USRE46928E1 - Azeotrope-like compositions of pentafluoropropene and water - Google Patents
Azeotrope-like compositions of pentafluoropropene and water Download PDFInfo
- Publication number
- USRE46928E1 USRE46928E1 US15/429,745 US201715429745A USRE46928E US RE46928 E1 USRE46928 E1 US RE46928E1 US 201715429745 A US201715429745 A US 201715429745A US RE46928 E USRE46928 E US RE46928E
- Authority
- US
- United States
- Prior art keywords
- pentafluoropropene
- water
- psia
- azeotropic mixture
- boiling point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 178
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 113
- NDMMKOCNFSTXRU-UHFFFAOYSA-N 1,1,2,3,3-pentafluoroprop-1-ene Chemical group FC(F)C(F)=C(F)F NDMMKOCNFSTXRU-UHFFFAOYSA-N 0.000 title 1
- DMUPYMORYHFFCT-UPHRSURJSA-N (z)-1,2,3,3,3-pentafluoroprop-1-ene Chemical group F\C=C(/F)C(F)(F)F DMUPYMORYHFFCT-UPHRSURJSA-N 0.000 claims abstract description 111
- 239000012535 impurity Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 115
- 238000009835 boiling Methods 0.000 claims description 64
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims description 32
- FYIRUPZTYPILDH-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoropropane Chemical compound FC(F)C(F)C(F)(F)F FYIRUPZTYPILDH-UHFFFAOYSA-N 0.000 claims description 27
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 19
- ZDCWZRQSHBQRGN-UHFFFAOYSA-N 1,1,1,2,3-pentafluoropropane Chemical compound FCC(F)C(F)(F)F ZDCWZRQSHBQRGN-UHFFFAOYSA-N 0.000 claims description 12
- 238000004821 distillation Methods 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 7
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 7
- 238000005191 phase separation Methods 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 150000008282 halocarbons Chemical class 0.000 claims description 4
- 239000002808 molecular sieve Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000004604 Blowing Agent Substances 0.000 abstract description 5
- 239000003507 refrigerant Substances 0.000 abstract description 5
- 239000003085 diluting agent Substances 0.000 abstract description 4
- 239000003380 propellant Substances 0.000 abstract description 4
- 230000001954 sterilising effect Effects 0.000 abstract description 4
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 description 12
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/383—Separation; Purification; Stabilisation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/383—Separation; Purification; Stabilisation; Use of additives by distillation
- C07C17/386—Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/389—Separation; Purification; Stabilisation; Use of additives by adsorption on solids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
Definitions
- the present invention pertains to azeotropic and azeotrope-like compositions of 1,2,3,3,3-pentafluoropropene (HFO-1225ye) and water.
- chlorofluorocarbons like trichlorofluoromethane and dichlorodifluoromethane have been used as refrigerants, blowing agents and diluents for gaseous sterilization.
- chlorofluorocarbons like trichlorofluoromethane and dichlorodifluoromethane have been used as refrigerants, blowing agents and diluents for gaseous sterilization.
- chlorofluorocarbons like trichlorofluoromethane and dichlorodifluoromethane have been used as refrigerants, blowing agents and diluents for gaseous sterilization.
- chlorofluorocarbons like trichlorofluoromethane and dichlorodifluoromethane have been used as refrigerants, blowing agents and diluents for gaseous sterilization.
- chlorofluorocarbons like trichlorofluoromethane and dichlorodifluo
- HFCs i.e. compounds containing only carbon, hydrogen and fluorine
- HFCs hydrochlorofluorocarbons
- CFCs chlorofluorocarbons
- HFOs Hydrofluoroolefins
- HFO-1225ye 1,2,3,3,3-pentafluoropropene
- HFO-1234yf 2,3,3,3-tetrafluoropropene
- HFOs have been well characterized as effective refrigerant, heat transfer medium, propellant, foaming agent, blowing agent, gaseous dielectric, sterilant carrier, polymerization medium, particulate removal fluid, carrier fluid, buffing abrasive agent, displacement drying agent and power cycle working fluid.
- HFOs are best used as a single component fluid or azeotropic mixture, neither of which fractionate upon boiling and evaporation.
- the identification of such compositions is difficult due, at least in part, to the relative unpredictability of azeotrope formation. Therefore, industry is continually seeking new HFO-based mixtures that are acceptable and environmentally safer substitutes for CFCs, HCFCs, and HFCs. This invention satisfies these needs among others.
- the invention provides an azeotropic or azeotrope-like composition of 1,2,3,3,3-pentafluoropropene (HFO-1225ye) and water.
- the compositions of the instant invention provide environmentally desirable replacements for currently used CFCs, HFCs and HCFCs, since HFO-1225ye and water have little to no ozone depletion potential. Additionally, a composition containing such an azeotrope exhibits characteristics that make it better than CFCs, HFCs, and HCFCs substitutes, as well as either HFO-1225ye or water alone.
- the invention further provides a composition and method of forming an azeotropic or azeotrope-like composition which comprises a blend of from about 0.1 to about 50 weight percent water and about 50 to 99.9 weight percent HFO-1225ye.
- the azeotropic or azeotrope-like composition comprises a blend of from about 0.1 to about 25 weight percent water and about 75 to 99.9 weight percent HFO-1225ye, and in even further embodiments it comprises a blend of from about 0.25 to about 11 weight percent water and about 89 to 99.75 weight percent HFO-1225ye.
- the resulting azeotrope has a boiling point of about ⁇ 20° C. ⁇ 0.5° C.
- the azeotrope has a boiling point of about ⁇ 20° C. at a pressure of about 14.3 psia, and in even further embodiments, the azeotrope has a boiling point of about ⁇ 20.3° C. at a pressure of about 14.39 psia.
- the instant invention also relates to a method for removing 1,2,3,3,3-pentafluoropropene from a mixture containing 1,2,3,3,3-pentafluoropropene and at least one impurity by adding water to the mixture in an effective amount to form an azeotropic or azeotrope-like composition in accordance with the foregoing.
- This azeotrope is then separated from impurities using standard methods known in the art, such as but not limited to, distillation.
- Impurities may include a halocarbon or hydrogen fluoride, which may or may not be miscible with 1,2,3,3,3-pentafluoropropene.
- halocarbons include, but are not limited to, 1,1,1,2,3,3-hexafluoropropane (HFC-236ea); 1,1,1,2,3-pentafluoropropane (HFC-245eb); hexafluoropropylene (HFP); 1,1,1,2-tetrafluoropropene (HFO-1234yf); and combinations thereof.
- the impurities may or may not also form an azeotropic mixture 1,2,3,3,3-pentafluoropropene, water or a mixture of 1,2,3,3,3-pentafluoropropene and water.
- the instant invention also relates to a method for isolating 1,2,3,3,3-pentafluoropropene from an azeotropic mixture of 1,2,3,3,3-pentafluoropropene and water, by separating 1,2,3,3,3-pentafluoropropene from the water.
- Separation methods may include any one or combination of methods known in the art or otherwise discussed herein.
- 1,2,3,3,3-pentafluoropropene may be separated using a liquid-liquid phase separation.
- 1,2,3,3,3-pentafluoropropene may be separated using distillation and/or one or more drying media (e.g. a molecular sieve, silica alumina, or the like).
- separation methods may include a combination of liquid-liquid phase separation and a second method selected from distillation and/or one or more drying media.
- an azeotropic or azeotrope-like composition is provided of 1,2,3,3,3-pentafluoropropene (HFO-1225ye) and water.
- This composition provides environmentally desirable replacements for currently used CFCs, HFCs, and HCFCs, since HFO-1225ye and water have little to no ozone depletion potential.
- a composition containing such an azeotrope exhibits characteristics that make it better than CFC, HFC, and HCFC substitutes, as well as HFO-1225ye or water alone.
- the azeotrope or azeotrope-like composition of HFO-1225ye and water is used to isolate a purified form of HFO-1225ye.
- HFO-1225ye refers to either the “E” or the “Z” isomers individually or a mixture thereof.
- azeotrope or azeotrope-like mixtures of HFO-1225ye and water include those compositions or mixtures that behave like azeotropes.
- the thermodynamic state of a fluid is defined by its pressure, temperature, liquid composition and vapor composition.
- the liquid composition and vapor phase are essentially equal at a given temperature and pressure range. In practical terms this means that the components cannot be separated during a phase change.
- an azeotrope is a liquid mixture that exhibits a maximum or minimum boiling point relative to the boiling points of surrounding mixture compositions.
- azeotrope or an azeotrope-like composition is an admixture of two or more different components which, when in liquid form under given pressure, will boil at a substantially constant temperature, which temperature may be higher or lower than the boiling temperatures of the components and which will provide a vapor composition essentially identical to the liquid composition undergoing boiling.
- azeotropic compositions are defined to include azeotrope-like compositions which means a composition that behaves like an azeotrope, i.e., has constant-boiling characteristics or a tendency not to fractionate upon boiling or evaporation.
- the composition of the vapor formed during boiling or evaporation is the same as or substantially the same as the original liquid composition.
- the liquid composition if it changes at all, changes only to a minimal or negligible extent.
- the liquid composition changes to a substantial degree.
- the essential features of an azeotrope or an azeotrope-like composition are that at a given pressure, the boiling point of the liquid composition is fixed and that the composition of the vapor above the boiling composition is essentially that of the boiling liquid composition, i.e., essentially no fractionation of the components of the liquid composition takes place.
- Both the boiling point and the weight percentages of each component of the azeotropic composition may change when the azeotrope or azeotrope-like liquid composition is subjected to boiling at different pressures.
- an azeotrope or an azeotrope-like composition may be defined in terms of the relationship that exists between its components or in terms of the compositional ranges of the components or in terms of exact weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure.
- the invention provides azeotrope-like compositions having effective amounts of HFO-1225ye and water.
- effective amounts means an amount of each component that, on combination with the other component, results in the formation of an azeotrope-like composition.
- the azeotropic or azeotrope-like composition comprises a blend of from about 0.1 to about 50 weight percent water and about 50 to 99.9 weight percent HFO-1225ye.
- the azeotropic or azeotrope-like composition comprises a blend of from about 0.1 to about 25 weight percent water and about 75 to 99.9 weight percent HFO-1225ye, and in even further embodiments azeotropic or azeotrope-like composition comprises a blend of from about 0.25 to about 11 weight percent water and about 89 to 99.75 weight percent HFO-1225ye.
- the azeotropic mixture of the present invention has a boiling point of about ⁇ 20° C. ⁇ 0.5° C. at a pressure of about 14.3 ⁇ 2 psia.
- azeotropic mixture of the present invention has a boiling point of about ⁇ 20° C. at a pressure of about 14.3.
- the azeotrope has a boiling point of from about ⁇ 20.3° C. at a pressure of from about 14.39 psia.
- the methods of the instant invention include the steps for generating the HFO-1225ye and HFO-1225ye/water azeotrope and for isolating the azeotrope from impurities.
- the instant methods also include steps for purifying HFO-1225ye from the azeotropic mixture, which are discussed in greater detail below.
- HFO-1225ye may be produced using one or more methods that are known in the art.
- 1,2,3,3,3-pentafluoropropene (HFO-1225ye) is produced as an intermediate in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf) which is well known in the art as described in US Application No.
- HFO-1225ye may be produced by the initial hydrogenation of a hexafluoropropylene (HFP) to produce 1,1,1,2,3,3-hexafluoropropane (HFC-236ea). This is then used as a reactant in a dehydrohalogenation reaction to produce HFO-1225ye.
- HFP hexafluoropropylene
- HFC-236ea 1,1,1,2,3,3-hexafluoropropane
- the first step in removing HFO-1225ye from this mixture, or any other mixture containing HFO-1225ye and an impurity is by adding water in an effective amount, as defined herein, to form an azeotropic composition of the HFO-1225ye and water. Thereafter, the azeotropic composition is separated from the impurity using standard separation techniques, such as, but not limited to, distillation, scrubbing, or other art recognized separating means. In one embodiment, the impurity itself does not form an azeotropic mixture with HFO-1225ye, water or a mixture of HFO-1225ye and water.
- the impurity does form an azeotropic mixture with HFO-1225ye, water or a mixture of HFO-1225ye and water.
- Typical impurities of HFO-1225ye include, but are not limited to, other halocarbons which may be miscible with HFO-1225ye such as, but not limited to, 1,1,1,2,3,3-hexafluoropropane (HFC-236ea); 1,1,1,2,3-pentafluoropropane (HFC-245eb); hexafluoropropylene (HFP); 1,1,1,2-tetrafluoropropene (HFO-1234yf); and combinations thereof.
- the impurity is hydrogen fluoride.
- This purified azeotrope meets the need in the art for HFO mixtures that have no ozone depletion potential and are negligible contributors to greenhouse global warming and are nonflammable.
- Such a mixture may be utilized in a wide range of uses such as, but not limited, refrigerants, blowing agents, propellants and diluents for gaseous sterilization.
- the azeotrope may be provided in combination with other useful additives or ingredients for such purposes.
- HFO-1225ye Post-purification, it also may be desirable to separate component parts of the HFO-1225ye and water azeotrope to a purified form HFO-1225ye. Separation methods may include any method generally known in the art. In one embodiment, for example, the excess water can be removed from the HFO-1225ye by liquid-liquid phase separation. The remaining water can then be removed from the HFO-1225ye by distillation and/or one or more drying media (e.g. molecular sieves silica alumina, and the like). Purified HFO-1225ye may be used as an end product (i.e. as a refrigerant, blowing agent, propellant, diluents for gaseous sterilization, or the like), or it may be further processed for the production of alternative HFOs or similar compounds.
- end product i.e. as a refrigerant, blowing agent, propellant, diluents for gaseous sterilization, or the like
- a glass vacuum insulated vessel fitted with a dry ice cooled condenser is initially charged with HFO-(Z)-1225ye. Water is then added incrementally and the temperature of the mixture is recorded. The temperature of the mixture reaches a minimum values and then flattens indicating the formation of a heterogeneous azeotrope. The ambient pressure during the measurements was 14.3 psia. The measured temperatures are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Detergent Compositions (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
TABLE 1 |
Ebulliometer measurements of HFO-(Z)-1225ye and water at 14.39 psi |
water, wt % | Temp, ° C. | |
0.00 | −20.19 | |
0.25 | −20.31 | |
0.75 | −20.32 | |
1.74 | −20.31 | |
3.65 | −20.31 | |
7.26 | −20.31 | |
10.61 | −20.31 | |
13.73 | −20.32 | |
16.64 | −20.32 | |
Claims (108)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/429,745 USRE46928E1 (en) | 2010-05-06 | 2017-02-10 | Azeotrope-like compositions of pentafluoropropene and water |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33197110P | 2010-05-06 | 2010-05-06 | |
US13/083,230 US8951431B2 (en) | 2010-05-06 | 2011-04-08 | Azeotrope-like compositions of pentafluoropropene and water |
US15/429,745 USRE46928E1 (en) | 2010-05-06 | 2017-02-10 | Azeotrope-like compositions of pentafluoropropene and water |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/083,230 Reissue US8951431B2 (en) | 2010-05-06 | 2011-04-08 | Azeotrope-like compositions of pentafluoropropene and water |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46928E1 true USRE46928E1 (en) | 2018-07-03 |
Family
ID=44902347
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/083,230 Ceased US8951431B2 (en) | 2010-05-06 | 2011-04-08 | Azeotrope-like compositions of pentafluoropropene and water |
US15/429,745 Active 2032-11-23 USRE46928E1 (en) | 2010-05-06 | 2017-02-10 | Azeotrope-like compositions of pentafluoropropene and water |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/083,230 Ceased US8951431B2 (en) | 2010-05-06 | 2011-04-08 | Azeotrope-like compositions of pentafluoropropene and water |
Country Status (9)
Country | Link |
---|---|
US (2) | US8951431B2 (en) |
EP (3) | EP3354706B1 (en) |
JP (1) | JP2013529234A (en) |
CN (1) | CN102939352B (en) |
ES (2) | ES2667528T3 (en) |
MX (1) | MX2012012830A (en) |
PL (2) | PL3354706T3 (en) |
TR (1) | TR201808446T4 (en) |
WO (1) | WO2011139945A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11286222B2 (en) * | 2017-06-16 | 2022-03-29 | Daikin Industries, Ltd. | Azeotrope or azeotropic composition containing pentafluoropropane and water, and method for producing pentafluoropropane |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0611742D0 (en) * | 2006-06-14 | 2006-07-26 | Ineos Fluor Holdings Ltd | Desiccants for fluids |
US9994751B2 (en) * | 2008-04-30 | 2018-06-12 | Honeywell International Inc. | Absorption refrigeration cycles using a LGWP refrigerant |
US8951431B2 (en) * | 2010-05-06 | 2015-02-10 | E I Du Pont De Nemours And Company | Azeotrope-like compositions of pentafluoropropene and water |
US8747691B2 (en) * | 2010-05-06 | 2014-06-10 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and water |
JP6551064B2 (en) * | 2015-08-31 | 2019-07-31 | 日本ゼオン株式会社 | Purification method of 2-fluorobutane or 2,2-difluorobutane |
US10029964B2 (en) | 2016-08-30 | 2018-07-24 | Honeywell International Inc. | Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water |
US9950974B2 (en) | 2016-08-31 | 2018-04-24 | Honeywell International Inc. | Azeotropic or azeotrope-like compositions of 1,3,3-trichloro-3-fluoro-1-ene (HCFO-1231zd) and hydrogen fluoride (HF) |
US9950973B2 (en) | 2016-08-31 | 2018-04-24 | Honeywell International Inc. | Azeotropic or azeotrope-like compositions of 1,3-dichloro-3,3-difluoroprop-1-ene (HCFO-1232zd) and hydrogen fluoride (HF) |
CN112218843B (en) * | 2018-05-30 | 2023-11-17 | Agc株式会社 | Process for producing (Z) -1-chloro-2, 3,4, 5-heptafluoro-1-pentene |
CN112204003B (en) * | 2018-05-30 | 2023-09-29 | Agc株式会社 | Process for producing 1-chloro-2, 3,4, 5-heptafluoro-1-pentene |
US11318338B2 (en) | 2018-10-15 | 2022-05-03 | Honeywell International Inc. | Azeotrope or azeotrope-like compositions of trifluoroidomethane (CF3I) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) |
US11344761B2 (en) | 2018-10-15 | 2022-05-31 | Honeywell International Inc. | Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and 1,1,1,2,2,3,3,-heptafluoropropane (HFC-227ca) |
US10647644B2 (en) * | 2018-10-15 | 2020-05-12 | Honeywell International Inc. | Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and hexafluoropropene (HFP) |
CN114599630A (en) * | 2019-11-06 | 2022-06-07 | 霍尼韦尔国际公司 | Azeotrope or azeotrope-like composition of 2-chloro-1, 1,1, 2-tetrafluoropropane (HCFC-244BB) and water |
MX2022005384A (en) * | 2019-11-06 | 2022-05-19 | Honeywell Int Inc | Azeotrope or azeotrope-like compositions of 2-chloro-3,3,3-triflu oropropene (hcfo-1233xf) and water. |
US20220080243A1 (en) * | 2020-09-11 | 2022-03-17 | Honeywell International Inc. | Azeotrope or azeotrope-like compositions of trifluoroiodomethane (cf3i) and water |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100506A1 (en) | 2001-06-08 | 2002-12-19 | Honeywell International, Inc. | Azeotrope-like compositions of tetrafluoroethane, pentafluoropropane and water |
US20060106263A1 (en) * | 2004-10-29 | 2006-05-18 | Miller Ralph N | Processes for production and purification of hydrofluoroolefins |
WO2006094303A2 (en) | 2005-03-04 | 2006-09-08 | E.I. Dupont De Nemours And Company | Compositions comprising a fluoroolefin |
US20070099811A1 (en) * | 2005-11-01 | 2007-05-03 | Miller Ralph N | Azeotrope compositions comprising nonafluoropentene and hydrogen fluoride and uses thereof |
US20070100173A1 (en) * | 2005-11-01 | 2007-05-03 | Miller Ralph N | Azeotrope compositions comprising E-1,3,3,3-tetrafluoropropene and hydrogen fluoride and uses thereof |
GB2439209A (en) * | 2006-06-14 | 2007-12-19 | Ineos Fluor Holdings Ltd | Desiccant with a Molecular Sieve Structure for Fluids such as Refrigerants |
US20080011678A1 (en) | 2006-07-13 | 2008-01-17 | Knapp Jeffrey P | Process for separating a fluoroolefin from HF by liquid-liquid extraction |
WO2008024508A1 (en) | 2006-08-24 | 2008-02-28 | E. I. Du Pont De Nemours And Company | Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation |
US20080051611A1 (en) * | 2006-08-24 | 2008-02-28 | Honeywell International Inc. | PROCESS FOR THE PRODUCTION OF HFO TRANS-1234ze FROM HFC-245fa |
WO2008030444A2 (en) | 2006-09-05 | 2008-03-13 | E. I. Du Pont De Nemours And Company | Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions |
WO2008033568A2 (en) | 2006-09-15 | 2008-03-20 | E.I. Du Pont De Nemours And Company | Determination of the components of a fluoroolefin composition |
US20090012336A1 (en) | 2006-04-03 | 2009-01-08 | Mario Joseph Nappa | Selectively Reacting Olefins Having a Terminal CF2 Group in A Mixture |
US20090151365A1 (en) | 2007-12-13 | 2009-06-18 | Pham Hang T | Azeotrope-like compositions of pentafluoropropene and 1,1,1,2,2-pentafluoropropane |
US20090234165A1 (en) | 2008-03-14 | 2009-09-17 | Honeywell International Inc. | Process for the manufacture of fluorinated olefins |
US20100048961A1 (en) | 2008-08-22 | 2010-02-25 | Merkel Daniel C | Method for separating halocarbons |
FR2935702A1 (en) * | 2009-09-15 | 2010-03-12 | Arkema France | Preparing pentafluoropropene, useful as intermediate for synthesizing tetrafluoropropene, comprises dehydrofluorinating hexafluoropropane, and contacting hexafluoropropane with mixture comprising water and potassium hydroxide |
US20100119460A1 (en) * | 2008-11-11 | 2010-05-13 | Honeywell International Inc. | Azeotrope-Like Compositions Of 2,3,3,3-Tetrafluoropropene And 3,3,3-Trifluoropropene |
US20110160500A1 (en) * | 2008-08-26 | 2011-06-30 | Kazuhiro Takahashi | Azeotropic or azeotrope-like composition and process for producing 2,3,3,3-tetrafluoropropene |
US20110172472A1 (en) * | 2008-09-25 | 2011-07-14 | Central Glass Company, Limited | Process for Producing 1,3,3,3-Tetrafluoropropene |
US20110190554A1 (en) * | 2008-09-11 | 2011-08-04 | Arkema France | Process for the preparation of fluorinated compounds |
WO2011139945A2 (en) | 2010-05-06 | 2011-11-10 | Honeywell International Inc. | Azeotrope-like compositions of pentafluoropropene and water |
US20110275723A1 (en) * | 2010-05-06 | 2011-11-10 | Honeywell International Inc. | Azeotrope-Like Compositions Of Tetrafluoropropene And Water |
US20120056122A1 (en) * | 2010-09-03 | 2012-03-08 | Honeywell International Inc. | 1,3,3,3-tetrafluoropropene process azeotropes with hf |
US20120065435A1 (en) * | 2010-09-14 | 2012-03-15 | Central Glass Company, Limited | Dehydration Process of Hydrofluorocarbon or Hydrochlorofluorocarbon and Production Method of 1,3,3,3-Tetrafluoropropene Using the Dehydration Process |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US8288597B2 (en) * | 2006-09-05 | 2012-10-16 | E.I. Du Pont De Nemours And Company | Dehydrofluorination process to manufacture hydrofluoroolefins |
US20120283339A1 (en) * | 2008-07-16 | 2012-11-08 | Honeywell International Inc. | Hfo-1234ze mixed isomers with hfc-245fa as a blowing agent, aerosol, and solvent |
US20130060069A1 (en) * | 2010-05-03 | 2013-03-07 | Arkema Inc. | Dehydrofluorination of pentafluoroalkanes to form tetrafluoroolefins |
US8410325B2 (en) * | 2006-12-19 | 2013-04-02 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of C3-7 fluoroalkenes by base-mediated dehydrohalogenated C3-7 fluoroalkenes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109897605B (en) * | 2005-03-04 | 2021-09-10 | 科慕埃弗西有限公司 | Compositions comprising fluoroolefins |
US7388117B2 (en) * | 2005-11-01 | 2008-06-17 | E.I. Du Pont De Nemours And Company | Azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride and uses thereof |
-
2011
- 2011-04-08 US US13/083,230 patent/US8951431B2/en not_active Ceased
- 2011-05-02 JP JP2013509136A patent/JP2013529234A/en not_active Withdrawn
- 2011-05-02 ES ES11778088.2T patent/ES2667528T3/en active Active
- 2011-05-02 CN CN201180022902.XA patent/CN102939352B/en active Active
- 2011-05-02 TR TR2018/08446T patent/TR201808446T4/en unknown
- 2011-05-02 EP EP18162959.3A patent/EP3354706B1/en active Active
- 2011-05-02 WO PCT/US2011/034746 patent/WO2011139945A2/en active Application Filing
- 2011-05-02 ES ES18162959T patent/ES2969820T3/en active Active
- 2011-05-02 PL PL18162959.3T patent/PL3354706T3/en unknown
- 2011-05-02 MX MX2012012830A patent/MX2012012830A/en active IP Right Grant
- 2011-05-02 EP EP23213689.5A patent/EP4311822A3/en active Pending
- 2011-05-02 EP EP11778088.2A patent/EP2566928B1/en active Active
- 2011-05-02 PL PL11778088T patent/PL2566928T3/en unknown
-
2017
- 2017-02-10 US US15/429,745 patent/USRE46928E1/en active Active
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100506A1 (en) | 2001-06-08 | 2002-12-19 | Honeywell International, Inc. | Azeotrope-like compositions of tetrafluoroethane, pentafluoropropane and water |
US20060106263A1 (en) * | 2004-10-29 | 2006-05-18 | Miller Ralph N | Processes for production and purification of hydrofluoroolefins |
WO2006094303A2 (en) | 2005-03-04 | 2006-09-08 | E.I. Dupont De Nemours And Company | Compositions comprising a fluoroolefin |
US20070099811A1 (en) * | 2005-11-01 | 2007-05-03 | Miller Ralph N | Azeotrope compositions comprising nonafluoropentene and hydrogen fluoride and uses thereof |
US20070100173A1 (en) * | 2005-11-01 | 2007-05-03 | Miller Ralph N | Azeotrope compositions comprising E-1,3,3,3-tetrafluoropropene and hydrogen fluoride and uses thereof |
US20090012336A1 (en) | 2006-04-03 | 2009-01-08 | Mario Joseph Nappa | Selectively Reacting Olefins Having a Terminal CF2 Group in A Mixture |
GB2439209A (en) * | 2006-06-14 | 2007-12-19 | Ineos Fluor Holdings Ltd | Desiccant with a Molecular Sieve Structure for Fluids such as Refrigerants |
WO2007144632A1 (en) | 2006-06-14 | 2007-12-21 | Ineos Fluor Holdings Limited | Process for drying a gas stream comprising a fluoropropene |
US20100162738A1 (en) * | 2006-06-14 | 2010-07-01 | Low Robert E | Process for Drying a Gas Stream Comprising a Fluoropropene |
US20080011678A1 (en) | 2006-07-13 | 2008-01-17 | Knapp Jeffrey P | Process for separating a fluoroolefin from HF by liquid-liquid extraction |
US20080051611A1 (en) * | 2006-08-24 | 2008-02-28 | Honeywell International Inc. | PROCESS FOR THE PRODUCTION OF HFO TRANS-1234ze FROM HFC-245fa |
US20080051612A1 (en) | 2006-08-24 | 2008-02-28 | E. I. Dupont De Nemours And Company | Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation |
WO2008024508A1 (en) | 2006-08-24 | 2008-02-28 | E. I. Du Pont De Nemours And Company | Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation |
WO2008030444A2 (en) | 2006-09-05 | 2008-03-13 | E. I. Du Pont De Nemours And Company | Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions |
US8288597B2 (en) * | 2006-09-05 | 2012-10-16 | E.I. Du Pont De Nemours And Company | Dehydrofluorination process to manufacture hydrofluoroolefins |
WO2008033568A2 (en) | 2006-09-15 | 2008-03-20 | E.I. Du Pont De Nemours And Company | Determination of the components of a fluoroolefin composition |
US8410325B2 (en) * | 2006-12-19 | 2013-04-02 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of C3-7 fluoroalkenes by base-mediated dehydrohalogenated C3-7 fluoroalkenes |
US20090151365A1 (en) | 2007-12-13 | 2009-06-18 | Pham Hang T | Azeotrope-like compositions of pentafluoropropene and 1,1,1,2,2-pentafluoropropane |
US7794618B2 (en) | 2007-12-13 | 2010-09-14 | Honeywell International Inc. | Azeotrope-like compositions of pentafluoropropene and 1,1,1,2,2-pentafluoropropane |
US20090234165A1 (en) | 2008-03-14 | 2009-09-17 | Honeywell International Inc. | Process for the manufacture of fluorinated olefins |
US20120283339A1 (en) * | 2008-07-16 | 2012-11-08 | Honeywell International Inc. | Hfo-1234ze mixed isomers with hfc-245fa as a blowing agent, aerosol, and solvent |
US20100048961A1 (en) | 2008-08-22 | 2010-02-25 | Merkel Daniel C | Method for separating halocarbons |
US20110160500A1 (en) * | 2008-08-26 | 2011-06-30 | Kazuhiro Takahashi | Azeotropic or azeotrope-like composition and process for producing 2,3,3,3-tetrafluoropropene |
US20110190554A1 (en) * | 2008-09-11 | 2011-08-04 | Arkema France | Process for the preparation of fluorinated compounds |
US20110172472A1 (en) * | 2008-09-25 | 2011-07-14 | Central Glass Company, Limited | Process for Producing 1,3,3,3-Tetrafluoropropene |
US20100119460A1 (en) * | 2008-11-11 | 2010-05-13 | Honeywell International Inc. | Azeotrope-Like Compositions Of 2,3,3,3-Tetrafluoropropene And 3,3,3-Trifluoropropene |
FR2935702A1 (en) * | 2009-09-15 | 2010-03-12 | Arkema France | Preparing pentafluoropropene, useful as intermediate for synthesizing tetrafluoropropene, comprises dehydrofluorinating hexafluoropropane, and contacting hexafluoropropane with mixture comprising water and potassium hydroxide |
US20130060069A1 (en) * | 2010-05-03 | 2013-03-07 | Arkema Inc. | Dehydrofluorination of pentafluoroalkanes to form tetrafluoroolefins |
WO2011139945A2 (en) | 2010-05-06 | 2011-11-10 | Honeywell International Inc. | Azeotrope-like compositions of pentafluoropropene and water |
US20110275724A1 (en) * | 2010-05-06 | 2011-11-10 | Honeywell International Inc. | Azeotrope-Like Compositions Of Pentafluoropropene And Water |
US20110275723A1 (en) * | 2010-05-06 | 2011-11-10 | Honeywell International Inc. | Azeotrope-Like Compositions Of Tetrafluoropropene And Water |
US20120056122A1 (en) * | 2010-09-03 | 2012-03-08 | Honeywell International Inc. | 1,3,3,3-tetrafluoropropene process azeotropes with hf |
US20120065435A1 (en) * | 2010-09-14 | 2012-03-15 | Central Glass Company, Limited | Dehydration Process of Hydrofluorocarbon or Hydrochlorofluorocarbon and Production Method of 1,3,3,3-Tetrafluoropropene Using the Dehydration Process |
US20120128964A1 (en) * | 2010-11-19 | 2012-05-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
Non-Patent Citations (4)
Title |
---|
Kim, et al., "A Study to Determine the Existence of an Azeotropic R-22 "Drop-In" Substitute," prepared by U.S. Department of Commerce for Electric Power Research Institute, Mar. 1996, pp. 1-45, U.S. |
Morrison, et al., "Azeotropy in Refrigerant Mixture," International Journal of Refrigeration, 1993, pp. 129-138, vol. 16, No. 2. U.S. |
Morrison, Graham et al., Azeotropy in refrigerant mixtures, International Journal of Refrigeration, 1993, pp. 129-138, vol. 16 No. 2. |
Raabe, Gariele, Molecular Modeling of Fluoropropene Refrigerants, The Journal of Physical Chemistry B, 2012, pp. 5744-5751, vol. 116. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11286222B2 (en) * | 2017-06-16 | 2022-03-29 | Daikin Industries, Ltd. | Azeotrope or azeotropic composition containing pentafluoropropane and water, and method for producing pentafluoropropane |
US20220177395A1 (en) * | 2017-06-16 | 2022-06-09 | Daikin Industries, Ltd. | Azeotrope or azeotropic composition containing pentafluoropropane and water, and method for producing pentafluoropropane |
US11724975B2 (en) * | 2017-06-16 | 2023-08-15 | Daikin Industries, Ltd. | Azeotrope or azeotropic composition containing pentafluoropropane and water, and method for producing pentafluoropropane |
US20230331647A1 (en) * | 2017-06-16 | 2023-10-19 | Daikin Industries, Ltd. | Azeotrope or azeotropic composition containing pentafluoropropane and water, and method for producing pentafluoropropane |
Also Published As
Publication number | Publication date |
---|---|
WO2011139945A2 (en) | 2011-11-10 |
WO2011139945A3 (en) | 2012-03-01 |
ES2667528T3 (en) | 2018-05-11 |
ES2969820T3 (en) | 2024-05-22 |
EP2566928A4 (en) | 2016-01-13 |
EP4311822A3 (en) | 2024-04-10 |
EP2566928A2 (en) | 2013-03-13 |
MX2012012830A (en) | 2013-01-28 |
JP2013529234A (en) | 2013-07-18 |
TR201808446T4 (en) | 2018-07-23 |
US20110275724A1 (en) | 2011-11-10 |
EP3354706A1 (en) | 2018-08-01 |
US8951431B2 (en) | 2015-02-10 |
EP2566928B1 (en) | 2018-03-21 |
EP3354706B1 (en) | 2024-01-03 |
PL3354706T3 (en) | 2024-04-29 |
CN102939352A (en) | 2013-02-20 |
PL2566928T3 (en) | 2018-07-31 |
CN102939352B (en) | 2016-08-03 |
EP4311822A2 (en) | 2024-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46928E1 (en) | Azeotrope-like compositions of pentafluoropropene and water | |
US9126888B2 (en) | Azeotrope-like compositions of tetrafluoropropene and water | |
EP2107048B1 (en) | Azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) and 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) | |
US8653311B2 (en) | Azeotrope-like composition of hexafluoropropane, hexafluoropropene and hydrogen fluoride | |
US8066901B1 (en) | Azeotrope-like compositions of trans-1,1,1,4,4,4-hexafluoro-2-butene and water | |
US8426658B2 (en) | Azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and hydrogen fluoride (HF) | |
EP2552879B1 (en) | AZEOTROPE-LIKE COMPOSITION OF 2,3-DICHLORO-3,3-DIFLUOROPROPENE (HCFO-1232xf) AND HYDROGEN FLUORIDE (HF) | |
US10029964B2 (en) | Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:THE CHEMOURS COMPANY FC, LLC;THE CHEMOURS COMPANY TT, LLC;REEL/FRAME:041730/0706 Effective date: 20170320 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNORS:THE CHEMOURS COMPANY FC, LLC;THE CHEMOURS COMPANY TT, LLC;REEL/FRAME:041730/0706 Effective date: 20170320 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:THE CHEMOURS COMPANY FC, LLC;REEL/FRAME:045846/0011 Effective date: 20180403 Owner name: THE CHEMOURS COMPANY FC, LLC, DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045845/0913 Effective date: 20180403 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:THE CHEMOURS COMPANY FC, LLC;REEL/FRAME:045846/0011 Effective date: 20180403 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |