USRE46136E1 - Heating apparatus with enhanced thermal uniformity and method for making thereof - Google Patents
Heating apparatus with enhanced thermal uniformity and method for making thereof Download PDFInfo
- Publication number
- USRE46136E1 USRE46136E1 US13/790,423 US201313790423A USRE46136E US RE46136 E1 USRE46136 E1 US RE46136E1 US 201313790423 A US201313790423 A US 201313790423A US RE46136 E USRE46136 E US RE46136E
- Authority
- US
- United States
- Prior art keywords
- substrate
- base support
- temperature
- layer
- tpg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
Definitions
- the invention relates generally to a heating apparatus for providing a relatively uniform temperature distribution to a substrate in a semiconductor-processing chamber or for heating a metal or ceramic mold for press forming glass lenses.
- a heating apparatus typically includes a ceramic support that may have electrodes disposed therein to heat the support, and additionally may have electrodes that electrostatically hold the wafer or substrate against the ceramic support, i.e., electrostatic chuck or ESC (also sometimes called susceptors).
- a semiconductor device fabrication process can take place in the chamber, including deposition, etching, implantation, oxidation, etc.
- PVD physical vapor deposition
- sputter deposition a physical vapor deposition process, known as sputter deposition, in which a target generally comprised of a material to be deposited on the wafer substrate is supported above the substrate, typically fastened to a top of the chamber.
- Plasma is formed from a gas such as argon supplied between the substrate and the target.
- the target is biased causing ions within the plasma to be accelerated toward the target.
- the ions of the plasma interact with the target material, and cause atoms of the material to be sputtered off, travel through the chamber toward the wafer, and redeposit on the surface of a semiconductor wafer that is being processed into integrated circuits (IC's).
- IC's integrated circuits
- PECVD plasma enhanced chemical vapor deposition
- HDP-CVD high density plasma chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- SACVD sub-atmospheric pressure chemical vapor deposition
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam evaporation
- the chemical reaction rate of the materials being deposited, etched, implanted, etc is controlled to some degree by the temperature of the wafer. Undesirable unevenness in deposition, etching, implantation, etc., over a face of the wafer can easily result if the temperature of the wafer across its area varies too much. In most cases, it is highly desirable that deposition, etching, implantation be uniform to a nearly perfect degree since otherwise the IC's being fabricated at various locations on the wafer will have electronic characteristics that deviate from the norm more than is desirable.
- Molded aspheric lenses are commonly used in consumer cameras, camera phones, and CD players due to their low cost and good performance. They are also commonly used for laser diode collimation, and for coupling light into and out of optical fibers.
- a pair of metal or ceramic molds are used in molding a glass mass to make an aspheric lens.
- a plurality of heaters are used to heat up the molds until the glass mass is softened with the temperature of the glass mass can reach up to 600° C.
- US Patent Publication No. 2006/0144516A1 controls the temperature of a substrate by the use of adhesive materials, i.e., a first layer of adhesive material to bond the metal plate and the heater to the top surface of the temperature controlled base, and a second layer of adhesive material bonds the layer of dielectric material to a top surface of the metal plate.
- the adhesive possesses physical properties that allow the thermal pattern to be maintained under varying external process conditions.
- the invention relates to an apparatus for supporting a substrate in a process chamber and regulating the surface temperature of the substrate, comprising a base support having a top surface adapted to support the substrate; a heating element for heating the substrate to a temperature of at least 300° C.; a layer of thermal pyrolytic graphite material disposed in the substrate, the thermal pyrolytic graphite (TPG) layer having a thermal conductivity of at least 1000 W/m° C. in a plane parallel to the substrate being supported, wherein the surface temperature of the substrate is regulated for a maximum temperature variation between a lowest point and a highest temperature point on the surface of the substrate of 10° C.
- TPG thermal pyrolytic graphite
- the invention in another aspect relates to a method for regulating the surface temperature of the substrate, by processing the substrate on an apparatus having a base support having a top surface adapted to support the substrate; a heating element for heating the substrate to a temperature of at least 300° C.; a layer of thermal pyrolytic graphite material disposed in the substrate, the thermal pyrolytic graphite (TPG) layer having a thermal conductivity of at least 1000 W/m° C. in a plane parallel to the substrate being supported, wherein the surface temperature of the substrate is regulated for a maximum temperature variation between a lowest point and a highest temperature point on the surface of the substrate of 10° C.
- TPG thermal pyrolytic graphite
- FIG. 1 is a perspective view showing one embodiment of a heating apparatus.
- FIG. 2 is a cross-sectional view of an embodiment of a metal heater in the prior art.
- FIGS. 3A, 3B, 3C are cross-sectional views of various embodiments of a heater comprising a metal based substrate.
- FIG. 4 is a cross-sectional view of an embodiment of a heater in the prior art, for a heater with a ceramic core.
- FIGS. 5A, 5B, 5C, 5D, and 5E are cross-sectional views of various embodiments of a heater comprising a ceramic core for a substrate.
- FIGS. 5F and 5G are cross-sectional views of various embodiments of a heater comprising a thermal pyrolytic graphite layer as an electrode.
- FIG. 5H is a cross sectional view of an embodiment of a heater wherein the pyrolytic graphite layer is encapsulated in the susceptor.
- FIG. 5I is a cross-sectional view of an embodiment of a heater wherein the pyrolytic graphite is used in a perpendicularly overlapping configuration.
- FIG. 5J is a top view of the embodiment of FIG. 5I .
- FIG. 6 is a cross-sectional view of an embodiment of a heater in the prior art, for a heater with a graphite core.
- FIGS. 7A, 7B, 7C, 7D, and 7E are cross-sectional views of various embodiments of a heater comprising a graphite core.
- FIGS. 8A and 8B are schematic views of a thermal module employing a heater of the prior art ( FIG. 8A with an AlN substrate) and an embodiment of a heater of the invention (TPG layer embedded in an AlN substrate).
- the modules utilize computational fluid dynamics (CFD) calculations to examine the surface temperature of the wafer substrate in a semiconductor processing operation.
- CFD computational fluid dynamics
- FIG. 9 is a graph illustrating the temperature distribution of the topside of a substrate in a prior art heater with AlN substrate.
- FIGS. 10, 11, and 12 are graphs illustrating the temperature distribution of topside of a substrate in various heater embodiments of the invention, with an embedded TPG layer of 1 mm, 3 mm, and 6 mm thick in an AlN substrate.
- approximating language may be applied to modify any quantitative representation that may vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially,” may not to be limited to the precise value specified, in some cases.
- heating apparatus may be used interchangeably with “treating apparatus,” “heater,” “electrostatic chuck,” “chuck,” or “processing apparatus,” referring to an apparatus containing at least one heating and/or cooling element to regulate the temperature of the substrate supported thereon, specifically, by heating or cooling the substrate.
- substrate refers to the semiconductor wafer or the glass mold being supported/heated by the processing apparatus of the invention.
- sheet may be used interchangeably with “layer.”
- circuit may be used interchangeably with “electrode,” and the term “heating element” may be used interchangeably with “heating electrode,” “electrode,” “resistor,” “heating resistor,” or “heater.”
- heating element may be used interchangeably with “heating electrode,” “electrode,” “resistor,” “heating resistor,” or “heater.”
- circuit may be used in either the single or plural form, denoting that at least one unit is present.
- thermal uniformity or relatively uniform temperature means that the difference between the maximum and minimum temperature points on the substrate is less than 10° C. In one embodiment, thermal uniformity means the substrate temperature is relatively uniform with a difference between the highest and lowest temperature points to be less than 7° C. In yet another embodiment, the substrate temperature is kept within a variation range of less than 5° C. In a fourth embodiment, the substrate temperature is kept uniform with a variation of less than 2° C.
- the substrate temperature significantly affects the process.
- Graphite is an anisotropic material with a unique ability to direct heat in a preferred direction.
- Thermal pyrolytic graphite (TPG) is a unique graphite material consisting of crystallites of considerable size, the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers or a high degree of preferred crystallite orientation.
- TPG may be may be used interchangeably with “highly oriented pyrolytic graphite” (“HOPG”), or compression annealed pyrolytic graphite (“CAPG”).
- HOPG highly oriented pyrolytic graphite
- CAG compression annealed pyrolytic graphite
- TPG is extremely thermally conductive with an in-plane (a-b direction) thermal conductivity greater than 1000 W/m-K, while the thermal conductivity in the out-of-plane (z-direction) is in the range of 20 to 30 W/m-K.
- TPG has an in-plane thermal conductivity greater than 1,500 W/m-K.
- At least a layer of TPG is embedded in the heater to provide spatial control of the surface temperature of the substrate and diffuse the temperature difference of the various components in the heating apparatus, allowing the temperature of the target substrate to be relatively uniform even for heating element with an imperfect, e.g., uneven, contact surface.
- a semiconductor wafer substrate or a glass mold is typically heated to a temperature of at least 300° C. and then cooled down to room temperature.
- the heating apparatus with at least an embedded layer of TPG provides effective heat conduction/cooling between a heating/cooling element and a substrate with excellent thermal uniformity.
- the TPG layer has a thickness ranging from about 0.5 mm to 15 mm with thickness variation (parallelism) within 0.005 mm. In another embodiment. the TPG layer has a thickness in the range of 1 mm to 10 mm. In a third embodiment, the TPG layer has a thickness in the range of 2 to 8 mm.
- the TPG layer may be embedded in the heater of the invention as a single layer by itself, or in one embodiment for a heater with a metal substrate (see FIGS. 2 and 3A-3C ), the TPG layer can be in an encapsulated form, e.g., a TPG core encapsulated within a structural metallic shell.
- Encapsulated TPG is commercially available from GE Advanced Ceramics of Strongsville, Ohio as TC1050® encapsulated TPG.
- TPG can be incorporated into the heater as a contiguous single sheet, or in one embodiment as illustrated in FIGS. 5B and 7E , a plurality of smaller TPG pieces in an overlapping/mosaic configuration.
- the TPG is held in place and embedded within the heater simply by the adhesion of the underlying substrate and/or overcoat where they make contact.
- the TPG in a pure TPG sheet form, or as an encapsulated TPG core in a metal casing, as pure thermal pyrolytic graphite in small piece sizes such as rectangular, square pieces; in random sizes; or in “strips” is glued in place using a high-temperature adhesive known in the art, e.g., CERAMBOND from Aremco, a silicone bond having a thermal transfer coefficient.
- Embodiments of the heating apparatus are illustrated as follows, by way of a description of the materials being employed, the assembly of the components, the manufacturing process thereof and also with references to the figures.
- the heating apparatus 33 is as illustrated in FIG. 1 , comprising a disk-shaped metallic or ceramic substrate 12 having electrode 16 buried therein (not shown), whose top surface 13 serves as a supporting surface for a substrate, e.g., a wafer having a typical diameter of 300 mm or a glass mold W.
- the top surface 13 is made of a high degree of flatness (within 0.05 mm surface variation) to further enhance the temperature control of the substrate W.
- Electric terminals 15 for supplying electricity to the heating resistor can be attached at the center of the bottom surface of the substrate 12 , or in one embodiment, at the sides of the substrate 12 .
- the top surface 13 is relatively uniform in temperature, i.e., the difference between a maximum and a minimum temperatures on the top surface is less than 10° C. In a second embodiment, the temperature difference is less than 5° C. In temperature uniformity of the top surface 13 corresponds to a uniform temperature of the substrate W being heated. In one embodiment, the substrate W has a maximum temperature variation of 5° C., and in a second embodiment a maximum temperature variation of 2° C.
- one or more electrodes can be employed.
- the electrode may function as a resistive heating element, a plasma-generating electrode, an electrostatic chuck electrode, or an electron-beam electrode.
- the electrode can be embedded within the substrate of the heater toward the top (near the wafer substrate) or the bottom (away from the wafer substrate). A bottom location may help diffuse the pattern of the electrode and assist in the heat distribution to the wafer substrate.
- the electrode is in the form of a film electrode and formed by processes known in the art including screen-printing, spin coating, plasma spray, spray pyrolysis, reactive spray deposition, sol-gel, combustion torch, electric arc, ion plating, ion implantation, sputtering deposition, laser ablation, evaporation, electroplating, and laser surface alloying.
- the film electrode comprises a metal having a high melting point, e.g., tungsten, molybdenum, rhenium and platinum or alloys thereof.
- the film electrode comprises at least one of carbides or oxides of hafnium, zirconium, cerium, and mixtures thereof.
- the electrode layer is in the form an elongated continuous strip of pyrolytic graphite.
- Pyrolytic graphite (“PG”) is first deposited onto a heater base, e.g., pyrolytic boron nitride coated graphite base, via processes known in the art such as chemical vapor deposition.
- the PG is then is machined into a pre-determined pattern, e.g., a spiral, a serpentine, etc.
- the forming of the electrical pattern of the heating zones i.e., an electrically isolated, resistive heater path, may be done by techniques known in the art, including but not limited to micro machining, micro-brading, laser cutting, chemical etching, or e-beam etching.
- a prior art heater 33 comprises a metal substrate 1000 made of a high temperature material, e.g., copper or aluminum alloy such as A6061. Electrodes 4001 are embedded within the metal substrate 1000 . Electrodes in one embodiment comprise an electric wire surrounded by heat conductive ceramic insulation, commercially available as Calrod® heating element. In one embodiment, the Calrod® heating element has a non-uniform serpentine pattern in order to provide a tailored heat distribution across the top surface of the heater.
- the temperature generated by the embedded heating element 4001 is not uniformly distributed, i.e., T1-T2 can be substantially different of 50° C. or more.
- the temperature on the top side of the heater e.g., T1′ and T2′
- T1′ and T2′ will generally not be uniformly distributed either with a temperature difference that can be 20° C. or more.
- the temperature distribution on the substrate W will not be uniformly distributed, with a temperature difference between two extreme temperature points that can be >10° C.
- Non-uniform wafer temperature e.g., T1′′-T2′′>10° C.
- T1′′-T2′′>10° C. is undesirable from a semiconductor processing point of view, as it can cause yield loss in semiconductor device fabrication.
- At least a TPG heat spreader 600 is embedded in the metal substrate 1000 to spatially distribute and regulate heat removal and/or distribution to the substrate W, for relatively uniform temperature across the substrate W.
- the heat spreader 600 comprises a core of TPG encapsulated within a structural metallic shell.
- FIG. 3A illustrates one embodiment of a metal heater with electrode 4001 in the form of an electric wire surrounded by heat conductive ceramic insulation (not shown) and embedded within the metal substrate 1000 .
- FIG. 3B illustrates another embodiment of a heater with a metal substrate and a film electrode 4001 having a thickness ranging from 5-1000 ⁇ m, electrically insulated and formed on metal base substrate 18 .
- FIG. 3C illustrates yet another embodiment of a heater 33 with a metal substrate.
- the metal substrate 1 comprises copper or aluminum alloy, and houses a plurality of water-cooling passes 2 and electrical heating coils 3 .
- the top face of the metal substrate 1 includes a conductive electrode layer 6 sandwiched between two dielectric layers 5 and 7 comprising diamond-like carbon (DLC).
- DLC diamond-like carbon
- a TPG layer 4 is superimposed between the heaters 3 , the coolers 2 , and the top face.
- the TPG layer due to its anisotropic thermal conductivity, enhances the thermal conductivity and regulates the temperature distribution to a wafer placed on the heater 33 (not shown).
- the outside of the heater assembly is provided with an annular ring 8 of a thermal insulating material such as alumina to additionally enhance thermal uniformity.
- the base substrate 10 comprises an electrically insulating material (e.g., a sintered substrate) selected from the group of oxides, nitrides, carbides, carbonitrides, and oxynitrides of elements selected from a group consisting of B, Al, Si, Ga, Y, refractory hard metals, transition metals; and combinations thereof.
- the base substrate 10 is characterized has having high wear resistance and high heat resistance properties.
- the base substrate 10 comprises AlN of >99.7% purity and a sintering agent selected from Y 2 O 3 , Er 2 O 3 , and combinations thereof.
- the base substrate 10 is coated with an overcoat layer 30 that is electrically insulating.
- an overcoat layer 30 that is electrically insulating.
- electrically conductive material include graphite; refractory metals such as W and Mo, transition metals, rare earth metals and alloys; oxides and carbides of hafnium, zirconium, and cerium, and mixtures thereof.
- the layer 30 comprises at least one of an oxide, nitride, carbide, carbonitride or oxynitride of elements selected from a group consisting of B, Al, Si, Ga, Y, refractory hard metals, transition metals; oxide, oxynitride of aluminum; and combinations thereof, a high thermal stability zirconium phosphate having an NZP structure of NaZr 2 (PO 4 ) 3 ; a glass-ceramic composition containing at least one element selected from the group consisting of elements of the group 2a, group 3a and group 4a; a BaO—Al 2 O 3 —B 2 O 3 —SiO 2 glass; and a mixture of SiO 2 and a plasma-resistant material comprising an oxide of Y, Sc, La, Ce, Gd, Eu, Dy, or the like, or a fluoride of one of these metals, or yttrium-aluminum-garnet (YAG); and combinations thereof.
- YAG ytt
- the layer comprises at least one of: a nitride, carbide, carbonitride, boride, oxide, oxynitride of elements selected from Al, Si, refractory metals including Ta, W, Mo, transition metals including titanium, chromium, iron; and mixtures thereof.
- refractory metals including Ta, W, Mo
- transition metals including titanium, chromium, iron
- examples include TiC, TaC, SiC, MoC, and mixtures thereof.
- a conducting electrode 41 having an optimized circuit design is formed on in the ceramic substrate 10 .
- the electrode 41 comprises a material selected from the group of tungsten, molybdenum, rhenium and platinum or alloys thereof; carbides and nitrides of metals belonging to Groups IVa, Va and VIa of the Periodic Table; carbides or oxides of hafnium, zirconium, and cerium, and combinations thereof.
- the electrode 41 comprises a material having a CTE that closely matches the CTE of the substrate 10 (or its coating layer 30 ). By closely matching CTEs, it means one material having a CTE ranging from 0.75 to 1.25 the CTE of the second material.
- the temperature distribution on the substrate W in a heater of the prior art is typically not uniformly distributed, e.g., T1′′-T2′′>10° C.
- the embedded TPG heat spreader 600 spatially distributes and regulates heat removal and/or distribution to the substrate W, for relatively uniform temperature across the substrate W with a relatively uniform temperature distribution with T1′′-T2′′ of less than 10° C. in one embodiment, and less than 5° C. in another embodiment.
- At least a TPG layer 600 is inserted between 2 layers (or slabs) of green body prior to the final sintering process.
- the TPG layer is inserted into the ceramic material, e.g., AlN, prior to hot pressing.
- the TPG layer (in the form of pure TPG or encapsulated TPG) is embedded in the ceramic substrate via processes known in the art, including but not limited to slip casting. After the TPG layer is embedded, electrode 41 is patterned onto the ceramic substrate 10 , and the base substrate along with the electrode 41 are subsequently overcoated with an electronically insulating layer 30 .
- two layers of TPG are employed in the ceramic substrate. As shown, holes are punched through the TPG layer for adhesion promotion between the ceramic material layers. The holes can also be situated to offset one another for better temperature distribution and regulation.
- the TPG layer is not embedded in the ceramic substrate 10 as in previous embodiments.
- the TPG layer is placed on top of the ceramic substrate 10 (opposite side of the electrode 41 ) prior to the application of the overcoat 30 .
- the TPG layer 600 is securely glued to the ceramic substrate 10 first before overcoat 30 is applied.
- a heater 33 is provided wherein the TPG layer 600 is first coated with ceramic coating layer or a tie layer (not shown) prior to being embedded in the ceramic substrate 10 through sintering.
- the coating for the TPG layer 600 comprises at least one of: a nitride, carbide, carbonitride, boride, oxide, oxynitride of elements selected from Al, Si, refractory metals including Ta, W, Mo, transition metals including titanium, chromium, iron; and mixtures thereof.
- FIG. 5E illustrates an embodiment wherein the heater also functions as an electrostatic chuck.
- layers 70 and 72 comprise the same or different dielectric materials, e.g., alumina or diamond-like-carbon (DLC).
- Layer 71 is a chuck electrode, e.g., a conductive layer such as a metalized film.
- the layers are bonded to one another and to the substrate 10 using a high-temperature adhesive known in the art.
- At least a TPG layer (as a TPG sheet or an encapsulated TPG core) 600 is patterned and embedded in the ceramic core 10 using ceramic fabrication methods known in the art.
- the thermal pyrolytic graphite layer 600 is patterned and embedded into the ceramic core 10 using ceramic fabrication methods known in the art, but in this embodiment, the TPG layer 600 also functions as an continuous electrode as well as thermal spreader. Since TPG is also electrically conductive with resistivity ⁇ 0.5 ⁇ 10 ⁇ 3 ohm-cm, it performs as heating element in such case that the substrate temperature can be regulated. In addition, the high thermal conductivity of TPG helps to distribute the generated heat more evenly and thus helps achieve the desired thermal uniformity.
- the TPG layer is embedded into the ceramic substrate and electrically connected to external source or ground. Besides the function as a high thermal conductive plane, the TPG layer in this configuration can be also used as RF electrode to enhance the plasma inside the wafer process apparatus, or as a RF shield to eliminate the electrical interference between the RF field and the heating elements.
- FIG. 5H illustrates an embodiment wherein a susceptor 20 is placed on top of the heater 33 .
- the TPG layer 600 is encapsulated in the susceptor 20 , which comprises materials known in the art for making susceptors, e.g., metal, ceramic, graphite, polymer materials or combinations thereof.
- the high thermal conductivity direction of TPG is in the plane of the TPG layer 600 .
- the susceptor 20 comprises aluminum.
- the susceptor 20 comprises anodized aluminum, in which the TPG layer 600 is encapsulated.
- FIG. 5I a plurality of smaller TPG pieces or strips are employed in a perpendicularly overlapping configuration, forming “stripes.”
- an array of TPG strips 600 A are embedded in the heater within one plane with the longitudinal direction of the TPG strips being substantially parallel to each other.
- Another array of TPG strips 600 B are embedded in another plane lower than the first plane 600 A, with the longitudinal direction of the strips 600 B being substantially perpendicular to the longitudinal direction of the TPG strips 600 A in the first plane. In both planes, the high thermal conductivity direction of TPG is in the same plane of the TPG strip.
- FIG. 5J is the top view of the overlapping configuration of FIG. 5I .
- Graphite Core Heater References are made to FIG. 6 for an embodiment of a graphite core heater 33 in the prior art with a graphite core substrate 100 .
- graphite is denoted as the core 100
- other electrically conductive materials including but not limited to graphite; refractory metals such as W and Mo, transition metals, rare earth metals and alloys; oxides and carbides of hafnium, zirconium, and cerium, and mixtures thereof.
- the core 100 is coated with an overcoat layer 200 that is electrically insulating, and optionally a tie-layer (not shown) to help enhance the adhesion between the overcoat layer 200 and the base substrate core 100 .
- the layer comprises at least one of an oxide, nitride, carbide, carbonitride or oxynitride of elements selected from a group consisting of B, Al, Si, Ga, Y, refractory hard metals, transition metals; oxide, oxynitride of aluminum; and combinations thereof.
- An example is pyrolytic boron nitride (pBN).
- the layer comprises at least one of: a nitride, carbide, carbonitride, boride, oxide, oxynitride of elements selected from Al, Si, refractory metals including Ta, W, Mo, transition metals including titanium, chromium, iron; and mixtures thereof. Examples include TiC, TaC, SiC, MoC, and mixtures thereof.
- the electrode 401 comprises a film electrode 16 having a thickness ranging from 5-1000 ⁇ m, which is formed on the electrically insulating layer 200 by processes known in the art.
- the film electrode 401 comprises a metal having a high melting point, e.g., tungsten, molybdenum, rhenium and platinum or alloys thereof.
- the film electrode 401 comprises at least one of carbides or oxides of hafnium, zirconium, cerium, and mixtures thereof.
- an electrolytic copper foil having a film thickness of 18 ⁇ m is used as electrode 401 .
- the heater 33 is further coated with an etch resistant protective coating film 300 , comprising at least a nitride, carbide, carbonitride or oxynitride of elements selected from a group consisting of B, Al, Si, Ga, Y, refractory hard metals, transition metals, and combinations thereof, having a CTE ranging from 2.0 ⁇ 10 ⁇ 6 /K to 10 ⁇ 10 ⁇ 6 /K in a temperature range of 25 to 1000° C.
- the layer 300 comprises a high thermal stability zirconium phosphate.
- the layer 300 contains a glass-ceramic composition containing at least one element selected from the group consisting of elements of the group 2a, group 3a and group 4a of the periodic table of element.
- suitable glass-ceramic compositions include lanthanum aluminosilicate (LAS), magnesium aluminosilicate (MAS), calcium aluminosilicate (CAS), and yttrium aluminosilicate (YAS).
- the thickness of the protective coating layer 300 varies depending upon the application and the process used, e.g., CVD, ion plating, ETP, etc, varying from 1 ⁇ m to a few hundred ⁇ m.
- the heater utilizes at least an embedded TPG heat spreader 600 to distribute and/or regulate the temperature across the substrate W for a relatively uniform temperature distribution, with T1′′-T2′′ of less than 10° C. in one embodiment, and less than 5° C. in another embodiment.
- T1′′-T2′′ of less than 10° C. in one embodiment, and less than 5° C. in another embodiment.
- FIGS. 7A-7A Various embodiments of the heater 33 are illustrated in FIGS. 7A-7A .
- FIG. 7A illustrates a heater 33 wherein the TPG heat spreader 600 is embedded in the heater between the base coating 200 and the overcoat layer 300 .
- the TPG layer 600 in one embodiment is held in place simply by the adhesion of the overcoat and the base coat where they make contact.
- the TPG layer 600 incorporates a plurality of through holes at select locations where overcoat and basecoat layers can connect and adhere).
- the TPG 600 is glued in place with high temperature compatible glues, e.g., Ceramabond® glue from Aremco.
- TPG heat spreader 600 is embedded in the heater between the graphite substrate 100 and the base coating layer 200 (on the top side close to the substrate W).
- the TPG 600 can be held in place simply by the adhesion of the basecoat and the substrate where they make contact, or by incorporating a number of through-holes for base coat to connect and further adhere to the substrate 100 , or by the use of a high-temperature adhesive.
- pyrolytic graphite is deposited on the graphite substrate 100 , and subsequently sent through a thermal annealing process, forming the TPG layer 600 directly adhered to the graphite substrate 100 .
- FIG. 7C is a variation of the heater 33 of FIG. 7B , with the change being in the position of the TPG heat spreader 600 , which is embedded in the heater between the graphite substrate 100 and the base coat 200 , and at the bottom of the graphite substrate 100 .
- FIG. 7D at least 2 TPG heat spreaders 600 are used, with the heat spreaders 600 being embedded both on the top & the bottom of the heater, between the graphite substrate 100 and the base coating layer 200 .
- FIG. 7E illustrates an embodiment of a heater 33 wherein a plurality of TPG heat spreaders 600 are used/embedded at the top of the heater 33 .
- a plurality of through-holes are provided in the TPG layers 600 to promote adhesion between the graphite substrate, the base coat 200 , and the overcoat 300 .
- smaller pieces of TPG are used forming a mosaic configuration in overlapping layers with most of the holes and boundaries are offset from one another.
- the electrode is positioned at the bottom (or near the bottom) of the heater 33 for optimum thermal design.
- other embodiments are anticipated (although not illustrated) for a heater with a uniform temperature distribution on the substrate, having electrode patterned at the top of the heater 33 (near the support wafer).
- the TPG layer is positioned between the wafer substrate W and a patterned electrode situated at the top of the heater 33 .
- the TPG layer is still nearly as effective being located below the heater pattern for improved efficiency and heater distribution with the c-direction in the TPG layer being a barrier to heat flow.
- the heater of the invention can be used in a number of different processes, including plasma-etching chamber for processing glass molds, or in semiconductor processing chambers including but not limited to atomic layer epitaxy (ALD), low pressure CVD (LPCVD), and plasma-enhanced CVD (PECVD).
- ALD atomic layer epitaxy
- LPCVD low pressure CVD
- PECVD plasma-enhanced CVD
- FIGS. 8A and 8B are schematic views of the model built to compare the performance of the prior art heater vs. an embodiment of the heater having at least an embedded TPG layer.
- the model is an axi-symmetric 2-D model.
- sintered AlN is used for the ceramic core with an isotropic thermal conductivity of 160 W/m-K.
- the TPG layer is embedded in the sintered AlN ceramic core.
- the TPG layer has an anisotropic thermal conductivity of 1500 W/m-K in the horizontal plane, and 20 W/m-K in the vertical plane. Perfect contact between the TPG and AlN is assumed in the calculations.
- the thickness of the TPG (th) is varied, as well as the distance from the top surface where th TPG is located (d).
- a single wafer is heated with varying power input levels.
- the power is input into an electrode on the bottom of a substrate/electrode system, and the temperature is determined on the topside of the structure as a function of position. From this data, the difference in maximum and minimum temperature is calculated.
- the surfaces (with an assumed emissivity of 0.4) radiate into free space with a background temperature of 0° C.
- Temperature uniformity on the wafer surface is defined as the difference between the maximum temperature and minimum temperature as measured by thermocouples placed across the wafer surface. Uniformity requirement is stringent in the case of Metal Organic Chemical Vapor Deposition (MOCVD) process. Hence, every Celsius degree variation in temperature uniformity affects the deposition process.
- FIGS. 9-12 The results of the computer model are illustrated in FIGS. 9-12 .
- FIG. 9 is a profile of the wafer temperature in the heater of the prior art with 10, 200, and 1000 W power input into the electrode. The temperature distribution on the top side of the wafer structure is modeled.
- FIGS. 10-12 are profiles of various embodiments of a heater of the invention.
- FIG. 10 shows the temperature profile of a heater with a 1 mm thick TPG layer embedded in an AlN core substrate is used.
- the TPG layer is located 2.5 mm from the top, but results show that the temperature distribution is relatively insensitive to the location of the TPG layer.
- a much thicker 3 mm thick TPG layer is embedded in one embodiment of an AlN core heater, wherein 10, 200, or 1000 W power are input into the electrode.
- the results show a marked improvement in temperature uniformity particularly with lower power input.
- the model results show that the temperature distribution is relatively insensitive to the location of the TPG layer.
- FIG. 12 shows remarkably uniform temperature distribution on the top side of the structure with an embedded 6 mm thick TPG layer 2.5 mm from the top of the heater (away from the wafer).
- the Tmax-Tmin varies from 0.03° C. to 7.7° C. depending on the power input level.
- a TPG thickness can be optimized to enable maximum temperature uniformity across the wafer substrate, i.e., ⁇ 5° C. Tmax-Tmin in one embodiment to ⁇ 2° C. Tmax-Tmin for some applications.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Resistance Heating (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/790,423 USRE46136E1 (en) | 2006-09-19 | 2013-03-08 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82615006P | 2006-09-19 | 2006-09-19 | |
US11/549,968 US7901509B2 (en) | 2006-09-19 | 2006-10-16 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
US13/790,423 USRE46136E1 (en) | 2006-09-19 | 2013-03-08 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/549,968 Reissue US7901509B2 (en) | 2006-09-19 | 2006-10-16 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46136E1 true USRE46136E1 (en) | 2016-09-06 |
Family
ID=56878019
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/549,968 Ceased US7901509B2 (en) | 2006-09-19 | 2006-10-16 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
US13/790,423 Active 2029-04-05 USRE46136E1 (en) | 2006-09-19 | 2013-03-08 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/549,968 Ceased US7901509B2 (en) | 2006-09-19 | 2006-10-16 | Heating apparatus with enhanced thermal uniformity and method for making thereof |
Country Status (1)
Country | Link |
---|---|
US (2) | US7901509B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190371688A1 (en) * | 2017-02-23 | 2019-12-05 | Mitsubishi Electric Corporation | Semiconductor apparatus |
US10898949B2 (en) | 2017-05-05 | 2021-01-26 | Glassy Metals Llc | Techniques and apparatus for electromagnetically stirring a melt material |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7238623B2 (en) | 2004-10-06 | 2007-07-03 | Texas Instruments Incorporated | Versatile system for self-aligning deposition equipment |
GB2432830A (en) * | 2005-12-02 | 2007-06-06 | Morganite Elect Carbon | Formation of thermally anisotropic carbon material |
US7901509B2 (en) * | 2006-09-19 | 2011-03-08 | Momentive Performance Materials Inc. | Heating apparatus with enhanced thermal uniformity and method for making thereof |
WO2008123111A1 (en) * | 2007-03-20 | 2008-10-16 | Canon Anelva Corporation | Substrate heat treatment device and substrate heat treatment method |
US8347502B2 (en) * | 2007-12-28 | 2013-01-08 | Ge Intelligent Platforms, Inc. | Heat sink and method of forming a heatsink using a wedge-lock system |
US10192760B2 (en) * | 2010-07-29 | 2019-01-29 | Eugene Technology Co., Ltd. | Substrate supporting unit, substrate processing apparatus, and method of manufacturing substrate supporting unit |
TWI475594B (en) | 2008-05-19 | 2015-03-01 | Entegris Inc | Electrostatic chuck |
US8512806B2 (en) * | 2008-08-12 | 2013-08-20 | Momentive Performance Materials Inc. | Large volume evaporation source |
US20100071614A1 (en) * | 2008-09-22 | 2010-03-25 | Momentive Performance Materials, Inc. | Fluid distribution apparatus and method of forming the same |
US9520314B2 (en) * | 2008-12-19 | 2016-12-13 | Applied Materials, Inc. | High temperature electrostatic chuck bonding adhesive |
US8432440B2 (en) * | 2009-02-27 | 2013-04-30 | General Electric Company | System and method for adjusting engine parameters based on flame visualization |
US8861170B2 (en) | 2009-05-15 | 2014-10-14 | Entegris, Inc. | Electrostatic chuck with photo-patternable soft protrusion contact surface |
US20110061812A1 (en) * | 2009-09-11 | 2011-03-17 | Applied Materials, Inc. | Apparatus and Methods for Cyclical Oxidation and Etching |
US8481896B2 (en) * | 2009-12-08 | 2013-07-09 | Phillip G. Quinton, Jr. | Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity |
CN105196094B (en) * | 2010-05-28 | 2018-01-26 | 恩特格林斯公司 | high surface resistivity electrostatic chuck |
JP5656623B2 (en) * | 2010-12-28 | 2015-01-21 | トヨタ自動車株式会社 | SiC single crystal manufacturing apparatus and manufacturing method |
KR20140029404A (en) * | 2011-03-23 | 2014-03-10 | 캘리포니아 인스티튜트 오브 테크놀로지 | System for performing polymerase chain reaction nucleic acid amplification |
JP2013008949A (en) * | 2011-05-26 | 2013-01-10 | Hitachi Kokusai Electric Inc | Substrate placement board, substrate processing device, and manufacturing method of semiconductor device |
US8893527B1 (en) * | 2011-07-21 | 2014-11-25 | WD Media, LLC | Single surface annealing of glass disks |
JP6133869B2 (en) * | 2011-08-30 | 2017-05-24 | ワトロウ エレクトリック マニュファクチュアリング カンパニー | Thermal array control system and method |
JP6017781B2 (en) * | 2011-12-07 | 2016-11-02 | 新光電気工業株式会社 | Substrate temperature adjustment fixing device and manufacturing method thereof |
JP5973731B2 (en) | 2012-01-13 | 2016-08-23 | 東京エレクトロン株式会社 | Plasma processing apparatus and heater temperature control method |
US9630231B2 (en) | 2012-01-27 | 2017-04-25 | Nuvectra Corporation | Superplastic forming for titanium implant enclosures |
US9981137B2 (en) | 2012-01-27 | 2018-05-29 | Nuvectra Corporation | Heat dispersion for implantable medical devices |
US10396414B2 (en) | 2012-08-31 | 2019-08-27 | Avl Powertrain Engineering, Inc. | High power battery cells having improved cooling |
KR101392379B1 (en) * | 2013-03-27 | 2014-05-12 | 주식회사 유진테크 | Apparatus for processing bubstrate |
CN104576437A (en) * | 2013-10-28 | 2015-04-29 | 沈阳芯源微电子设备有限公司 | Axial fit type over-temperature protection device |
JP5871885B2 (en) * | 2013-11-13 | 2016-03-01 | エスペック株式会社 | Contact test apparatus and environmental test method |
CN104752130A (en) * | 2013-12-30 | 2015-07-01 | 中微半导体设备(上海)有限公司 | Plasma-processing device and electrostatic chuck thereof |
JP6219229B2 (en) * | 2014-05-19 | 2017-10-25 | 東京エレクトロン株式会社 | Heater feeding mechanism |
KR101994006B1 (en) | 2014-06-23 | 2019-06-27 | 니혼도꾸슈도교 가부시키가이샤 | Electrostatic chuck |
US20170051407A1 (en) * | 2015-08-17 | 2017-02-23 | Applied Materials, Inc. | Heating Source For Spatial Atomic Layer Deposition |
US10154542B2 (en) | 2015-10-19 | 2018-12-11 | Watlow Electric Manufacturing Company | Composite device with cylindrical anisotropic thermal conductivity |
US10570257B2 (en) | 2015-11-16 | 2020-02-25 | Applied Materials, Inc. | Copolymerized high temperature bonding component |
US20170325327A1 (en) * | 2016-04-07 | 2017-11-09 | Massachusetts Institute Of Technology | Printed circuit board for high power components |
JP2019526016A (en) | 2016-05-10 | 2019-09-12 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. | Pyrolytic graphite tube equipment for directional thermal management |
CN107162576A (en) * | 2017-05-17 | 2017-09-15 | 安徽青花坊瓷业股份有限公司 | A kind of ceramic in-glaze decoration paster stamp high-temperature agglomerant |
US20220130705A1 (en) * | 2019-02-22 | 2022-04-28 | Lam Research Corporation | Electrostatic chuck with powder coating |
JP2022525595A (en) * | 2019-03-14 | 2022-05-18 | ラム リサーチ コーポレーション | Lamella ceramic structure |
WO2022046830A1 (en) * | 2020-08-25 | 2022-03-03 | Momentive Performance Materials Quartz, Inc. | Graphite based thermal leveler with high thermal conductivity material encapsulated therein |
CN113913928A (en) * | 2021-09-30 | 2022-01-11 | 聚灿光电科技(宿迁)有限公司 | Graphite plate |
CN114232092A (en) * | 2021-12-29 | 2022-03-25 | 安徽光智科技有限公司 | Germanium polycrystal preparation device |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5343022A (en) | 1992-09-29 | 1994-08-30 | Advanced Ceramics Corporation | Pyrolytic boron nitride heating unit |
US5566043A (en) * | 1993-12-27 | 1996-10-15 | Shin-Etsu Chemical Co., Ltd. | Ceramic electrostatic chuck with built-in heater |
US5668524A (en) | 1994-02-09 | 1997-09-16 | Kyocera Corporation | Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase |
US5693581A (en) | 1995-10-03 | 1997-12-02 | Advanced Ceramics Corporation | Method of manufacturing a pyrolytic boron nitride compact |
US5850071A (en) | 1996-02-16 | 1998-12-15 | Kokusai Electric Co., Ltd. | Substrate heating equipment for use in a semiconductor fabricating apparatus |
US6072163A (en) * | 1998-03-05 | 2000-06-06 | Fsi International Inc. | Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate |
US6147334A (en) * | 1998-06-30 | 2000-11-14 | Marchi Associates, Inc. | Laminated paddle heater and brazing process |
US6215661B1 (en) * | 1999-08-11 | 2001-04-10 | Motorola, Inc. | Heat spreader |
US20010020671A1 (en) * | 2000-02-04 | 2001-09-13 | Fank Ansorge | Focal surface and detector for opto-electronic imaging systems, manufacturing method and opto-electronic imaging system |
US6292346B1 (en) | 1998-07-24 | 2001-09-18 | Ngk Insulators, Ltd. | Equipment for holding a semiconductor wafer, a method for manufacturing the same, and a method for using the same |
US6324755B1 (en) * | 1999-06-17 | 2001-12-04 | Raytheon Company | Solid interface module |
US6497734B1 (en) | 2002-01-02 | 2002-12-24 | Novellus Systems, Inc. | Apparatus and method for enhanced degassing of semiconductor wafers for increased throughput |
US20030019858A1 (en) * | 2001-07-27 | 2003-01-30 | Applied Materials, Inc. | Ceramic heater with thermal pipe for improving temperature uniformity, efficiency and robustness and manufacturing method |
US6534751B2 (en) * | 2000-02-28 | 2003-03-18 | Kyocera Corporation | Wafer heating apparatus and ceramic heater, and method for producing the same |
US6563686B2 (en) | 2001-03-19 | 2003-05-13 | Applied Materials, Inc. | Pedestal assembly with enhanced thermal conductivity |
US20040035847A1 (en) | 1998-11-20 | 2004-02-26 | Arnon Gat | Fast heating and cooling apparatus for semiconductor wafers |
US20040074899A1 (en) | 2002-10-21 | 2004-04-22 | General Electric Company | Encapsulated graphite heater and process |
US6765178B2 (en) | 2000-12-29 | 2004-07-20 | Applied Materials, Inc. | Chamber for uniform substrate heating |
WO2004068541A2 (en) | 2003-01-17 | 2004-08-12 | General Electric Company | Wafer handling apparatus |
US20050064230A1 (en) * | 2003-09-19 | 2005-03-24 | General Electric Company | Bulk high thermal conductivity feedstock and method of making thereof |
US6936102B1 (en) * | 1999-08-02 | 2005-08-30 | Tokyo Electron Limited | SiC material, semiconductor processing equipment and method of preparing SiC material therefor |
US20060076109A1 (en) | 2004-10-07 | 2006-04-13 | John Holland | Method and apparatus for controlling temperature of a substrate |
WO2006073947A2 (en) | 2004-12-30 | 2006-07-13 | Lam Research Corporation | Apparatus for spatial and temporal control of temperature on a substrate |
US20060228571A1 (en) * | 2003-01-14 | 2006-10-12 | Tadahiro Ohmi | Member of apparatus for plasma treatment, member of treating apparatus, apparatus for plasma treatment, treating apparatus and method of plasma treatment |
US20070039942A1 (en) * | 2005-08-16 | 2007-02-22 | Applied Materials, Inc. | Active cooling substrate support |
US20070160507A1 (en) * | 2006-01-12 | 2007-07-12 | Asm Japan K.K. | Semiconductor processing apparatus with lift pin structure |
US20080066676A1 (en) * | 2006-09-19 | 2008-03-20 | General Electric Company | Heating apparatus with enhanced thermal uniformity and method for making thereof |
US20090235866A1 (en) * | 2008-03-21 | 2009-09-24 | Ngk Insulators, Ltd. | Ceramic heater |
US20100155016A1 (en) * | 2008-12-23 | 2010-06-24 | General Electric Company | Combined surface cooler and acoustic absorber for turbomachines |
US20110132896A1 (en) * | 2009-12-08 | 2011-06-09 | Therm-X Of California | Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity |
US20110307089A1 (en) * | 2003-03-17 | 2011-12-15 | Tokyo Electron Limited | Method and system for performing a chemical oxide removal process |
US20140209242A1 (en) * | 2013-01-25 | 2014-07-31 | Applied Materials, Inc. | Substrate processing chamber components incorporating anisotropic materials |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5309543A (en) * | 1992-11-23 | 1994-05-03 | Ceramoptec, Inc. | Method of making infrared crystalline fiber and product |
-
2006
- 2006-10-16 US US11/549,968 patent/US7901509B2/en not_active Ceased
-
2013
- 2013-03-08 US US13/790,423 patent/USRE46136E1/en active Active
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5343022A (en) | 1992-09-29 | 1994-08-30 | Advanced Ceramics Corporation | Pyrolytic boron nitride heating unit |
US5566043A (en) * | 1993-12-27 | 1996-10-15 | Shin-Etsu Chemical Co., Ltd. | Ceramic electrostatic chuck with built-in heater |
US5777543A (en) | 1994-01-09 | 1998-07-07 | Kyocera Corporation | Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase |
US5668524A (en) | 1994-02-09 | 1997-09-16 | Kyocera Corporation | Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase |
US5693581A (en) | 1995-10-03 | 1997-12-02 | Advanced Ceramics Corporation | Method of manufacturing a pyrolytic boron nitride compact |
US5850071A (en) | 1996-02-16 | 1998-12-15 | Kokusai Electric Co., Ltd. | Substrate heating equipment for use in a semiconductor fabricating apparatus |
US6072163A (en) * | 1998-03-05 | 2000-06-06 | Fsi International Inc. | Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate |
US6147334A (en) * | 1998-06-30 | 2000-11-14 | Marchi Associates, Inc. | Laminated paddle heater and brazing process |
US6292346B1 (en) | 1998-07-24 | 2001-09-18 | Ngk Insulators, Ltd. | Equipment for holding a semiconductor wafer, a method for manufacturing the same, and a method for using the same |
US20040035847A1 (en) | 1998-11-20 | 2004-02-26 | Arnon Gat | Fast heating and cooling apparatus for semiconductor wafers |
US6324755B1 (en) * | 1999-06-17 | 2001-12-04 | Raytheon Company | Solid interface module |
US6936102B1 (en) * | 1999-08-02 | 2005-08-30 | Tokyo Electron Limited | SiC material, semiconductor processing equipment and method of preparing SiC material therefor |
US6215661B1 (en) * | 1999-08-11 | 2001-04-10 | Motorola, Inc. | Heat spreader |
US20010020671A1 (en) * | 2000-02-04 | 2001-09-13 | Fank Ansorge | Focal surface and detector for opto-electronic imaging systems, manufacturing method and opto-electronic imaging system |
US6534751B2 (en) * | 2000-02-28 | 2003-03-18 | Kyocera Corporation | Wafer heating apparatus and ceramic heater, and method for producing the same |
US6765178B2 (en) | 2000-12-29 | 2004-07-20 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US6563686B2 (en) | 2001-03-19 | 2003-05-13 | Applied Materials, Inc. | Pedestal assembly with enhanced thermal conductivity |
US20030019858A1 (en) * | 2001-07-27 | 2003-01-30 | Applied Materials, Inc. | Ceramic heater with thermal pipe for improving temperature uniformity, efficiency and robustness and manufacturing method |
US6497734B1 (en) | 2002-01-02 | 2002-12-24 | Novellus Systems, Inc. | Apparatus and method for enhanced degassing of semiconductor wafers for increased throughput |
US20040074899A1 (en) | 2002-10-21 | 2004-04-22 | General Electric Company | Encapsulated graphite heater and process |
US20060228571A1 (en) * | 2003-01-14 | 2006-10-12 | Tadahiro Ohmi | Member of apparatus for plasma treatment, member of treating apparatus, apparatus for plasma treatment, treating apparatus and method of plasma treatment |
WO2004068541A2 (en) | 2003-01-17 | 2004-08-12 | General Electric Company | Wafer handling apparatus |
US20040173161A1 (en) * | 2003-01-17 | 2004-09-09 | General Electric Company | Wafer handling apparatus and method of manufacturing thereof |
US20110307089A1 (en) * | 2003-03-17 | 2011-12-15 | Tokyo Electron Limited | Method and system for performing a chemical oxide removal process |
US20050064230A1 (en) * | 2003-09-19 | 2005-03-24 | General Electric Company | Bulk high thermal conductivity feedstock and method of making thereof |
US20060076109A1 (en) | 2004-10-07 | 2006-04-13 | John Holland | Method and apparatus for controlling temperature of a substrate |
WO2006073947A2 (en) | 2004-12-30 | 2006-07-13 | Lam Research Corporation | Apparatus for spatial and temporal control of temperature on a substrate |
US20070039942A1 (en) * | 2005-08-16 | 2007-02-22 | Applied Materials, Inc. | Active cooling substrate support |
US20070160507A1 (en) * | 2006-01-12 | 2007-07-12 | Asm Japan K.K. | Semiconductor processing apparatus with lift pin structure |
US20080066676A1 (en) * | 2006-09-19 | 2008-03-20 | General Electric Company | Heating apparatus with enhanced thermal uniformity and method for making thereof |
US7901509B2 (en) * | 2006-09-19 | 2011-03-08 | Momentive Performance Materials Inc. | Heating apparatus with enhanced thermal uniformity and method for making thereof |
US20090235866A1 (en) * | 2008-03-21 | 2009-09-24 | Ngk Insulators, Ltd. | Ceramic heater |
US20100155016A1 (en) * | 2008-12-23 | 2010-06-24 | General Electric Company | Combined surface cooler and acoustic absorber for turbomachines |
US20110132896A1 (en) * | 2009-12-08 | 2011-06-09 | Therm-X Of California | Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity |
US20140209242A1 (en) * | 2013-01-25 | 2014-07-31 | Applied Materials, Inc. | Substrate processing chamber components incorporating anisotropic materials |
Non-Patent Citations (2)
Title |
---|
English Translation of the Notice of Preliminary Rejection (Office Action), Korean Patent App. No. 2006-0123692, based on U.S. Appl. Nos. 60/826,931 and 11/549,968. |
TC1050 Composite* by Momentive, cited in U.S. Pat. No. 6,072,163 A Nov. 2000. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190371688A1 (en) * | 2017-02-23 | 2019-12-05 | Mitsubishi Electric Corporation | Semiconductor apparatus |
US11232991B2 (en) * | 2017-02-23 | 2022-01-25 | Mitsubishi Electric Corporation | Semiconductor apparatus |
US10898949B2 (en) | 2017-05-05 | 2021-01-26 | Glassy Metals Llc | Techniques and apparatus for electromagnetically stirring a melt material |
Also Published As
Publication number | Publication date |
---|---|
US20080066676A1 (en) | 2008-03-20 |
US7901509B2 (en) | 2011-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46136E1 (en) | Heating apparatus with enhanced thermal uniformity and method for making thereof | |
KR101310521B1 (en) | Heating apparatus with enhanced thermal uniformity and method for making thereof | |
US20080066683A1 (en) | Assembly with Enhanced Thermal Uniformity and Method For Making Thereof | |
TWI688038B (en) | Locally heated multi-zone substrate support | |
JP5524213B2 (en) | Wafer processing apparatus with adjustable electrical resistivity | |
JP5635001B2 (en) | Thermal contact between electrostatic chuck and hot edge ring adjustable by clocking the coupling ring | |
TW202147509A (en) | Electrostatic puck assembly with metal bonded backing plate for high temperature processes | |
KR100709536B1 (en) | Systems for heating wafers | |
WO2007087196A2 (en) | Advanced ceramic heater for substrate processing | |
CN100444349C (en) | Electrostatic chuck including a heater mechanism | |
CN114521288B (en) | Thermal diffuser for semiconductor wafer holder | |
TW202245128A (en) | Electrostatic chuck assembly for cryogenic applications | |
US20180096867A1 (en) | Heating apparatus with controlled thermal contact | |
JP7477498B2 (en) | Removable thermal leveller | |
WO2014116434A1 (en) | Substrate processing chamber components incorporating anisotropic materials | |
CN101154555A (en) | Heating apparatus with enhanced thermal uniformity and method for making thereof | |
WO2022046830A1 (en) | Graphite based thermal leveler with high thermal conductivity material encapsulated therein | |
KR20020081847A (en) | apparatus for emitting heat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:030311/0343 Effective date: 20130424 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:032736/0552 Effective date: 20140411 Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS CO Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:032736/0471 Effective date: 20140411 Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS CO Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:032736/0457 Effective date: 20140411 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:032754/0774 Effective date: 20140411 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, PENNSYLVANIA Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0570 Effective date: 20141024 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, PENNSYLVANIA Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0662 Effective date: 20141024 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0570 Effective date: 20141024 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A Free format text: SECURITY INTEREST;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:034066/0662 Effective date: 20141024 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:034410/0607 Effective date: 20141024 |
|
AS | Assignment |
Owner name: BOKF, NA, AS SUCCESSOR COLLATERAL AGENT, OKLAHOMA Free format text: NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY - SECOND LIEN;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT;REEL/FRAME:035137/0263 Effective date: 20150302 Owner name: BOKF, NA, AS SUCCESSOR COLLATERAL AGENT, OKLAHOMA Free format text: NOTICE OF CHANGE OF COLLATERAL AGENT - ASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. AS COLLATERAL AGENT;REEL/FRAME:035136/0457 Effective date: 20150302 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: BANKRUPTCY ORDER TO RELEASE SECURITY INTEREST AT REEL/FRAME NO. 032736/471;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:043608/0018 Effective date: 20140911 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: BANKRUPTCY ORDER TO RELEASE SECURITY INTEREST AT REEL/FRAME NO. 032736/0457;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:044203/0513 Effective date: 20140911 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BOKF, NA;REEL/FRAME:049194/0085 Effective date: 20190515 Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BOKF, NA;REEL/FRAME:049249/0271 Effective date: 20190515 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:050304/0555 Effective date: 20190515 |
|
AS | Assignment |
Owner name: BNP PARIBAS, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: FIRST LIEN TERM LOAN PATENT AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:049387/0782 Effective date: 20190515 Owner name: KOOKMIN BANK, NEW YORK BRANCH, AS ADMINISTRATIVE A Free format text: SECOND LIEN TERM LOAN PATENT AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:049388/0220 Effective date: 20190515 Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: ABL PATENT AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS INC.;MOMENTIVE PERFORMANCE MATERIALS GMBH;REEL/FRAME:049388/0252 Effective date: 20190515 Owner name: KOOKMIN BANK, NEW YORK BRANCH, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECOND LIEN TERM LOAN PATENT AGREEMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:049388/0220 Effective date: 20190515 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:054336/0023 Effective date: 20201102 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS QUARTZ, INC., OHIO Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:MOMENTIVE PERFORMANCE MATERIALS INC.;REEL/FRAME:055222/0140 Effective date: 20210122 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KOOKMIN BANK NEW YORK;REEL/FRAME:063197/0373 Effective date: 20230329 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BNP PARIBAS;REEL/FRAME:063259/0133 Effective date: 20230329 |