USRE46747E1 - Image capturing system - Google Patents

Image capturing system Download PDF

Info

Publication number
USRE46747E1
USRE46747E1 US14/816,057 US201514816057A USRE46747E US RE46747 E1 USRE46747 E1 US RE46747E1 US 201514816057 A US201514816057 A US 201514816057A US RE46747 E USRE46747 E US RE46747E
Authority
US
United States
Prior art keywords
lens
image
lens element
capturing system
image capturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/816,057
Inventor
Po-Lun Hsu
Tsung-Han Tsai
Ming-Ta Chou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Largan Precision Co Ltd
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to US14/816,057 priority Critical patent/USRE46747E1/en
Application granted granted Critical
Publication of USRE46747E1 publication Critical patent/USRE46747E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an image capturing system. More particularly, the present invention relates to a compact image capturing system applicable to electronic products.
  • the senor of a conventional photographing camera is typically a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide-Semiconductor) sensor.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • a conventional compact optical lens system employed in a portable electronic product mainly adopts a four-element lens structure. Due to the popularity of mobile products with high-end specifications, such as smart phones and PDAs (Personal Digital Assistants), the pixel and image-quality requirements of the compact optical lens system have increased rapidly. However, the conventional four-element lens structure cannot satisfy the requirements of the compact optical lens system.
  • Another conventional compact optical lens system with five-element lens structure enhances image quality and resolving power.
  • the total track length of the optical lens system cannot be reduced easily. Therefore, a need exists in the art for providing an optical lens system for use in a mobile electronic product that has excellent imaging quality without excessive total track length.
  • an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element.
  • the first lens element with positive refractive power has a convex object-side surface.
  • the second lens element has negative refractive power.
  • the third lens element has positive refractive power.
  • the fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric.
  • the fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof.
  • the first through fifth lens elements are five independent and non-cemented lens elements. When a maximum image height of the image capturing system is ImgH an axial distance between the object-side surface of the first lens element and an image plane is TTL, and a focal length of the image capturing system is f, the following relationship is satisfied: 2.8 mm ⁇ (f/ImgH) ⁇ TTL ⁇ 4.6 mm.
  • an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element to and a fifth lens element.
  • the first lens element with positive refractive power has a convex object-side surface.
  • the second lens element has negative refractive power.
  • the third lens element has refractive power.
  • the fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric.
  • the fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof.
  • an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element.
  • the first lens element with positive refractive power has a convex object-side surface.
  • the second lens element has negative refractive power.
  • the third lens element has refractive power.
  • the fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric.
  • the fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof.
  • the first through fifth lens elements are five independent and non-cemented lens elements. When an axial distance between the object-side surface of the first lens element and an image plane is TTL, the following relationship is satisfied: 2.2 mm ⁇ TTL ⁇ 3.5 mm.
  • FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure
  • FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment
  • FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure.
  • FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment
  • FIG. 5 is a schematic view of an image capturing system according to the to 3rd embodiment of the present disclosure.
  • FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment
  • FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure.
  • FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment
  • FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure.
  • FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment
  • FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure.
  • FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment
  • FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure.
  • FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment
  • FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure.
  • FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment
  • FIG. 17 is a schematic view of an image capturing system according to the 9th embodiment of the present disclosure.
  • FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment
  • FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure.
  • FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment
  • FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure.
  • FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment.
  • An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element.
  • the image capturing system further includes an image sensor located on an image plane.
  • the first through fifth lens elements are five independent and non-cemented lens elements. That is, any two lens elements adjacent to each other are not cemented, and there is an air space between the two lens elements.
  • the manufacture of the cemented lenses is more complex than the manufacture of the non-cemented lenses.
  • the cemented surfaces of the two lens elements should have accurate curvatures for ensuring a precise bonding between the two lens elements, or else an undesirable gap between the cemented surfaces of the two lens elements created during the cementing process may affect the optical quality of the image capturing system. Therefore, the image capturing system of the present disclosure provides five independent and non-cemented lens elements for improving the problem generated by the cemented lens elements.
  • the first lens element with positive refractive power has a convex object-side surface, so that the positive refractive power of the first lens element can be enhanced for further reducing the total track length thereof.
  • the second lens element with negative refractive power corrects the aberration generated from the first lens element with positive refractive power.
  • the second lens element has a concave image-side surface, so that the refractive power of the second lens element is proper by adjusting the curvature of the image-side surface of the second lens element, and the aberration of the image capturing system can be further corrected.
  • the third lens element with positive refractive power can reduce the sensitivity of the image capturing system by balancing the distribution of the positive refractive power of the image capturing system.
  • the fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, so that the astigmatism and the high-order aberration of the image capturing system can be corrected.
  • the fifth lens element with refractive power has a convex object-side surface and a concave image-side surface, so that the principal point of the image capturing system can be positioned away from the image plane, and the total track length of the image capturing system can be reduced so as to maintain the compact size of the image capturing system. Furthermore, the fifth lens element has at least one inflection point on at least one of the object-side surface and the image-side surface thereof, so that the incident angle of the off-axis field on the image sensor can be effectively reduced and the aberration can be corrected as well.
  • the image capturing system with short total track length is applicable to the ultra-thin electronic products.
  • the optimized arrangement of the maximum image height of the image capturing system can provide the excellent image capture of the compact electronic products.
  • the negative refractive power of the second lens element can to correct the aberration generated from the first lens element with positive refractive power.
  • a central thickness of the second lens element is CT2
  • a central thickness of the third lens element is CT3
  • acentral thickness of the fourth lens element is CT4
  • the following relationship is satisfied: 0.20 mm ⁇ (CT2+CT3+CT4)/3 ⁇ 0.31 mm.
  • the thickness of the second lens element, the third lens element and the fourth lens element are proper for enhancing the yield of the manufacture and fabrication of the lens elements.
  • an Abbe number of the first lens element is V1
  • an Abbe number of the second lens element is V2
  • an Abbe number of the third lens element is V3
  • an Abbe number of the fourth lens element is V4
  • the focal length of the image capturing system is f
  • a half of the maximal field of view of the image capturing system is HFOV
  • the short total track length of the image capturing system is applicable to the ultra-thin electronic product, and the field of view of the image to capturing system is proper for the image capture of the compact electronic product.
  • TTL, f, and HFOV can further satisfy the following relationship: 6.5 mm 2 ⁇ TTL ⁇ f/tan(HFOV) ⁇ 13.4 mm 2 .
  • the proper range of the image can be captured by the image capturing system with larger field of view.
  • the proper focal length of the image capturing system can maintain the compact size of the image capturing system.
  • the image capturing system with short total track length can maintain the compact size for portable electronic products.
  • the lens elements thereof can be made of glass or plastic material.
  • the distribution of the refractive power of the image capturing system may be more flexible to design.
  • the lens elements are made of plastic material, the cost of manufacture can be effectively reduced.
  • the surface of each lens element can be aspheric, so that it is easier to make the surface into non-spherical shapes. As a result, more controllable variables are obtained, and the aberration is reduced, as well as the number of required lens elements can be reduced while constructing an optical system. Therefore, the total track length of the image capturing system can also be reduced.
  • the lens element when the lens element has a convex surface, it indicates that the paraxial region of the surface is convex; and when the lens element has a concave surface, it indicates that the paraxial region of the surface is concave.
  • the image capturing system can include at least one stop, such as an aperture stop, glare stop, field stop, etc. Said glare stop or said field stop is allocated for reducing stray light while retaining high image quality.
  • a stop is an aperture stop
  • the position of the aperture stop within an optical system can be arbitrarily placed in front of the entire lens assembly, within the lens assembly, or in front of the image plane in accordance with the preference of the optical designer, in order to achieve the desirable optical features or higher image quality produced from the optical system.
  • FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure
  • FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment.
  • the image capturing system includes, in order from an object side to an image side, an aperture stop 100 , the first lens element 110 , the second lens element 120 , the third lens element 130 , the fourth lens element 140 , the fifth lens element 150 , an IR-cut filter 180 , an image plane 160 and an image sensor 170 .
  • the first lens element 110 with positive refractive power has a convex object-side surface 111 and a concave image-side surface 112 , and is made of plastic material.
  • the object-side surface 111 and the mage-side surface 112 of the first lens element 110 are aspheric.
  • the second lens element 120 with negative refractive power has a convex object-side surface 121 and a concave image-side surface 122 , and is made of plastic material.
  • the object-side surface 121 and the image-side surface 122 of the second lens element 120 are aspheric.
  • the third lens element 130 with positive refractive power has a concave object-side surface 131 and a convex image-side surface 132 , and is made of plastic material.
  • the object-side surface 131 and the image-side surface 132 of the third lens element 130 are aspheric.
  • the fourth lens element 140 with negative refractive power has a concave object-side surface 141 and a convex image-side surface 142 , and is made of plastic material.
  • the object-side surface 141 and the image-side surface 142 of the fourth lens element 140 are aspheric.
  • the fifth lens element 150 with negative refractive power has a convex object-side surface 151 and a concave image-side surface 152 , and is made of plastic material.
  • the object-side surface 151 and the image-side surface 152 of the fifth lens element 150 are aspheric. Furthermore, the fifth lens element 150 has inflection points on the object-side surface 151 and the image-side surface 152 thereof.
  • the IR-cut filter 180 is made of glass, and located between the fifth lens element 150 and the image plane 160 , and will not affect the focal length of the image capturing system.
  • X ⁇ ( Y ) ( Y 2 / R ) / ( 1 + sqrt ⁇ ( 1 - ( 1 + k ) ⁇ ( Y / R ) 2 ) ) + ⁇ i ⁇ ( Ai ) ⁇ ( Y ′ ) ,
  • X is the distance between a point on the aspheric surface spaced at a distance Y from the optical axis and the tangential plane at the aspheric surface vertex on the optical axis;
  • Y is the distance from the point on the curve of the aspheric surface to the optical axis
  • R is the curvature radius
  • k is the conic coefficient
  • Ai is the i-th aspheric coefficient.
  • a to maximum image height of the image capturing system is ImgH which here is a half of the diagonal length of the photosensitive area of the image sensor 170 on the image plane 160
  • an axial distance between the object-side surface 111 of the first lens element 110 and the image plane 160 is TTL
  • the focal length of the image capturing system is f
  • the half of the maximal field of view of the image capturing system is HFOV
  • Table 1 the curvature radius, the thickness and the focal length are shown in millimeters (mm).
  • Surface numbers 0-14 represent the surfaces sequentially arranged from the object-side to the image-side along the optical axis.
  • k represents the conic coefficient of the equation of the aspheric surface profiles.
  • A1-A16 represent the aspheric coefficients ranging from the 1st order to the 16th order.
  • FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure.
  • FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment.
  • the image capturing system includes, in order from an object side to an image side, an aperture stop 200 , the first lens element 210 , the second lens element 220 , the third lens element 230 , the fourth lens element 240 , the fifth lens element 250 , an IR-cut filter 280 , an image plane 260 and an image sensor 270 .
  • the first lens element 210 with positive refractive power has a convex object-side surface 211 and a concave image-side surface 212 , and is made of plastic material.
  • the object-side surface 211 and the mage-side surface 212 of the first lens element 210 are aspheric.
  • the second lens element 220 with negative refractive power has a convex object-side surface 221 and a concave image-side surface 222 , and is made of plastic material.
  • the object-side surface 221 and the image-side surface 222 of the second lens element 220 are aspheric.
  • the third lens element 230 with positive refractive power has a concave object-side surface 231 and a convex image-side surface 232 , and is made of plastic material.
  • the object-side surface 231 and the image-side surface 232 of the third lens element 230 are aspheric.
  • the fourth lens element 240 with negative refractive power has a concave object-side surface 241 and a conveximage-side surface 242 , and is made of plastic material.
  • the object-side surface 241 and the image-side surface 242 of the fourth lens element 240 are aspheric.
  • the fifth lens element 250 with negative refractive power has a convex to object-side surface 251 and a concave image-side surface 252 , and is made of plastic material.
  • the object-side surface 251 and the image-side surface 252 of the fifth lens element 250 are aspheric. Furthermore, the fifth lens element 250 has inflection points on the object-side surface 251 and the image-side surface 252 thereof.
  • the IR-cut filter 280 is made of glass, and located between the fifth lens element 250 and the image plane 260 , and will not affect the focal length of the image capturing system.
  • f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 2nd embodiment.
  • these parameters can be calculated from Table 3 and Table 4 as the following values and satisfy the following relationships:
  • FIG. 5 is a schematic view of an image capturing system according to the 3rd embodiment of the present disclosure.
  • FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment.
  • the image capturing to system includes, in order from an object side to an image side, an aperture stop 300 , the first lens element 310 , the second lens element 320 , the third lens element 330 , the fourth lens element 340 , the fifth lens element 350 , an IR-cut filter 380 , an image plane 360 and an image sensor 370 .
  • the first lens element 310 with positive refractive power has a convex object-side surface 311 and a concave image-side surface 312 , and is made of plastic material.
  • the object-side surface 311 and the image-side surface 312 of the first lens element 310 are aspheric.
  • the second lens element 320 with negative refractive power has a convex object-side surface 321 and a concave image-side surface 322 , and is made of plastic material.
  • the object-side surface 321 and the image-side surface 322 of the second lens element 320 are aspheric.
  • the third lens element 330 with positive refractive power has a convex object-side surface 331 and a convex image-side surface 332 , and is made of plastic material.
  • the object-side surface 331 and the image-side surface 332 of the third lens element 330 are aspheric.
  • the fourth lens element 340 with negative refractive power has a concave object-side surface 341 and a convex image-side surface 342 , and is made of plastic material.
  • the object-side surface 341 and the image-side surface 342 of the fourth lens element 340 are aspheric.
  • the fifth lens element 350 with negative refractive power has a convex object-side surface 351 and a concave image-side surface 352 , and is made of plastic material.
  • the object-side surface 351 and the image-side surface 352 of the fifth lens element 350 are aspheric. Furthermore, the fifth lens element 350 has inflection points on the object-side surface 351 and the image-side surface 352 thereof.
  • the IR-cut filter 380 is made of glass, and located between the fifth lens element 350 and the image plane 360 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 3rd embodiment.
  • these parameters can be calculated from Table 5 and Table 6 as the following values and satisfy the following relationships:
  • FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure.
  • FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment.
  • the image capturing system includes, in order from an object side to an image side, the first lens element 410 , an aperture stop 400 , the second lens element 420 , the third lens element 430 , the fourth lens element 440 , the fifth lens element 450 , an IR-cut filter 480 , an image plane 460 and an image sensor 470 .
  • the first lens element 410 with positive refractive power has a convex object-side surface 411 and a concave image-side surface 412 , and is made of plastic material.
  • the object-side surface 411 and the image-side surface 412 of the first lens element 410 are aspheric.
  • the second lens element 420 with negative refractive power has a convex object-side surface 421 and a concave image-side surface 422 , and is made of plastic material.
  • the object-side surface 421 and the image-side surface 422 of the second lens element 420 are aspheric.
  • the third lens element 430 with positive refractive power has a convex object-side surface 431 and a convex image-side surface 432 , and is made of plastic material.
  • the object-side surface 431 and the image-side surface 432 of the third lens element 430 are aspheric.
  • the fourth lens element 440 with negative refractive power has a concave object-side surface 441 and a convex image-side surface 442 , and is made of plastic material.
  • the object-side surface 441 and the image-side surface 442 of the fourth lens element 440 are aspheric.
  • the fifth lens element 450 with negative refractive power has a convex to object-side surface 451 and a concave image-side surface 452 , and is made of plastic material.
  • the object-side surface 451 and the image-side surface 452 of the fifth lens element 450 are aspheric. Furthermore, the fifth lens element 450 has inflection points on the object-side surface 451 and the image-side surface 452 thereof.
  • the IR-cut filter 480 is made of glass, and located between the fifth lens element 450 and the image plane 460 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 4th embodiment.
  • these parameters can be calculated from Table 7 and Table 8 as the following values and satisfy the following relationships:
  • FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure.
  • FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment.
  • the image capturing to system includes, in order from an object side to an image side, the first lens element 510 , an aperture stop 500 , the second lens element 520 , the third lens element 530 , the fourth lens element 540 , the fifth lens element 550 , an IR-cut filter 580 , an image plane 560 and an image sensor 570 .
  • the first lens element 510 with positive refractive power has a convex object-side surface 511 and a concave image-side surface 512 , and is made of plastic material.
  • the object-side surface 511 and the image-side surface 512 of the first lens element 510 are aspheric.
  • the second lens element 520 with negative refractive power has a concave object-side surface 521 and a concave image-side surface 522 , and is made of plastic material.
  • the object-side surface 521 and the image-side surface 522 of the second lens element 520 are aspheric.
  • the third lens element 530 with positive refractive power has a convex object-side surface 531 and a concave image-side surface 532 , and is made of plastic material.
  • the object-side surface 531 and the image-side surface 532 of the third lens element 530 are aspheric.
  • the fourth lens element 540 with negative refractive power has a concave object-side surface 541 and a convex image-side surface 542 , and is made of plastic material.
  • the object-side surface 541 and the image-side surface 542 of the fourth lens element 540 are aspheric.
  • the fifth lens element 550 with negative refractive power has a convex object-side surface 551 and a concave image-side surface 552 , and is made of plastic material.
  • the object-side surface 551 and the image-side surface 552 of the fifth lens element 550 are aspheric. Furthermore, the fifth lens element 550 has inflection points on the object-side surface 551 and the image-side surface 552 thereof.
  • the IR-cut filter 580 is made of glass, and located between the fifth lens element 550 and the image plane 560 , and will not affect the focal length of the image capturing system.
  • f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 5th embodiment.
  • these parameters can be calculated from Table 9 and Table 10 as the following values and satisfy the following relationships:
  • FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure.
  • FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment.
  • the image to capturing system includes, in order from an object side to an image side, the first lens element 610 , an aperture stop 600 , the second lens element 620 , the third lens element 630 , the fourth lens element 640 , the fifth lens element 650 , an IR-cut filter 680 , an image plane 660 and an image sensor 670 .
  • the first lens element 610 with positive refractive power has a convex object-side surface 611 and a convex image-side surface 612 , and is made of plastic material.
  • the object-side surface 611 and the image-side surface 612 of the first lens element 610 are aspheric.
  • the second lens element 620 with negative refractive power has a concave object-side surface 621 and a concave image-side surface 622 , and is made of plastic material.
  • the object-side surface 621 and the image-side surface 622 of the second lens element 620 are aspheric.
  • the third lens element 630 with positive refractive power has a convex object-side surface 631 and a convex image-side surface 632 , and is made of plastic material.
  • the object-side surface 631 and the image-side surface 632 of the third lens element 630 are aspheric.
  • the fourth lens element 640 with negative refractive power has a concave object-side surface 641 and a conveximage-side surface 642 , and is made of plastic material.
  • the object-side surface 641 and the image-side surface 642 of the fourth lens element 640 are aspheric.
  • the fifth lens element 650 with positive refractive power has a convex object-side surface 651 and a concave image-side surface 652 , and is made of plastic material.
  • the object-side surface 651 and the image-side surface 652 of the fifth lens element 650 are aspheric. Furthermore, the fifth lens element 650 has inflection points on the object-side surface 651 and the image-side surface 652 thereof.
  • the IR-cut filter 680 is made of glass, and located between the fifth lens element 650 and the image plane 660 , and will not affect the focal length of the image capturing system.
  • f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 6th embodiment.
  • these parameters can be calculated from Table 11 and Table 12 as the following values and satisfy the following relationships:
  • FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure.
  • FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment.
  • the image to capturing system includes, in order from an object side to an image side, the first lens element 710 , an aperture stop 700 , the second lens element 720 , the third lens element 730 , the fourth lens element 740 , the fifth lens element 750 , an IR-cut filter 780 , an image plane 760 and an image sensor 770 .
  • the first lens element 710 with positive refractive power has a convex object-side surface 711 and a convex image-side surface 712 , and is made of plastic material.
  • the object-side surface 711 and the image-side surface 712 of the first lens element 710 are aspheric.
  • the second lens element 720 with negative refractive power has a concave object-side surface 721 and a concave image-side surface 722 , and is made of plastic material.
  • the object-side surface 721 and the image-side surface 722 of the second lens element 720 are aspheric.
  • the third lens element 730 with positive refractive power has a convex object-side surface 731 and a concave image-side surface 732 , and is made of plastic material.
  • the object-side surface 731 and the image-side surface 732 of the third lens element 730 are aspheric.
  • the fourth lens element 740 with negative refractive power has a concave object-side surface 741 and a convex image-side surface 742 , and is made of plastic material.
  • the object-side surface 741 and the image-side surface 742 of the fourth lens element 740 are aspheric.
  • the fifth lens element 750 with positive refractive power has a convex object-side surface 751 and a concave image-side surface 752 , and is made of plastic material.
  • the object-side surface 751 and the image-side surface 752 of the fifth lens element 750 are aspheric. Furthermore, the fifth lens element 750 has inflection points on the object-side surface 751 and the image-side surface 752 thereof.
  • the IR-cut filter 780 is made of glass, and located between the fifth lens element 750 and the image plane 760 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 7th embodiment.
  • these parameters can be calculated from Table 13 and Table 14 as the following values and satisfy the following relationships:
  • FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure.
  • FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment.
  • the image capturing system includes, in order from an object side to an image side, an aperture stop 800 , the first lens element 810 , a stop 801 , the second lens element 820 , the third lens element 830 , the fourth lens element 840 , the fifth lens element 850 , an IR-cut filter 880 , an image plane 860 and an image sensor 870 .
  • the first lens element 810 with positive refractive power has a convex object-side surface 811 and a concave image-side surface 812 , and is made of plastic material.
  • the object-side surface 811 and the image-side surface 812 of the first lens element 810 are aspheric.
  • the second lens element 820 with negative refractive power has a convex object-side surface 821 and a concave image-side surface 822 , and is made of plastic material.
  • the object-side surface 821 and the image-side surface 822 of the second lens element 820 are aspheric.
  • the third lens element 830 with positive refractive power has a convex object-side surface 831 and a concave image-side surface 832 , and is made of plastic material.
  • the object-side surface 831 and the image-side surface 832 of the third lens element 830 are aspheric.
  • the fourth lens element 840 with negative refractive power has a concave object-side surface 841 and a convex image-side surface 842 , and is made of plastic material.
  • the object-side surface 841 and the image-side surface 842 of the fourth lens element 840 are aspheric.
  • the fifth lens element 850 with positive refractive power has a convex object-side surface 851 and a concave image-side surface 852 , and is made of plastic material.
  • the object-side surface 851 and the image-side surface 852 of the fifth lens element 850 are aspheric. Furthermore, the fifth lens element 850 has inflection points on the object-side surface 851 and the image-side surface 852 thereof.
  • the IR-cut filter 880 is made of glass, and located between the fifth lens element 850 and the image plane 860 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 8th embodiment.
  • these parameters can be calculated from Table 15 and Table 16 as the following values and satisfy the following relationships:
  • FIG. 17 is a schematic view of an image capturing system according to to the 9th embodiment of the present disclosure.
  • FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment.
  • the image capturing system includes, in order from an object side to an image side, the first lens element 910 , an aperture stop 900 , the second lens element 920 , the third lens element 930 , the fourth lens element 940 , the fifth lens element 950 , an IR-cut filter 980 , an image plane 960 and an image sensor 970 .
  • the first lens element 910 with positive refractive power has a convex object-side surface 911 and a concave image-side surface 912 , and is made of plastic material.
  • the object-side surface 911 and the image-side surface 912 of the first lens element 910 are aspheric.
  • the second lens element 920 with negative refractive power has a concave object-side surface 921 and a concave image-side surface 922 , and is made of plastic material.
  • the object-side surface 921 and the image-side surface 922 of the second lens element 920 are aspheric.
  • the third lens element 930 with positive refractive power has a convex object-side surface 931 and a concave image-side surface 932 , and is made of plastic material.
  • the object-side surface 931 and the image-side surface 932 of the third lens element 930 are aspheric.
  • the fourth lens element 940 with negative refractive power has a concave object-side surface 941 and a convex image-side surface 942 , and is made of plastic material.
  • the object-side surface 941 and the image-side surface 942 of the fourth lens element 940 are aspheric.
  • the fifth lens element 950 with negative refractive power has a convex object-side surface 951 and a concave image-side surface 952 , and is made of plastic material.
  • the object-side surface 951 and the image-side surface 952 of the fifth lens element 950 are aspheric. Furthermore, the fifth lens element 950 has inflection points on the object-side surface 951 and the image-side surface 952 thereof.
  • the IR-cut filter 980 is made of glass, and located between the fifth lens element 950 and the image plane 960 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 9th embodiment.
  • these parameters can be calculated from Table 17 and Table 18 as the following values and satisfy the following relationships:
  • FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure.
  • FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment.
  • the image capturing system includes, in order from an object side to an image side, an aperture stop 1000 , the first lens element 1010 , the second lens element 1020 , the third lens element 1030 , the fourth lens element 1040 , the fifth lens element 1050 , an IR-cut filter 1080 , an image plane 1060 and an image sensor 1070 .
  • the first lens element 1010 with positive refractive power has a convex object-side surface 1011 and a concave image-side surface 1012 , and is made of plastic material.
  • the object-side surface 1011 and the image-side surface 1012 of the first lens element 1010 are aspheric.
  • the second lens element 1020 with negative refractive power has a convex object-side surface 1021 and a concave image-side surface 1022 , and is made of plastic material.
  • the object-side surface 1021 and the image-side surface 1022 of the second lens element 1020 are aspheric.
  • the third lens element 1030 with positive refractive power has a convex object-side surface 1031 and a convex image-side surface 1032 , and is made of plastic material.
  • the object-side surface 1031 and the image-side surface 1032 of the third lens element 1030 are aspheric.
  • the fourth lens element 1040 with negative refractive power has a concave object-side surface 1041 and a convex image-side surface 1042 , and is made of plastic material.
  • the object-side surface 1041 and the image-side surface 1042 of the fourth lens element 1040 are aspheric.
  • the fifth lens element 1050 with negative refractive power has a convex object-side surface 1051 and a concave image-side surface 1052 , and is made of plastic material.
  • the object-side surface 1051 and the image-side surface 1052 of the fifth lens element 1050 are aspheric. Furthermore, the fifth lens element 1050 has inflection points on the object-side surface 1051 and the image-side surface 1052 thereof.
  • the IR-cut filter 1080 is made of glass, and located between the fifth lens element 1050 and the image plane 1060 , and will not affect the focal length of the image capturing system.
  • f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 10th embodiment.
  • these parameters can be calculated from Table 19 and Table 20 as the following values and satisfy the following relationships:
  • FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure.
  • FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment.
  • the image capturing system includes, in order from an object side to an image side, the first lens element 1110 , an aperture stop 1100 , the second lens element 1120 , the third lens element 1130 , the fourth lens element 1140 , the fifth lens element 1150 , an IR-cut filter 1180 , an image plane 1160 and an image sensor 1170 .
  • the first lens element 1110 with positive refractive power has a convex object-side surface 1111 and a concave image-side surface 1112 , and is made of plastic material.
  • the object-side surface 1111 and the image-side surface 1112 of the first lens element 1110 are aspheric.
  • the second lens element 1120 with negative refractive power has a convex object-side surface 1121 and a concave image-side surface 1122 , and is made of plastic material.
  • the object-side surface 1121 and the image-side surface 1122 of the second lens element 1120 are aspheric.
  • the third lens element 1130 with positive refractive power has a convex object-side surface 1131 and a concave image-side surface 1132 , and is made of plastic material.
  • the object-side surface 1131 and the image-side surface 1132 of the third lens element 1130 are aspheric.
  • the fourth lens element 1140 with negative refractive power has a concave object-side surface 1141 and a convex image-side surface 1142 , and is made of plastic material.
  • the object-side surface 1141 and the image-side surface 1142 of the fourth lens element 1140 are aspheric.
  • the fifth lens element 1150 with positive refractive power has a convex object-side surface 1151 and a concave image-side surface 1152 , and is made of plastic material.
  • the object-side surface 1151 and the image-side surface 1152 of the fifth lens element 1150 are aspheric. Furthermore, the fifth lens element 1150 has inflection points on the object-side surface 1151 and the image-side surface 1152 thereof.
  • the IR-cut filter 1180 is made of glass, and located between the fifth lens element 1150 and the image plane 1160 , and will not affect the focal length of the image capturing system.
  • f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 11th embodiment.
  • these parameters can be calculated from Table 21 and Table 22 as the following values and satisfy the following relationships:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has positive refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof.

Description

RELATED APPLICATIONS
TheThis application is a broadening reissue application of U.S. Pat. No. 8,705,181 B2 issued to Assignee Largan Precision Col, Ltd. on Apr. 22, 2014 from U.S. patent application Ser. No. 13/615,568 filed on Sep. 13, 2012 which claims priority to Taiwan Application Serial Number 101101276, filed Jan. 12, 2012, which is herein incorporated by reference.
BACKGROUND
1. Technical Field
The present invention relates to an image capturing system. More particularly, the present invention relates to a compact image capturing system applicable to electronic products.
2. Description of Related Art
In recent years, with the popularity of mobile products with camera functionalities, the demand for miniaturizing an optical lens system is increasing. The sensor of a conventional photographing camera is typically a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide-Semiconductor) sensor. As advanced semiconductor manufacturing technologies have allowed the pixel size of sensors to be reduced and compact optical lens systems have gradually evolved toward the field of higher megapixels, there is an increasing demand for compact optical lens systems featuring better image quality.
A conventional compact optical lens system employed in a portable electronic product mainly adopts a four-element lens structure. Due to the popularity of mobile products with high-end specifications, such as smart phones and PDAs (Personal Digital Assistants), the pixel and image-quality requirements of the compact optical lens system have increased rapidly. However, the conventional four-element lens structure cannot satisfy the requirements of the compact optical lens system.
Another conventional compact optical lens system with five-element lens structure enhances image quality and resolving power. However, the total track length of the optical lens system cannot be reduced easily. Therefore, a need exists in the art for providing an optical lens system for use in a mobile electronic product that has excellent imaging quality without excessive total track length.
SUMMARY
According to one aspect of the present disclosure, an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has positive refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof. The first through fifth lens elements are five independent and non-cemented lens elements. When a maximum image height of the image capturing system is ImgH an axial distance between the object-side surface of the first lens element and an image plane is TTL, and a focal length of the image capturing system is f, the following relationship is satisfied:
2.8 mm<(f/ImgH)×TTL<4.6 mm.
According to another aspect of the present disclosure, an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element to and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof. When an axial distance between the object-side surface of the first lens element and an image plane is TTL, a focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, an Abbe number of the third lens element is V3, and an Abbe number of the fourth lens element is V4, the following relationships are satisfied:
6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2; and
27<V3−V4<45.
According to yet another aspect of the present disclosure, an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof. The first through fifth lens elements are five independent and non-cemented lens elements. When an axial distance between the object-side surface of the first lens element and an image plane is TTL, the following relationship is satisfied:
2.2 mm<TTL<3.5 mm.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure;
FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment;
FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure;
FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment;
FIG. 5 is a schematic view of an image capturing system according to the to 3rd embodiment of the present disclosure;
FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment;
FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure;
FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment;
FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure;
FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment;
FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure;
FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment;
FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure;
FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment;
FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure;
FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment;
FIG. 17 is a schematic view of an image capturing system according to the 9th embodiment of the present disclosure;
FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment;
FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure;
FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment;
FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure; and
FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment.
DETAILED DESCRIPTION
An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The image capturing system further includes an image sensor located on an image plane.
The first through fifth lens elements are five independent and non-cemented lens elements. That is, any two lens elements adjacent to each other are not cemented, and there is an air space between the two lens elements. The manufacture of the cemented lenses is more complex than the manufacture of the non-cemented lenses. Especially, the cemented surfaces of the two lens elements should have accurate curvatures for ensuring a precise bonding between the two lens elements, or else an undesirable gap between the cemented surfaces of the two lens elements created during the cementing process may affect the optical quality of the image capturing system. Therefore, the image capturing system of the present disclosure provides five independent and non-cemented lens elements for improving the problem generated by the cemented lens elements.
The first lens element with positive refractive power has a convex object-side surface, so that the positive refractive power of the first lens element can be enhanced for further reducing the total track length thereof.
The second lens element with negative refractive power corrects the aberration generated from the first lens element with positive refractive power. The second lens element has a concave image-side surface, so that the refractive power of the second lens element is proper by adjusting the curvature of the image-side surface of the second lens element, and the aberration of the image capturing system can be further corrected.
The third lens element with positive refractive power can reduce the sensitivity of the image capturing system by balancing the distribution of the positive refractive power of the image capturing system.
The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, so that the astigmatism and the high-order aberration of the image capturing system can be corrected.
The fifth lens element with refractive power has a convex object-side surface and a concave image-side surface, so that the principal point of the image capturing system can be positioned away from the image plane, and the total track length of the image capturing system can be reduced so as to maintain the compact size of the image capturing system. Furthermore, the fifth lens element has at least one inflection point on at least one of the object-side surface and the image-side surface thereof, so that the incident angle of the off-axis field on the image sensor can be effectively reduced and the aberration can be corrected as well.
When a maximum image height of the image capturing system is ImgH, an axial distance between the object-side surface of the first lens element and an image plane is TTL, and a focal length of the image capturing system is f, the following relationship is satisfied:
2.8 mm<(f/ImgH)×TTL<4.6 mm.
Therefore, the image capturing system with short total track length is applicable to the ultra-thin electronic products. Moreover, the optimized arrangement of the maximum image height of the image capturing system can provide the excellent image capture of the compact electronic products.
When the focal length of the image capturing system is f, and a focal length of the second lens element is f2, the following relationship is satisfied:
−1.4<f/f2<−0.18.
Therefore, the negative refractive power of the second lens element can to correct the aberration generated from the first lens element with positive refractive power.
When a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, and acentral thickness of the fourth lens element is CT4, the following relationship is satisfied:
0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.
Therefore, the thickness of the second lens element, the third lens element and the fourth lens element are proper for enhancing the yield of the manufacture and fabrication of the lens elements.
When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, and an Abbe number of the fourth lens element is V4, the following relationships are satisfied:
20<V1−V2<50; and
27<V3−V4<45.
Therefore, the chromatic aberration of the image capturing system can be corrected.
When the axial distance between the object-side surface of the first lens element and an image plane is TTL, the focal length of the image capturing system is f, and a half of the maximal field of view of the image capturing system is HFOV, the following relationship is satisfied:
6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2.
Therefore, the short total track length of the image capturing system is applicable to the ultra-thin electronic product, and the field of view of the image to capturing system is proper for the image capture of the compact electronic product.
TTL, f, and HFOV can further satisfy the following relationship:
6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.
When a maximal field of view of the image capturing system is FOV, the following relationship is satisfied:
70 degrees<FOV<90 degrees.
Therefore, the proper range of the image can be captured by the image capturing system with larger field of view.
When the focal length of the image capturing system is f, the following relationship is satisfied:
1.8 mm<f<3.2 mm.
Therefore, the proper focal length of the image capturing system can maintain the compact size of the image capturing system.
When the maximum image height of the image capturing system is ImgH, and the axial distance between the object-side surface of the first lens element and an image plane is TTL, the following relationships are satisfied:
2.2 mm<TTL<3.5 mm; and
TTL/ImgH<<1.55.
Therefore, the image capturing system with short total track length can maintain the compact size for portable electronic products.
According to the image capturing system of the present disclosure, the lens elements thereof can be made of glass or plastic material. When the lens elements are made of glass material, the distribution of the refractive power of the image capturing system may be more flexible to design. When the lens elements are made of plastic material, the cost of manufacture can be effectively reduced. Furthermore, the surface of each lens element can be aspheric, so that it is easier to make the surface into non-spherical shapes. As a result, more controllable variables are obtained, and the aberration is reduced, as well as the number of required lens elements can be reduced while constructing an optical system. Therefore, the total track length of the image capturing system can also be reduced.
According to the image capturing system of the present disclosure, when the lens element has a convex surface, it indicates that the paraxial region of the surface is convex; and when the lens element has a concave surface, it indicates that the paraxial region of the surface is concave.
According to the image capturing system of the present disclosure, the image capturing system can include at least one stop, such as an aperture stop, glare stop, field stop, etc. Said glare stop or said field stop is allocated for reducing stray light while retaining high image quality. Furthermore, when a stop is an aperture stop, the position of the aperture stop within an optical system can be arbitrarily placed in front of the entire lens assembly, within the lens assembly, or in front of the image plane in accordance with the preference of the optical designer, in order to achieve the desirable optical features or higher image quality produced from the optical system.
According to the above description of the present disclosure, the following 1st-11th specific embodiments are provided for further explanation.
1st Embodiment
FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure, FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment. In FIG. 1, the image capturing system includes, in order from an object side to an image side, an aperture stop 100, the first lens element 110, the second lens element 120, the third lens element 130, the fourth lens element 140, the fifth lens element 150, an IR-cut filter 180, an image plane 160 and an image sensor 170.
The first lens element 110 with positive refractive power has a convex object-side surface 111 and a concave image-side surface 112, and is made of plastic material. The object-side surface 111 and the mage-side surface 112 of the first lens element 110 are aspheric.
The second lens element 120 with negative refractive power has a convex object-side surface 121 and a concave image-side surface 122, and is made of plastic material. The object-side surface 121 and the image-side surface 122 of the second lens element 120 are aspheric.
The third lens element 130 with positive refractive power has a concave object-side surface 131 and a convex image-side surface 132, and is made of plastic material. The object-side surface 131 and the image-side surface 132 of the third lens element 130 are aspheric.
The fourth lens element 140 with negative refractive power has a concave object-side surface 141 and a convex image-side surface 142, and is made of plastic material. The object-side surface 141 and the image-side surface 142 of the fourth lens element 140 are aspheric.
The fifth lens element 150 with negative refractive power has a convex object-side surface 151 and a concave image-side surface 152, and is made of plastic material. The object-side surface 151 and the image-side surface 152 of the fifth lens element 150 are aspheric. Furthermore, the fifth lens element 150 has inflection points on the object-side surface 151 and the image-side surface 152 thereof.
The IR-cut filter 180 is made of glass, and located between the fifth lens element 150 and the image plane 160, and will not affect the focal length of the image capturing system.
The equation of the aspheric surface profiles of the aforementioned lens elements of the 1st embodiment is expressed as follows:
X ( Y ) = ( Y 2 / R ) / ( 1 + sqrt ( 1 - ( 1 + k ) × ( Y / R ) 2 ) ) + i ( Ai ) × ( Y ) ,
wherein,
X is the distance between a point on the aspheric surface spaced at a distance Y from the optical axis and the tangential plane at the aspheric surface vertex on the optical axis;
Y is the distance from the point on the curve of the aspheric surface to the optical axis;
R is the curvature radius;
k is the conic coefficient; and
Ai is the i-th aspheric coefficient.
In the image capturing system according to the 1st embodiment, when a focal length of the image capturing system is f, an f-number of the image capturing system is Fno, and half of the maximal field of view is HFOV, these parameters have the following values:
f=2.85 mm;
Fno=2.35; and
HFOV=38.6 degrees.
In the image capturing system according to the 1st embodiment, when an Abbe number of the first lens element 110 is V1, an Abbe number of the second lens element 120 is V2, an Abbe number of the third lens element 130 is V3, and an Abbe number of the fourth lens element 140 is V4, the following relationships are satisfied:
V1−V2=32.6; and
V3−V4=32.6.
In the image capturing system according to the 1st embodiment, when a central thickness of the second lens element 120 is CT2, a central thickness of the third lens element 130 is CT3, and a central thickness of the fourth lens element 140 is CT4, the following relationship is satisfied:
(CT2+CT3+CT4)/3=0.28 mm.
In the image capturing system according to the 1st embodiment, when the focal length of the image capturing system is f, and a focal length of the second lens element 120 is f2, the following relationship is satisfied:
f/f2=−0.53.
In the image capturing system according to the 1st embodiment, when a maximal field of view of the image capturing system is FOV, the following relationship is satisfied:
FOV=77.2 degrees.
In the image capturing system according to the 1st embodiment, when a to maximum image height of the image capturing system is ImgH which here is a half of the diagonal length of the photosensitive area of the image sensor 170 on the image plane 160, an axial distance between the object-side surface 111 of the first lens element 110 and the image plane 160 is TTL, the focal length of the image capturing system is f, and the half of the maximal field of view of the image capturing system is HFOV, the following relationships are satisfied:
TTL=3.45 mm;
TTL/ImgH=1.50;
(f/ImgH)×TTL=4.28 mm; and
TTL×f/tan(HFOV)=12.32 mm2.
The detailed optical data of the 1st embodiment are shown in Table 1 and the aspheric surface data are shown in Table 2 below.
TABLE 1
1st Embodiment
f = 2.85 mm, Fno = 2.35, HFOV = 38.6 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.140
2 Lens 1 1.203440 (ASP) 0.415 Plastic 1.544 55.9 2.90
3 4.431400 (ASP) 0.120
4 Lens 2 4.333300 (ASP) 0.230 Plastic 1.640 23.3 −5.39
5 1.881120 (ASP) 0.123
6 Lens 3 −15.082100 (ASP) 0.359 Plastic 1.544 55.9 2.59
7 −1.299460 (ASP) 0.256
8 Lens 4 −0.795830 (ASP) 0.262 Plastic 1.640 23.3 −27.33
9 −0.940880 (ASP) 0.342
10 Lens 5 2.634130 (ASP) 0.574 Plastic 1.544 55.9 −3.41
11 1.004370 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.271
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 2
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −1.03755E−01 −5.97353E+01 −6.29980E+01 −1.60475E+01 3.00000E+00
A4 = 1.24646E−02 −1.76708E−01 −6.10000E−01 −2.24518E−01 −1.39865E−01
A6 = 2.60307E−02 1.27409E−01 6.33182E−01 4.69619E−01 2.35312E−01
A8 = −1.39140E−02 −3.71507E−01 −1.67746E+00 −6.26812E−01 1.03273E+00
A10 = 1.99378E−01 −1.07462E+00 9.26878E−01 1.65426E−02 −1.12583E+00
A12 = −1.10184E+00 2.45859E−02 −3.52174E−02 −3.96623E−02 −1.70242E+00
A14 = 8.55180E−02 −1.22676E−01 7.84949E−02 2.46417E−02 2.93705E+00
A16= −1.81800E+00
Surface #
7 8 9 10 11
k= −2.85316E+00 −3.25701E+00 −6.60101E−01 −7.00000E+01 −8.28107E+00
A4 = −7.48994E−02 1.39780E−01 3.97380E−01 −2.87804E−01 −1.16665E−01
A6 = 1.35837E−04 −7.34782E−01 −3.80411E−01 9.50200E−02 4.81401E−02
A8 = 2.93692E−01 1.41788E+00 1.47130E−01 −4.76421E−02 −2.20238E−02
A10 = 8.90463E−01 −1.25174E+00 2.38860E−01 1.47559E−02 5.86354E−03
A12 = −5.25061E−01 1.86592E−01 −1.08667E−01 7.14737E−03 −1.17427E−03
A14 = 2.55746E−03 3.94098E−01 −1.58481E−01 4.31432E−04 1.34176E−04
A16 = −4.24467E−01 8.98673E−02 −1.42169E−03
In Table 1, the curvature radius, the thickness and the focal length are shown in millimeters (mm). Surface numbers 0-14 represent the surfaces sequentially arranged from the object-side to the image-side along the optical axis. In Table 2, k represents the conic coefficient of the equation of the aspheric surface profiles. A1-A16 represent the aspheric coefficients ranging from the 1st order to the 16th order. This information related to Table 1 and Table 2 applies also to the Tables for the remaining embodiments, and so an explanation in this regard will not be provided again.
2nd Embodiment
FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure. FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment. In FIG. 3, the image capturing system includes, in order from an object side to an image side, an aperture stop 200, the first lens element 210, the second lens element 220, the third lens element 230, the fourth lens element 240, the fifth lens element 250, an IR-cut filter 280, an image plane 260 and an image sensor 270.
The first lens element 210 with positive refractive power has a convex object-side surface 211 and a concave image-side surface 212, and is made of plastic material. The object-side surface 211 and the mage-side surface 212 of the first lens element 210 are aspheric.
The second lens element 220 with negative refractive power has a convex object-side surface 221 and a concave image-side surface 222, and is made of plastic material. The object-side surface 221 and the image-side surface 222 of the second lens element 220 are aspheric.
The third lens element 230 with positive refractive power has a concave object-side surface 231 and a convex image-side surface 232, and is made of plastic material. The object-side surface 231 and the image-side surface 232 of the third lens element 230 are aspheric.
The fourth lens element 240 with negative refractive power has a concave object-side surface 241 and a conveximage-side surface 242, and is made of plastic material. The object-side surface 241 and the image-side surface 242 of the fourth lens element 240 are aspheric.
The fifth lens element 250 with negative refractive power has a convex to object-side surface 251 and a concave image-side surface 252, and is made of plastic material. The object-side surface 251 and the image-side surface 252 of the fifth lens element 250 are aspheric. Furthermore, the fifth lens element 250 has inflection points on the object-side surface 251 and the image-side surface 252 thereof.
The IR-cut filter 280 is made of glass, and located between the fifth lens element 250 and the image plane 260, and will not affect the focal length of the image capturing system.
The detailed optical data of the 2nd embodiment are shown in Table 3 and the aspheric surface data are shown in Table 4 below.
TABLE 3
2nd Embodiment
f = 2.85 mm, Fno = 2.45, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.183
2 Lens 1 0.995170 (ASP) 0.384 Plastic 1.544 55.9 2.56
3 3.001200 (ASP) 0.053
4 Lens 2 4.463000 (ASP) 0.230 Plastic 1.650 21.4 −8.44
5 2.410910 (ASP) 0.219
6 Lens 3 −5.577900 (ASP) 0.308 Plastic 1.544 55.9 5.57
7 −2.001630 (ASP) 0.148
8 Lens 4 −1.723240 (ASP) 0.269 Plastic 1.650 21.4 −81.09
9 −1.891030 (ASP) 0.474
10 Lens 5 1.441430 (ASP) 0.413 Plastic 1.544 55.9 −3.53
11 0.740770 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.205
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 4
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −6.88502E−02 −3.00000E+01 3.00000E+00 −1.60883E+01 2.43205E+00
A4 = 2.58920E−02 −3.13122E−01 −5.79512E−01 −2.97877E−02 −2.49204E−01
A6 = 2.22230E−02 4.83341E−01 9.15215E−01 1.03649E+00 2.78333E−01
A8 = 6.60918E−02 −5.98899E−01 −6.28339E−03 −1.11360E+00 7.77147E−01
A10 = 6.19733E−01 1.79077E+00 −4.38440E−01 2.05247E+00 −2.23445E−01
A12 = −9.41374E−01 −2.68994E−01 7.57127E−02 −3.71567E−02 −1.59406E+00
A14 = 8.55178E−02 −1.22676E−01 7.84947E−02 8.06883E−01 2.80195E+00
A16= −1.81800E+00
Surface #
7 8 9 10 11
k = −2.28263E+00 −1.88163E+01 2.84586E−01 −3.00000E+01 −7.45249E+00
A4 = −7.02749E−02 1.08745E−01 3.18903E−01 −2.94009E−01 −1.27522E−01
A6 = −2.40392E−01 −7.85078E−01 −4.20075E−01 1.17479E−01 4.66619E−02
A8 = 6.28421E−01 1.16013E+00 1.06162E−01 −5.13621E−02 −1.82663E−02
A10 = 4.12552E−01 −1.10042E+00 2.16320E−01 1.18668E−02 3.99323E−03
A12 = −5.30755E−01 2.36807E−01 −1.16204E−01 4.58634E−03 −1.25535E−03
A14 = −1.96983E−02 4.20670E−01 −1.40508E−01 −8.02211E−04 2.35232E−04
A16 = −6.20491E−01 9.50575E−02 −2.82421E−04
In the image capturing system according to the 2nd embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 2nd embodiment. Moreover, these parameters can be calculated from Table 3 and Table 4 as the following values and satisfy the following relationships:
f (mm) 2.85
Fno 2.45
HFOV (deg.) 38.5
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.34
FOV (deg.) 77.0
TTL (mm) 3.20
TTL/ImgH 1.41
(f/ImgH) × TTL (mm) 4.00
TTL × f/tan(HFOV) (mm2) 11.46
3rd Embodiment
FIG. 5 is a schematic view of an image capturing system according to the 3rd embodiment of the present disclosure. FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment. In FIG. 5 the image capturing to system includes, in order from an object side to an image side, an aperture stop 300, the first lens element 310, the second lens element 320, the third lens element 330, the fourth lens element 340, the fifth lens element 350, an IR-cut filter 380, an image plane 360 and an image sensor 370.
The first lens element 310 with positive refractive power has a convex object-side surface 311 and a concave image-side surface 312, and is made of plastic material. The object-side surface 311 and the image-side surface 312 of the first lens element 310 are aspheric.
The second lens element 320 with negative refractive power has a convex object-side surface 321 and a concave image-side surface 322, and is made of plastic material. The object-side surface 321 and the image-side surface 322 of the second lens element 320 are aspheric.
The third lens element 330 with positive refractive power has a convex object-side surface 331 and a convex image-side surface 332, and is made of plastic material. The object-side surface 331 and the image-side surface 332 of the third lens element 330 are aspheric.
The fourth lens element 340 with negative refractive power has a concave object-side surface 341 and a convex image-side surface 342, and is made of plastic material. The object-side surface 341 and the image-side surface 342 of the fourth lens element 340 are aspheric.
The fifth lens element 350 with negative refractive power has a convex object-side surface 351 and a concave image-side surface 352, and is made of plastic material. The object-side surface 351 and the image-side surface 352 of the fifth lens element 350 are aspheric. Furthermore, the fifth lens element 350 has inflection points on the object-side surface 351 and the image-side surface 352 thereof.
The IR-cut filter 380 is made of glass, and located between the fifth lens element 350 and the image plane 360, and will not affect the focal length of the image capturing system.
The detailed optical data of the 3rd embodiment are shown in Table 5 and the aspheric surface data are shown in Table 6 below.
TABLE 5
3rd Embodiment
f = 2.79 mm, Fno = 2.46, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.175
2 Lens 1 0.965900 (ASP) 0.372 Plastic 1.544 55.9 2.50
3 2.880820 (ASP) 0.094
4 Lens 2 5.297100 (ASP) 0.230 Plastic 1.634 23.8 −5.59
5 2.088420 (ASP) 0.189
6 Lens 3 5.634600 (ASP) 0.288 Plastic 1.544 55.9 4.91
7 −4.988600 (ASP) 0.222
8 Lens 4 −1.383080 (ASP) 0.246 Plastic 1.634 23.8 −79.45
9 −1.520270 (ASP) 0.424
10 Lens 5 0.766890 (ASP) 0.306 Plastic 1.535 56.3 −3.66
11 0.474360 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.203
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 6
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −1.52053E−01 −2.27286E+01 −2.95852E+01 −2.61302E+01 −1.38343E+01
A4 = 1.50035E−02 −3.72892E−01 −8.14815E−01 −2.44773E−01 −1.74641E−01
A6 = 3.07480E−02 5.50794E−01 1.11088E+00 1.36473E+00 −2.75602E−01
A8 = −1.47997E−01 −1.12422E+00 2.23095E+00 −1.91585E+00 9.60878E−01
A10 = 1.07999E+00 4.61048E+00 −1.35747E+00 5.41594E+00 −1.67591E+00
A12 = −2.11199E+00 −4.21752E−01 −4.30110E−01 −1.71019E−01 −3.03776E+00
A14= 6.57100E−01 −1.61825E−01 2.70840E−01 1.98721E−01 5.86560E+00
A16 = −3.70216E+00
Surface #
7 8 9 10 11
k = −2.86726E+01 −9.73941E+00 −1.33029E−01 −1.32978E+01 −6.01898E+00
A4 = 4.94268E−02 9.63340E−02 2.40380E−01 −3.73738E−01 −1.78979E−01
A6 = −4.38237E−01 −1.30494E+00 −4.26133E−01 1.85615E−01 8.53388E−02
A8 = 7.70590E−01 2.12276E+00 1.74055E−01 −5.36970E−02 −3.49683E−02
A10 = −3.49464E−01 −9.31429E−01 4.09076E−01 9.10557E−03 9.87231E−03
A12 = −2.54616E−01 2.45176E−01 −9.46190E−02 4.96456E−03 −2.30035E−03
A14 = 1.61846E−03 −1.92494E−01 −3.27985E−01 −3.14677E−03 2.73973E−04
A16 = −2.26714E−01 1.51163E−01 4.64500E−04
In the image capturing system according to the 3rd embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 3rd embodiment. Moreover, these parameters can be calculated from Table 5 and Table 6 as the following values and satisfy the following relationships:
f (mm) 2.79
Fno 2.46
HFOV (deg.) 38.5
V1 − V2 32.1
V3 − V4 32.1
(CT2 + CT3 + CT4)/3 (mm) 0.25
f/f2 −0.50
FOV (deg.) 77.0
TTL (mm) 3.07
TTL/ImgH 1.37
(f/ImgH) × TTL (mm) 3.83
TTL × f/tan(HFOV) (mm2) 10.80
4th Embodiment
FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure. FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment. In FIG. 7, the image capturing system includes, in order from an object side to an image side, the first lens element 410, an aperture stop 400, the second lens element 420, the third lens element 430, the fourth lens element 440, the fifth lens element 450, an IR-cut filter 480, an image plane 460 and an image sensor 470.
The first lens element 410 with positive refractive power has a convex object-side surface 411 and a concave image-side surface 412, and is made of plastic material. The object-side surface 411 and the image-side surface 412 of the first lens element 410 are aspheric.
The second lens element 420 with negative refractive power has a convex object-side surface 421 and a concave image-side surface 422, and is made of plastic material. The object-side surface 421 and the image-side surface 422 of the second lens element 420 are aspheric.
The third lens element 430 with positive refractive power has a convex object-side surface 431 and a convex image-side surface 432, and is made of plastic material. The object-side surface 431 and the image-side surface 432 of the third lens element 430 are aspheric.
The fourth lens element 440 with negative refractive power has a concave object-side surface 441 and a convex image-side surface 442, and is made of plastic material. The object-side surface 441 and the image-side surface 442 of the fourth lens element 440 are aspheric.
The fifth lens element 450 with negative refractive power has a convex to object-side surface 451 and a concave image-side surface 452, and is made of plastic material. The object-side surface 451 and the image-side surface 452 of the fifth lens element 450 are aspheric. Furthermore, the fifth lens element 450 has inflection points on the object-side surface 451 and the image-side surface 452 thereof.
The IR-cut filter 480 is made of glass, and located between the fifth lens element 450 and the image plane 460, and will not affect the focal length of the image capturing system.
The detailed optical data of the 4th embodiment are shown in Table 7 and the aspheric surface data are shown in Table 8 below.
TABLE 7
4th Embodiment
f = 2.87 mm, Fno = 2.60, HFOV = 37.7 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano infinity
1 Lens 1 1.114520 (ASP) 0.437 Plastic 1.544 55.9 2.52
2 5.165400 (ASP) 0.030
3 Ape. Stop Plano 0.052
4 Lens 2 3.794800 (ASP) 0.230 Plastic 1.634 23.8 −4.26
5 1.539850 (ASP) 0.137
6 Lens 3 5.963700 (ASP) 0.335 Plastic 1.544 55.9 4.03
7 −3.406000 (ASP) 0.339
8 Lens 4 −1.077800 (ASP) 0.316 Plastic 1.634 23.8 −12.26
9 −1.393740 (ASP) 0.098
10 Lens 5 1.407860 (ASP) 0.626 Plastic 1.535 56.3 −10.96
11 0.959250 (ASP) 0.400
12 IR-cut filter Plano 0.200 Glass 1.516 64.1
13 Plano 0.253
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 8
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −1.61279E−01 −3.14814E+01 3.00000E+00 −6.34695E+00 −3.00000E+01
A4 = −1.53435E−02 −3.57102E−01 −6.60714E−01 −2.08486E−01 −1.35553E−01
A6 = 1.13129E−01 8.64537E−01 1.74149E+00 1.41973E+00 3.27963E−02
A8 = −6.60537E−01 −1.01259E+00 −1.45754E+00 −1.55368E+00 1.16148E+00
A10 = 1.63677E+00 3.18301E−01 −5.04256E−01 8.23901E−01 −7.76417E−01
A12 = −2.11418E+00 −4.24485E−01 −4.21846E−01 −1.72997E−01 −3.03822E+00
A14 = 6.59149E−01 −1.61830E−01 2.70835E−01 1.92076E−01 5.86313E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −1.86859E+01 −8.00378E+00 2.07442E−02 −1.46002E+01 −6.42227E+00
A4 = −3.15658E−02 9.47128E−02 2.17568E−01 −3.47865E−01 −1.48268E−01
A6 = −4.49228E−01 −1.37174E+00 −4.34101E−01 1.86086E−01 8.08642E−02
A8 = 1.02300E+00 2.03618E+00 1.49949E−01 −5.32172E−02 −3.56870E−02
A10 = −4.79755E−02 −1.01710E+00 3.94520E−01 9.23622E−03 1.02191E−02
A12 = 2.07706E−02 1.96202E−01 −9.53889E−02 4.93759E−03 −2.22584E−03
A14 = −7.69161E−01 −1.66874E−01 −3.22708E−01 −3.18512E−03 2.67199E−04
A16 = −1.13257E−01 1.59175E−01 4.72235E−04
In the image capturing system according to the 4th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 4th embodiment. Moreover, these parameters can be calculated from Table 7 and Table 8 as the following values and satisfy the following relationships:
f (mm) 2.87
Fno 2.60
HFOV (deg.) 37.7
V1 − V2 32.1
V3 − V4 32.1
(CT2 + CT3 + CT4)/3 (mm) 0.29
f/f2 −0.68
FOV (deg.) 75.4
TTL (mm) 3.45
TTL/ImgH 1.54
(f/ImgH) × TTL (mm) 4.43
TTL × f/tan(HFOV) (mm2) 12.84
5th Embodiment
FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure. FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment. In FIG. 9, the image capturing to system includes, in order from an object side to an image side, the first lens element 510, an aperture stop 500, the second lens element 520, the third lens element 530, the fourth lens element 540, the fifth lens element 550, an IR-cut filter 580, an image plane 560 and an image sensor 570.
The first lens element 510 with positive refractive power has a convex object-side surface 511 and a concave image-side surface 512, and is made of plastic material. The object-side surface 511 and the image-side surface 512 of the first lens element 510 are aspheric.
The second lens element 520 with negative refractive power has a concave object-side surface 521 and a concave image-side surface 522, and is made of plastic material. The object-side surface 521 and the image-side surface 522 of the second lens element 520 are aspheric.
The third lens element 530 with positive refractive power has a convex object-side surface 531 and a concave image-side surface 532, and is made of plastic material. The object-side surface 531 and the image-side surface 532 of the third lens element 530 are aspheric.
The fourth lens element 540 with negative refractive power has a concave object-side surface 541 and a convex image-side surface 542, and is made of plastic material. The object-side surface 541 and the image-side surface 542 of the fourth lens element 540 are aspheric.
The fifth lens element 550 with negative refractive power has a convex object-side surface 551 and a concave image-side surface 552, and is made of plastic material. The object-side surface 551 and the image-side surface 552 of the fifth lens element 550 are aspheric. Furthermore, the fifth lens element 550 has inflection points on the object-side surface 551 and the image-side surface 552 thereof.
The IR-cut filter 580 is made of glass, and located between the fifth lens element 550 and the image plane 560, and will not affect the focal length of the image capturing system.
The detailed optical data of the 5th embodiment are shown in Table 9 and the aspheric surface data are shown in Table 10 below.
TABLE 9
5th Embodiment
f = 2.77 mm, Fno = 2.60, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 1.027520 (ASP) 0.422 Plastic 1.544 55.9 2.04
2 11.920400 (ASP) 0.007
3 Ape. Stop Plano 0.067
4 Lens 2 −27.933000 (ASP) 0.230 Plastic 1.640 23.3 −3.85
5 2.713100 (ASP) 0.146
6 Lens 3 3.015100 (ASP) 0.264 Plastic 1.544 55.9 7.90
7 9.771000 (ASP) 0.326
8 Lens 4 −1.367900 (ASP) 0.303 Plastic 1.640 23.3 −14.98
9 −1.733630 (ASP) 0.062
10 Lens 5 1.359220 (ASP) 0.623 Plastic 1.544 55.9 −10.88
11 0.928940 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.254
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 10
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.43318E−01 −3.84768E+02 0.00000E+00 −5.47436E+00 −2.69833E+01
A4 = −3.36501E−02 −3.92263E−01 −3.52197E−01 −1.60611E−01 −3.70184E−01
A6 = 2.50508E−02 7.14730E−01 2.11016E+00 1.97313E+00 5.45888E−03
A8 = −8.11433E−01 −1.10836E+00 −2.30435E+00 −1.90023E+00 1.28146E+00
A10 = 7.34044E−01 1.56618E−01 6.30659E−01 1.77306E+00 −1.48368E+00
A12 = −2.11137E+00 −4.24482E−01 −4.21843E−01 −1.72994E−01 −3.03682E+00
A14 = 6.59420E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −3.00000E+01 −1.82327E+01 2.71553E−01 −2.33863E+01 −8.44770E+00
A4 = −1.70307E−01 1.26110E−01 2.38866E−01 −3.52152E−01 −1.46856E−01
A6 = −4.48634E−01 −1.41052E+00 −4.98677E−01 1.87769E−01 7.75380E−02
A8 = 1.00739E+00 1.88321E+00 1.32517E−01 −5.29516E−02 −3.62970E−02
A10 = −1.30601E−01 −1.09476E+00 3.93077E−01 9.35449E−03 1.01599E−02
A12 = −8.70973E−02 2.38898E−01 −9.29186E−02 4.99858E−03 −2.20638E−03
A14 = −6.63675E−01 −2.35952E−02 −3.18795E−01 −3.13159E−03 2.80074E−04
A16 = 1.00283E−01 1.66194E−01 4.31560E−04
In the image capturing system according to the 5th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 5th embodiment. Moreover, these parameters can be calculated from Table 9 and Table 10 as the following values and satisfy the following relationships:
f (mm) 2.77
Fno 2.60
HFOV (deg.) 38.5
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.72
FOV (deg.) 77.0
TTL (mm) 3.20
TTL/ImgH 1.43
(f/ImgH) × TTL (mm) 3.96
TTL × f/tan(HFOV) (mm2) 11.17
6th Embodiment
FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure. FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment. In FIG. 11, the image to capturing system includes, in order from an object side to an image side, the first lens element 610, an aperture stop 600, the second lens element 620, the third lens element 630, the fourth lens element 640, the fifth lens element 650, an IR-cut filter 680, an image plane 660 and an image sensor 670.
The first lens element 610 with positive refractive power has a convex object-side surface 611 and a convex image-side surface 612, and is made of plastic material. The object-side surface 611 and the image-side surface 612 of the first lens element 610 are aspheric.
The second lens element 620 with negative refractive power has a concave object-side surface 621 and a concave image-side surface 622, and is made of plastic material. The object-side surface 621 and the image-side surface 622 of the second lens element 620 are aspheric.
The third lens element 630 with positive refractive power has a convex object-side surface 631 and a convex image-side surface 632, and is made of plastic material. The object-side surface 631 and the image-side surface 632 of the third lens element 630 are aspheric.
The fourth lens element 640 with negative refractive power has a concave object-side surface 641 and a conveximage-side surface 642, and is made of plastic material. The object-side surface 641 and the image-side surface 642 of the fourth lens element 640 are aspheric.
The fifth lens element 650 with positive refractive power has a convex object-side surface 651 and a concave image-side surface 652, and is made of plastic material. The object-side surface 651 and the image-side surface 652 of the fifth lens element 650 are aspheric. Furthermore, the fifth lens element 650 has inflection points on the object-side surface 651 and the image-side surface 652 thereof.
The IR-cut filter 680 is made of glass, and located between the fifth lens element 650 and the image plane 660, and will not affect the focal length of the image capturing system.
The detailed optical data of the 6th embodiment are shown in Table 11 and the aspheric surface data are shown in Table 12 below.
TABLE 11
6th Embodiment
f = 2.87 mm, Fno = 2.60, HFOV = 37.4 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano infinity
1 Lens 1 1.078690 (ASP) 0.424 Plastic 1.544 55.9 1.93
2 −32.975000 (ASP) −0.006
3 Ape. Stop Plano 0.060
4 Lens 2 −71.428600 (ASP) 0.230 Plastic 1.640 23.3 −3.59
5 2.374170 (ASP) 0.192
6 Lens 3 8.407000 (ASP) 0.314 Plastic 1.544 55.9 12.45
7 −34.393600 (ASP) 0.305
8 Lens 4 −1.300330 (ASP) 0.272 Plastic 1.640 23.3 −6.74
9 −2.013250 (ASP) 0.030
10 Lens 5 1.314500 (ASP) 0.780 Plastic 1.544 55.9 24.75
11 1.152080 (ASP) 0.400
12 IR-cut filter Plano 0.150 Glass 1.516 64.1
13 Plano 0.250
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 12
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.59454E−01 −1.00000E+00 0.00000E+00 2.32370E+00 −3.00000E+01
A4 = −3.42040E−02 −3.59393E−01 −2.61149E−01 −9.54178E−02 −4.07777E−01
A6 = 2.76864E−02 1.06309E+00 2.20847E+00 1.69539E+00 −4.62508E−03
A8 = −8.20722E−01 −2.68042E+00 −4.60080E+00 −3.04730E+00 1.23933E+00
A10 = 7.92109E−01 2.18211E+00 5.04622E+00 4.14315E+00 −1.24872E+00
A12 = −2.11137E+00 −4.24482E−01 −4.21843E−01 −1.72994E−01 −3.03682E+00
A14 = 6.59420E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = 3.00000E+00 −1.86979E+01 3.46619E−01 −1.92615E+01 −7.83557E+00
A4 = −1.66431E−01 2.73519E−01 2.23431E−01 −3.53679E−01 −1.33232E−01
A6 = −5.15883E−01 −1.53053E+00 −4.85894E−01 1.91012E−01 7.22731E−02
A8 = 1.03001E+00 1.85234E+00 1.23076E−01 −5.24341E−02 −3.47368E−02
A10 = −1.01121E−01 −9.12899E−01 3.83642E−01 9.74909E−03 1.05131E−02
A12 = −8.08239E−02 2.74680E−01 −9.03108E−02 5.16568E−03 −2.16016E−03
A14 = −6.63675E−01 −2.77521E−01 −3.17706E−01 −3.02811E−03 2.27599E−04
A16 = 2.36114E−02 1.68134E−01 3.15619E−04
In the image capturing system according to the 6th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 6th embodiment. Moreover, these parameters can be calculated from Table 11 and Table 12 as the following values and satisfy the following relationships:
f (mm) 2.87
Fno 2.60
HFOV (deg.) 37.4
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.80
FOV (deg.) 74.8
TTL (mm) 3.40
TTL/ImgH 1.52
(f/ImgH) × TTL (mm) 4.36
TTL × f/tan(HFOV) (mm2) 12.75
7th Embodiment
FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure. FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment. In FIG. 13, the image to capturing system includes, in order from an object side to an image side, the first lens element 710, an aperture stop 700, the second lens element 720, the third lens element 730, the fourth lens element 740, the fifth lens element 750, an IR-cut filter 780, an image plane 760 and an image sensor 770.
The first lens element 710 with positive refractive power has a convex object-side surface 711 and a convex image-side surface 712, and is made of plastic material. The object-side surface 711 and the image-side surface 712 of the first lens element 710 are aspheric.
The second lens element 720 with negative refractive power has a concave object-side surface 721 and a concave image-side surface 722, and is made of plastic material. The object-side surface 721 and the image-side surface 722 of the second lens element 720 are aspheric.
The third lens element 730 with positive refractive power has a convex object-side surface 731 and a concave image-side surface 732, and is made of plastic material. The object-side surface 731 and the image-side surface 732 of the third lens element 730 are aspheric.
The fourth lens element 740 with negative refractive power has a concave object-side surface 741 and a convex image-side surface 742, and is made of plastic material. The object-side surface 741 and the image-side surface 742 of the fourth lens element 740 are aspheric.
The fifth lens element 750 with positive refractive power has a convex object-side surface 751 and a concave image-side surface 752, and is made of plastic material. The object-side surface 751 and the image-side surface 752 of the fifth lens element 750 are aspheric. Furthermore, the fifth lens element 750 has inflection points on the object-side surface 751 and the image-side surface 752 thereof.
The IR-cut filter 780 is made of glass, and located between the fifth lens element 750 and the image plane 760, and will not affect the focal length of the image capturing system.
The detailed optical data of the 7th embodiment are shown in Table 13 and the aspheric surface data are shown in Table 14 below.
TABLE 13
7th Embodiment
f = 2.80 mm, Fno = 2.45, HFOV = 38.1 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 1.119890 (ASP) 0.426 Plastic 1.544 55.9 1.76
2 −5.821200 (ASP) −0.023
3 Ape. Stop Plano 0.052
4 Lens 2 −26.089800 (ASP) 0.230 Plastic 1.607 28.6 −2.83
5 1.842810 (ASP) 0.202
6 Lens 3 4.144500 (ASP) 0.263 Plastic 1.544 55.9 11.35
7 12.308100 (ASP) 0.308
8 Lens 4 −1.255580 (ASP) 0.281 Plastic 1.607 26.6 −10.46
9 −1.697400 (ASP) 0.030
10 Lens 5 1.205780 (ASP) 0.630 Plastic 1.535 56.3 44.00
11 1.035950 (ASP) 0.400
12 IR-cut filter Plano 0.150 Glass 1.516 64.1
13 Plano 0.354
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 14
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −4.89422E−01 −1.00000E+00 0.00000E+00 1.47669E+00 −3.17412E+00
A4 = −4.78999E−02 −2.54940E−01 −1.94436E−01 −1.12985E−01 −3.85344E−01
A6 = 6.66855E−02 1.32984E+00 2.66460E+00 1.58624E+00 8.02814E−02
A8 = −1.21705E+00 −3.89996E+00 −6.65036E+00 −2.91786E+00 1.13524E+00
A10 = 1.43194E+00 3.47957E+00 7.47017E+00 3.51316E+00 −7.14912E−01
A12 = −2.11137E+00 −4.24481E−01 −4.21842E−01 −1.72993E−01 −3.03682E+00
A14 = 6.59418E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −1.00000E+00 −2.00369E+01 −3.33565E−01 −1.62425E+01 −7.88149E+00
A4 = −1.73728E−01 2.59742E−01 3.01686E−01 −3.62768E−01 −1.64726E−01
A6 = −5.35306E−01 −1.44905E+00 −5.22751E−01 1.90515E−01 8.05776E−02
A8 = 1.10409E+00 1.65899E+00 1.12120E−01 −5.29520E−02 −3.72522E−02
A10 = −3.78156E−02 −1.00404E+00 3.82854E−01 9.38154E−03 1.00866E−02
A12 = −4.14795E−02 3.05325E−01 −8.90255E−02 4.86369E−03 −2.07221E−03
A14 = −6.63675E−01 −1.76754E−01 −3.15349E−01 −3.22899E−03 2.57944E−04
A16 = 7.54633E−02 1.67192E−01 5.03307E−04
In the image capturing system according to the 7th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 7th embodiment. Moreover, these parameters can be calculated from Table 13 and Table 14 as the following values and satisfy the following relationships:
f (mm) 2.80
Fno 2.45
HFOV (deg.) 38.1
V1 − V2 29.3
V3 − V4 29.3
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.99
FOV (deg.) 76.2
TTL (mm) 3.30
TTL/ImgH 1.48
(f/ImgH) × TTL (mm) 4.13
TTL × f/tan(HFOV) (mm2) 11.82
8th Embodiment
FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure. FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment. In FIG. 15, the image capturing system includes, in order from an object side to an image side, an aperture stop 800, the first lens element 810, a stop 801, the second lens element 820, the third lens element 830, the fourth lens element 840, the fifth lens element 850, an IR-cut filter 880, an image plane 860 and an image sensor 870.
The first lens element 810 with positive refractive power has a convex object-side surface 811 and a concave image-side surface 812, and is made of plastic material. The object-side surface 811 and the image-side surface 812 of the first lens element 810 are aspheric.
The second lens element 820 with negative refractive power has a convex object-side surface 821 and a concave image-side surface 822, and is made of plastic material. The object-side surface 821 and the image-side surface 822 of the second lens element 820 are aspheric.
The third lens element 830 with positive refractive power has a convex object-side surface 831 and a concave image-side surface 832, and is made of plastic material. The object-side surface 831 and the image-side surface 832 of the third lens element 830 are aspheric.
The fourth lens element 840 with negative refractive power has a concave object-side surface 841 and a convex image-side surface 842, and is made of plastic material. The object-side surface 841 and the image-side surface 842 of the fourth lens element 840 are aspheric.
The fifth lens element 850 with positive refractive power has a convex object-side surface 851 and a concave image-side surface 852, and is made of plastic material. The object-side surface 851 and the image-side surface 852 of the fifth lens element 850 are aspheric. Furthermore, the fifth lens element 850 has inflection points on the object-side surface 851 and the image-side surface 852 thereof.
The IR-cut filter 880 is made of glass, and located between the fifth lens element 850 and the image plane 860, and will not affect the focal length of the image capturing system.
The detailed optical data, of the 8th embodiment are shown in Table 15 and the aspheric surface data are shown in Table 16 below.
TABLE 15
8th Embodiment
f = 2.94 mm, Fno = 2.46, HFOV = 37.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.148
2 Lens 1 1.070080 (ASP) 0.449 Plastic 1.544 55.9 2.18
3 9.388500 (ASP) 0.030
4 Stop Plano 0.030
5 Lens 2 84.652700 (ASP) 0.240 Plastic 1.640 23.3 −5.34
6 3.277500 (ASP) 0.219
7 Lens 3 6.451000 (ASP) 0.256 Plastic 1.544 55.9 167.33
8 6.845800 (ASP) 0.337
9 Lens 4 −2.568740 (ASP) 0.282 Plastic 1.640 23.3 −13.91
10 −3.765400 (ASP) 0.047
11 Lens 5 1.238030 (ASP) 0.593 Plastic 1.544 55.9 97.18
12 1.053730 (ASP) 0.400
13 IR-cut filter Plano 0.110 Glass 1.516 64.1
14 Plano 0.350
15 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
Effective radius of Surface 4 is 0.55 mm.
TABLE 16
Aspheric Coefficients
Surface #
2 3 5 6 7
k = −1.25115E−01 1.43813E+01 −9.00000E+01 −9.00000E+01 −1.62971E+01
A4 = −3.24904E−02 −3.46578E−01 −2.71748E−01 2.01805E−01 −5.12661E−01
A6 = 8.31961E−02 8.25956E−01 1.45537E+00 3.91515E−01 −2.18390E−01
A8 = −9.69593E−01 −2.88251E+00 −2.81983E+00 −7.55601E−01 2.80932E+00
A10 = 1.70029E+00 1.72981E+00 −9.98196E−01 5.89497E+00 −8.73332E+00
A12 = −1.95301E+00 8.05134E+00 1.77489E+01 −2.12222E+01 1.29551E+00
A14 = −1.40784E+00 −1.02407E+01 −1.73755E+01 3.13853E+01 3.83345E+01
A16 = −5.53900E+01
Surface #
8 9 10 11 12
k = −1.00000E+02 −9.00000E+01 −2.07918E+01 −2.13912E+01 −7.68740E+00
A4 = −2.44016E−01 3.33352E−01 −1.26866E−01 −4.00253E−01 −2.16002E−01
A6 = −8.78370E−01 −1.51045E+00 1.52241E+00 2.66439E−01 1.10894E−01
A8 = 2.90423E+00 4.50617E+00 −5.54351E+00 −6.98977E−02 −3.63247E−02
A10 = −5.31890E+00 −1.73903E+01 8.99824E+00 1.61916E−03 4.72950E−03
A12 = 4.94594E+00 3.73070E+01 −8.05875E+00 3.70311E−03 9.41363E−05
A14 = −9.45588E−01 −4.09507E+01 3.84242E+00 −8.23655E−04 −4.20686E−05
A16 = 1.77252E+01 −7.54720E−01 3.85845E−05
In the image capturing system according to the 8th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 8th embodiment. Moreover, these parameters can be calculated from Table 15 and Table 16 as the following values and satisfy the following relationships:
f (mm) 2.94
Fno 2.46
HFOV (deg.) 37.5
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.55
FOV (deg.) 75.0
TTL (mm) 3.34
TTL/ImgH 1.46
(f/ImgH) × TTL (mm) 4.28
TTL × f/tan(HFOV) (mm2) 12.84
9th Embodiment
FIG. 17 is a schematic view of an image capturing system according to to the 9th embodiment of the present disclosure. FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment. In FIG. 17, the image capturing system includes, in order from an object side to an image side, the first lens element 910, an aperture stop 900, the second lens element 920, the third lens element 930, the fourth lens element 940, the fifth lens element 950, an IR-cut filter 980, an image plane 960 and an image sensor 970.
The first lens element 910 with positive refractive power has a convex object-side surface 911 and a concave image-side surface 912, and is made of plastic material. The object-side surface 911 and the image-side surface 912 of the first lens element 910 are aspheric.
The second lens element 920 with negative refractive power has a concave object-side surface 921 and a concave image-side surface 922, and is made of plastic material. The object-side surface 921 and the image-side surface 922 of the second lens element 920 are aspheric.
The third lens element 930 with positive refractive power has a convex object-side surface 931 and a concave image-side surface 932, and is made of plastic material. The object-side surface 931 and the image-side surface 932 of the third lens element 930 are aspheric.
The fourth lens element 940 with negative refractive power has a concave object-side surface 941 and a convex image-side surface 942, and is made of plastic material. The object-side surface 941 and the image-side surface 942 of the fourth lens element 940 are aspheric.
The fifth lens element 950 with negative refractive power has a convex object-side surface 951 and a concave image-side surface 952, and is made of plastic material. The object-side surface 951 and the image-side surface 952 of the fifth lens element 950 are aspheric. Furthermore, the fifth lens element 950 has inflection points on the object-side surface 951 and the image-side surface 952 thereof.
The IR-cut filter 980 is made of glass, and located between the fifth lens element 950 and the image plane 960, and will not affect the focal length of the image capturing system.
The detailed optical data of the 9th embodiment are shown in Table 17 and the aspheric surface data are shown in Table 18 below.
TABLE 17
9th Embodiment
f = 2.38 mm, Fno = 2.60, HFOV = 35.9 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 0.910190 (ASP) 0.392 Plastic 1.544 55.9 1.80
2 11.313700 (ASP) 0.016
3 Ape. Stop Plano 0.068
4 Lens 2 −33.134500 (ASP) 0.230 Plastic 1.650 21.4 −3.53
5 2.469650 (ASP) 0.147
6 Lens 3 2.314550 (ASP) 0.266 Plastic 1.544 55.9 9.12
7 4.160700 (ASP) 0.268
8 Lens 4 −1.755140 (ASP) 0.308 Plastic 1.650 21.4 −12.57
9 −2.390230 (ASP) 0.030
10 Lens 5 1.255930 (ASP) 0.562 Plastic 1.544 55.9 −11.19
11 0.876950 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.144
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 18
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.37216E−01 −4.07406E+02 0.00000E+00 −4.79097E+00 −2.91430E+01
A4 = −3.62588E−02 −3.94009E−01 −3.32289E−01 −1.34179E−01 −3.65687E−01
A6 = −1.51795E−02 6.52326E−01 2.37826E+00 2.46088E+00 −1.04338E−01
A8 = −8.63759E−01 −1.62143E+00 −1.78763E+00 −1.32037E+00 7.47909E−01
A10 = −4.00602E−01 1.12390E+00 −2.19380E+00 2.15610E+00 −1.82371E+00
A12 = −2.54805E+00 −4.24483E−01 −4.21844E−01 −1.72995E−01 −3.03682E+00
A14 = 6.59349E−01 −1.61831E−01 2.70834E−01 1.92075E−01 5.86777E+00
A16 = −3.70003E+00
Surface #
7 8 9 10 11
k = −2.88995E+01 −3.77337E+01 9.87418E−01 −2.01461E+01 −7.79639E+00
A4 = −1.86869E−01 1.04720E−01 2.29860E−01 −3.57140E−01 −1.65451E−01
A6 = −5.11383E−01 −1.39831E+00 −5.76255E−01 2.08575E−01 9.20261E−02
A8 = 8.66303E−01 1.57904E+00 9.49921E−02 −5.40809E−02 −4.21111E−02
A10 = −5.16631E−01 −1.45564E+00 3.75014E−01 1.86384E−03 9.48995E−03
A12 = −8.70992E−02 1.45266E−01 −1.00134E−01 8.92986E−04 −3.25113E−03
A14 = −6.63679E−01 2.30884E−01 −3.12969E−01 −1.54282E−03 7.90432E−04
A16 = 7.68932E−01 1.88572E−01 1.46481E−03
In the image capturing system according to the 9th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 9th embodiment. Moreover, these parameters can be calculated from Table 17 and Table 18 as the following values and satisfy the following relationships:
f (mm) 2.38
Fno 2.60
HFOV (deg.) 35.9
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.68
FOV (deg.) 71.8
TTL (mm) 2.83
TTL/ImgH 1.62
(f/ImgH) × TTL (mm) 3.85
TTL × f/tan(HFOV) (mm2) 9.32
10th Embodiment
FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure. FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment. In FIG. 19, the image capturing system includes, in order from an object side to an image side, an aperture stop 1000, the first lens element 1010, the second lens element 1020, the third lens element 1030, the fourth lens element 1040, the fifth lens element 1050, an IR-cut filter 1080, an image plane 1060 and an image sensor 1070.
The first lens element 1010 with positive refractive power has a convex object-side surface 1011 and a concave image-side surface 1012, and is made of plastic material. The object-side surface 1011 and the image-side surface 1012 of the first lens element 1010 are aspheric.
The second lens element 1020 with negative refractive power has a convex object-side surface 1021 and a concave image-side surface 1022, and is made of plastic material. The object-side surface 1021 and the image-side surface 1022 of the second lens element 1020 are aspheric.
The third lens element 1030 with positive refractive power has a convex object-side surface 1031 and a convex image-side surface 1032, and is made of plastic material. The object-side surface 1031 and the image-side surface 1032 of the third lens element 1030 are aspheric.
The fourth lens element 1040 with negative refractive power has a concave object-side surface 1041 and a convex image-side surface 1042, and is made of plastic material. The object-side surface 1041 and the image-side surface 1042 of the fourth lens element 1040 are aspheric.
The fifth lens element 1050 with negative refractive power has a convex object-side surface 1051 and a concave image-side surface 1052, and is made of plastic material. The object-side surface 1051 and the image-side surface 1052 of the fifth lens element 1050 are aspheric. Furthermore, the fifth lens element 1050 has inflection points on the object-side surface 1051 and the image-side surface 1052 thereof.
The IR-cut filter 1080 is made of glass, and located between the fifth lens element 1050 and the image plane 1060, and will not affect the focal length of the image capturing system.
The detailed optical data of the 10th embodiment are shown in Table 19 and the aspheric surface data are shown in Table 20 below.
TABLE 19
10th Embodiment
f = 2.18 mm, Fno = 2.37, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.106
2 Lens 1 0.946220 (ASP) 0.311 Plastic 1.544 55.9 2.55
3 2.621460 (ASP) 0.059
4 Lens 2 2.202410 (ASP) 0.230 Plastic 1.650 21.4 −7.42
5 1.449830 (ASP) 0.152
6 Lens 3 107.605400 (ASP) 0.309 Plastic 1.544 55.9 2.57
7 −1.413960 (ASP) 0.184
8 Lens 4 −0.770590 (ASP) 0.245 Plastic 1.650 21.4 −60.83
9 −0.884320 (ASP) 0.156
10 Lens 5 1.340890 (ASP) 0.443 Plastic 1.544 55.9 −3.31
11 0.678840 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.235
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 20
Aspheric Coefficients
Surface #
2 3 4 5 6
k = 1.46061E−02 −7.00000E+01 −3.96271E+01 −1.02906E+01 3.00000E+00
A4 = 3.37599E−02 −3.03077E−01 −7.77909E−01 −2.14063E−01 −2.28979E−01
A6 = 7.78434E−02 3.05948E−01 −1.95684E−02 2.35089E−01 6.69017E−02
A8 = 7.69186E−01 −1.97098E+00 −2.03011E−01 −1.58080E+00 1.28600E+00
A10 = −9.98338E−01 6.04596E+00 4.23651E+00 2.91597E+00 −3.37515E+00
A12 = −1.10184E+00 2.45861E−02 −3.52173E−02 −3.96619E−02 −1.70242E+00
A14 = 8.55183E−02 −1.22676E−01 7.84952E−02 2.46422E−02 2.93705E+00
A16 = −1.81800E+00
Surface #
7 8 9 10 11
k = 2.70188E−01 −4.14893E+00 −1.20712E+00 −2.48815E+01 −6.63032E+00
A4 = −1.70333E−01 2.04663E−02 5.18742E−01 −4.22592E−01 −2.00639E−01
A6 = 2.19899E−01 −6.09374E−01 −4.22724E−01 1.69210E−01 9.10051E−02
A8 = 7.98596E−01 1.78921E+00 1.40891E−01 −1.70236E−02 −3.93732E−02
A10 = 2.51173E+00 −1.13233E+00 2.88751E−01 2.11530E−02 3.33614E−03
A12 = 8.92554E−01 −2.91155E−02 −8.26757E−02 1.00165E−02 −9.89022E−04
A14 = 2.55808E−03 −1.18708E−01 −1.96880E−01 −2.06915E−03 6.25253E−04
A16 = −4.65095E−01 −5.67914E−02 −6.01017E−03
In the image capturing system according to the 10th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 10th embodiment. Moreover, these parameters can be calculated from Table 19 and Table 20 as the following values and satisfy the following relationships:
f (mm) 2.18
Fno 2.37
HFOV (deg.) 38.5
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.29
FOV (deg.) 77.0
TTL (mm) 2.72
TTL/ImgH 1.56
(f/ImgH) × TTL (mm) 3.39
TTL × f/tan(HFOV) (mm2) 7.47
11th Embodiment
FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure. FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment. In FIG. 21, the image capturing system includes, in order from an object side to an image side, the first lens element 1110, an aperture stop 1100, the second lens element 1120, the third lens element 1130, the fourth lens element 1140, the fifth lens element 1150, an IR-cut filter 1180, an image plane 1160 and an image sensor 1170.
The first lens element 1110 with positive refractive power has a convex object-side surface 1111 and a concave image-side surface 1112, and is made of plastic material. The object-side surface 1111 and the image-side surface 1112 of the first lens element 1110 are aspheric.
The second lens element 1120 with negative refractive power has a convex object-side surface 1121 and a concave image-side surface 1122, and is made of plastic material. The object-side surface 1121 and the image-side surface 1122 of the second lens element 1120 are aspheric.
The third lens element 1130 with positive refractive power has a convex object-side surface 1131 and a concave image-side surface 1132, and is made of plastic material. The object-side surface 1131 and the image-side surface 1132 of the third lens element 1130 are aspheric.
The fourth lens element 1140 with negative refractive power has a concave object-side surface 1141 and a convex image-side surface 1142, and is made of plastic material. The object-side surface 1141 and the image-side surface 1142 of the fourth lens element 1140 are aspheric.
The fifth lens element 1150 with positive refractive power has a convex object-side surface 1151 and a concave image-side surface 1152, and is made of plastic material. The object-side surface 1151 and the image-side surface 1152 of the fifth lens element 1150 are aspheric. Furthermore, the fifth lens element 1150 has inflection points on the object-side surface 1151 and the image-side surface 1152 thereof.
The IR-cut filter 1180 is made of glass, and located between the fifth lens element 1150 and the image plane 1160, and will not affect the focal length of the image capturing system.
The detailed optical data of the 11th embodiment are shown in Table 21 and the aspheric surface data are shown in Table 22 below
TABLE 21
11th Embodiment
f = 2.20 mm, Fno = 2.65, HFOV = 38.4 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 0.889320 (ASP) 0.372 Plastic 1.544 55.9 1.78
2 9.563700 (ASP) 0.015
3 Ape. Stop Plano 0.064
4 Lens 2 76.383800 (ASP) 0.230 Plastic 1.650 21.4 −3.94
5 2.474210 (ASP) 0.111
6 Lens 3 1.872980 (ASP) 0.232 Plastic 1.544 55.9 12.23
7 2.489220 (ASP) 0.242
8 Lens 4 −2.258450 (ASP) 0.283 Plastic 1.650 21.4 −6.79
9 −4.854200 (ASP) 0.030
10 Lens 5 0.846250 (ASP) 0.469 Plastic 1.535 56.3 127.74
11 0.689370 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.136
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
TABLE 22
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −4.48548E−01 −8.94672E+02 0.00000E+00 −7.95290E+00 −2.74951E+01
A4 = −5.85059E−02 −4.26459E−01 −3.11702E−01 −1.49839E−01 −3.80038E−01
A6 = −1.42851E−01 5.02376E−01 2.58544E+00 2.70971E+00 −2.10773E−01
A8 = −1.21959E+00 −2.34036E+00 −1.27936E+00 −3.42914E−01 3.40313E−01
A10 = −1.23231E+00 3.86129E+00 −6.54714E−01 1.97696E+00 −3.19399E+00
A12 = −2.54808E+00 −4.24481E−01 −4.21842E−01 −1.72993E−01 −3.03682E+00
A14 = 6.59331E−01 −1.61828E−01 2.70837E−01 1.92078E−01 5.86777E+00
A16 = −3.70004E+00
Surface #
7 8 9 10 11
k = −2.10141E+01 −2.52088E+02 −1.64555E+00 −1.64652E+01 −8.24454E+00
A4 = −1.49837E−01 1.89162E−01 2.50407E−01 −3.60422E−01 −1.78572E−01
A6 = −4.63623E−01 −1.37577E+00 −6.15990E−01 2.16730E−01 8.25622E−02
A8 = 8.18347E−01 1.51214E+00 7.90312E−02 −5.17629E−02 −4.49105E−02
A10 = −7.14987E−01 −1.55392E+00 3.76885E−01 2.74577E−03 9.02979E−03
A12 = −7.60853E−02 9.52445E−02 −9.78978E−02 8.79829E−04 −2.94899E−03
A14 = −6.63676E−01 3.07718E−01 −3.09399E−01 −1.82048E−03 1.03242E−03
A16 = 1.02469E+00 1.92688E−01 9.96584E−04
In the image capturing system according to the 11th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 11th embodiment. Moreover, these parameters can be calculated from Table 21 and Table 22 as the following values and satisfy the following relationships:
f (mm) 2.20
Fno 2.65
HFOV (deg.) 38.4
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.25
f/f2 −0.56
FOV (deg.) 76.8
TTL (mm) 2.58
TTL/ImgH 1.48
(f/ImgH) × TTL (mm) 3.24
TTL × f/tan(HFOV) (mm2) 7.15
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.

Claims (59)

What is claimed is:
1. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with positive refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein the first through fifth lens elements are five independent and non-cemented lens elements, a maximum image height of the image capturing system is ImgH, an axial distance between the object-side surface of the first lens element and an image plane is TTL, a focal length of the image capturing system is f, and the following relationship is satisfied:

2.8 mm<(f/ImgH)×TTL<4.6 mm.
2. The image capturing system of claim 1, wherein the focal length of the image capturing system is f, a focal length of the second lens element is f2, and the following relationship is satisfied:

−1.4<f/f2<−0.18.
3. The image capturing system of claim 1, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.
4. The image capturing system of claim 1, wherein an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, and the following relationship is satisfied:

20<V1−V2<50.
5. The image capturing system of claim 1, wherein an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, and the following relationship is satisfied:

27<V3−V4<45.
6. The image capturing system of claim 1, wherein the axial distance between the object-side surface of the first lens element and an image plane is TTL, the focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, and the following relationship is satisfied:

6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.
7. The image capturing system of claim 1, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
8. The image capturing system of claim 7, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
9. The image capturing system of claim 7, wherein the second lens element has a concave image-side surface.
10. The image capturing system of claim 7, wherein the fifth lens element has a convex object-side surface.
11. The image capturing system of claim 1, wherein the focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
12. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein an axial distance between the object-side surface of the first lens element and an image plane is TTL, a focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, and the following relationships are satisfied:

6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2; and

27<V3−V4<45.
13. The image capturing system of claim 12, wherein the second lens element has a concave image-side surface.
14. The image capturing system of claim 12, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.2 mm<(CT2+CT3+CT4)/3<0.31 mm.
15. The image capturing system of claim 12, wherein an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, and the following relationship is satisfied:

20<V1−V2<50.
16. The image capturing system of claim 12, wherein the axial distance between the object-side surface of the first lens element and the image plane is TTL, the focal length of the image capturing system is f, the half of the maximal field of view of the image capturing system is HFOV, and the following relationship is satisfied:

6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.
17. The image capturing system of claim 12, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
18. The image capturing system of claim 12, wherein the focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
19. The image capturing system of claim 12, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
20. The image capturing system of claim 12, wherein a maximum image height of the image capturing system is ImgH, the axial distance between the object-side surface of the first lens element and the image plane is TTL, and the following relationship is satisfied:

TTL/ImgH<1.55.
21. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein the first through fifth lens elements are five independent and non-cemented lens elements, an axial distance between the object-side surface of the first lens element and an image plane is TTL, and the following relationship is satisfied:

2.2 mm<TTL<3.5 mm.
22. The image capturing system of claim 21, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.2 mm<(CT2+CT3+CT4)/3<0.31 mm.
23. The image capturing system of claim 21, wherein a maximum image height of the image capturing system is ImgH, the axial distance between the object-side surface of the first lens element and the image plane is TTL, and the following relationship is satisfied:

TTL/ImgH<1.55.
24. The image capturing system of claim 21, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
25. The image capturing system of claim 21, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
26. The image capturing system of claim 21, wherein a focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
27. An image capturing system for imaging an object on an object side to an image plane on an image side opposite of the object side, comprising:
a first lens element structured to exhibit positive refractive power and to include a convex object-side surface and a concave image-side surface and positioned as an optical input of the image capturing system to receive light from the object to be imaged by the image capturing system onto the image plane;
a second lens element positioned next to the first lens element to receive light from the first lens element, the second lens element structured to exhibit negative refractive power and to include a convex object-side surface and a concave image-side surface;
a third lens element positioned next to the second lens element to receive light from the second lens element, and structured to exhibit positive refractive power and to include a convex image-side surface, the third lens element being thinner than the first lens element and thicker than the second lens element;
a fourth lens element positioned next to the third lens element to receive light from the third lens element, and structured to exhibit negative refractive power and to include a concave object-side surface and a convex image-side surface, the fourth lens element being thinner than the first lens element and thicker than the second lens element; and
a fifth lens element positioned next to the fourth lens element to receive light from the fourth lens element and to image onto the image plane, and structured to exhibit refractive power and to include an object-side surface that is convex on an optical axis of the fifth lens element and concave off the optical axis, and an image-side surface that is concave on the optical axis and convex off the optical axis, wherein the fifth lens element is shaped to include at least one inflection point is formed on each of the object-side and image-side surfaces and is thicker than the first lens element,
wherein the first, the second, the third, the fourth and the fifth lens elements are sequentially arranged from the object side toward the image side of the image capturing system.
28. The image capturing system of claim 27, wherein each of the first, the second, the third, the fourth and the fifth lens elements is a non-cemented lens element.
29. The image capturing system of claim 27, wherein the third lens element includes a concave object-side surface facing the second lens element.
30. The image capturing system of claim 27, wherein the second, the third and the fourth lens elements are structured to have central thickness values of CT2, CT3 and CT4, respectively, so that a total thickness of the three lens elements satisfies:

0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.
31. The image capturing system of claim 27, wherein the third and the fourth lens elements are structured to have Abbe numbers of V3 and V4, respectively, to cause a difference of the Abbe numbers V3 and V4 to be between 27 and 45:

27<V3−V4<45.
32. The image capturing system of claim 27, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged so that a ratio of an axial distance, TTL, between the object-side surface of the first lens element and the image plane of the image capturing system and a maximum image height, ImgH, of the image capturing system is less than 1.55:

TTL/ImgH<1.55.
33. The image capturing system of claim 27, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to effectuate a focal length, f, of the image capturing system between 1.8 mm and 3.2 mm:

1.8 mm<f<3.2 mm.
34. An image capturing system for imaging an object on an object side to an image plane on an image side opposite of the object side, comprising:
a first lens element structured to exhibit positive refractive power and to include a convex object-side surface facing the object side to direct light from the object into the image capturing system;
a second lens element positioned on an image side of the first lens element and structured to exhibit negative refractive power and to include a convex object-side surface facing the first lens element and a concave image-side surface;
a third lens element positioned on an image side of the second lens element and structured to exhibit positive refractive power and to include a convex image-side surface facing the fourth lens element, the third lens element being thinner than the first lens element;
a fourth lens element positioned on an image side of the third lens element and structured to exhibit negative refractive power and to include a concave object-side surface facing the third lens element and a convex image-side surface; and
a fifth lens element positioned on an image side of the fourth lens element and structured to exhibit refractive power and to project the image onto the image plane, the fifth lens element including an object-side surface that is convex on an optical axis of the fifth lens element and concave off the optical axis and an image-side surface that is concave on the optical axis and convex off the optical axis, wherein at least one inflection point is formed on each of the object-side and image-side surfaces of the fifth lens element,
wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to have a maximal field of view, FOV, of the image capturing system between 70 degrees and 90 degrees:

70 degrees<FOV<90 degrees.
35. The image capturing system of claim 34, wherein the first through fifth lens elements are each non-cemented lens elements.
36. The image capturing system of claim 34, wherein the first lens element has a concave image-side surface facing the image side of the second lens element.
37. The image capturing system of claim 34, wherein the third lens element has a concave object-side surface facing the image side of the second lens element.
38. The image capturing system of claim 34, wherein an Abbe number, V3, of the third lens element and an Abbe number, V4, of the fourth lens element have a difference between 27 and 45:

27<V3−V4<45.
39. The image capturing system of claim 34, wherein a ratio of an axial distance, TTL, between the object-side surface of the first lens element and the image plane of the image capturing system and a maximum image height, ImgH, of the image capturing system is less than 1.55:

TTL/ImgH<1.55.
40. The image capturing system of claim 34, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to effectuate an axial distance, TTL, between the object-side surface of the first lens element and the image, a focal length, f, of the image capturing system, a half of the maximal field of view, HFOV, of the image capturing system to have a relation of:

6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2.
41. An image capturing system, comprising:
a first lens having positive refractive power and being convex toward an object side;
a second lens having negative refractive power and being convex toward the object side and concave toward an image side;
a third lens having positive refractive power and being concave toward the object side and convex toward the image side;
a fourth lens having negative refractive power and being concave toward the object side and convex toward the image side; and
a fifth lens having a refractive power and comprising:
an object-side surface being convex in the center and concave at the periphery; and
an image-side surface being concave in the center and convex at the periphery, wherein:
at least one inflection point is formed on the object-side and image-side surfaces of the fifth lens,
the first lens is thicker than the third lens and the fourth lens is thicker than the second lens, and
the first lens, the second lens, the third lens, the fourth lens and the fifth lens are sequentially arranged from the object side toward the image side.
42. The image capturing system of claim 41, wherein the first lens is concave toward the image side.
43. The image capturing system of claim 41, wherein the second lens, the third lens, the fourth lens and the fifth lens are made of plastic.
44. The image capturing system of claim 43, wherein the first lens is made of plastic.
45. The image capturing system of claim 41, wherein the first and second lenses comprise at least one aspherical surface.
46. The image capturing system of claim 41, further comprising an aperture disposed in front of the first lens.
47. The image capturing system of claim 41, wherein
a focal length of the second lens is greater than a focal length of the fourth lens, and
a focal length of the third lens is greater than the focal length of the second lens.
48. The image capturing system of claim 47, wherein a focal length of the first lens is greater than the focal length of the second lens and shorter than the focal length of the third lens.
49. The image capturing system of claim 41, wherein
a radius of curvature of an object-side surface of the second lens is greater than a radius of curvature of an image-side surface of the second lens,
a radius of curvature of the object-side surface of the fifth lens is greater than a radius of curvature of the image-side surface of the fifth lens, and
a radius of curvature of an object-side surface of the fourth lens is greater than a radius of curvature of an image-side surface of the fourth lens.
50. The image capturing system of claim 49, wherein a radius of curvature of an image-side surface of the first lens is greater than a radius of curvature of an object-side surface of the first lens.
51. The image capturing system of claim 47, wherein the third lens is thicker than the second lens, and the first lens is thicker than the fourth lens.
52. The image capturing system of claim 51, wherein the fifth lens is thicker than the first lens.
53. An image capturing system, comprising:
a first lens having positive refractive power and being convex toward an object side and concave toward an image side;
a second lens having negative refractive power and being convex toward the object side and concave toward the image side;
a third lens having positive refractive power and being concave toward the object side and convex toward the image side;
a fourth lens having negative refractive power and being concave toward the object side and convex toward the image side; and
a fifth lens having refractive power and comprising:
an object-side surface being convex in the center and concave at the periphery; and
an image-side surface being concave in the center and convex at the periphery, wherein:
at least one inflection point is formed on the object-side and image-side surfaces of the fifth lens, and
the first lens, the second lens, the third lens, the fourth lens and the fifth lens are sequentially arranged from the object side toward the image side.
54. The image capturing system of claim 53, wherein the first lens, the second lens, the third lens, the fourth lens and the fifth lens are made of plastic.
55. The image capturing system of claim 53, wherein the first and second lenses comprise at least one aspherical surface.
56. The image capturing system of claim 53, further comprising an aperture disposed in front of the first lens.
57. The image capturing system of claim 53, wherein
a focal length of the second lens is greater than a focal length of the fourth lens,
a focal length of the first lens is greater than the focal length of the second lens, and
a focal length of the third lens is greater than the focal length of the first lens.
58. The image capturing system of claim 53, wherein
a radius of curvature of an image-side surface of the first lens is greater than a radius of curvature of an object-side surface of the first lens,
a radius of curvature of an object-side surface of the second lens is greater than a radius of curvature of an image-side surface of the second lens,
a radius of curvature of an object-side surface of the fourth lens is greater than a radius of curvature of an image-side surface of the fourth lens, and
a radius of curvature of the object-side surface of the fifth lens is greater than a radius of curvature of the image-side surface of the fifth lens.
59. The image capturing system of claim 53, wherein
the third and fourth lenses are thicker than the second lens,
the first lens is thicker than the third and fourth lenses, and
the fifth lens is thicker than the first lens.
US14/816,057 2012-01-12 2015-08-02 Image capturing system Active 2032-11-27 USRE46747E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/816,057 USRE46747E1 (en) 2012-01-12 2015-08-02 Image capturing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW101101276A 2012-01-12
TW101101276A TWI438476B (en) 2012-01-12 2012-01-12 Image capturing system
US13/615,568 US8705181B2 (en) 2012-01-12 2012-09-13 Image capturing system
US14/816,057 USRE46747E1 (en) 2012-01-12 2015-08-02 Image capturing system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/615,568 Reissue US8705181B2 (en) 2012-01-12 2012-09-13 Image capturing system

Publications (1)

Publication Number Publication Date
USRE46747E1 true USRE46747E1 (en) 2018-03-06

Family

ID=47252981

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/615,568 Ceased US8705181B2 (en) 2012-01-12 2012-09-13 Image capturing system
US14/816,057 Active 2032-11-27 USRE46747E1 (en) 2012-01-12 2015-08-02 Image capturing system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/615,568 Ceased US8705181B2 (en) 2012-01-12 2012-09-13 Image capturing system

Country Status (3)

Country Link
US (2) US8705181B2 (en)
CN (3) CN103207447B (en)
TW (1) TWI438476B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964740B1 (en) * 2016-12-14 2018-05-08 AAC Technologies Pte. Ltd. Optical camera lens
US10274707B2 (en) * 2017-06-05 2019-04-30 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US20190377158A1 (en) * 2018-06-08 2019-12-12 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US20210294079A1 (en) * 2018-08-31 2021-09-23 Zhejiang Sunny Optics Co.,Ltd. Image Camera Lens

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI438476B (en) * 2012-01-12 2014-05-21 Largan Precision Co Ltd Image capturing system
TWI438479B (en) * 2012-02-08 2014-05-21 Largan Precision Co Ltd Image capturing optical lens assembly
TWI439754B (en) * 2012-10-09 2014-06-01 Largan Precision Co Ltd Image capturing lens system
TWI467223B (en) * 2012-11-20 2015-01-01 Largan Precision Co Ltd Image capturing lens assembly
CN204807790U (en) * 2012-12-25 2015-11-25 富士胶片株式会社 Make a video recording lens and possess camera device of lens of making a video recording
CN204807789U (en) * 2012-12-25 2015-11-25 富士胶片株式会社 Make a video recording lens and possess camera device of lens of making a video recording
WO2014103197A1 (en) * 2012-12-25 2014-07-03 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
KR101452084B1 (en) * 2013-01-22 2014-10-16 삼성전기주식회사 Subminiature optical system and portable device having the same
JP2014153575A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Imaging lens, and imaging device and portable terminal
JP2014153576A (en) * 2013-02-08 2014-08-25 Konica Minolta Inc Imaging lens, and imaging device and portable terminal
WO2014155459A1 (en) * 2013-03-26 2014-10-02 富士フイルム株式会社 Image pickup lens and image pickup device provided with image pickup lens
CN103676102B (en) * 2013-07-16 2016-08-10 玉晶光电(厦门)有限公司 Portable electronic devices and its optical imaging lens
US9223118B2 (en) 2013-10-31 2015-12-29 Apple Inc. Small form factor telephoto camera
CN103969790B (en) 2013-12-09 2016-05-11 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
JP2015125212A (en) * 2013-12-26 2015-07-06 ソニー株式会社 Imaging lens and imaging unit
CN104007539B (en) * 2014-01-27 2016-05-25 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
CN104122654B (en) 2014-03-10 2016-08-17 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
CN104142559B (en) 2014-04-18 2016-07-06 玉晶光电(厦门)有限公司 Portable electronic devices and its optical imaging lens
TWI512326B (en) * 2014-07-14 2015-12-11 Largan Precision Co Ltd Photographing optical lens assembly, imaging device and mobile terminal
CN104330878B (en) 2014-07-22 2017-08-25 玉晶光电(厦门)有限公司 The electronic installation of optical imaging lens and the application optical imaging lens
KR101578647B1 (en) * 2014-08-11 2015-12-18 주식회사 코렌 Photographic Lens Optical System
KR20170043279A (en) * 2015-10-13 2017-04-21 삼성전기주식회사 Optical Imaging System
KR101829600B1 (en) 2015-11-23 2018-02-19 삼성전기주식회사 Camera Module
CN106125255B (en) * 2016-08-18 2019-08-30 瑞声科技(沭阳)有限公司 Pick-up lens
CN108169876B (en) * 2017-12-25 2020-09-29 瑞声光电科技(苏州)有限公司 Image pickup optical lens
US10969652B2 (en) 2018-01-10 2021-04-06 Apple Inc. Camera with folded optics having moveable lens
CN115086530A (en) 2018-01-26 2022-09-20 苹果公司 Folded camera with actuator for moving optics
US11061213B2 (en) 2018-02-07 2021-07-13 Apple Inc. Folded camera
US11314147B1 (en) 2018-05-31 2022-04-26 Apple Inc. Folded camera with actuator for moving optics
KR102399235B1 (en) * 2020-04-17 2022-05-19 삼성전기주식회사 Imaging Lens System
CN114114619A (en) * 2021-11-17 2022-03-01 江西晶超光学有限公司 Optical system, image capturing module and electronic equipment

Citations (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211320A (en) 1996-02-02 1997-08-15 Ricoh Co Ltd Small-sized wide-angle lens
US6111703A (en) 1997-12-17 2000-08-29 Olympus Optical Co., Ltd. Image pickup optical system
US6236522B1 (en) 1997-12-02 2001-05-22 Olympus Optical Co., Ltd. Photographic optical system
JP2003131136A (en) 2001-10-29 2003-05-08 Inaryo Technica Kk Wide-field imaging unit
JP2003161879A (en) 2001-09-13 2003-06-06 Ricoh Co Ltd Imaging optical system and image photographing device using the same
US20030117722A1 (en) 2001-12-25 2003-06-26 Genius Electronic Optical (Xiamen) Co., Ltd. Structure of digital imaging lens
JP2003185917A (en) 2001-12-14 2003-07-03 Nidec Copal Corp Wide angle lens
KR100407422B1 (en) 2003-02-13 2003-11-28 Diostech Co Ltd Small-sized photographing optical system achieving high definition
US20040196571A1 (en) 2003-03-31 2004-10-07 Yoshikazu Shinohara Imaging lens
JP2005266771A (en) 2004-02-18 2005-09-29 Fujinon Corp Image reading lens and image reader
JP2006293042A (en) 2005-04-12 2006-10-26 Matsushita Electric Ind Co Ltd Imaging optical system and imaging apparatus using same
TWI268360B (en) 2005-12-02 2006-12-11 Asia Optical Co Inc Single focus lens
TWM313246U (en) 2006-12-21 2007-06-01 Newmax Technology Co Ltd Imaging lens set
TWM313781U (en) 2006-12-13 2007-06-11 Newmax Technology Co Ltd Imaging lens set
US20070229984A1 (en) 2006-03-28 2007-10-04 Fujinon Corporation Imaging lens
JP2007298572A (en) 2006-04-27 2007-11-15 Kyocera Corp Imaging lens, optical module and personal digital assistant
US20070298572A1 (en) 2005-04-27 2007-12-27 Xiangdong Chen FIELD EFFECT TRANSISTORS (FETs) WITH MULTIPLE AND/OR STAIRCASE SILICIDE
TWM332199U (en) 2007-11-28 2008-05-11 Create Electronic Optical Co Five element optical imaging lens
KR100835108B1 (en) 2007-03-07 2008-06-03 삼성전기주식회사 Optical system for autofocusing of camera module
US7443610B1 (en) 2007-09-06 2008-10-28 Hon Hai Precision Industry Co., Ltd. Lens system
US7480105B2 (en) 2006-04-05 2009-01-20 Fujinon Corporation Imaging lens and imaging apparatus
US20090061153A1 (en) 2007-08-28 2009-03-05 Sealed Air Corporation (Us) Apparatus and Method for Manufacturing Foam Parts
KR20090027330A (en) 2007-09-12 2009-03-17 삼성전기주식회사 Auto focus optical system
US7515351B2 (en) 2007-07-05 2009-04-07 Largan Precision Co., Ltd. Inverse telephoto with correction lenses
KR20090055115A (en) 2007-11-28 2009-06-02 주식회사 세코닉스 High resolution lens assembly
KR20090100814A (en) 2008-03-21 2009-09-24 주식회사 코렌 Photographic lens optical system
US20090294527A1 (en) 2008-06-02 2009-12-03 Sears Brands, L.L.C. System and method for payment card industry enterprise account number elimination
US20090294528A1 (en) 2008-05-30 2009-12-03 Target Brands, Inc. Stored-value card with embossed indicia
JP2009294528A (en) 2008-06-06 2009-12-17 Fujinon Corp Imaging lens composed of five lenses and imaging apparatus
KR20090131805A (en) 2008-06-19 2009-12-30 엘지이노텍 주식회사 Imaging lens
KR20100000132A (en) 2008-06-24 2010-01-06 엘지이노텍 주식회사 Imaging lens
KR20100001525A (en) 2008-06-27 2010-01-06 엘지이노텍 주식회사 Imaging lens
US20100008562A1 (en) 2008-07-11 2010-01-14 Masanori Takahashi Latent image intensity distribution evaluation method, method of manufacturing the semiconductor device and latent image intensity distribution evaluation program
US20100026434A1 (en) 2007-01-30 2010-02-04 Tadayuki Okamoto Stationary induction apparatus fixing structure and fixing member
US20100048996A1 (en) 2008-08-22 2010-02-25 Olympus Medical Systems Corp. Medical Instrument Insertion Guide System
WO2010024198A1 (en) 2008-08-25 2010-03-04 コニカミノルタオプト株式会社 Imaging lens, imaging device and portable terminal
KR20100043667A (en) 2008-10-20 2010-04-29 엘지이노텍 주식회사 Imaging lens
US7710665B2 (en) 2007-11-08 2010-05-04 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
CN101710207A (en) 2009-12-28 2010-05-19 浙江舜宇光学有限公司 Low-sensitivity high- resolution slim camera
TW201022714A (en) 2008-12-01 2010-06-16 Largan Precision Co Ltd Optical lens system for taking image
KR20100067515A (en) 2008-12-11 2010-06-21 엘지이노텍 주식회사 Imaging lens
US20100220229A1 (en) 2009-02-27 2010-09-02 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus, and Mobile Terminal
CN201594156U (en) 2009-12-28 2010-09-29 浙江舜宇光学有限公司 Low sensitivity and high definition thin camera lens
US20100253829A1 (en) 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US20100254029A1 (en) 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US20100256608A1 (en) 2003-09-17 2010-10-07 Bolmsjoe Magnus Method of Using a Partial-Length, Indwelling Prostatic Catheter Having a Coiled Inflation Tube as an Anchor
TW201038966A (en) 2009-04-20 2010-11-01 Largan Precision Co Ltd Photographing lens assembly
US20100282000A1 (en) 2009-05-06 2010-11-11 Xsensor Technology Corporation Dielectric textured elastomer in a pressure mapping system
JP2010256608A (en) 2009-04-24 2010-11-11 Konica Minolta Opto Inc Imaging lens, imaging optical device and digital apparatus
JP2010262218A (en) 2009-05-11 2010-11-18 Fujifilm Corp Imaging lens and imaging device
US7864454B1 (en) 2009-08-11 2011-01-04 Largan Precision Co., Ltd. Imaging lens system
US20110013069A1 (en) 2009-07-14 2011-01-20 Largan Precision Co., Ltd. Imaging lens system
JP2011039091A (en) 2009-08-06 2011-02-24 Canon Inc Zoom lens and imaging apparatus including the same
WO2011021271A1 (en) 2009-08-18 2011-02-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
WO2011027690A1 (en) 2009-09-02 2011-03-10 コニカミノルタオプト株式会社 Single-focus optical system, image pickup device, and digital apparatus
US7911711B1 (en) 2010-04-23 2011-03-22 Largan Precision Co., Ltd. Photographing optical lens assembly
US20110085733A1 (en) 2009-10-09 2011-04-14 Snell Limited Defining image features and using features to monitor image transformations
KR20110042697A (en) 2009-10-20 2011-04-27 (주)창원옵텍 Compact imaging lens
JP2011085733A (en) 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
KR20110057625A (en) 2009-11-24 2011-06-01 삼성전기주식회사 Optical system
US20110138175A1 (en) 2009-12-07 2011-06-09 Clark Peter E Managed virtual point to point communication service having verified directory, secure transmission and controlled delivery
US7965454B2 (en) 2008-08-28 2011-06-21 Konica Minolta Opto, Inc. Imaging lens and small-size image pickup apparatus using the same
US7969664B2 (en) 2009-09-30 2011-06-28 Largan Precision Co., Ltd. Imaging lens assembly
KR20110071554A (en) 2009-12-21 2011-06-29 엘지이노텍 주식회사 Imaging lens
US20110164327A1 (en) 2010-01-06 2011-07-07 Tamron Co., Ltd. Imaging lens, camera module, and imaging apparatus
US20110181963A1 (en) * 2009-12-14 2011-07-28 Lg Innotek Co., Ltd. Imaging Lens and Camera Module
US20110188131A1 (en) 2009-07-08 2011-08-04 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus and Portable Terminal
US8000031B1 (en) 2010-06-10 2011-08-16 Largan Precision Co., Ltd. Imaging optical lens assembly
JP2011158508A (en) 2010-01-29 2011-08-18 Fujifilm Corp Imaging lens and imaging device
US20110209554A1 (en) 2010-02-26 2011-09-01 Canon Anelva Corporation Combined type pressure gauge, and manufacturing method of combined type pressure gauge
US20110209352A1 (en) 2008-10-31 2011-09-01 Dr. Johannes Heidenhain Gmbh Length measuring device
US20110227362A1 (en) 2008-10-15 2011-09-22 Johnson's Control Technology Company Channel for slide-on-rod visors
US20110249349A1 (en) 2010-04-12 2011-10-13 Fujifilm Corporation Image pickup lens and image pickup apparatus
US20110249346A1 (en) * 2010-04-08 2011-10-13 Largan Precision Co., Ltd. Imaging lens assembly
JP2011209554A (en) 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
US20110257447A1 (en) 2009-12-18 2011-10-20 Botella-Franco Carolina Process for producing hydrocarbons from microbial lipids
TWM416090U (en) 2011-06-02 2011-11-11 Ability Opto Electronics Technology Co Ltd Imaging lens set
US8072695B1 (en) 2010-07-09 2011-12-06 Genius Electronic Optical Co., Ltd. Imaging lens
JP2011257448A (en) 2010-06-04 2011-12-22 Sony Corp Image pickup lens and image pickup apparatus
KR20110140040A (en) 2010-06-24 2011-12-30 삼성전기주식회사 Subminiature optical system
JP2012008164A (en) 2010-06-22 2012-01-12 Olympus Corp Imaging optical system and imaging apparatus with the same
KR20120018573A (en) 2010-08-23 2012-03-05 삼성전기주식회사 Subminiature optical system
US20120081595A1 (en) 2010-10-04 2012-04-05 Olympus Corporation Image taking optical system and image pickup apparatus equipped with same
KR20120033866A (en) 2010-09-30 2012-04-09 삼성전기주식회사 Lens system
US20120087020A1 (en) * 2010-10-06 2012-04-12 Largan Precision Co., Ltd. Optical lens system
US20120105704A1 (en) * 2010-11-01 2012-05-03 Largan Precision Co., Ltd. Photographing optical lens assembly
US8174777B2 (en) 2010-02-23 2012-05-08 Largan Precision Co., Ltd. Zoom lens assembly
US8179615B1 (en) * 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US8179618B2 (en) 2009-12-24 2012-05-15 Sony Corporation Optical unit and image pickup apparatus
US8179614B1 (en) 2011-01-03 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US8189273B2 (en) 2009-06-12 2012-05-29 Largan Precision Co., Ltd. Imaging lens assembly
US8203796B2 (en) 2009-02-25 2012-06-19 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US8248713B2 (en) 2010-01-19 2012-08-21 Largan Precision Co., Ltd. Optical photographing lens assembly
US8264784B2 (en) 2010-06-17 2012-09-11 Samsung Electro-Mechanics Co., Ltd. Optical system
US20120262806A1 (en) 2011-04-13 2012-10-18 Largan Precision Co., Ltd. Optical image lens assembly
US8305697B1 (en) 2011-05-24 2012-11-06 Largan Precision Co., Ltd. Image capturing lens assembly
US8310768B2 (en) 2010-09-16 2012-11-13 Largan Precision Co., Ltd. Optical imaging lens system
TW201248187A (en) 2012-06-26 2012-12-01 Largan Precision Co Ltd Single focus optical image capturing system
US8325429B2 (en) 2010-12-23 2012-12-04 Largan Precision Co., Ltd. Photographing optical lens assembly
US8325430B1 (en) 2011-09-01 2012-12-04 Newmax Technology Co., Ltd. Five-piece imaging lens module
US20120314301A1 (en) 2011-06-10 2012-12-13 Largan Precision Co., Ltd. Optical image capturing lens assembly
US8335043B2 (en) 2011-04-22 2012-12-18 Largan Precision Co. Image taking optical system
US8339718B1 (en) 2011-06-09 2012-12-25 Largan Precision Co., Ltd. Image capturing optical lens system
US8345358B2 (en) 2011-06-01 2013-01-01 Largen Precision Co., Ltd. Image-capturing optical lens assembly
US8351132B2 (en) 2010-03-18 2013-01-08 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US20130010181A1 (en) 2010-03-24 2013-01-10 Sony Corporation Optical unit and imaging apparatus
JP2013011710A (en) 2011-06-29 2013-01-17 Optical Logic Inc Image pickup lens
US20130027788A1 (en) 2011-07-28 2013-01-31 Hon Hai Precision Industry Co., Ltd. Lens module
US8369027B2 (en) 2011-05-11 2013-02-05 Largan Precision Co., Ltd. Image capturing optical lens system
US8369029B2 (en) 2011-02-22 2013-02-05 Largan Precision Co., Ltd. Image capturing lens assembly
US8379324B2 (en) 2011-05-26 2013-02-19 Largan Precision Co. Optical imaging lens assembly
US8379325B2 (en) 2011-07-22 2013-02-19 Largan Precision Co., Ltd. Photographing optical lens assembly
US20130050847A1 (en) 2011-08-26 2013-02-28 Largan Precision Co., Ltd. Image lens assembly
US8390940B2 (en) * 2011-08-05 2013-03-05 Largan Precision Co., Ltd. Photographing optical lens assembly
US8390945B2 (en) 2011-07-28 2013-03-05 Hon Hai Precision Industry Co., Ltd. Lens module having nebulized portions
US8395853B2 (en) 2011-03-09 2013-03-12 Largan Precision Co. Image pick-up optical system
US8395852B2 (en) 2010-10-15 2013-03-12 Largan Precision Co., Ltd. Optical imaging lens assembly
US20130070346A1 (en) 2011-09-15 2013-03-21 Largan Precision Co., Ltd. Optical image capturing lens assembly
JP2013054099A (en) 2011-09-01 2013-03-21 Optical Logic Inc Imaging lens
US8411376B2 (en) 2008-12-25 2013-04-02 Optical Logic Inc. Imaging lens
US20130088788A1 (en) 2011-10-10 2013-04-11 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US8422145B2 (en) 2009-03-31 2013-04-16 Kantatsu Co., Ltd. Image pickup lens for solid-state image pickup element
US20130093942A1 (en) 2010-06-28 2013-04-18 Sony Corporation Imaging lens and imaging device
US20130093938A1 (en) 2011-10-14 2013-04-18 Olympus Corporation Image forming optical system, image pickup apparatus using the same, and information processing apparatus
US20130094098A1 (en) 2011-10-14 2013-04-18 Hon Hai Precision Industry Co., Ltd. Lens system with reduced length, wide view angle, and high resolution
US20130100542A1 (en) * 2011-10-25 2013-04-25 Largan Precision Co., Ltd. Photographing optical lens system
US8437092B2 (en) 2009-12-24 2013-05-07 Sony Corporation Optical unit and image pickup apparatus
US20130114151A1 (en) 2011-11-07 2013-05-09 Largan Precision Co., Ltd. Photographing system
US20130120858A1 (en) 2010-07-16 2013-05-16 Eigo Sano Image Capture Lens
US8451545B2 (en) 2011-07-06 2013-05-28 Largan Precision Co., Ltd. Image capturing optical system
US8456758B1 (en) * 2011-12-28 2013-06-04 Largan Precision Co., Ltd. Image capturing lens system
US8456757B2 (en) 2011-06-22 2013-06-04 Largan Precision Co., Ltd. Image capturing optical lens assembly
US8467137B2 (en) 2011-02-28 2013-06-18 Kantatsu Co., Ltd. Imaging lens unit
TW201326884A (en) 2013-03-05 2013-07-01 Largan Precision Co Ltd Image capturing system
US8477432B2 (en) 2011-10-26 2013-07-02 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Image lens with low chromatic aberration and high resolution
US20130170048A1 (en) 2011-12-28 2013-07-04 Shu-Tzu Lai Five-piece optical lens system
US8482863B2 (en) 2010-12-15 2013-07-09 Largan Precision Co. Imagery optical system
US8488259B2 (en) 2011-07-19 2013-07-16 Largan Precision Co., Ltd. Optical image capturing lens system
US8488258B2 (en) 2011-06-07 2013-07-16 DigitalOptics Corporation Europe Limited Enhanced depth of field based on uniform relative illumination via lens with large distortion
US8488255B2 (en) 2010-12-09 2013-07-16 Largan Precision Co. Image pickup optical system
US8498061B2 (en) 2011-06-30 2013-07-30 Konica Minolta Advanced Layers, Inc. Image pickup lens
US8503111B2 (en) 2009-08-11 2013-08-06 Lg Innotek Co., Ltd. Imaging lens
US20130201568A1 (en) 2012-02-08 2013-08-08 Largan Precision Co., Ltd. Image capturing optical lens system
US8508859B2 (en) 2011-01-20 2013-08-13 Largan Precision Co. Image pickup optical lens assembly
US8508861B2 (en) 2011-10-27 2013-08-13 Largan Precision Co., Ltd Image lens assembly
US8508649B2 (en) 2011-02-14 2013-08-13 DigitalOptics Corporation Europe Limited Compact distorted zoom lens for small angle of view
TW201333517A (en) 2013-03-20 2013-08-16 Largan Precision Co Ltd Imaging lens assembly
US8514501B2 (en) 2011-09-28 2013-08-20 Largan Precision Co., Ltd. Optical image lens system
US8520322B2 (en) 2011-01-28 2013-08-27 Largan Precision Co., Ltd. Lens system
US8531784B2 (en) 2011-03-30 2013-09-10 Kantatsu Co., Ltd. Imaging lens
US8531786B2 (en) 2011-07-19 2013-09-10 Largan Precision Co. Optical system for imaging pickup
US8559118B2 (en) 2009-11-18 2013-10-15 DigitalOptics Corporation Europe Limited Fixed focal length optical lens architecture providing a customized depth of focus optical system
TW201341840A (en) 2013-02-06 2013-10-16 玉晶光電股份有限公司 Optical imaging lens and electronic device comprising the same
US20130271642A1 (en) 2010-10-21 2013-10-17 Eigo Sano Image pickup lens, image pickup apparatus and portable terminal
US20130286488A1 (en) 2012-04-30 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
US8576498B2 (en) 2011-06-28 2013-11-05 Largan Precision Co. Optical imaging lens assembly
US8576497B2 (en) 2011-05-11 2013-11-05 Largan Precision Co., Ltd. Image capturing lens assembly
US20130301147A1 (en) 2012-05-14 2013-11-14 Konica Minolta, Inc. Imaging lens system
US8593737B2 (en) 2011-09-02 2013-11-26 Largan Precision Co., Ltd. Photographing optical lens assembly
US20130314803A1 (en) 2012-05-28 2013-11-28 Largan Precision Co., Ltd. Image capturing optical lens system
TW201348732A (en) 2013-04-12 2013-12-01 玉晶光電股份有限公司 Optical imaging lens and electronic device comprising the same
US8599498B2 (en) 2011-04-08 2013-12-03 Largan Precision Co. Optical lens assembly for image taking
US8605367B2 (en) 2011-08-04 2013-12-10 Largan Precision Co. Optical lens assembly for imaging pickup
US20130329307A1 (en) 2012-06-12 2013-12-12 Samsung Electro-Mechanics Co., Ltd. Lens module
US8611023B2 (en) 2011-08-12 2013-12-17 Largan Precision Co., Ltd. Photographing optical lens assembly
US8625208B2 (en) 2010-06-14 2014-01-07 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US20140015991A1 (en) 2011-03-25 2014-01-16 Konica Minolta, Inc. Imaging optical system, imaging device, and digital apparatus
US8649112B2 (en) 2012-01-05 2014-02-11 Largan Precision Co., Ltd. Image lens assembly
US8654458B2 (en) 2010-09-20 2014-02-18 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
US8659838B2 (en) 2009-06-08 2014-02-25 Konica Minolta Opto, Inc. Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device
US20140085736A1 (en) 2010-11-19 2014-03-27 Largan Precision Co., Ltd. Optical imaging system
US20140139935A1 (en) 2012-11-20 2014-05-22 Largan Precision Co., Ltd. Image capturing lens assembly
US8736977B2 (en) 2011-09-01 2014-05-27 Largan Precision Co., Ltd. Image capturing optical lens assembly
US8736983B2 (en) 2011-10-21 2014-05-27 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US20140146402A1 (en) 2011-10-10 2014-05-29 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US8743485B2 (en) 2010-06-28 2014-06-03 Largen Precision Co., Ltd. Wide-viewing-angle imaging lens assembly
US8743478B2 (en) 2011-07-11 2014-06-03 Largan Precision Co. Optical lens for image pickup
US8767298B2 (en) 2010-12-28 2014-07-01 Kantatsu Co., Ltd. Imaging lens
US8780458B2 (en) 2010-01-13 2014-07-15 Konica Minolta Advanced Layers, Inc. Imaging lens, image pickup apparatus, and portable terminal
US8804253B2 (en) 2011-09-06 2014-08-12 Largan Precision Co., Ltd. Image lens system
US8842377B2 (en) 2009-10-30 2014-09-23 Optical Logic Inc. Imaging lens
US8867150B2 (en) 2010-04-13 2014-10-21 Konica Minolta Advanced Layers, Inc. Image pickup lens
US8885270B2 (en) 2010-03-26 2014-11-11 Konica Minolta Advanced Layers, Inc. Imaging lens system, imaging optical device, and digital appliance
US8917458B2 (en) 2011-08-04 2014-12-23 Largan Precision Co., Ltd. Image capturing optical lens assembly
US8917457B2 (en) 2010-03-26 2014-12-23 Konica Minolta Advanced Layers, Inc. Imaging lens, imaging optical device, and digital equipment
US9001438B2 (en) 2010-06-28 2015-04-07 Sony Corporation Imaging lens and imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021565B2 (en) * 2008-06-06 2012-09-12 富士フイルム株式会社 Five-lens imaging lens and imaging device
JP5428240B2 (en) * 2008-08-21 2014-02-26 コニカミノルタ株式会社 Imaging lens
CN101782676B (en) * 2009-01-15 2012-04-11 大立光电股份有限公司 Imaging optical lens group
JP5371148B2 (en) * 2009-06-04 2013-12-18 株式会社オプトロジック Imaging lens
CN102236153B (en) * 2010-05-05 2013-07-10 大立光电股份有限公司 Optical shot for image capture
TWI438476B (en) * 2012-01-12 2014-05-21 Largan Precision Co Ltd Image capturing system

Patent Citations (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211320A (en) 1996-02-02 1997-08-15 Ricoh Co Ltd Small-sized wide-angle lens
US6236522B1 (en) 1997-12-02 2001-05-22 Olympus Optical Co., Ltd. Photographic optical system
US6111703A (en) 1997-12-17 2000-08-29 Olympus Optical Co., Ltd. Image pickup optical system
JP2003161879A (en) 2001-09-13 2003-06-06 Ricoh Co Ltd Imaging optical system and image photographing device using the same
JP2003131136A (en) 2001-10-29 2003-05-08 Inaryo Technica Kk Wide-field imaging unit
JP2003185917A (en) 2001-12-14 2003-07-03 Nidec Copal Corp Wide angle lens
US20030117722A1 (en) 2001-12-25 2003-06-26 Genius Electronic Optical (Xiamen) Co., Ltd. Structure of digital imaging lens
KR100407422B1 (en) 2003-02-13 2003-11-28 Diostech Co Ltd Small-sized photographing optical system achieving high definition
US20040196571A1 (en) 2003-03-31 2004-10-07 Yoshikazu Shinohara Imaging lens
US20100256608A1 (en) 2003-09-17 2010-10-07 Bolmsjoe Magnus Method of Using a Partial-Length, Indwelling Prostatic Catheter Having a Coiled Inflation Tube as an Anchor
JP2005266771A (en) 2004-02-18 2005-09-29 Fujinon Corp Image reading lens and image reader
JP2006293042A (en) 2005-04-12 2006-10-26 Matsushita Electric Ind Co Ltd Imaging optical system and imaging apparatus using same
US20070298572A1 (en) 2005-04-27 2007-12-27 Xiangdong Chen FIELD EFFECT TRANSISTORS (FETs) WITH MULTIPLE AND/OR STAIRCASE SILICIDE
TWI268360B (en) 2005-12-02 2006-12-11 Asia Optical Co Inc Single focus lens
US20070229984A1 (en) 2006-03-28 2007-10-04 Fujinon Corporation Imaging lens
US7502181B2 (en) 2006-03-28 2009-03-10 Fujinon Corporation Imaging lens
KR20070097369A (en) 2006-03-28 2007-10-04 후지논 가부시키가이샤 Imaging lens
US7480105B2 (en) 2006-04-05 2009-01-20 Fujinon Corporation Imaging lens and imaging apparatus
JP2007298572A (en) 2006-04-27 2007-11-15 Kyocera Corp Imaging lens, optical module and personal digital assistant
TWM313781U (en) 2006-12-13 2007-06-11 Newmax Technology Co Ltd Imaging lens set
TWM313246U (en) 2006-12-21 2007-06-01 Newmax Technology Co Ltd Imaging lens set
US20100026434A1 (en) 2007-01-30 2010-02-04 Tadayuki Okamoto Stationary induction apparatus fixing structure and fixing member
KR100835108B1 (en) 2007-03-07 2008-06-03 삼성전기주식회사 Optical system for autofocusing of camera module
US7515351B2 (en) 2007-07-05 2009-04-07 Largan Precision Co., Ltd. Inverse telephoto with correction lenses
US20090061153A1 (en) 2007-08-28 2009-03-05 Sealed Air Corporation (Us) Apparatus and Method for Manufacturing Foam Parts
US7443610B1 (en) 2007-09-06 2008-10-28 Hon Hai Precision Industry Co., Ltd. Lens system
KR20090027330A (en) 2007-09-12 2009-03-17 삼성전기주식회사 Auto focus optical system
US7710665B2 (en) 2007-11-08 2010-05-04 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
TWM332199U (en) 2007-11-28 2008-05-11 Create Electronic Optical Co Five element optical imaging lens
KR20090055115A (en) 2007-11-28 2009-06-02 주식회사 세코닉스 High resolution lens assembly
KR20090100814A (en) 2008-03-21 2009-09-24 주식회사 코렌 Photographic lens optical system
US20090294528A1 (en) 2008-05-30 2009-12-03 Target Brands, Inc. Stored-value card with embossed indicia
US20090294527A1 (en) 2008-06-02 2009-12-03 Sears Brands, L.L.C. System and method for payment card industry enterprise account number elimination
JP2009294528A (en) 2008-06-06 2009-12-17 Fujinon Corp Imaging lens composed of five lenses and imaging apparatus
KR20090131805A (en) 2008-06-19 2009-12-30 엘지이노텍 주식회사 Imaging lens
KR20100000132A (en) 2008-06-24 2010-01-06 엘지이노텍 주식회사 Imaging lens
KR20100001525A (en) 2008-06-27 2010-01-06 엘지이노텍 주식회사 Imaging lens
US20100008562A1 (en) 2008-07-11 2010-01-14 Masanori Takahashi Latent image intensity distribution evaluation method, method of manufacturing the semiconductor device and latent image intensity distribution evaluation program
US20100048996A1 (en) 2008-08-22 2010-02-25 Olympus Medical Systems Corp. Medical Instrument Insertion Guide System
WO2010024198A1 (en) 2008-08-25 2010-03-04 コニカミノルタオプト株式会社 Imaging lens, imaging device and portable terminal
US20110134305A1 (en) 2008-08-25 2011-06-09 Eigo Sano Imaging Lens, Imaging Device and Portable Terminal
US8462257B2 (en) 2008-08-25 2013-06-11 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
KR20110042382A (en) 2008-08-25 2011-04-26 코니카 미놀타 옵토 인코포레이티드 Imaging lens, imaging device and portable terminal
US8502906B2 (en) 2008-08-25 2013-08-06 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
US8502907B2 (en) 2008-08-25 2013-08-06 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
US8035723B2 (en) 2008-08-25 2011-10-11 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
JP2012073642A (en) 2008-08-25 2012-04-12 Konica Minolta Opto Inc Imaging lens, imaging apparatus, and portable terminal
US8269878B2 (en) 2008-08-25 2012-09-18 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
US7965454B2 (en) 2008-08-28 2011-06-21 Konica Minolta Opto, Inc. Imaging lens and small-size image pickup apparatus using the same
US20110227362A1 (en) 2008-10-15 2011-09-22 Johnson's Control Technology Company Channel for slide-on-rod visors
KR20100043667A (en) 2008-10-20 2010-04-29 엘지이노텍 주식회사 Imaging lens
US20110209352A1 (en) 2008-10-31 2011-09-01 Dr. Johannes Heidenhain Gmbh Length measuring device
US7826151B2 (en) 2008-12-01 2010-11-02 Largan Precision Co., Ltd. Optical lens system for taking image
TW201022714A (en) 2008-12-01 2010-06-16 Largan Precision Co Ltd Optical lens system for taking image
KR20100067515A (en) 2008-12-11 2010-06-21 엘지이노텍 주식회사 Imaging lens
US8411376B2 (en) 2008-12-25 2013-04-02 Optical Logic Inc. Imaging lens
US8203796B2 (en) 2009-02-25 2012-06-19 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US8508836B2 (en) * 2009-02-25 2013-08-13 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
JP2011138175A (en) 2009-02-27 2011-07-14 Konica Minolta Opto Inc Image pickup lens, image pickup device and mobile terminal
US20100220229A1 (en) 2009-02-27 2010-09-02 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus, and Mobile Terminal
US8427569B2 (en) 2009-02-27 2013-04-23 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal
US8422145B2 (en) 2009-03-31 2013-04-16 Kantatsu Co., Ltd. Image pickup lens for solid-state image pickup element
US8390941B2 (en) 2009-04-07 2013-03-05 Fujinon Corporation Imaging lens, imaging apparatus and portable terminal device
US20100253829A1 (en) 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US8334922B2 (en) 2009-04-07 2012-12-18 Fujifilm Corporation Imaging lens, imaging apparatus and portable terminal device
US20100254029A1 (en) 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US8000030B2 (en) 2009-04-20 2011-08-16 Largan Precision Co., Ltd. Imaging lens assembly
TW201038966A (en) 2009-04-20 2010-11-01 Largan Precision Co Ltd Photographing lens assembly
JP2010256608A (en) 2009-04-24 2010-11-11 Konica Minolta Opto Inc Imaging lens, imaging optical device and digital apparatus
US20100282000A1 (en) 2009-05-06 2010-11-11 Xsensor Technology Corporation Dielectric textured elastomer in a pressure mapping system
JP2010262218A (en) 2009-05-11 2010-11-18 Fujifilm Corp Imaging lens and imaging device
US8659838B2 (en) 2009-06-08 2014-02-25 Konica Minolta Opto, Inc. Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device
US8189273B2 (en) 2009-06-12 2012-05-29 Largan Precision Co., Ltd. Imaging lens assembly
US8547650B2 (en) 2009-06-12 2013-10-01 Largan Precision Co., Ltd. Imaging lens assembly
US8179613B2 (en) 2009-07-08 2012-05-15 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and portable terminal
US20110188131A1 (en) 2009-07-08 2011-08-04 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus and Portable Terminal
US8736981B2 (en) 2009-07-14 2014-05-27 Largan Precision Co., Ltd. Imaging lens system
US8670191B2 (en) 2009-07-14 2014-03-11 Largan Precision Co., Ltd. Imaging lens system
US8233224B2 (en) 2009-07-14 2012-07-31 Largan Precision Co., Ltd. Imaging lens system
US8514502B2 (en) 2009-07-14 2013-08-20 Largan Precision Co., Ltd. Imaging lens system
US20150022701A1 (en) 2009-07-14 2015-01-22 Largan Precision Co., Ltd. Imaging lens system
US20140146215A1 (en) 2009-07-14 2014-05-29 Largan Precision Co., Ltd. Imaging lens system
US8670190B2 (en) 2009-07-14 2014-03-11 Largan Precision Co., Ltd. Imaging lens system
US20110013069A1 (en) 2009-07-14 2011-01-20 Largan Precision Co., Ltd. Imaging lens system
US8693111B2 (en) 2009-07-14 2014-04-08 Largan Precision Co., Ltd. Imaging lens system
US8520324B2 (en) 2009-07-14 2013-08-27 Largan Precision Co., Ltd. Imaging lens system
JP2011039091A (en) 2009-08-06 2011-02-24 Canon Inc Zoom lens and imaging apparatus including the same
US7864454B1 (en) 2009-08-11 2011-01-04 Largan Precision Co., Ltd. Imaging lens system
US8503111B2 (en) 2009-08-11 2013-08-06 Lg Innotek Co., Ltd. Imaging lens
US20130335622A1 (en) 2009-08-11 2013-12-19 Lg Innotek Co., Ltd. Imaging lens
WO2011021271A1 (en) 2009-08-18 2011-02-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
US8520124B2 (en) 2009-08-18 2013-08-27 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal
US20120140104A1 (en) 2009-08-18 2012-06-07 Yuichi Ozaki Imaging lens, imaging device, and portable terminal
WO2011027690A1 (en) 2009-09-02 2011-03-10 コニカミノルタオプト株式会社 Single-focus optical system, image pickup device, and digital apparatus
US20110273611A1 (en) 2009-09-02 2011-11-10 Konica Minolta Opto, Inc Single-Focus Optical System, Image Pickup Device, and Digital Apparatus
US8654242B2 (en) 2009-09-02 2014-02-18 Konica Minolta Opto, Inc. Single-focus optical system, image pickup device, and digital apparatus
US7969664B2 (en) 2009-09-30 2011-06-28 Largan Precision Co., Ltd. Imaging lens assembly
US20110085733A1 (en) 2009-10-09 2011-04-14 Snell Limited Defining image features and using features to monitor image transformations
JP2011085733A (en) 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
KR20110042697A (en) 2009-10-20 2011-04-27 (주)창원옵텍 Compact imaging lens
US8842377B2 (en) 2009-10-30 2014-09-23 Optical Logic Inc. Imaging lens
US8559118B2 (en) 2009-11-18 2013-10-15 DigitalOptics Corporation Europe Limited Fixed focal length optical lens architecture providing a customized depth of focus optical system
KR20110057625A (en) 2009-11-24 2011-06-01 삼성전기주식회사 Optical system
US20110138175A1 (en) 2009-12-07 2011-06-09 Clark Peter E Managed virtual point to point communication service having verified directory, secure transmission and controlled delivery
US8358474B2 (en) 2009-12-14 2013-01-22 Lg Innotek Co., Ltd. Imaging lens and camera module
US20110181963A1 (en) * 2009-12-14 2011-07-28 Lg Innotek Co., Ltd. Imaging Lens and Camera Module
US20110257447A1 (en) 2009-12-18 2011-10-20 Botella-Franco Carolina Process for producing hydrocarbons from microbial lipids
KR20110071554A (en) 2009-12-21 2011-06-29 엘지이노텍 주식회사 Imaging lens
US8400716B2 (en) 2009-12-21 2013-03-19 Lg Innotek Co., Ltd. Imaging lens
US8437092B2 (en) 2009-12-24 2013-05-07 Sony Corporation Optical unit and image pickup apparatus
US8179618B2 (en) 2009-12-24 2012-05-15 Sony Corporation Optical unit and image pickup apparatus
CN101710207A (en) 2009-12-28 2010-05-19 浙江舜宇光学有限公司 Low-sensitivity high- resolution slim camera
CN201594156U (en) 2009-12-28 2010-09-29 浙江舜宇光学有限公司 Low sensitivity and high definition thin camera lens
US20110164327A1 (en) 2010-01-06 2011-07-07 Tamron Co., Ltd. Imaging lens, camera module, and imaging apparatus
JP2011141396A (en) 2010-01-06 2011-07-21 Tamron Co Ltd Imaging lens, camera module, and imaging apparatus
US8279537B2 (en) 2010-01-06 2012-10-02 Tamron Co., Ltd. Imaging lens, camera module, and imaging apparatus
US8780458B2 (en) 2010-01-13 2014-07-15 Konica Minolta Advanced Layers, Inc. Imaging lens, image pickup apparatus, and portable terminal
US8248713B2 (en) 2010-01-19 2012-08-21 Largan Precision Co., Ltd. Optical photographing lens assembly
JP2011158508A (en) 2010-01-29 2011-08-18 Fujifilm Corp Imaging lens and imaging device
US8174777B2 (en) 2010-02-23 2012-05-08 Largan Precision Co., Ltd. Zoom lens assembly
US20110209554A1 (en) 2010-02-26 2011-09-01 Canon Anelva Corporation Combined type pressure gauge, and manufacturing method of combined type pressure gauge
US8351132B2 (en) 2010-03-18 2013-01-08 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US20130010181A1 (en) 2010-03-24 2013-01-10 Sony Corporation Optical unit and imaging apparatus
US8917457B2 (en) 2010-03-26 2014-12-23 Konica Minolta Advanced Layers, Inc. Imaging lens, imaging optical device, and digital equipment
US8885270B2 (en) 2010-03-26 2014-11-11 Konica Minolta Advanced Layers, Inc. Imaging lens system, imaging optical device, and digital appliance
JP2011209554A (en) 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
US20110249346A1 (en) * 2010-04-08 2011-10-13 Largan Precision Co., Ltd. Imaging lens assembly
US8363337B2 (en) 2010-04-08 2013-01-29 Largan Precision Co., Ltd. Imaging lens assembly
US20110249349A1 (en) 2010-04-12 2011-10-13 Fujifilm Corporation Image pickup lens and image pickup apparatus
JP2011237750A (en) 2010-04-12 2011-11-24 Fujifilm Corp Imaging lens and imaging device
US8867150B2 (en) 2010-04-13 2014-10-21 Konica Minolta Advanced Layers, Inc. Image pickup lens
US7911711B1 (en) 2010-04-23 2011-03-22 Largan Precision Co., Ltd. Photographing optical lens assembly
US20130208174A1 (en) 2010-06-04 2013-08-15 Sony Corporation Imaging lens and imaging device
JP2011257448A (en) 2010-06-04 2011-12-22 Sony Corp Image pickup lens and image pickup apparatus
US8000031B1 (en) 2010-06-10 2011-08-16 Largan Precision Co., Ltd. Imaging optical lens assembly
US8625208B2 (en) 2010-06-14 2014-01-07 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US8264784B2 (en) 2010-06-17 2012-09-11 Samsung Electro-Mechanics Co., Ltd. Optical system
JP2012008164A (en) 2010-06-22 2012-01-12 Olympus Corp Imaging optical system and imaging apparatus with the same
US8411374B2 (en) 2010-06-22 2013-04-02 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
KR20110140040A (en) 2010-06-24 2011-12-30 삼성전기주식회사 Subminiature optical system
US8743485B2 (en) 2010-06-28 2014-06-03 Largen Precision Co., Ltd. Wide-viewing-angle imaging lens assembly
US20130093942A1 (en) 2010-06-28 2013-04-18 Sony Corporation Imaging lens and imaging device
US9001438B2 (en) 2010-06-28 2015-04-07 Sony Corporation Imaging lens and imaging device
US8072695B1 (en) 2010-07-09 2011-12-06 Genius Electronic Optical Co., Ltd. Imaging lens
US20130120858A1 (en) 2010-07-16 2013-05-16 Eigo Sano Image Capture Lens
KR20120018573A (en) 2010-08-23 2012-03-05 삼성전기주식회사 Subminiature optical system
US8310768B2 (en) 2010-09-16 2012-11-13 Largan Precision Co., Ltd. Optical imaging lens system
US8654458B2 (en) 2010-09-20 2014-02-18 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
KR20120033866A (en) 2010-09-30 2012-04-09 삼성전기주식회사 Lens system
US20120081595A1 (en) 2010-10-04 2012-04-05 Olympus Corporation Image taking optical system and image pickup apparatus equipped with same
US20120087020A1 (en) * 2010-10-06 2012-04-12 Largan Precision Co., Ltd. Optical lens system
US8508860B2 (en) 2010-10-06 2013-08-13 Largan Precision Co., Ltd. Optical lens system
US20120087019A1 (en) * 2010-10-06 2012-04-12 Largan Precision Co., Ltd. Optical lens system
US8395851B2 (en) 2010-10-06 2013-03-12 Largan Precision Co., Ltd. Optical lens system
US8395852B2 (en) 2010-10-15 2013-03-12 Largan Precision Co., Ltd. Optical imaging lens assembly
US8462446B2 (en) 2010-10-15 2013-06-11 Largan Precision, Co., Ltd. Optical imaging lens assembly
US20130271642A1 (en) 2010-10-21 2013-10-17 Eigo Sano Image pickup lens, image pickup apparatus and portable terminal
US8284291B2 (en) 2010-11-01 2012-10-09 Largan Precision Co., Ltd. Photographing optical lens assembly
US20120105704A1 (en) * 2010-11-01 2012-05-03 Largan Precision Co., Ltd. Photographing optical lens assembly
US20140085736A1 (en) 2010-11-19 2014-03-27 Largan Precision Co., Ltd. Optical imaging system
US8687293B2 (en) 2010-11-19 2014-04-01 Largan Precision Co., Ltd. Optical imaging system
US8488255B2 (en) 2010-12-09 2013-07-16 Largan Precision Co. Image pickup optical system
US8482863B2 (en) 2010-12-15 2013-07-09 Largan Precision Co. Imagery optical system
US8325429B2 (en) 2010-12-23 2012-12-04 Largan Precision Co., Ltd. Photographing optical lens assembly
US8767298B2 (en) 2010-12-28 2014-07-01 Kantatsu Co., Ltd. Imaging lens
US8179614B1 (en) 2011-01-03 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US8179615B1 (en) * 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US8508859B2 (en) 2011-01-20 2013-08-13 Largan Precision Co. Image pickup optical lens assembly
US8520322B2 (en) 2011-01-28 2013-08-27 Largan Precision Co., Ltd. Lens system
US8508649B2 (en) 2011-02-14 2013-08-13 DigitalOptics Corporation Europe Limited Compact distorted zoom lens for small angle of view
US8369029B2 (en) 2011-02-22 2013-02-05 Largan Precision Co., Ltd. Image capturing lens assembly
US8467137B2 (en) 2011-02-28 2013-06-18 Kantatsu Co., Ltd. Imaging lens unit
US8395853B2 (en) 2011-03-09 2013-03-12 Largan Precision Co. Image pick-up optical system
US20140015991A1 (en) 2011-03-25 2014-01-16 Konica Minolta, Inc. Imaging optical system, imaging device, and digital apparatus
US8531784B2 (en) 2011-03-30 2013-09-10 Kantatsu Co., Ltd. Imaging lens
US8599498B2 (en) 2011-04-08 2013-12-03 Largan Precision Co. Optical lens assembly for image taking
US20120262806A1 (en) 2011-04-13 2012-10-18 Largan Precision Co., Ltd. Optical image lens assembly
US8335043B2 (en) 2011-04-22 2012-12-18 Largan Precision Co. Image taking optical system
US8369027B2 (en) 2011-05-11 2013-02-05 Largan Precision Co., Ltd. Image capturing optical lens system
US8576497B2 (en) 2011-05-11 2013-11-05 Largan Precision Co., Ltd. Image capturing lens assembly
US8305697B1 (en) 2011-05-24 2012-11-06 Largan Precision Co., Ltd. Image capturing lens assembly
US8379324B2 (en) 2011-05-26 2013-02-19 Largan Precision Co. Optical imaging lens assembly
US8345358B2 (en) 2011-06-01 2013-01-01 Largen Precision Co., Ltd. Image-capturing optical lens assembly
TWM416090U (en) 2011-06-02 2011-11-11 Ability Opto Electronics Technology Co Ltd Imaging lens set
US8488258B2 (en) 2011-06-07 2013-07-16 DigitalOptics Corporation Europe Limited Enhanced depth of field based on uniform relative illumination via lens with large distortion
US8339718B1 (en) 2011-06-09 2012-12-25 Largan Precision Co., Ltd. Image capturing optical lens system
US20120314301A1 (en) 2011-06-10 2012-12-13 Largan Precision Co., Ltd. Optical image capturing lens assembly
US8456757B2 (en) 2011-06-22 2013-06-04 Largan Precision Co., Ltd. Image capturing optical lens assembly
US20140036378A1 (en) 2011-06-28 2014-02-06 Largan Precision Co. Optical Imaging Lens Assembly
US8576498B2 (en) 2011-06-28 2013-11-05 Largan Precision Co. Optical imaging lens assembly
JP2013011710A (en) 2011-06-29 2013-01-17 Optical Logic Inc Image pickup lens
US8498061B2 (en) 2011-06-30 2013-07-30 Konica Minolta Advanced Layers, Inc. Image pickup lens
US8451545B2 (en) 2011-07-06 2013-05-28 Largan Precision Co., Ltd. Image capturing optical system
US8743478B2 (en) 2011-07-11 2014-06-03 Largan Precision Co. Optical lens for image pickup
US8531786B2 (en) 2011-07-19 2013-09-10 Largan Precision Co. Optical system for imaging pickup
US8488259B2 (en) 2011-07-19 2013-07-16 Largan Precision Co., Ltd. Optical image capturing lens system
US8379325B2 (en) 2011-07-22 2013-02-19 Largan Precision Co., Ltd. Photographing optical lens assembly
US8390945B2 (en) 2011-07-28 2013-03-05 Hon Hai Precision Industry Co., Ltd. Lens module having nebulized portions
US20130027788A1 (en) 2011-07-28 2013-01-31 Hon Hai Precision Industry Co., Ltd. Lens module
US8917458B2 (en) 2011-08-04 2014-12-23 Largan Precision Co., Ltd. Image capturing optical lens assembly
US8605367B2 (en) 2011-08-04 2013-12-10 Largan Precision Co. Optical lens assembly for imaging pickup
US8390940B2 (en) * 2011-08-05 2013-03-05 Largan Precision Co., Ltd. Photographing optical lens assembly
US8611023B2 (en) 2011-08-12 2013-12-17 Largan Precision Co., Ltd. Photographing optical lens assembly
US20130050847A1 (en) 2011-08-26 2013-02-28 Largan Precision Co., Ltd. Image lens assembly
US8717687B2 (en) 2011-08-26 2014-05-06 Largan Precision Co., Ltd. Image lens assembly
JP2013054099A (en) 2011-09-01 2013-03-21 Optical Logic Inc Imaging lens
US8325430B1 (en) 2011-09-01 2012-12-04 Newmax Technology Co., Ltd. Five-piece imaging lens module
US8736977B2 (en) 2011-09-01 2014-05-27 Largan Precision Co., Ltd. Image capturing optical lens assembly
US9042034B2 (en) 2011-09-02 2015-05-26 Largan Precision Co., Ltd. Photographing optical lens assembly
US8593737B2 (en) 2011-09-02 2013-11-26 Largan Precision Co., Ltd. Photographing optical lens assembly
US8804253B2 (en) 2011-09-06 2014-08-12 Largan Precision Co., Ltd. Image lens system
US20130070346A1 (en) 2011-09-15 2013-03-21 Largan Precision Co., Ltd. Optical image capturing lens assembly
US8514501B2 (en) 2011-09-28 2013-08-20 Largan Precision Co., Ltd. Optical image lens system
US20140146402A1 (en) 2011-10-10 2014-05-29 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20130088788A1 (en) 2011-10-10 2013-04-11 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US8786966B2 (en) 2011-10-10 2014-07-22 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US8773780B2 (en) 2011-10-10 2014-07-08 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US8810929B2 (en) 2011-10-10 2014-08-19 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20140320986A1 (en) 2011-10-10 2014-10-30 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20140368932A1 (en) 2011-10-10 2014-12-18 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20130093938A1 (en) 2011-10-14 2013-04-18 Olympus Corporation Image forming optical system, image pickup apparatus using the same, and information processing apparatus
US20130094098A1 (en) 2011-10-14 2013-04-18 Hon Hai Precision Industry Co., Ltd. Lens system with reduced length, wide view angle, and high resolution
US20140368928A1 (en) 2011-10-21 2014-12-18 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US8773781B2 (en) 2011-10-21 2014-07-08 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US8830596B2 (en) 2011-10-21 2014-09-09 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US8736983B2 (en) 2011-10-21 2014-05-27 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US8537472B2 (en) 2011-10-25 2013-09-17 Largan Precision Co., Ltd. Photographing optical lens system
US20130100542A1 (en) * 2011-10-25 2013-04-25 Largan Precision Co., Ltd. Photographing optical lens system
US8477432B2 (en) 2011-10-26 2013-07-02 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Image lens with low chromatic aberration and high resolution
US8508861B2 (en) 2011-10-27 2013-08-13 Largan Precision Co., Ltd Image lens assembly
US8786962B2 (en) 2011-11-07 2014-07-22 Largan Precision Co., Ltd. Photographing system
US20140293455A1 (en) 2011-11-07 2014-10-02 Largan Precision Co., Ltd. Photographing system
US20130114151A1 (en) 2011-11-07 2013-05-09 Largan Precision Co., Ltd. Photographing system
US20130170048A1 (en) 2011-12-28 2013-07-04 Shu-Tzu Lai Five-piece optical lens system
US8547649B2 (en) 2011-12-28 2013-10-01 Newmax Technology Co., Ltd. Five-piece optical lens system
US8456758B1 (en) * 2011-12-28 2013-06-04 Largan Precision Co., Ltd. Image capturing lens system
US8649112B2 (en) 2012-01-05 2014-02-11 Largan Precision Co., Ltd. Image lens assembly
US20130201568A1 (en) 2012-02-08 2013-08-08 Largan Precision Co., Ltd. Image capturing optical lens system
US20140368929A1 (en) 2012-04-30 2014-12-18 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
US20140104704A1 (en) 2012-04-30 2014-04-17 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
US20130286488A1 (en) 2012-04-30 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
US8780465B2 (en) 2012-04-30 2014-07-15 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
US20130301147A1 (en) 2012-05-14 2013-11-14 Konica Minolta, Inc. Imaging lens system
US20130314803A1 (en) 2012-05-28 2013-11-28 Largan Precision Co., Ltd. Image capturing optical lens system
US20140368930A1 (en) 2012-06-12 2014-12-18 Samsung Electro-Mechanics Co., Ltd. Lens module
US8675288B2 (en) 2012-06-12 2014-03-18 Samsung Electro-Mechanics Co., Ltd. Lens module
US9091836B2 (en) 2012-06-12 2015-07-28 Samsung Electro-Mechanics Co., Ltd. Lens module
US8773768B2 (en) 2012-06-12 2014-07-08 Samsung Electro-Mechanics Co., Ltd. Lens module
US8773770B2 (en) 2012-06-12 2014-07-08 Samsung Electro-Mechanics Co., Ltd. Lens module
US20130329307A1 (en) 2012-06-12 2013-12-12 Samsung Electro-Mechanics Co., Ltd. Lens module
US8773769B2 (en) 2012-06-12 2014-07-08 Samsung Electro-Mechanics Co., Ltd. Lens module
TW201248187A (en) 2012-06-26 2012-12-01 Largan Precision Co Ltd Single focus optical image capturing system
US20130342919A1 (en) 2012-06-26 2013-12-26 Largan Precision Co., Ltd. Single focus optical image capturing system
US20140139935A1 (en) 2012-11-20 2014-05-22 Largan Precision Co., Ltd. Image capturing lens assembly
TW201341840A (en) 2013-02-06 2013-10-16 玉晶光電股份有限公司 Optical imaging lens and electronic device comprising the same
US20140218812A1 (en) 2013-02-06 2014-08-07 Chin-Wei Liou Optical imaging lens set and electronic device comprising the same
TW201326884A (en) 2013-03-05 2013-07-01 Largan Precision Co Ltd Image capturing system
US20140254030A1 (en) 2013-03-05 2014-09-11 Largan Precision Co., Ltd. Image capturing system
TW201333517A (en) 2013-03-20 2013-08-16 Largan Precision Co Ltd Imaging lens assembly
US20140285907A1 (en) 2013-03-20 2014-09-25 Largan Precision Co., Ltd. Imaging lens assembly
TW201348732A (en) 2013-04-12 2013-12-01 玉晶光電股份有限公司 Optical imaging lens and electronic device comprising the same
US20140307149A1 (en) 2013-04-12 2014-10-16 Shih-Han Chen Optical imaging lens set and electronic device comprising the same

Non-Patent Citations (53)

* Cited by examiner, † Cited by third party
Title
Final Office Action dated Aug. 20, 2014 for U.S. Appl. No. 14/137,795 (now U.S. 2014/0104704).
Final Office Action dated Jan. 12, 2015 for U.S. Appl. No. 14/473,956 (now published as US 2014/0368929).
Final Office Action dated Mar. 25, 2014 for U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780).
Final Office Action dated May 12, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769).
Final Office Action dated May 12, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770).
Final Office Action dated May 8, 2014 for U.S. Appl. No. 14/137,795 (now U.S. 2014/0104704).
Final Office Action dated Sep. 3, 2013 for U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780).
Hobbs, P. C. D. Chapter 4: Lenses, Prisms, and Mirrors, in Building Electro-Optical Systems: Making it all Work, Second Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2009, pp. 145-179. *
Non-Final Office Action dated Apr. 2, 2014 for U.S. Appl. No. 14/106,598 (now U.S. Pat. No. 8,786,966).
Non-Final Office Action dated Apr. 3, 2014 for U.S. Appl. No. 14/135,152 (now U.S. Pat. No. 8,773,781).
Non-Final Office Action dated Feb. 26, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596).
Non-Final Office Action dated Feb. 27, 2014 for U.S. Appl. No. 14/137,683 (now U.S. Pat. No. 8,780,465).
Non-Final Office Action dated Feb. 4, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770).
Non-Final Office Action dated Feb. 7, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769).
Non-Final Office Action dated Feb. 8, 2013 for U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780).
Non-Final Office Action dated Jan. 29, 2014 for U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780).
Non-Final Office Action dated Jan. 29, 2014 for U.S. Appl. No. 14/106,578 (now U.S. Pat. No. 8,810,929).
Non-Final Office Action dated Jul. 30, 2014 for U.S. Appl. No. 13/802,247 (now U.S. 2013/0286488).
Non-Final Office Action dated Jun. 3, 2014 for U.S. Appl. No. 14/137,795 (now U.S. 2014/0104704).
Non-Final Office Action dated Jun. 5, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596).
Non-Final Office Action dated Mar. 11, 2014 for U.S. Appl. No. 13/802,247 (now U.S. 2013/0286488).
Non-Final Office Action dated Mar. 18, 2014 for U.S. Appl. No. 14/137,795 (now U.S. 2014/0104704).
Non-Final Office Action dated Mar. 4, 2014 for U.S. Appl. No. 14/105,096 (now U.S. Pat. No. 8,773,768).
Non-Final Office Action dated May 23, 2014 for U.S. Appl. No. 14/169,121 (now U.S. 2014/0146402).
Non-Final Office Action dated May 9, 2014 for U.S. Appl. No. 13/802,247 (now U.S. 2013/0286488).
Non-Final Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/473,956 (now published as US 2014/0368929).
Non-Final Office Action dated Sep. 5, 2013 for U.S. Appl. No. 13/533,769 (now U.S. Pat. No. 8,736,983).
Notice of Allowance dated Jan. 23, 2015 for U.S. Appl. No. 14/473,904 (now published as U.S. 2014/0368928).
Notice of Allowance dated Jul. 21, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596).
Notice of Allowance dated Jun. 10, 2014 for U.S. Appl. No. 14/106,598 (now U.S. Pat. No. 8,786,966).
Notice of Allowance dated Jun. 26, 2014 for U.S. Appl. No. 14/106,578 (now U.S. Pat. No. 8,810,929).
Notice of Allowance dated Mar. 27, 2014 for U.S. Appl. No. 13/533,769 (now U.S. Pat. No. 8,736,983).
Notice of Allowance dated May 12, 2014 for U.S. Appl. No. 14/137,683 (now U.S. Pat. No. 8,780,465).
Notice of Allowance dated May 14, 2014 for U.S. Appl. No. 14/105,096 (now U.S. Pat. No. 8,773,768).
Notice of Allowance dated May 22, 2014 for U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780).
Notice of Allowance dated May 22, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770).
Notice of Allowance dated May 28, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769).
Notice of Allowance dated May 30, 2014 for U.S. Appl. No. 14/135,152 (now U.S. Pat. No. 8,773,781).
Notice of Allowance dated Nov. 6, 2013 for U.S. Appl. No. 13/588,208 (now U.S. Pat. No. 8,675,288).
Office Action dated Aug. 26, 2014 for Korean Patent Appl. No. 10-2014-0097555 and its English translation.
Office Action dated Aug. 27, 2014 for Korean Patent Application No. 10-2013-0065734 and its English summary.
Office Action dated Aug. 29, 2014 for Korean Patent Application No. 10-2014-0097556 and its English summary.
Office Action dated Feb. 26, 2014 and Prior Art Search Report for Korean Patent Appl. No. 10-2014-0003271 and its English translation.
Office Action dated Jan. 21, 2013 for Korean Patent Appl. No. 10-2011-0103101 and its English summary.
Office Action dated Jan. 28, 2013 for Korean Patent Appl. No. 10-2011-0108128 and its English summary.
Office Action dated Jan. 28, 2014 and Prior Art Search Report for corresponding Korean Patent Application No. 10-2013-0150984 and its English translation.
Office Action dated Jul. 1, 2013 for Korean Patent Appl. No. 10-2012-0045609 and its English translation.
Office Action dated Nov. 26, 2014 for Taiwanese Patent Appl. No. 102144927 and its English summary.
Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/473,904 (now published 2014/0368928).
Office Action dated Oct. 24, 2014 for U.S. Appl. No. 14/473,938 (now published as US 2014/0368932).
Office Action dated Sep. 2, 2014 for U.S. Appl. No. 14/324,003 (now published as U.S. 2014/0320986).
Office Action dated Sep. 25, 2013 from corresponding Japanese Patent Application No. 2012-181553 and its English summary.
Pretrial Examination Report dated Jan. 26, 2015 for Japanese Patent Application No. 2012-181553 and its English summary.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964740B1 (en) * 2016-12-14 2018-05-08 AAC Technologies Pte. Ltd. Optical camera lens
US10274707B2 (en) * 2017-06-05 2019-04-30 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US20190377158A1 (en) * 2018-06-08 2019-12-12 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US10989899B2 (en) * 2018-06-08 2021-04-27 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US20210294079A1 (en) * 2018-08-31 2021-09-23 Zhejiang Sunny Optics Co.,Ltd. Image Camera Lens

Also Published As

Publication number Publication date
TW201329501A (en) 2013-07-16
CN104698573A (en) 2015-06-10
CN104698573B (en) 2017-04-12
US8705181B2 (en) 2014-04-22
CN103207447A (en) 2013-07-17
US20130182336A1 (en) 2013-07-18
CN103207447B (en) 2015-07-08
CN202583582U (en) 2012-12-05
TWI438476B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US11789242B2 (en) Optical image capturing system
US10914925B2 (en) Image capturing optical lens system
USRE46747E1 (en) Image capturing system
US10215966B2 (en) Optical image lens system
US8675289B2 (en) Image capturing optical lens system
US8687292B2 (en) Image system lens assembly
US9557530B2 (en) Photographing optical lens assembly, image capturing unit and mobile device
US8780466B2 (en) Optical image capturing system
US8643957B2 (en) Optical image system
US9316811B2 (en) Photographing lens assembly, image capturing device and mobile terminal
US8649115B2 (en) Optical image lens assembly
US8743483B2 (en) Imaging lens assembly
US8649112B2 (en) Image lens assembly
US8605368B2 (en) Image capturing optical system
US8514501B2 (en) Optical image lens system
US9097877B2 (en) Image lens assembly and image capturing device
US20150009579A1 (en) Image capturing optical lens assembly
US20130279021A1 (en) Optical image lens system

Legal Events

Date Code Title Description
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8