - Google Patents
Charging device of robot cleaner Download PDFInfo
- Publication number
- USRE47265E1 USRE47265E1 US14/965,286 US200914965286A USRE47265E US RE47265 E1 USRE47265 E1 US RE47265E1 US 200914965286 A US200914965286 A US 200914965286A US RE47265 E USRE47265 E US RE47265E
- Authority
- US
- United States
- Prior art keywords
- docking
- induction
- charging device
- induction signal
- robot cleaner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000006698 induction Effects 0.000 claims abstract description 167
- 238000003032 molecular docking Methods 0.000 claims abstract description 77
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000004140 cleaning Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2868—Arrangements for power supply of vacuum cleaners or the accessories thereof
- A47L9/2873—Docking units or charging stations
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L11/00—Machines for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L11/24—Floor-sweeping machines, motor-driven
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2805—Parameters or conditions being sensed
- A47L9/2831—Motor parameters, e.g. motor load or speed
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2836—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
- A47L9/2852—Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2894—Details related to signal transmission in suction cleaners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/02—Docking stations; Docking operations
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/02—Docking stations; Docking operations
- A47L2201/022—Recharging of batteries
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0061—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0988—Diaphragms, spatial filters, masks for removing or filtering a part of the beam
-
- G05D2201/0215—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
Definitions
- the present disclosure relates to a charging device of a robot cleaner.
- a general robot cleaner moves within a certain area on its own and without user control to remove dust and foreign substances from the floor of the area.
- the robot cleaner uses a sensor or a camera to locate walls and obstacles, and cleans up the area avoiding the walls and obstacles by using the data obtained by the sensor or the camera.
- the robot cleaner has to be equipped with a battery which supplies power to move the robot cleaner.
- the battery is recharged for reuse.
- the robot cleaner has to be provided to its user along with a charging device, which has the function of return induction signal generation so that the robot cleaner with a dead battery can return to the charging device for recharging.
- the robot cleaner When receiving the return induction signal generated by the charging device, the robot cleaner moves toward the charging device by following the return induction signal.
- the robot cleaner docks with the charging device so that the power supply terminal is connected to the charging terminal of the charging device. Once the docking is completed, power is supplied through the charging terminal to charge the battery of the robot cleaner.
- the power supply terminal of the robot cleaner and the charging terminal of the charging device have to be connected accurately to each other. To that end, the docking path has to be guided without inaccuracy.
- the contact force between the power supply and charging terminals needs to be increased because the charging can be carried out effectively only when the terminals remain in tight contact with each other.
- Embodiments provide a charging device of a robot cleaner which guides a return induction signal accurately to a robot cleaner.
- Embodiments also provide a charging device of a robot cleaner which allows a power terminal of a robot cleaner in docking with the charging device and a charging terminal of the charging device to remain in tight contact with each other.
- a charging device of a robot cleaner includes: at least one cover defining an appearance of the charging device; a base which is coupled with the cover and includes a terminal unit for charging the robot cleaner; an induction signal generating unit disposed at a side of the cover or the base to transmit a return induction signal to the robot cleaner; and an induction signal guide member disposed at a side of the induction signal generating unit to enhance a docking performance of the robot cleaner by improving linearity of the induction signal.
- FIG. 1 is a view illustrating an appearance of a charging device of a robot cleaner according to an embodiment.
- FIG. 2 is an exploded perspective view illustrating the charging device of a robot cleaner according to an embodiment.
- FIG. 3 is a view illustrating a terminal unit of the charging device of a robot cleaner according to an embodiment.
- FIG. 4 is a view illustrating a state in which an induction signal guide member that is a main component is installed according to an embodiment.
- FIG. 5 is a bottom view illustrating a state in which the induction signal guide member of FIG. 4 is installed.
- FIG. 6 is a view illustrating an area of an induction signal generated by the charging device of a robot cleaner according to an embodiment.
- a charging device of a robot cleaner according to an embodiment will be described in detail with reference to the accompanying drawings.
- the invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, that alternate embodiments included in other retrogressive inventions or falling within the spirit and scope of the present disclosure can easily be derived through adding, altering, and changing, and will fully convey the concept of the invention to those skilled in the art.
- FIG. 1 is a view illustrating an appearance of a charging device of a robot cleaner according to an embodiment
- FIG. 2 is an exploded perspective view illustrating the charging device of a robot cleaner according to the embodiment.
- a robot cleaner charging device 1 includes a main body 10 .
- the main body 10 includes a base 300 , a front cover 400 , a return induction unit 100 , and an upper cover 500 , which are described hereinafter.
- the base 300 forms rear and bottom surfaces of the charging device 1 , and provides a space where a terminal unit 200 described hereinafter and the return induction unit 100 are installed.
- the base 300 may include a coupling portion where at least the return induction unit 100 and the terminal unit 200 may be assembled or tentatively assembled. A portion of the return induction unit 100 or the terminal unit 200 may be coupled with the coupling portion via insertion or a coupling member.
- the terminal unit 200 supplies power to a robot cleaner by using a power source such as a commercial power source or a battery and, if necessary, through a conversion process to meet a working voltage of the robot cleaner.
- a power source such as a commercial power source or a battery
- the terminal unit 200 includes a converter (not illustrated) for voltage conversion, and power supplied from the converter is transmitted to a charging terminal 220 described hereinafter.
- the charging terminal 220 comes into contact with a power terminal of the robot cleaner to supply charging power to the robot cleaner, and is formed by bending a conductor with a low level of electric resistance, such as copper, several times.
- the charging terminal 220 formed through the bending process is installed such that at least a portion may be exposed outside the front cover 400 which is coupled with a front side of the base 300 .
- a terminal supporting member 240 is disposed at the front cover 400 to support the charging terminal 220 between the base 300 and the front cover 400 .
- FIG. 3 is a view illustrating the terminal unit of the robot cleaner charging device according to the embodiment.
- the terminal supporting member 240 is formed by plastic injection molding, through which a side of the terminal supporting member 400 coming into contact with the charging terminal 220 can have a shape corresponding to a bent portion of the charging terminal 220 .
- the other side extends far backwards from the side coming into contact with the charging terminal 220 , and then, is bent upwards to be coupled with a rear surface of the front cover 400 .
- the charging terminal 220 When the exposed portion of the front cover 400 is applied with pressure by coming into contact with the power terminal of the robot cleaner, the charging terminal 220 is elastically supported by a material and shape of the terminal supporting member 240 and, therefore, the charging terminal 220 and the power terminal can remain in tight contact with each other.
- An upper portion of the front cover 400 has a shape corresponding to a shape of a side surface of the robot cleaner, and a lower portion of the front cover 400 , which is disposed at a lower portion of the robot cleaner, extends far forward so that the power terminal and the charging terminal 220 can be connected to each other.
- a terminal exposure hole 420 is formed at the lower portion of the front cover 400 so that the bent portion of the charging terminal 220 can be exposed, and a side portion of the front cover 400 which extends backwards from the upper and lower portions provides a space where a return induction unit cover 120 described hereinafter and the upper cover 500 can be installed.
- the return induction unit cover 120 which covers the side portion of the front cover 400 in part, is inserted into the front cover 400 . When the insertion is completed, a front surface of the return induction unit cover 120 is disposed at the upper portion of the front cover 400 .
- the return induction unit cover 120 installed at the abovementioned position is formed of a transparent or semi-transparent material so that a return induction signal, which is transmitted by an induction signal generating unit 160 described hereinafter, can penetrate the return induction unit cover 120 .
- the induction signal generating unit 160 which is a group of infrared light emitting units, leads the robot cleaner to return to the charging device following a transmitted infrared signal.
- the induction signal generating unit 160 is inserted into a printed circuit board 180 between the base 300 and the front cover 400 , and disposed at a rear side of the return induction unit cover 120 .
- An induction signal guide member 140 is further disposed between the induction signal generating unit 160 and the return induction unit cover 120 to improve linearity of the return induction signal by limiting a transmission angle of the return induction signal transmitted by the induction signal generating unit 160 .
- FIG. 4 is a view illustrating a state in which the induction signal guide member that is a main component is installed according to the embodiment
- FIG. 5 is a bottom view illustrating a state in which the induction signal guide member of FIG. 4 is installed.
- the induction signal generating unit 160 includes access induction light emitting units 162 which transmit an infrared signal to lead the robot cleaner in a remote location to the charging device 1 , and a docking induction light emitting unit 164 leading the robot cleaner to a docking position when the robot cleaner is moved close to the charging device 1 by the access induction light emitting units 162 .
- One or more access induction light emitting units 162 may be disposed at each of both sides, and one or more docking induction light emitting units 164 may be disposed between the access induction light emitting units 162 .
- the induction signal guide member 140 which may have a T shape, limit the transmission angle of the signal transmitted by the docking induction light emitting unit 164 and the access induction light emitting unit 162 .
- the induction signal guide member 140 protrudes forward, i.e., in a direction of a guiding signal transmitted by the induction signal generating unit 160 as illustrated in FIG. 5 .
- the length of the protrusion is equivalent to the distance between the printed circuit board 180 and the return induction unit cover 120 installed at the front cover 400 .
- a guide 142 Disposed at a center of the induction signal guide member 140 is a guide 142 , which surrounds the docking induction light emitting unit 164 and has a front opening.
- a docking induction signal transmitted outside from the docking induction light emitting unit 164 can be transmitted only through the front opening of the guide 142 .
- the reflection unit 144 Disposed in the guide 142 are a plurality of reflection units 144 to further improve the linearity by limiting the transmission angle of the docking induction signal transmitted through the front opening.
- the reflection unit 144 may have a shape of an inwardly protruding plate or projection.
- the reflection unit 144 protrudes inwardly from an inner left side or an inner right side of the guide 142 .
- the reflection units 144 form a series of layers including at least end and central portions of the guide 142 and the vicinity of the docking induction light emitting unit 164 .
- the reflection units 144 protrude inwardly from both inner sides of the guide 142 , and ends of the reflection units 144 facing each other are disposed away from each other at a predetermined distance.
- a pair of the reflection units 144 facing each other form a layer, and the layer has a central opening to provide an optical path to the light transmitted by the docking induction light emitting unit 164 .
- the opening between the reflection units 144 formed in the abovementioned manner is formed on the same line as the docking induction light emitting unit 164 .
- the docking induction signal transmitted by the docking induction light emitting unit 164 can pass through the opening between the reflection units 144 only when the transmission angle toward the opening is relatively narrow.
- the signal is blocked by the reflection units 144 and the transmission is blocked.
- the docking induction signal transmitted toward a side of the reflection unit 144 may be transmitted outside the guide 142 bumping into and reflected by the end of the reflection unit 144 .
- the end of the reflection unit 144 slopes.
- each of the reflection units 144 slopes toward the opened front side of the guide 142 .
- a surface of the reflection unit 144 toward the opened front side of the guide 142 is longer than a surface of the reflection unit 144 toward the docking induction light emitting unit 164 so that the side of the reflection unit 144 slopes.
- the docking induction signal which is transmitted toward the slope of the end is not transmitted outside but blocked inside the guide 142 because the reflection angle is toward the docking induction light emitting unit 164 .
- the signal which is transmitted outside the guide 142 has a relatively narrow transmission angle.
- the robot cleaner moves to an area where the return signals transmitted by the access induction light emitting units 162 interact and then receives the docking induction signal.
- FIG. 6 Illustrated in FIG. 6 for detailed description is the area of the induction signals generated by the charging device according to the embodiment.
- the signals transmitted by the return induction unit 100 toward the robot cleaner include the return induction signal to guide the robot cleaner toward the charging device 1 by using the access induction light emitting units 162 and the docking induction signal to lead the robot cleaner and the charging device 1 for docking by using the docking induction light emitting unit 164 .
- the return induction signal controls rotation of wheels of the robot cleaner in accordance with the direction of transmission, and reduces the distance of the robot cleaner moving sideways.
- the access induction light emitting unit 162 is provided in plurality, with the docking induction light emitting unit 164 disposed between the access induction light emitting units 162 , and the access induction light emitting units 162 transmit the return induction signals at a relatively wide angle. Therefore, access induction areas 162 ′ where the access induction light emitting units 162 guide the robot cleaner to return may overlap in part as illustrated in FIG. 5 .
- the docking induction signal guides the robot cleaner to allow the robot cleaner to dock with the charging device and the power terminal to come into contact with the charging terminal 220 .
- the docking induction signal transmitted outside by the docking induction light emitting unit 164 having the abovementioned purpose has a limited transmission angle because of the induction signal guide member 140 .
- the guide 142 and the reflection plate 144 block the docking induction signal having a wide transmission angle while exposing the docking induction signal have a narrow transmission angle, and a docking induction area 164 ′ thereby has a relatively very narrow width.
- the docking induction area 164 ′ may be disposed toward the overlapped part of the access induction areas 162 ′ with the docking induction light emitting unit 164 and the guide 142 disposed between the access induction light emitting units 162 .
- the robot cleaner approaches the docking induction area 164 ′. After approaching the docking induction area 164 ′, the robot cleaner is guided by the docking induction signal and moved to the charging device.
- the narrow transmission angle of the docking induction signal reduces the lateral distance of the robot cleaner moving on the path to the charging device.
- the robot cleaner When the battery of the robot cleaner runs out while the robot cleaner moves in a pre-set cleaning area carrying out cleaning or when the cleaning is completed, the robot cleaner returns to the charging device 1 to recharge the battery.
- the robot cleaner transmits a signal to the charging device 1 when the battery runs out or the cleaning is completed, requesting return induction, and the signal is received by the return induction unit 100 of the charging device 1 .
- the charging device 1 transmits the return induction signal through the access induction light emitting unit 162 which constitutes a part of the induction signal generating unit 160 .
- the robot cleaner detecting the return induction signal, moves toward the charging device 1 following the return induction signal.
- the rotation of the wheels of the robot cleaner is controlled, in accordance with the direction of the received return induction signal, i.e., the position of the access induction light emitting unit 162 which forms the access induction area 162 ′, so that the robot cleaner can move to the overlapped part of the access induction areas 162 ′ generated by the access induction light emitting unit 162 .
- the robot cleaner moves to the charging device 1 following a docking guide signal transmitted by the docking induction light emitting unit 164 .
- the transmission angle of the docking guide signal transmitted by the docking induction light emitting unit 164 is limited by the induction signal guide member 140 , and the width of the docking induction area 164 ′ is narrowed.
- the power terminal of the robot cleaner comes into stable contact with the charging terminal 220 of the charging device 1 .
- the terminal supporting member 240 which is disposed at the lower side of the charging terminal 220 , elastically supports the charging terminal 220 so that the power terminal and the charging terminal 220 can remain in tight contact with each other and the docked robot cleaner can be recharged stably.
- the charging device can reduce the transmission angle of the docking guide signal transmitted by the docking induction light emitting unit, and increase the accuracy with which the robot cleaner is docked with the charging device.
- the power terminal of the docked robot cleaner and the charging terminal of the charging device can remain in tight contact with each other because the charging terminal is elastically supported.
- the charging device can charge the robot cleaner efficiently.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Electromagnetism (AREA)
- Human Computer Interaction (AREA)
- Electric Vacuum Cleaner (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
A charging device of a robot cleaner is provided. The charging device of a robot cleaner according to the embodiment includes at least one cover forming an appearance of the charging device, a base which is coupled with the cover and includes a terminal unit for charging the robot cleaner, an induction signal generating unit disposed at a side of the cover or the base to transmit a return induction signal to the robot cleaner, and an induction signal guide member disposed at a side of the induction signal generating unit to enhance a docking performance of the robot cleaner by improving linearity of the induction signal. The charging device according to the embodiment can guide the path for the return of the robot cleaner and recharge the robot cleaner stably.
Description
More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,825,256. This application is a Continuation Reissue of, and claims the benefit of, U.S. application Ser. No. 14/864,563 filed on Sep. 24, 2015, which is a reissue of U.S. Pat. No. 8,825,256 issued on Sep. 2, 2014, which is a 35 U.S.C. § 371 National Stage Entry of International Application No. PCT/KR2009/003560 filed on Jun. 30, 2009.
The present disclosure relates to a charging device of a robot cleaner.
A general robot cleaner moves within a certain area on its own and without user control to remove dust and foreign substances from the floor of the area. The robot cleaner uses a sensor or a camera to locate walls and obstacles, and cleans up the area avoiding the walls and obstacles by using the data obtained by the sensor or the camera.
For the abovementioned purpose, the robot cleaner has to be equipped with a battery which supplies power to move the robot cleaner. Usually, when used up, the battery is recharged for reuse.
Therefore, the robot cleaner has to be provided to its user along with a charging device, which has the function of return induction signal generation so that the robot cleaner with a dead battery can return to the charging device for recharging.
When receiving the return induction signal generated by the charging device, the robot cleaner moves toward the charging device by following the return induction signal.
After approaching the charging device, the robot cleaner docks with the charging device so that the power supply terminal is connected to the charging terminal of the charging device. Once the docking is completed, power is supplied through the charging terminal to charge the battery of the robot cleaner.
In order for the robot cleaner to be charged effectively, the power supply terminal of the robot cleaner and the charging terminal of the charging device have to be connected accurately to each other. To that end, the docking path has to be guided without inaccuracy.
Further, the contact force between the power supply and charging terminals needs to be increased because the charging can be carried out effectively only when the terminals remain in tight contact with each other.
Embodiments provide a charging device of a robot cleaner which guides a return induction signal accurately to a robot cleaner.
Embodiments also provide a charging device of a robot cleaner which allows a power terminal of a robot cleaner in docking with the charging device and a charging terminal of the charging device to remain in tight contact with each other.
In one embodiment, a charging device of a robot cleaner includes: at least one cover defining an appearance of the charging device; a base which is coupled with the cover and includes a terminal unit for charging the robot cleaner; an induction signal generating unit disposed at a side of the cover or the base to transmit a return induction signal to the robot cleaner; and an induction signal guide member disposed at a side of the induction signal generating unit to enhance a docking performance of the robot cleaner by improving linearity of the induction signal.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
A charging device of a robot cleaner according to an embodiment will be described in detail with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, that alternate embodiments included in other retrogressive inventions or falling within the spirit and scope of the present disclosure can easily be derived through adding, altering, and changing, and will fully convey the concept of the invention to those skilled in the art.
As illustrated in the drawings, a robot cleaner charging device 1 according to an embodiment includes a main body 10. The main body 10 includes a base 300, a front cover 400, a return induction unit 100, and an upper cover 500, which are described hereinafter.
The base 300 forms rear and bottom surfaces of the charging device 1, and provides a space where a terminal unit 200 described hereinafter and the return induction unit 100 are installed.
Although not illustrated, the base 300 may include a coupling portion where at least the return induction unit 100 and the terminal unit 200 may be assembled or tentatively assembled. A portion of the return induction unit 100 or the terminal unit 200 may be coupled with the coupling portion via insertion or a coupling member.
The terminal unit 200 supplies power to a robot cleaner by using a power source such as a commercial power source or a battery and, if necessary, through a conversion process to meet a working voltage of the robot cleaner.
Therefore, the terminal unit 200 includes a converter (not illustrated) for voltage conversion, and power supplied from the converter is transmitted to a charging terminal 220 described hereinafter.
The charging terminal 220 comes into contact with a power terminal of the robot cleaner to supply charging power to the robot cleaner, and is formed by bending a conductor with a low level of electric resistance, such as copper, several times.
The charging terminal 220 formed through the bending process is installed such that at least a portion may be exposed outside the front cover 400 which is coupled with a front side of the base 300. To that end, a terminal supporting member 240 is disposed at the front cover 400 to support the charging terminal 220 between the base 300 and the front cover 400.
As illustrated in the drawing, the terminal supporting member 240 is formed by plastic injection molding, through which a side of the terminal supporting member 400 coming into contact with the charging terminal 220 can have a shape corresponding to a bent portion of the charging terminal 220.
The other side extends far backwards from the side coming into contact with the charging terminal 220, and then, is bent upwards to be coupled with a rear surface of the front cover 400.
When the exposed portion of the front cover 400 is applied with pressure by coming into contact with the power terminal of the robot cleaner, the charging terminal 220 is elastically supported by a material and shape of the terminal supporting member 240 and, therefore, the charging terminal 220 and the power terminal can remain in tight contact with each other.
An upper portion of the front cover 400 has a shape corresponding to a shape of a side surface of the robot cleaner, and a lower portion of the front cover 400, which is disposed at a lower portion of the robot cleaner, extends far forward so that the power terminal and the charging terminal 220 can be connected to each other.
A terminal exposure hole 420 is formed at the lower portion of the front cover 400 so that the bent portion of the charging terminal 220 can be exposed, and a side portion of the front cover 400 which extends backwards from the upper and lower portions provides a space where a return induction unit cover 120 described hereinafter and the upper cover 500 can be installed.
The return induction unit cover 120, which covers the side portion of the front cover 400 in part, is inserted into the front cover 400. When the insertion is completed, a front surface of the return induction unit cover 120 is disposed at the upper portion of the front cover 400.
The return induction unit cover 120 installed at the abovementioned position is formed of a transparent or semi-transparent material so that a return induction signal, which is transmitted by an induction signal generating unit 160 described hereinafter, can penetrate the return induction unit cover 120.
The induction signal generating unit 160, which is a group of infrared light emitting units, leads the robot cleaner to return to the charging device following a transmitted infrared signal. The induction signal generating unit 160 is inserted into a printed circuit board 180 between the base 300 and the front cover 400, and disposed at a rear side of the return induction unit cover 120.
An induction signal guide member 140 is further disposed between the induction signal generating unit 160 and the return induction unit cover 120 to improve linearity of the return induction signal by limiting a transmission angle of the return induction signal transmitted by the induction signal generating unit 160.
As illustrated in the drawings, the induction signal generating unit 160 includes access induction light emitting units 162 which transmit an infrared signal to lead the robot cleaner in a remote location to the charging device 1, and a docking induction light emitting unit 164 leading the robot cleaner to a docking position when the robot cleaner is moved close to the charging device 1 by the access induction light emitting units 162.
One or more access induction light emitting units 162 may be disposed at each of both sides, and one or more docking induction light emitting units 164 may be disposed between the access induction light emitting units 162.
The induction signal guide member 140, which may have a T shape, limit the transmission angle of the signal transmitted by the docking induction light emitting unit 164 and the access induction light emitting unit 162.
In a state when the induction signal guide member 140 is installed at the printed circuit board 180, the induction signal guide member 140 protrudes forward, i.e., in a direction of a guiding signal transmitted by the induction signal generating unit 160 as illustrated in FIG. 5 . The length of the protrusion is equivalent to the distance between the printed circuit board 180 and the return induction unit cover 120 installed at the front cover 400.
Disposed at a center of the induction signal guide member 140 is a guide 142, which surrounds the docking induction light emitting unit 164 and has a front opening.
Therefore, a docking induction signal transmitted outside from the docking induction light emitting unit 164 can be transmitted only through the front opening of the guide 142.
Disposed in the guide 142 are a plurality of reflection units 144 to further improve the linearity by limiting the transmission angle of the docking induction signal transmitted through the front opening. The reflection unit 144 may have a shape of an inwardly protruding plate or projection.
The reflection unit 144 protrudes inwardly from an inner left side or an inner right side of the guide 142. The reflection units 144 form a series of layers including at least end and central portions of the guide 142 and the vicinity of the docking induction light emitting unit 164.
In other words, the reflection units 144 protrude inwardly from both inner sides of the guide 142, and ends of the reflection units 144 facing each other are disposed away from each other at a predetermined distance.
Therefore, a pair of the reflection units 144 facing each other form a layer, and the layer has a central opening to provide an optical path to the light transmitted by the docking induction light emitting unit 164.
The opening between the reflection units 144 formed in the abovementioned manner is formed on the same line as the docking induction light emitting unit 164.
Therefore, the docking induction signal transmitted by the docking induction light emitting unit 164 can pass through the opening between the reflection units 144 only when the transmission angle toward the opening is relatively narrow. When the transmission angle is relatively wide, the signal is blocked by the reflection units 144 and the transmission is blocked.
Since the reflection unit 144 has a predetermined thickness, the docking induction signal transmitted toward a side of the reflection unit 144 may be transmitted outside the guide 142 bumping into and reflected by the end of the reflection unit 144. To prevent the phenomenon, the end of the reflection unit 144 slopes.
The end of each of the reflection units 144 slopes toward the opened front side of the guide 142.
In other words, a surface of the reflection unit 144 toward the opened front side of the guide 142 is longer than a surface of the reflection unit 144 toward the docking induction light emitting unit 164 so that the side of the reflection unit 144 slopes.
The docking induction signal which is transmitted toward the slope of the end is not transmitted outside but blocked inside the guide 142 because the reflection angle is toward the docking induction light emitting unit 164.
Therefore, the signal which is transmitted outside the guide 142 has a relatively narrow transmission angle. To receive the signal, the robot cleaner moves to an area where the return signals transmitted by the access induction light emitting units 162 interact and then receives the docking induction signal.
Illustrated in FIG. 6 for detailed description is the area of the induction signals generated by the charging device according to the embodiment.
As illustrated in the drawing, the signals transmitted by the return induction unit 100 toward the robot cleaner include the return induction signal to guide the robot cleaner toward the charging device 1 by using the access induction light emitting units 162 and the docking induction signal to lead the robot cleaner and the charging device 1 for docking by using the docking induction light emitting unit 164.
In guiding the robot cleaner to the charging device, the return induction signal controls rotation of wheels of the robot cleaner in accordance with the direction of transmission, and reduces the distance of the robot cleaner moving sideways.
To this end, the access induction light emitting unit 162 is provided in plurality, with the docking induction light emitting unit 164 disposed between the access induction light emitting units 162, and the access induction light emitting units 162 transmit the return induction signals at a relatively wide angle. Therefore, access induction areas 162′ where the access induction light emitting units 162 guide the robot cleaner to return may overlap in part as illustrated in FIG. 5 .
Meanwhile, the docking induction signal guides the robot cleaner to allow the robot cleaner to dock with the charging device and the power terminal to come into contact with the charging terminal 220.
The docking induction signal transmitted outside by the docking induction light emitting unit 164 having the abovementioned purpose has a limited transmission angle because of the induction signal guide member 140.
In other words, the guide 142 and the reflection plate 144 block the docking induction signal having a wide transmission angle while exposing the docking induction signal have a narrow transmission angle, and a docking induction area 164′ thereby has a relatively very narrow width.
The docking induction area 164′ may be disposed toward the overlapped part of the access induction areas 162′ with the docking induction light emitting unit 164 and the guide 142 disposed between the access induction light emitting units 162.
Returning to the charging device heading toward the overlapped part of the access induction areas 162′, the robot cleaner approaches the docking induction area 164′. After approaching the docking induction area 164′, the robot cleaner is guided by the docking induction signal and moved to the charging device.
Here, the narrow transmission angle of the docking induction signal reduces the lateral distance of the robot cleaner moving on the path to the charging device.
Since the lateral movement of the robot cleaner is reduced during the docking process, the docking accuracy can increase.
Described hereinafter is the process in which the robot cleaner returns to the charging device 1 having the abovementioned structure.
When the battery of the robot cleaner runs out while the robot cleaner moves in a pre-set cleaning area carrying out cleaning or when the cleaning is completed, the robot cleaner returns to the charging device 1 to recharge the battery.
For the purpose, the robot cleaner transmits a signal to the charging device 1 when the battery runs out or the cleaning is completed, requesting return induction, and the signal is received by the return induction unit 100 of the charging device 1.
When the signal from the robot cleaner is received, the charging device 1 transmits the return induction signal through the access induction light emitting unit 162 which constitutes a part of the induction signal generating unit 160. The robot cleaner, detecting the return induction signal, moves toward the charging device 1 following the return induction signal.
During the abovementioned process, the rotation of the wheels of the robot cleaner is controlled, in accordance with the direction of the received return induction signal, i.e., the position of the access induction light emitting unit 162 which forms the access induction area 162′, so that the robot cleaner can move to the overlapped part of the access induction areas 162′ generated by the access induction light emitting unit 162.
When the robot cleaner reaches the overlapped part of the access induction areas 162′, the robot cleaner moves to the charging device 1 following a docking guide signal transmitted by the docking induction light emitting unit 164.
Here, the transmission angle of the docking guide signal transmitted by the docking induction light emitting unit 164 is limited by the induction signal guide member 140, and the width of the docking induction area 164′ is narrowed.
Therefore, the lateral movement of the robot cleaner depending on the direction in which the docking induction signal is received is reduced, and the robot cleaner docks with the charging device 1 showing an increasingly linear movement as the robot cleaner approaches the charging device 1.
Via the abovementioned docking induction, the power terminal of the robot cleaner comes into stable contact with the charging terminal 220 of the charging device 1.
The terminal supporting member 240, which is disposed at the lower side of the charging terminal 220, elastically supports the charging terminal 220 so that the power terminal and the charging terminal 220 can remain in tight contact with each other and the docked robot cleaner can be recharged stably.
When the recharging of the robot cleaner is completed and the robot cleaner is removed from the charging device 1 for such reasons as cleaning or storage, the strength of stability of the terminal supporting member 240 comes into play and the charging terminal 220 returns to the position of initial exposure.
The charging device according to the embodiment can reduce the transmission angle of the docking guide signal transmitted by the docking induction light emitting unit, and increase the accuracy with which the robot cleaner is docked with the charging device.
Also, at the terminal unit, the power terminal of the docked robot cleaner and the charging terminal of the charging device can remain in tight contact with each other because the charging terminal is elastically supported.
Therefore, the charging device according to the embodiment can charge the robot cleaner efficiently.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Claims (15)
1. A charging device of a robot cleaner, the charging device comprising:
a main body comprising a terminal unit configured to charge the robot cleaner, the main body defining an appearance;
an induction signal generating unit disposed at a side of the main body to transmit a return induction signal to the robot cleaner; and
an induction signal guide member disposed at a side of the induction signal generating unit to enhance docking performance of the robot cleaner by improving linearity of the return induction signal by limiting a transmission angle of the return induction signal transmitted by the induction signal generating unit,
wherein the induction signal generating unit comprises at least one docking induction light emitting unit to guide the robot cleaner to a docking position by transmitting a docking induction signal,
wherein the induction signal guide member comprises a guide which is opened at a front side and surrounds at least both sides of the at least one docking induction light emitting unit, and first and second reflections units are extended from the guide to block the docking induction signal and spaced apart from each other, and
wherein an extended direction of the first and second reflection units crosses a direction of transmitting the docking induction signal.
2. The charging device according to claim 1 , wherein the induction signal generating unit further comprises at least a pair of access induction light emitting units to transmit the return induction signal for guiding the robot cleaner to a return position, and the at least a pair of access induction light emitting units are disposed outside the guide.
3. The charging device according to claim 2 , wherein the induction signal guide member improves linearity of the docking induction signal by restricting a transmission angle of the signal transmitted from the at least one docking induction light emitting unit.
4. The charging device according to claim 1 , wherein the first and second reflection units protrude from both inner sides of the guide to face each other, a space between the first and second reflection units facing each other being disposed on the same line as the at least one docking induction light emitting unit.
5. The charging device according to claim 1 , wherein an end of each of the first and second reflection unit slopes.
6. The charging device according to claim 1 , wherein a surface of each of the first and second reflection units which is toward the at least one docking induction light emitting unit has a shorter projection length than a surface of each of the first and second reflection units which is toward the opened front side of the guide.
7. The charging device according to claim 1 , wherein the end of each of the first and second reflection units slopes toward the opened front side.
8. A charging device of a robot cleaner, the charging device comprising:
a main body comprising a terminal unit to charge the robot cleaner, the main body defining an appearance of the charging device;
an induction signal generating unit disposed at a side of the main body,
wherein the induction signal generating unit comprises a pair of access induction light emitting units transmitting a return induction signal for guiding the robot cleaner to a return position, and one docking induction light emitting unit guiding the robot cleaner to a docking position by transmitting a docking induction signal, and
wherein the docking induction light emitting unit is disposed between the access induction light emitting units;
an induction signal guide member disposed at a side of the induction signal generating unit to enhance docking performance of the robot cleaner, and
an extended direction of the pair of access induction light emitting units crosses a direction of transmitting the docking induction signal,
wherein the induction signal guide member comprises a guide having a front opening to guide the docking induction signal, and first and second reflections units are extended from the guide to partially block the docking induction signal and spaced apart from each other,
wherein the one docking induction light emitting unit is configured to transmit the docking induction signal to an area where the signals transmitted by the access induction light emitting units overlap, and
wherein the induction signal guide member improves the linearity of the docking induction signal by limiting the transmission angle of the docking induction signal transmitted from the docking induction light emitting unit.
9. The charging device of claim 8, wherein the guide surrounds the docking induction light emitting unit.
10. The charging device of claim 9, wherein a plurality of reflection units are extended from the guide and the reflection units are spaced at a predetermined distance from each other.
11. The charging device of claim 10, wherein the reflection units protrude from both inner sides of the guide to face each other.
12. The charging device of claim 11, wherein a space, between the reflection units facing each other, is disposed on the same line as the docking induction light emitting unit.
13. The charging device of claim 10, wherein an end of each of the reflection units slopes.
14. The charging device of claim 10, wherein a surface of each of the reflection units which is toward the docking induction light emitting unit has a shorter projection length than a surface of each of the reflection units which is toward the opened front side of the guide.
15. The charging device of claim 10, wherein an end of each of the reflection units slopes toward the opened front side of the guide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/965,286 USRE47265E1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2009/003560 WO2011002112A1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US14/965,286 USRE47265E1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US13/379,753 US8825256B2 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US201514864563A | 2015-09-24 | 2015-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE47265E1 true USRE47265E1 (en) | 2019-03-05 |
Family
ID=43411177
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/965,286 Active 2030-02-23 USRE47265E1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US13/379,753 Ceased US8825256B2 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US14/864,563 Active 2030-02-23 USRE47264E1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/379,753 Ceased US8825256B2 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
US14/864,563 Active 2030-02-23 USRE47264E1 (en) | 2009-06-30 | 2009-06-30 | Charging device of robot cleaner |
Country Status (5)
Country | Link |
---|---|
US (3) | USRE47265E1 (en) |
EP (4) | EP2449938B1 (en) |
KR (1) | KR101428846B1 (en) |
ES (3) | ES2563087T3 (en) |
WO (1) | WO2011002112A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11627854B2 (en) | 2018-10-22 | 2023-04-18 | Sharkninja Operating Llc | Docking station for robotic cleaner |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011002112A1 (en) * | 2009-06-30 | 2011-01-06 | 엘지전자 주식회사 | Charging device of robot cleaner |
KR101192540B1 (en) * | 2010-12-20 | 2012-10-17 | (주)마미로봇 | Multifunction charger for wireless cleaner |
US9280158B2 (en) | 2012-06-07 | 2016-03-08 | Koninklijke Philips N.V. | System and method for guiding a robot cleaner along a path |
KR101437778B1 (en) * | 2013-05-06 | 2014-09-11 | (주)마미로봇 | Guide signal transmitter of docking station |
US9781200B2 (en) | 2013-07-01 | 2017-10-03 | Stepbuddies International | System, apparatus, and method for measuring number of user steps |
EP3211503B1 (en) * | 2014-10-23 | 2019-09-04 | Jiangsu Midea Cleaning Appliances Co., Ltd. | Charging base of cleaning robot, and cleaning robot |
CN105581736B (en) * | 2014-10-23 | 2018-06-08 | 江苏美的清洁电器股份有限公司 | Sweeping robot and its cradle |
USD818950S1 (en) * | 2015-06-30 | 2018-05-29 | Bobsweep Inc. | Charging station for a robotic vacuum |
KR102174382B1 (en) * | 2016-05-26 | 2020-11-05 | 한국전자기술연구원 | Charging device for distribution transport robot and charging system using the same |
EP3563749B1 (en) * | 2016-12-30 | 2023-05-10 | LG Electronics Inc. | Robot cleaner system including charging station |
KR101897730B1 (en) * | 2016-12-30 | 2018-09-12 | 엘지전자 주식회사 | Charging stating for robot cleaner |
US10383499B2 (en) | 2017-08-31 | 2019-08-20 | Irobot Corporation | Wet robot docking station |
CN111163671B (en) | 2017-09-07 | 2022-08-23 | 尚科宁家运营有限公司 | Robot cleaner |
USD867987S1 (en) * | 2017-09-15 | 2019-11-26 | Beijing Rockrobo Technology Co., Ltd. | Base station |
KR102476898B1 (en) | 2018-01-02 | 2022-12-13 | 엘지전자 주식회사 | Charging station |
US11121567B2 (en) | 2018-03-09 | 2021-09-14 | AI Incorporated | Mobile robot charging station |
CN108453748A (en) * | 2018-03-23 | 2018-08-28 | 国网上海市电力公司 | A kind of high pressure transformer and distribution power station cleaning auxiliary robot |
KR102515485B1 (en) * | 2018-06-14 | 2023-03-29 | 삼성전자주식회사 | Charging station of robot cleaner |
KR102137164B1 (en) * | 2018-06-15 | 2020-07-24 | 엘지전자 주식회사 | Guidance robot |
CN109066836B (en) * | 2018-07-16 | 2021-09-21 | 深圳市无限动力发展有限公司 | Charging device |
US11583158B2 (en) | 2018-08-01 | 2023-02-21 | Sharkninja Operating Llc | Robotic vacuum cleaner |
USD906236S1 (en) * | 2018-08-03 | 2020-12-29 | Techtronic Cordless Gp | Docking station for mowers |
CN208621772U (en) * | 2018-08-24 | 2019-03-19 | 北京猎户星空科技有限公司 | Infrared launcher and charging pile |
TWD203966S (en) * | 2019-03-18 | 2020-04-11 | 大陸商北京小米移動軟件有限公司 | Sweeper charger |
USD951859S1 (en) * | 2019-08-15 | 2022-05-17 | Beijing Xiaomi Mobile Software Co., Ltd. | Charging base for robot vacuum cleaner |
WO2021137476A1 (en) | 2019-12-30 | 2021-07-08 | 엘지전자 주식회사 | Charging station for robot cleaner |
EP4085809A4 (en) | 2019-12-30 | 2024-01-24 | LG Electronics Inc. | Robot vacuum charging station |
KR20210086457A (en) | 2019-12-30 | 2021-07-08 | 엘지전자 주식회사 | Charging apparatus for robot cleaner |
CN112168081A (en) * | 2020-01-02 | 2021-01-05 | 尚科宁家(中国)科技有限公司 | Sweeper, sweeper replenishment system and replenishment station for sweeper |
TWI716321B (en) * | 2020-05-27 | 2021-01-11 | 和碩聯合科技股份有限公司 | Charging device |
US11553824B2 (en) * | 2020-06-25 | 2023-01-17 | Power Logic Tech, Inc. | Automatic guiding method for self-propelled apparatus |
USD965517S1 (en) * | 2020-10-19 | 2022-10-04 | Amazon Technologies, Inc. | Docking station |
EP4070704A1 (en) * | 2021-04-08 | 2022-10-12 | Vorwerk & Co. Interholding GmbH | Base station for a floor treating device and system comprising a base station and floor treating device |
CN115191866B (en) * | 2021-04-09 | 2024-07-05 | 美智纵横科技有限责任公司 | Recharging method and device, cleaning robot and storage medium |
USD976826S1 (en) * | 2022-03-24 | 2023-01-31 | Guangyu Hua | Charger for robotic vacuum cleaner |
USD980162S1 (en) * | 2022-03-24 | 2023-03-07 | Guangyu Hua | Charger for robotic vacuum cleaner |
KR102620640B1 (en) * | 2023-06-15 | 2024-01-03 | 주식회사 도구공간 | Robot docking station |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3784836A (en) * | 1972-10-06 | 1974-01-08 | Sybron Corp | Ir generator having ellipsoidal and paraboloidal reflectors |
GB2062282A (en) | 1979-10-22 | 1981-05-20 | Coulter Electronics | Correcting non-uniform intensity distribution in light beams |
US4679152A (en) * | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
GB2248141A (en) * | 1990-09-18 | 1992-03-25 | Servomex | Infra-red source |
KR20010032583A (en) | 1997-11-27 | 2001-04-25 | 콜렌스 안드레 | Improvements to mobile robots and their control system |
WO2004006034A2 (en) | 2002-07-08 | 2004-01-15 | Alfred Kärcher Gmbh & Co. Kg | Floor treatment system |
KR20060037008A (en) | 2004-10-27 | 2006-05-03 | 삼성광주전자 주식회사 | Robot cleaner system and method for return to external charge apparatus |
KR100645381B1 (en) * | 2005-08-31 | 2006-11-14 | 삼성광주전자 주식회사 | Apparatus for return to external charge of robot cleaner and method thereof |
US20070233319A1 (en) * | 2006-03-29 | 2007-10-04 | Lg Electronics Inc. | System and method for returning mobile robot to charging stand |
US20070244610A1 (en) * | 2005-12-02 | 2007-10-18 | Ozick Daniel N | Autonomous coverage robot navigation system |
US20080065266A1 (en) * | 2006-09-11 | 2008-03-13 | Lg Electronics Inc. | Mobile robot and operating method thereof |
KR100820585B1 (en) * | 2006-10-25 | 2008-04-11 | 엘지전자 주식회사 | Moving robot system and control method thereof |
KR20080051936A (en) | 2006-12-07 | 2008-06-11 | 삼성광주전자 주식회사 | An automatic docking-inducing apparatus of a robot |
US7397213B2 (en) * | 2005-10-28 | 2008-07-08 | Lg Electronics Inc. | Mobile robot and mobile robot charge station return system |
US20080174268A1 (en) * | 2006-12-27 | 2008-07-24 | Keun Mo Koo | Automatic charging apparatus of autonomous mobile robot and automatic charging method using the same |
US7615957B2 (en) * | 2005-10-27 | 2009-11-10 | Lg Electronics Inc. | Mobile robot charge station return system |
US20120143428A1 (en) * | 2009-06-30 | 2012-06-07 | Bong-Ju Kim | Charging device of robot cleaner |
US9134733B2 (en) * | 2009-06-19 | 2015-09-15 | Samsung Electronics Co., Ltd. | Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner |
US9851711B2 (en) * | 2009-06-19 | 2017-12-26 | Samsung Electronics Co., Ltd. | Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10261788B3 (en) * | 2002-12-23 | 2004-01-22 | Alfred Kärcher Gmbh & Co. Kg | Mobile tillage device |
-
2009
- 2009-06-30 WO PCT/KR2009/003560 patent/WO2011002112A1/en active Application Filing
- 2009-06-30 US US14/965,286 patent/USRE47265E1/en active Active
- 2009-06-30 US US13/379,753 patent/US8825256B2/en not_active Ceased
- 2009-06-30 US US14/864,563 patent/USRE47264E1/en active Active
- 2009-06-30 EP EP09846851.5A patent/EP2449938B1/en active Active
- 2009-06-30 EP EP15184935.3A patent/EP2982286B1/en active Active
- 2009-06-30 KR KR1020117025679A patent/KR101428846B1/en active IP Right Grant
- 2009-06-30 ES ES09846851.5T patent/ES2563087T3/en active Active
- 2009-06-30 ES ES15184935T patent/ES2764108T3/en active Active
- 2009-06-30 EP EP15179575.4A patent/EP2992802B1/en active Active
- 2009-06-30 EP EP19202567.4A patent/EP3632283B1/en active Active
- 2009-06-30 ES ES19202567T patent/ES2872015T3/en active Active
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3784836A (en) * | 1972-10-06 | 1974-01-08 | Sybron Corp | Ir generator having ellipsoidal and paraboloidal reflectors |
GB2062282A (en) | 1979-10-22 | 1981-05-20 | Coulter Electronics | Correcting non-uniform intensity distribution in light beams |
US4327972A (en) * | 1979-10-22 | 1982-05-04 | Coulter Electronics, Inc. | Redirecting surface for desired intensity profile |
US4679152A (en) * | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
GB2248141A (en) * | 1990-09-18 | 1992-03-25 | Servomex | Infra-red source |
WO1992005411A1 (en) | 1990-09-18 | 1992-04-02 | Servomex (Uk) Ltd | Infra-red source |
KR20010032583A (en) | 1997-11-27 | 2001-04-25 | 콜렌스 안드레 | Improvements to mobile robots and their control system |
US6389329B1 (en) * | 1997-11-27 | 2002-05-14 | Andre Colens | Mobile robots and their control system |
WO2004006034A2 (en) | 2002-07-08 | 2004-01-15 | Alfred Kärcher Gmbh & Co. Kg | Floor treatment system |
US7053578B2 (en) * | 2002-07-08 | 2006-05-30 | Alfred Kaercher Gmbh & Co. Kg | Floor treatment system |
KR20060037008A (en) | 2004-10-27 | 2006-05-03 | 삼성광주전자 주식회사 | Robot cleaner system and method for return to external charge apparatus |
US7489985B2 (en) * | 2004-10-27 | 2009-02-10 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner system and a method for returning to external recharging apparatus |
KR100645381B1 (en) * | 2005-08-31 | 2006-11-14 | 삼성광주전자 주식회사 | Apparatus for return to external charge of robot cleaner and method thereof |
US7729803B2 (en) * | 2005-08-31 | 2010-06-01 | Samsung Gwangju Electronics Co., Ltd. | System and method for returning robot cleaner to charger |
US7615957B2 (en) * | 2005-10-27 | 2009-11-10 | Lg Electronics Inc. | Mobile robot charge station return system |
US7397213B2 (en) * | 2005-10-28 | 2008-07-08 | Lg Electronics Inc. | Mobile robot and mobile robot charge station return system |
US20070244610A1 (en) * | 2005-12-02 | 2007-10-18 | Ozick Daniel N | Autonomous coverage robot navigation system |
US8380350B2 (en) * | 2005-12-02 | 2013-02-19 | Irobot Corporation | Autonomous coverage robot navigation system |
US20070233319A1 (en) * | 2006-03-29 | 2007-10-04 | Lg Electronics Inc. | System and method for returning mobile robot to charging stand |
US20080065266A1 (en) * | 2006-09-11 | 2008-03-13 | Lg Electronics Inc. | Mobile robot and operating method thereof |
KR100820585B1 (en) * | 2006-10-25 | 2008-04-11 | 엘지전자 주식회사 | Moving robot system and control method thereof |
KR20080051936A (en) | 2006-12-07 | 2008-06-11 | 삼성광주전자 주식회사 | An automatic docking-inducing apparatus of a robot |
US20080136668A1 (en) * | 2006-12-07 | 2008-06-12 | Samsung Gwangju Electronics Co., Ltd. | Apparatus for inducing automatic docking of robot |
US20080174268A1 (en) * | 2006-12-27 | 2008-07-24 | Keun Mo Koo | Automatic charging apparatus of autonomous mobile robot and automatic charging method using the same |
US9134733B2 (en) * | 2009-06-19 | 2015-09-15 | Samsung Electronics Co., Ltd. | Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner |
US9851711B2 (en) * | 2009-06-19 | 2017-12-26 | Samsung Electronics Co., Ltd. | Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner |
US20120143428A1 (en) * | 2009-06-30 | 2012-06-07 | Bong-Ju Kim | Charging device of robot cleaner |
Non-Patent Citations (8)
Title |
---|
EPO Search Opinion, EPO Application EP-09 846 851.5, dated May 4, 2015. * |
EPO Search Opinion, EPO Application EP-15 179 575.4, dated Feb. 23, 2016. * |
EPO Search Opinion, EPO Application EP-15 184 935.3, dated Dec. 22, 2015. * |
European Search Report, EPO Application EP-15 17 9575, dated Feb. 15, 2016. * |
Eurpoean Search Report, EPO Application EP-09 84 6851, dated Apr. 23, 2015. * |
Eurpoean Search Report, EPO Application EP-15 18 4935, dated Dec. 14, 2015. * |
International Chapter 1 Report on Patentability, International Application PCT/KR2009/003560, dated Jan. 17, 2012. * |
International Search Report, International Application PCT/KR2009/003560; dated Mar. 17, 2010. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11627854B2 (en) | 2018-10-22 | 2023-04-18 | Sharkninja Operating Llc | Docking station for robotic cleaner |
Also Published As
Publication number | Publication date |
---|---|
USRE47264E1 (en) | 2019-03-05 |
US20120143428A1 (en) | 2012-06-07 |
ES2872015T3 (en) | 2021-11-02 |
EP2992802A2 (en) | 2016-03-09 |
EP2992802A3 (en) | 2016-03-23 |
EP2449938A4 (en) | 2015-06-03 |
EP2982286A1 (en) | 2016-02-10 |
EP2449938A1 (en) | 2012-05-09 |
EP3632283B1 (en) | 2021-02-24 |
EP2449938B1 (en) | 2015-12-02 |
EP2992802B1 (en) | 2018-12-19 |
KR101428846B1 (en) | 2014-08-14 |
EP3632283A1 (en) | 2020-04-08 |
WO2011002112A1 (en) | 2011-01-06 |
US8825256B2 (en) | 2014-09-02 |
ES2764108T3 (en) | 2020-06-02 |
ES2563087T3 (en) | 2016-03-10 |
EP2982286B1 (en) | 2019-11-20 |
KR20120019437A (en) | 2012-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE47265E1 (en) | Charging device of robot cleaner | |
KR101672787B1 (en) | Robot cleaner and docking station and robot cleaner system having the same and control method thereof | |
US9280158B2 (en) | System and method for guiding a robot cleaner along a path | |
US20050232647A1 (en) | Electric device having charging function | |
KR102015796B1 (en) | Charging connector, docking soket and docking assembly for electric vehicle charging | |
US20040130290A1 (en) | Automatic charging device and method of automatically travelling cleaner | |
JP2021118849A (en) | Docking station for autonomous floor cleaner | |
CN111329411B (en) | Dust absorption sweeper system | |
KR20050038114A (en) | Charging apparatus for mobile robot | |
KR102515485B1 (en) | Charging station of robot cleaner | |
US20030006619A1 (en) | Bumper device for automated guided vehicle | |
CN112168081A (en) | Sweeper, sweeper replenishment system and replenishment station for sweeper | |
CN212326284U (en) | Optical beacon | |
CN106159566B (en) | Electronic card coupler | |
KR100575668B1 (en) | Charging apparatus of robot cleaner | |
KR20080078327A (en) | Automatic charging system and method in movable robot | |
CN103595080A (en) | Charger of robot dust collector | |
KR102358758B1 (en) | Recharging apparatus for Robot Cleaner | |
CN220030230U (en) | Top cover of self-moving robot and self-moving robot | |
JP2024025030A (en) | charging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG ELECTRONICS INC., KOREA, DEMOCRATIC PEOPLE'S RE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, BONG-JU;SHIM, IN-BO;SUNG, JI-HOON;AND OTHERS;REEL/FRAME:047212/0973 Effective date: 20111214 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |