USRE46018E1 - Disperse azo dye mixtures - Google Patents

Disperse azo dye mixtures Download PDF

Info

Publication number
USRE46018E1
USRE46018E1 US14/152,364 US201414152364A USRE46018E US RE46018 E1 USRE46018 E1 US RE46018E1 US 201414152364 A US201414152364 A US 201414152364A US RE46018 E USRE46018 E US RE46018E
Authority
US
United States
Prior art keywords
dye
formula
alkyl
mixture
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US14/152,364
Inventor
Manfred Hoppe
Kiyoshi Himeno
Ryouichi Sekioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dystar Colours Distribution GmbH
Original Assignee
Dystar Colours Distribution GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/271,820 external-priority patent/US6121352A/en
Application filed by Dystar Colours Distribution GmbH filed Critical Dystar Colours Distribution GmbH
Priority to US14/152,364 priority Critical patent/USRE46018E1/en
Application granted granted Critical
Publication of USRE46018E1 publication Critical patent/USRE46018E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0046Mixtures of two or more azo dyes
    • C09B67/0051Mixtures of two or more azo dyes mixture of two or more monoazo dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/921Cellulose ester or ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/922Polyester fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/924Polyamide fiber

Definitions

  • the invention relates to disperse azo dye mixtures, processes for their preparation and to their use for dyeing and printing hydrophobic synthetic materials.
  • the invention accordingly provides a dye mixture comprising at least one dye of the formula (I)
  • Preferred mixtures contain compounds of the formula (I) where the ring A does not bear any further substituents. Particular preference is given to compounds of the formula (I) where R 1 is hydrogen or C 1 -C 4 -alkyl, especially methyl. Very particular preference is given to mixtures of the invention which comprise the dye of the formula (I) where n is 1, R 1 is hydrogen or methyl, and the ring A is not further substituted.
  • Preferred mixtures contain a dye of the formula (II) where X is halogen, especially Cl or Br.
  • Particularly preferred dyes of the formula (II) are those
  • R 2 and R 5 are independently C 1 -C 4 -alkyl, preferably CH 3 .
  • Particularly preferred mixtures according to the invention are those which contain at least one dye of the formula (I) selected from the group:
  • mixtures of the invention which additionally contain a further dye of the formula (III), (IV) and/or (V)
  • Particularly preferred mixtures are those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (III), in particular dyes of the formula (III) selected from the group (IIIa) and (IIIb):
  • particularly preferred mixtures are those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (IV), in particular dyes of the formula (IV) selected from the group (IVa), (IVb) and (IVc)
  • Particularly preferred mixtures further includes those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (V), especially the dye of the formula (Va)
  • the dye mixture of the invention preferably comprises 1 to 99%, preferably 1 to 80%, especially 5 to 60%, by weight of at least one dye of the formula (I) and 1 to 99%, preferably 20 to 99%, especially 40 to 95%, by weight of at least one dye of the formula (II), based on the total amount of dye.
  • the dye mixtures of the invention lead to black to navy shades, especially with the above-specified mixing ratios.
  • the mixtures of the invention are especially notable for excellent sublimation fastness and good affinity. Also, the colour yield is consistently high over a wide pH range. They are especially useful for alkaline polyester dyeing, especially at a pH of 8 to 11.
  • the dye mixture of the invention may include further disperse dyes.
  • the invention further relates to a process for producing the dye mixture of the invention, characterized in that the individual dyes (I) and (II) and optionally further dyes of the dye mixture are ground in water in the presence of a dispersant, then mixed and optionally dried or in that the dyes (I), (II) and optionally further ones are mixed, ground in water in the presence of a dispersant and optionally dried.
  • Novel dye mixtures of the dyes of the formulae (I), (II) and optionally one or more dyes of the general formulae (III) to (V) can be prepared for example by simply mixing the components.
  • the mixing can be accomplished by mixing separately finished individual components in the dyeing liquor or else, preferably, by mixing the press cakes of the individual components and conjointly finishing the mixture.
  • the finish is characterized in that the dyes are ground in the presence of a dispersant to convert them into an aqueous dispersion, i.e. into a liquid or, after drying, into a pulverulent dye preparation, for which the individual dyes can first be separately finished and then mixed or the individual dyes can first be mixed and then conjointly finished.
  • This grinding preferably takes place in mills, for example ball, vibratory, bead or sand mills, or in kneaders.
  • the dye particle size is preferably about 0.1 to 10 ⁇ m, especially about 1 ⁇ m.
  • the grinding preferably takes place in the presence of dispersants, which can be nonionic or anionic.
  • Nonionic dispersants are for example reaction products of alkylene oxides, for example ethylene oxide or propylene oxide, with alkylatable compounds, for example fatty alcohols, fatty amines, fatty acids, phenols, alkylphenols and carboxamides.
  • alkylatable compounds for example fatty alcohols, fatty amines, fatty acids, phenols, alkylphenols and carboxamides.
  • Anionic dispersants are for example ligninsulphonates and salts thereof, alkyl- or alkylarylsulphonates, alkylaryl polyglycol ether sulphates, alkali metal salts of the condensation products of naphthalenesulphonic acids and formaldehyde, polyvinyl sulphonates and ethoxylated novolaks.
  • the invention therefore also provides dye preparations comprising
  • Preferred aqueous dye preparations comprise water
  • Preferred dispersants are the abovementioned nonionic and anionic dispersants.
  • the dye preparations of the invention may comprise further auxiliaries, for example auxiliaries which act as oxidizing agents, e.g. sodium m-nitrobenzenesulphonate, or fungicidal agents, e.g. sodium o-phenylphenoxide and sodium pentachlorophenoxide. It is also possible for wetting agents, antifreeze agents, dustproofing agents or hydrophilicizing agents to be included.
  • auxiliaries which act as oxidizing agents, e.g. sodium m-nitrobenzenesulphonate, or fungicidal agents, e.g. sodium o-phenylphenoxide and sodium pentachlorophenoxide.
  • wetting agents, antifreeze agents, dustproofing agents or hydrophilicizing agents to be included.
  • solid preparations such as powder or granule preparations are preferred.
  • Preferred solid dye preparations comprise
  • auxiliaries for example wetting, oxidizing, preserving and dustproofing agents.
  • a preferred process for producing the solid preparations consists in depriving the above-described liquid dye preparations of their liquid, for example by vacuum drying, freeze drying, by drying on drum dryers, but preferably by spray drying.
  • Dye mixtures of the invention can preferably also be produced by conjoint finishing of the mixing components.
  • the mixing components are dispersed in a suitable mixing ratio as described above by a grinding operation in water and optionally converted into a solid dye preparation by removing the water.
  • the mixing components can be advantageous to subject the mixing components to a heat treatment prior to grinding.
  • the heat treatment takes place at 25 to 98° C., preferably at 30 to 80° C., particularly preferably at 40 to 60° C.
  • the finishing i.e. the conversion into the commercially customary solid or liquid preparations, immediately after the heat treatment, without intermediary isolation.
  • the heat-treated suspension is converted into a dispersion by grinding.
  • the heat treatment in the presence of those dispersants and optionally also auxiliaries which are to be included in the finished solid or liquid preparation.
  • the requisite amounts of the dye preparations produced in accordance with the above directions are diluted with the dyeing medium, preferably water, to such an extent that a liquor ratio of 5:1 to 50:1 is obtained for the dyeing.
  • the liquors generally have added to them further dyeing auxiliaries, such as carriers, dispersants and wetting agents.
  • the dye mixture of the invention is to be used for textile printing, then the requisite amounts of the dye preparation are kneaded, preferably together with thickeners, for example alkali metal alginates or the like, optionally further additives, for example fixation accelerants, wetting agents and hydration agents, to form print pastes.
  • thickeners for example alkali metal alginates or the like
  • further additives for example fixation accelerants, wetting agents and hydration agents
  • the dye mixtures of the invention which incidentally may include further dyes, are very useful for dyeing and printing hydrophobic synthetic materials.
  • suitable hydrophobic synthetic materials are cellulose acetate, cellulose triacetate, polyamides and high molecular weight polyesters.
  • the dye mixtures of the invention are preferably used for dyeing and printing materials composed of high molecular weight polyesters, especially those based on polyethylene glycol terephthalates, or their mixtures with natural fibre materials, especially wool or cellulose, or for dyeing and printing materials composed of cellulose triacetate.
  • the hydrophobic synthetic materials can be present in the form of sheetlike or filamentary structures and may have been processed for example into yarns or woven or knitted textile materials.
  • the dyeing of the fibre material mentioned with the dye mixtures of the invention can be carried out in a conventional manner, preferably from aqueous dispersion, optionally in the presence of carriers, between 80 to about 110° C. by the exhaust method or by the HT method in a dyeing autoclave at 110 to 140° C., and also by the so-called thermofix method, whereby the fabric is padded with the dyeing liquor and then set/fixed at about 180 to 230° C.
  • the printing of the materials mentioned can be carried out in a conventional manner by incorporating the dye mixtures of the invention into a print paste and treating the fabric printed therewith at temperatures between 180 to 230° C. with HT steam or dry heat to fix the dyes, optionally in the presence of a carrier.
  • This produces very strong olive, navy or black dyeings and prints having very good fastnesses, especially having very good light, rub, dry heat setting and pleating, washing, water and sublimation fastness properties.
  • the dye mixtures of the invention exhibit excellent wetting characteristics when used for making up dyeing and padding liquors and also print pastes and are rapidly dispersible without extensive manual or mechanical stirring.
  • the liquors and print pastes are homogeneous and give trouble-free processing in modern dyehouse drugstores without blocking the nozzles.
  • liquid preparations of the invention do not separate and, in particular, do not form a sticky sediment. There is thus no need for any extensive homogenization of the dye in its container before the dye is removed.
  • the millbase produced on grinding the dyes in the presence of dispersants and auxiliaries to produce solid preparations is stable for a prolonged period, even at elevated temperature.
  • the millbase need not be cooled in the mills or after leaving the mills and can be kept for a prolonged period in collection vessels prior to spray drying.
  • the thermal stability of the dye mixture of the invention also shows itself in the fact that spray drying can be carried out at high temperatures without agglomeration of the material to be dried.
  • a higher inlet temperature means better dryer performance and thus reduced manufacturing costs.
  • the above-described dye preparations are very useful for making up print pastes and dyeing liquors. They offer particular advantages for example in relation to continuous processes, where the dye concentration of the dyeing liquors has to be kept constant by continuously feeding dye into the running apparatus.
  • the advantage of the dye mixtures of the invention becomes particularly clear when dyeing from an aqueous dyebath under modern industrial conditions.
  • the modern industrial conditions mentioned are characterized by high pack densities in the case of package and beam dyeings, short liquor ratios, i.e. high dye concentrations, and also high shearing forces in the dyeing liquor due to high pumping rates.
  • the dye mixtures of the invention do not agglomerate even under these conditions, nor filter out on the textile materials to be dyed.
  • homogeneous dyeings are obtained without colour strength differences between the outer and inner layers of the wound packages, and the dyeings do not shed any dye deposits.
  • Pad dyeings and prints with the dye mixture of the invention produce a material of homogeneous, speckle-free appearance.
  • the dye mixtures of the invention are also useful for dyeing the above-cited hydrophobic materials from organic solvents by the methods known for this purpose and for mass coloration.
  • the invention therefore also provides for the use of the dye mixtures of the invention for dyeing and printing hydrophobic synthetic materials, especially fibre materials, and for the mass coloration of hydrophobic synthetic materials.
  • Example 1 The method of Example 1 was followed to produce further dye mixtures and used them for polyester dyeing by using 13.3 g of the dye 1 of Example 1 and 11 g of the dye of the general formula (II) where the substituents are each as defined in Table 1.
  • Example 1 The method of Example 1 was followed to grind
  • Example 9 The method of Example 9 was repeated to combine the following dyes of the formulae I and II as per Table 2. The I:II weight ratio of Example 9 was maintained. Greenish to reddish navy dyeings were obtained.
  • Example 1 were ground together with 300 g of water and 53 g of sodium ligninsulphonate, and dried, similarly to Example 1.
  • Example 1 The method of Example 1 was followed to dye polyester fabric with a dye mixture comprising
  • This mixture was bead milled in the presence of 50 g of sodium ligninsulphonate and 650 g of water and then spray dried.
  • Example 48 was followed to dye the mixtures of Table 5 below. In all cases, good pH dependence, excellent bath exhaustion and good sublimation fastness properties were obtained as results.

Abstract

The present invention relates to dye mixtures comprising at least one compound of the formula (I)
Figure USRE046018-20160531-C00001

and at least one compound of the formula (II)
Figure USRE046018-20160531-C00002

where the substituents are each as defined in the description part, which are highly useful for dyeing and printing hydrophobic synthetic material.

Description

The invention relates to disperse azo dye mixtures, processes for their preparation and to their use for dyeing and printing hydrophobic synthetic materials.
It is an object of the present invention to provide navy to black disperse dye mixtures having good application properties.
The invention accordingly provides a dye mixture comprising at least one dye of the formula (I)
Figure USRE046018-20160531-C00003

where
    • R1 is hydrogen, C1-C4alkyl, halogen, especially Cl and Br, or C1-C4-alkoxy,
    • n is 1 or 2, and the
    • ring A is optionally substituted, possible substituents being one or more identical or different substituents, preferably C1-C4-alkyl, especially CH3, and also halogen, especially Cl and Br,
    • and at least one dye of the formula (II)
Figure USRE046018-20160531-C00004

where
    • X is halogen, especially Cl and Br, or CN,
    • R2 and R5 are independently hydrogen or C1-C4-alkyl, and
    • R3 and R4 are independently hydrogen, optionally substituted C1-C4-alkyl or C2-C4-alkenyl,
    • possible substituents for alkyl being preferably selected from —OH, —CN, —OCOR, —OCOC6H5, —OCOOR, —COOR, —OC6H5, —C6H5 and/or C1-C4-alkoxy, R being hydrogen or C1-C4-alkyl.
Dyes of the formula (I) are known for example from CN-A-1 036 974 (=CA 114: 145 436) and dyes of the formula (II) for example from DE-A-2 818 653.
Preferred mixtures contain compounds of the formula (I) where the ring A does not bear any further substituents. Particular preference is given to compounds of the formula (I) where R1 is hydrogen or C1-C4-alkyl, especially methyl. Very particular preference is given to mixtures of the invention which comprise the dye of the formula (I) where n is 1, R1 is hydrogen or methyl, and the ring A is not further substituted.
Preferred mixtures contain a dye of the formula (II) where X is halogen, especially Cl or Br. Particularly preferred dyes of the formula (II) are those
where
    • R3 and R4 are independently hydrogen, C2-C4-alkenyl, unsubstituted C1-C4-alkyl or ROCO—, NC— or ROOC-substituted C1-C4-alkyl, R being as defined above.
In particular, in the formula (II), R2 and R5 are independently C1-C4-alkyl, preferably CH3.
Particularly preferred mixtures according to the invention are those which contain at least one dye of the formula (I) selected from the group:
Figure USRE046018-20160531-C00005

and at least one dye of the formula (II) selected from the group:
Figure USRE046018-20160531-C00006
Preference is further given to mixtures of the invention which additionally contain a further dye of the formula (III), (IV) and/or (V)
Figure USRE046018-20160531-C00007

where
    • X1 is halogen, especially Cl and Br, or CN,
    • X2 is halogen, especially Cl and Br, hydrogen, NO2 or CN,
    • R6 is C1-C4-alkyl,
    • R7 and R8 are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, H5C6OCO—, (C1-C4-alkyl) OOCO—, ROOC—, H5C6O—, H5C6- and/or C1-C4-alkoxy-substituted C1-C4-alkyl or C2-C4-alkenyl, R being as defined above,
    • Y1 and Y2 are independently hydrogen or halogen, especially Cl and Br,
    • R9 and R10 are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, H5C6OCO— and/or C1-C4-alkoxy-substituted C1-C4-alkyl, R being as defined above, or C2-C4-alkenyl,
    • R11 is C1-C4-alkyl, and
    • R12 is hydrogen, C1-C4-alkyl or C1-C4-alkoxy.
Particularly preferred mixtures are those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (III), in particular dyes of the formula (III) selected from the group (IIIa) and (IIIb):
Figure USRE046018-20160531-C00008
Likewise particularly preferred mixtures are those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (IV), in particular dyes of the formula (IV) selected from the group (IVa), (IVb) and (IVc)
Figure USRE046018-20160531-C00009
Particularly preferred mixtures further includes those which, as well as the dyes of the formulae (I) and (II), contain a dye of the formula (V), especially the dye of the formula (Va)
Figure USRE046018-20160531-C00010
The dye mixture of the invention preferably comprises 1 to 99%, preferably 1 to 80%, especially 5 to 60%, by weight of at least one dye of the formula (I) and 1 to 99%, preferably 20 to 99%, especially 40 to 95%, by weight of at least one dye of the formula (II), based on the total amount of dye.
Preference is given to using the dye of the formula (III) in an amount of 0 to 80%, especially 2 to 60%, by weight, based on the total amount of dye.
Preference is given to using the dye of the formula (IV) in an amount of 0 to 40%, especially 5 to 30% by weight, based on the total amount of dye.
Preference is given to using the dye of the formula (V) in an amount of 0 to 40%, especially 5 to 30% by weight, based on the total amount of dye.
The dye mixtures of the invention lead to black to navy shades, especially with the above-specified mixing ratios.
The mixtures of the invention are especially notable for excellent sublimation fastness and good affinity. Also, the colour yield is consistently high over a wide pH range. They are especially useful for alkaline polyester dyeing, especially at a pH of 8 to 11.
The dye mixture of the invention may include further disperse dyes.
The invention further relates to a process for producing the dye mixture of the invention, characterized in that the individual dyes (I) and (II) and optionally further dyes of the dye mixture are ground in water in the presence of a dispersant, then mixed and optionally dried or in that the dyes (I), (II) and optionally further ones are mixed, ground in water in the presence of a dispersant and optionally dried.
Novel dye mixtures of the dyes of the formulae (I), (II) and optionally one or more dyes of the general formulae (III) to (V) can be prepared for example by simply mixing the components. The mixing can be accomplished by mixing separately finished individual components in the dyeing liquor or else, preferably, by mixing the press cakes of the individual components and conjointly finishing the mixture.
The finish is characterized in that the dyes are ground in the presence of a dispersant to convert them into an aqueous dispersion, i.e. into a liquid or, after drying, into a pulverulent dye preparation, for which the individual dyes can first be separately finished and then mixed or the individual dyes can first be mixed and then conjointly finished. This grinding preferably takes place in mills, for example ball, vibratory, bead or sand mills, or in kneaders. After grinding, the dye particle size is preferably about 0.1 to 10 μm, especially about 1 μm. The grinding preferably takes place in the presence of dispersants, which can be nonionic or anionic. Nonionic dispersants are for example reaction products of alkylene oxides, for example ethylene oxide or propylene oxide, with alkylatable compounds, for example fatty alcohols, fatty amines, fatty acids, phenols, alkylphenols and carboxamides. Anionic dispersants are for example ligninsulphonates and salts thereof, alkyl- or alkylarylsulphonates, alkylaryl polyglycol ether sulphates, alkali metal salts of the condensation products of naphthalenesulphonic acids and formaldehyde, polyvinyl sulphonates and ethoxylated novolaks.
The invention therefore also provides dye preparations comprising
    • 10 to 60% by weight of the dye mixture of the invention, and
    • 40 to 90% by weight of the dispersant.
The dye preparations can be present in liquid or solid form, in which case the liquid preparations are preferably aqueous dye dispersions and the solid preparations are present as powder or granules.
Preferred aqueous dye preparations comprise water,
    • 15 to 50% by weight of the dye mixture of the invention, and
    • 10 to 25% by weight of dispersant, each based on the dye preparation.
Preferred dispersants are the abovementioned nonionic and anionic dispersants.
The dye preparations of the invention may comprise further auxiliaries, for example auxiliaries which act as oxidizing agents, e.g. sodium m-nitrobenzenesulphonate, or fungicidal agents, e.g. sodium o-phenylphenoxide and sodium pentachlorophenoxide. It is also possible for wetting agents, antifreeze agents, dustproofing agents or hydrophilicizing agents to be included.
For certain applications, solid preparations such as powder or granule preparations are preferred. Preferred solid dye preparations comprise
    • 30 to 50% by weight of the dye mixture of the invention, and
    • 70 to 50% by weight of the dispersant.
They may optionally further comprise auxiliaries, for example wetting, oxidizing, preserving and dustproofing agents.
A preferred process for producing the solid preparations consists in depriving the above-described liquid dye preparations of their liquid, for example by vacuum drying, freeze drying, by drying on drum dryers, but preferably by spray drying.
Dye mixtures of the invention, however, can preferably also be produced by conjoint finishing of the mixing components.
To this end, the mixing components are dispersed in a suitable mixing ratio as described above by a grinding operation in water and optionally converted into a solid dye preparation by removing the water.
To improve the properties of the dye preparations, it can be advantageous to subject the mixing components to a heat treatment prior to grinding. The heat treatment takes place at 25 to 98° C., preferably at 30 to 80° C., particularly preferably at 40 to 60° C. It is advantageous to carry out the finishing, i.e. the conversion into the commercially customary solid or liquid preparations, immediately after the heat treatment, without intermediary isolation. For this purpose, the heat-treated suspension is converted into a dispersion by grinding. It is advantageous in this connection to carry out the heat treatment in the presence of those dispersants and optionally also auxiliaries which are to be included in the finished solid or liquid preparation. These are identical with the abovementioned surface-active substances. If the total amount of these dispersants and auxiliaries was not added during the heat treatment, the remainder will be added prior to grinding. In this case, generally 10 to 400% by weight, preferably 20 to 200% by weight, of surface-active substances, based on the dye mixtures, are added for the heat treatment.
To produce dyeing liquors, the requisite amounts of the dye preparations produced in accordance with the above directions are diluted with the dyeing medium, preferably water, to such an extent that a liquor ratio of 5:1 to 50:1 is obtained for the dyeing. In addition, the liquors generally have added to them further dyeing auxiliaries, such as carriers, dispersants and wetting agents.
If the dye mixture of the invention is to be used for textile printing, then the requisite amounts of the dye preparation are kneaded, preferably together with thickeners, for example alkali metal alginates or the like, optionally further additives, for example fixation accelerants, wetting agents and hydration agents, to form print pastes.
The dye mixtures of the invention, which incidentally may include further dyes, are very useful for dyeing and printing hydrophobic synthetic materials. Examples of suitable hydrophobic synthetic materials are cellulose acetate, cellulose triacetate, polyamides and high molecular weight polyesters. The dye mixtures of the invention are preferably used for dyeing and printing materials composed of high molecular weight polyesters, especially those based on polyethylene glycol terephthalates, or their mixtures with natural fibre materials, especially wool or cellulose, or for dyeing and printing materials composed of cellulose triacetate.
The hydrophobic synthetic materials can be present in the form of sheetlike or filamentary structures and may have been processed for example into yarns or woven or knitted textile materials. The dyeing of the fibre material mentioned with the dye mixtures of the invention can be carried out in a conventional manner, preferably from aqueous dispersion, optionally in the presence of carriers, between 80 to about 110° C. by the exhaust method or by the HT method in a dyeing autoclave at 110 to 140° C., and also by the so-called thermofix method, whereby the fabric is padded with the dyeing liquor and then set/fixed at about 180 to 230° C. The printing of the materials mentioned can be carried out in a conventional manner by incorporating the dye mixtures of the invention into a print paste and treating the fabric printed therewith at temperatures between 180 to 230° C. with HT steam or dry heat to fix the dyes, optionally in the presence of a carrier. This produces very strong olive, navy or black dyeings and prints having very good fastnesses, especially having very good light, rub, dry heat setting and pleating, washing, water and sublimation fastness properties.
The dye mixtures of the invention exhibit excellent wetting characteristics when used for making up dyeing and padding liquors and also print pastes and are rapidly dispersible without extensive manual or mechanical stirring. The liquors and print pastes are homogeneous and give trouble-free processing in modern dyehouse drugstores without blocking the nozzles.
The liquid preparations of the invention do not separate and, in particular, do not form a sticky sediment. There is thus no need for any extensive homogenization of the dye in its container before the dye is removed.
The millbase produced on grinding the dyes in the presence of dispersants and auxiliaries to produce solid preparations is stable for a prolonged period, even at elevated temperature. The millbase need not be cooled in the mills or after leaving the mills and can be kept for a prolonged period in collection vessels prior to spray drying.
The thermal stability of the dye mixture of the invention also shows itself in the fact that spray drying can be carried out at high temperatures without agglomeration of the material to be dried. For the same dryer outlet temperature, a higher inlet temperature means better dryer performance and thus reduced manufacturing costs.
The above-described dye preparations are very useful for making up print pastes and dyeing liquors. They offer particular advantages for example in relation to continuous processes, where the dye concentration of the dyeing liquors has to be kept constant by continuously feeding dye into the running apparatus.
The advantage of the dye mixtures of the invention becomes particularly clear when dyeing from an aqueous dyebath under modern industrial conditions.
The modern industrial conditions mentioned are characterized by high pack densities in the case of package and beam dyeings, short liquor ratios, i.e. high dye concentrations, and also high shearing forces in the dyeing liquor due to high pumping rates. The dye mixtures of the invention do not agglomerate even under these conditions, nor filter out on the textile materials to be dyed. Thus, homogeneous dyeings are obtained without colour strength differences between the outer and inner layers of the wound packages, and the dyeings do not shed any dye deposits. Pad dyeings and prints with the dye mixture of the invention produce a material of homogeneous, speckle-free appearance.
The dye mixtures of the invention are also useful for dyeing the above-cited hydrophobic materials from organic solvents by the methods known for this purpose and for mass coloration.
The invention therefore also provides for the use of the dye mixtures of the invention for dyeing and printing hydrophobic synthetic materials, especially fibre materials, and for the mass coloration of hydrophobic synthetic materials.
The examples hereinbelow illustrate the invention.
EXAMPLES Example 1
    • a) 13.3 g of the dye of the formula (1)
Figure USRE046018-20160531-C00011
    • and
    •  11 g of the dye of the formula (2)
Figure USRE046018-20160531-C00012
    • and also
    •  13.7 g of the dye of the formula (3)
Figure USRE046018-20160531-C00013
    • and
    •  6.0 g of the dye of the formula (4)
Figure USRE046018-20160531-C00014
    •  were ground together with 300 ml of water and 56 g of a ligninsulphonate (sodium salt) in a bead or sand mill for 3 hours and then spray dried (inlet temperature 130° C., outlet temperature 60° C.). The resulting powder (about 100 g) is readily dispersible in water.
    • b) 0.4 g of the above-prepared powder were treated together with 10 g of polyester textile material at pH 4.5 and 130° C. by a normal HT dyeing process for about 60 min. Washing, rinsing and drying left a jet black dyeing having very good fastness properties.
The method of Example 1 was followed to produce further dye mixtures and used them for polyester dyeing by using 13.3 g of the dye 1 of Example 1 and 11 g of the dye of the general formula (II) where the substituents are each as defined in Table 1.
TABLE 1
dye of formula (II) used
Ex. X R2 R5 R3 R4
2 Cl C2H5 C2H5 CH2CH2CN CH2CH2COOCH3
3 Br CH3 CH3 CH2CH2—OCH3 CH2CH2—OCH3
4 Br CH3 C2H5 CH2CH2—OCOC6H5 CH2CH2—OCOC6H5
5 Br CH3 CH3 CH2CH2—OCOCH3 CH2CH2—OCOCH3
6 Br CH3 CH3 CH2CH2CN CH2—C6H5
7 Cl CH3 C2H5 CH2CH2CN H
8 Br CH3 CH3 CH2CH2COOCH3 CH2CH2COOCH3
Example 9
The method of Example 1 was followed to grind
    • 5 g of the dye of the formula (6)
Figure USRE046018-20160531-C00015
    • and
    •  39 g of the dye of the formula (5)
Figure USRE046018-20160531-C00016
    •  and dry the millbase. The ligninsulphonate (sodium salt) was used in the same ratio to the total amount of dye as in Example 1. The dye mixture obtained (0.1 g) was then used for dyeing 10 g of polyester fibres to obtain bright navy dyeings having good wash and sublimation fastness properties.
The method of Example 9 was repeated to combine the following dyes of the formulae I and II as per Table 2. The I:II weight ratio of Example 9 was maintained. Greenish to reddish navy dyeings were obtained.
TABLE 2
Dye of
formula
Ex. (I)* Dye of formula (II)
No. R1 X R2 R5 R3 R4
10 H Cl CH3 CH3 CH2—CH2OCOCH3 CH2CH2OCOCH3
11 CH3 Cl C2H5 CH3 CH2CH2OCOCH3 CH2CH2OCOCH3
12 Cl Br C2H5 CH3 CH2CH2OCOCH3 CH2CH2OCOCH3
13 H Cl CH3 CH3 C2H5 C2H5
14 H Br CH3 CH3 C2H5 C2H5
15 H Cl CH3 CH3 CH2—CH═CH2 CH2—CH═CH2
16 H Br CH3 CH3 CH2—CH═CH2 CH2—CH═CH2
17 CH3 Br CH3 CH3 CH2—CH═CH2 H
18 CH3 Cl CH3 CH3 CH2—CH═CH2 H
19 H Br C2H5 CH3 C2H5 C2H5
20 H Cl C2H5 CH3 C2H5 C2H5
21 CH3 Cl CH3 CH3 CH2CH2OCOC2H5 CH2CH2OCOC2H5
22 H Br CH3 CH3 CH2CH2OCOC2H5 CH2CH2OCOC2H5
*The ring A does not bear any further substituents; n = 1
Example 23
24 g of the dye of the formula (6) from Example 9 and 7 g of the dye of the formula (3) from Example 1 and also 22 g of the dye of the formula (5)
Figure USRE046018-20160531-C00017

were ground together with 300 g of water and 53 g of sodium ligninsulphonate, and dried, similarly to Example 1.
When 0.35 g of this dye mixture is used for dyeing polyester fabric similarly to Example 1b, reddishly bloomy black dyeings are obtained.
When dye (5) of Example 23 was replaced by the same amount of a dye of the formula (II) as per Table 3 below, further reddish black dyeings having good fastness properties were obtained on polyester.
TABLE 3
Substituent meanings for the dye of the formula (II)
Ex. No. X R2 R5 R3 R4
24 Cl CH3 CH3 C2H4OCOCH3 C2H4OCOCH3
25 Br C2H5 CH3 C2H4OCOCH3 C2H4OCOCH3
26 Cl C2H5 CH3 C2H4OCOCH3 C2H4OCOCH3
27 Br CH3 C2H5 C2H4OCOCH3 C2H4OCOCH3
28 Cl CH3 C2H5 C2H4OCOCH3 C2H4OCOCH3
29 Br CH3 CH3 C2H4OCOC2H5 C2H4OCOC2H5
30 Cl CH3 CH3 C2H4OCOC2H5 C2H4OCOC2H5
31 Cl CH3 CH3 C2H4COOCH3 C2H4COOCH3
32 Br CH3 CH3 C2H4CN C2H4CN
33 Br CH3 CH3 C2H4OCH3 C2H4OCH3
34 Cl CH3 CH3 C2H4CN CH2C6H5
Example 35
17.6 g of the dye of the formula (6) from Example 9, 9.4 g of the dye of the formula (2) from Example 1 and 11.0 g of dye (3) from Example 1 were ground together with 62 g of sodium ligninsulphonate and 300 g of water, and dried, similarly to Example 1.
0.6 g of the resulting powder was dyed together with 10 g of polyester fabric at pH 8.5 to 9 by means of a glycine/NaOH buffer at 130° C. for 60 min. A deep black textile material is obtained.
On replacing the dye of the formula (2) in Example 35 with the same amount of a dye of formula (II) of Table 4 below and using these mixtures to dye polyester similarly to Example 35, deep black dyeings were again obtained.
TABLE 4
Dye components of the formula (II) used
Ex. No. X R2 R5 R3 R4
36 Cl CH3 CH3 C2H5 C2H5
37 Br C2H5 CH3 C2H5 C2H5
38 Cl C2H5 CH3 C2H5 C2H5
39 Cl CH3 CH3 CH2—CH═CH2 CH2—CH═CH2
40 Br CH3 CH3 CH2—CH═CH2 CH2—CH═CH2
41 Cl CH3 CH3 CH2—CH═CH2 H
42 Br CH3 CH3 CH2—CH═CH2 H
43 Cl C2H5 CH3 CH2—CH═CH2 CH2—CH═CH2
44 Br C2H5 CH3 CH2—CH═CH2 CH2—CH═CH2
45 Cl CH3 C2H5 CH2—CH═CH2 CH2—CH═CH2
46 Br CH3 C2H5 CH2—CH═CH2 CH2—CH═CH2
47 Cl CH3 C2H5 C2H5 C2H5
48 Br CH3 C2H5 C2H5 C2H5
Example 49
The method of Example 1 was followed to dye polyester fabric with a dye mixture comprising
    • 16.7 g of the dye of the formula (6) from Example 9,
    • 6.1 g of the dye of the formula (7)
Figure USRE046018-20160531-C00018
    • 11.9 g of the dye of the formula (8)
Figure USRE046018-20160531-C00019
    • and
    •  15.3 g of the dye of the formula (9)
Figure USRE046018-20160531-C00020
This mixture was bead milled in the presence of 50 g of sodium ligninsulphonate and 650 g of water and then spray dried.
0.1 g of this mixture was used for dyeing 5 g of polyester fabric. Black dyeings were obtained.
Examples 49 to 53
The method of Example 48 was followed to dye the mixtures of Table 5 below. In all cases, good pH dependence, excellent bath exhaustion and good sublimation fastness properties were obtained as results.
TABLE 5
Dye I*
Ex. R Dye (7) Dye II Dye III
No. n 1 from Ex. 49 X R2 R3═R4 R5 X1 X2 R7═R8 R6
49 1 H from Ex. 49 Cl CH3 CH2CH═CH2 CH3 Cl NO2 C2H5 CH3
50 1 H from Ex. 49 Cl C2H5 C2H5 C2H5 Cl NO2 C2H5 CH3
51 1 H from Ex. 49 Br CH3 C2H5 CH3 Br NO2 C2H5 CH3
52 1 H from Ex. 49 Cl CH3 C2H5 CH3 Br NO2 C2H5 CH3
53 1 H from Ex. 49 Br CH3 CH2CH═CH2 CH3 Br NO2 C2H5 CH3
*Ring A not further substituted

Claims (14)

What is claimed is:
1. A mixture comprising 5 to 60% by weight of at least one compound of the formula (I)
Figure USRE046018-20160531-C00021
where R1 is hydrogen, C1-C4-alkyl, halogen, or C1-C4-alkoxy,
n is 1 or 2, and the
ring A is optionally substituted unsubstituted,
and 20 to 95% by weight of at least one compound of the formula (II)
Figure USRE046018-20160531-C00022
where X is halogen, or CN,
R2 and R5 are independently hydrogen or C1-C4-alkyl, and
R3 and R4 are independently hydrogen, optionally substituted C1-C4-alkyl or C2-C4-alkenyl or unsubstituted C1-C4-alkyl,
based on total amount of dye in the mixture.
2. The mixture of claim 1, comprising at least one compound of the formula (I) where the ring A does not bear any further substituents.
3. The mixture of claim 1, comprising at least one compound of the formula (I) where R1 is hydrogen or C1-C4-alkyl.
4. The mixture of claim 1, comprising at least one compound of the formula (I), where n is 1, R1 is hydrogen or methyl and the ring A is not further substituted.
5. The mixture of claim 1, comprising compounds of the formula (II) where X is halogen.
6. The mixture of claim 1, comprising compounds of the formula (II) where
R3 and R4 are independently hydrogen, C2-C4-alkenyl, unsubstituted C1-C4-alkyl or ROCO—, NC— and/or ROOC-substituted C1-C4-alkyl, R being hydrogen or C1-C4-alkyl.
7. The mixture of claim 1, further comprising a compound of the formula (III), (IV) and/or (V)
Figure USRE046018-20160531-C00023
where
X1 is halogen or CN,
X2 is halogen, hydrogen, NO2 or CN,
R6 is C1-C4-alkyl,
R7 and R8 are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, H5C6OCO—, (C1-C4-alkyl) OOCO—, ROOC—, H5C6O—, H5C6— and/or C1-C4-alkoxy-substituted C1-C4-alkyl and/or C2-C4-alkenyl, R being hydrogen or C1-C4-alkyl,
Y1 and Y2 are independently hydrogen or halogen,
R9 and R10 are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, H5C6OCO— and/or C1-C4-alkoxy-substituted C1-C4-alkyl, R being as defined above, or C2-C4-alkenyl,
R11 is C1-C4-alkyl, and
R12 is hydrogen, C1-C4-alkyl or C1-C4-alkoxy.
8. The mixtures of claim 1, comprising 1 to 99% by weight, especially 1 to 80% by weight, of at least one compound of the formula (I) and 1 to 99% by weight, especially 20 to 99% by weight, of at least one compound of the formula (II), based on total amount of dye.
9. A dye preparation comprising
10 to 60% by weight of dye mixture according to claim 1, and
40 to 90% by weight of dispersant.
10. A process for producing the dye preparation of claim 8 claim 9, in which the individual dyes of the dye mixture of claim 1 are ground in water in the presence of a dispersant, then mixed and optionally dried or in which the dye mixture of claim 1 is ground in water in the presence of a dispersant and optionally dried.
11. A method for dyeing and printing hydrophobic synthetic materials or for mass coloration of hydrophobic synthetic materials in which the dye mixture of claim 1 is used.
12. The A hydrophobic synthetic material dyed or printed with the dye mixture of claim 1.
13. The mixture of claim 1, further comprising 2 to 60% by weight of at least one compound of the formula (III), based on the total amount of dye in the mixture,
Figure USRE046018-20160531-C00024
X1 is halogen,
X2 is halogen, hydrogen, NO2 or CN,
R6, R7 and R8 are independently C1-C4-alkyl.
14. A process for producing the dye preparation of claim 9, in which the individual dyes of the dye mixture are ground in water in the presence of a dispersant, then mixed and optionally dried or in which the dye mixture is ground in water in the presence of a dispersant and optionally dried wherein the mixture comprises 5 to 60% by weight of at least one compound of the formula (I) and 20 to 95% by weight of at least one compound of the formula (II), based on total amount of dye.
US14/152,364 1998-03-23 2014-01-10 Disperse azo dye mixtures Expired - Lifetime USRE46018E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/152,364 USRE46018E1 (en) 1998-03-23 2014-01-10 Disperse azo dye mixtures

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19812615 1998-03-23
DE19812615 1998-03-23
DE19816056A DE19816056A1 (en) 1998-03-23 1998-04-09 Dispersion azo dye mixtures
DE19816056 1998-04-09
US09/271,820 US6121352A (en) 1998-03-23 1999-03-18 Disperse azo dye mixtures
US14/152,364 USRE46018E1 (en) 1998-03-23 2014-01-10 Disperse azo dye mixtures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/271,820 Reissue US6121352A (en) 1998-03-23 1999-03-18 Disperse azo dye mixtures

Publications (1)

Publication Number Publication Date
USRE46018E1 true USRE46018E1 (en) 2016-05-31

Family

ID=7861923

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/152,364 Expired - Lifetime USRE46018E1 (en) 1998-03-23 2014-01-10 Disperse azo dye mixtures

Country Status (3)

Country Link
US (1) USRE46018E1 (en)
CN (1) CN101007908A (en)
DE (2) DE19816056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560480B2 (en) * 2019-03-27 2023-01-24 Dystar Colours Distribution Gmbh High wet fast disperse dye mixtures of N-[4-(5-fluoro-2,4-dinitro-phenylazo)-phenyl]-amine derivatives and N-[4-(4-nitro-phenylazo)-phenyl]-amine derivatives

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088165B (en) * 2013-05-16 2017-02-08 上海安诺其集团股份有限公司 Use of disperse dye in polyester fiber dyeing
CN104087017B (en) * 2013-05-16 2016-05-25 上海安诺其集团股份有限公司 A kind of preparation method of orange disperse dye
CN104087010B (en) * 2013-05-16 2016-06-01 上海安诺其集团股份有限公司 A kind of admixture of disperse dyes
CN105623298B (en) * 2016-02-25 2018-08-10 浙江龙盛集团股份有限公司 A kind of orange disperse dye compound and its application
CN113105751B (en) * 2021-04-15 2023-02-28 浙江科隆颜料科技有限公司 Method for processing low aniline pigment diazo component

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE229422C (en)
GB2030169A (en) 1978-09-19 1980-04-02 Sandoz Ltd Improvements in or relating to organic compounds
GB1582743A (en) 1977-04-28 1981-01-14 Ici Ltd Mixtures of disperse azo dyestuffs
US4359322A (en) 1980-06-06 1982-11-16 Neal Chemical Company, Inc. Dyeing process
JPS6015460A (en) 1983-07-07 1985-01-26 Nippon Kayaku Co Ltd Dye crystal modification which is stable against heat and production thereof
DD229422A1 (en) 1984-12-07 1985-11-06 Bitterfeld Chemie DISPERSION DYES FOR THE PRINTING AND PRINTING OF POLYESTER FIBERS BZW. POLYESTER FIBER MIXTURES
US4795807A (en) 1986-04-05 1989-01-03 Cassella Aktiengesellschaft Preparation of azo dyestuffs by diazotization and coupling in the presence of an ester
CN1036974A (en) 1988-04-21 1989-11-08 大连染料厂 N, the manufacture method of N-cyanoethyl benzylaniline dyestuff
US5019133A (en) 1988-11-25 1991-05-28 Mitsubishi Kasei Corporation Method for dyeing polyester-containing fibers in an alkaline dyeing bath and dyeing assistant, an amino-acid compound
US5174792A (en) 1990-08-24 1992-12-29 Cassella Aktiengesellschaft Mixtures of monoazo dyes: dicyano-nitrobenzene azo compounds
EP0575802A1 (en) 1992-06-11 1993-12-29 International Paper Company Photopolymeric printing plates
US5393308A (en) 1992-09-29 1995-02-28 Basf Aktiengesellschaft Mixtures of azo dyes for navy to black shades
EP0729069A1 (en) 1995-02-24 1996-08-28 International Paper Company Benzanthrone polymerization gate in photopolymerizable composition
EP0738931A2 (en) 1995-04-21 1996-10-23 Agfa-Gevaert N.V. A diazo based imaging element comprising metal-free phtalocyanine as pigment
EP0778497A1 (en) 1995-12-04 1997-06-11 Bayer Corporation Aqueous developable negative acting photosensitive composition having improved image contrast
WO1999051690A1 (en) 1998-04-03 1999-10-14 Cabot Corporation Modified pigments having improved dispersing properties

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE229422C (en)
GB1582743A (en) 1977-04-28 1981-01-14 Ici Ltd Mixtures of disperse azo dyestuffs
GB2030169A (en) 1978-09-19 1980-04-02 Sandoz Ltd Improvements in or relating to organic compounds
US4359322A (en) 1980-06-06 1982-11-16 Neal Chemical Company, Inc. Dyeing process
JPS6015460A (en) 1983-07-07 1985-01-26 Nippon Kayaku Co Ltd Dye crystal modification which is stable against heat and production thereof
DD229422A1 (en) 1984-12-07 1985-11-06 Bitterfeld Chemie DISPERSION DYES FOR THE PRINTING AND PRINTING OF POLYESTER FIBERS BZW. POLYESTER FIBER MIXTURES
US4795807A (en) 1986-04-05 1989-01-03 Cassella Aktiengesellschaft Preparation of azo dyestuffs by diazotization and coupling in the presence of an ester
CN1036974A (en) 1988-04-21 1989-11-08 大连染料厂 N, the manufacture method of N-cyanoethyl benzylaniline dyestuff
US5019133A (en) 1988-11-25 1991-05-28 Mitsubishi Kasei Corporation Method for dyeing polyester-containing fibers in an alkaline dyeing bath and dyeing assistant, an amino-acid compound
US5174792A (en) 1990-08-24 1992-12-29 Cassella Aktiengesellschaft Mixtures of monoazo dyes: dicyano-nitrobenzene azo compounds
EP0575802A1 (en) 1992-06-11 1993-12-29 International Paper Company Photopolymeric printing plates
US5393308A (en) 1992-09-29 1995-02-28 Basf Aktiengesellschaft Mixtures of azo dyes for navy to black shades
EP0729069A1 (en) 1995-02-24 1996-08-28 International Paper Company Benzanthrone polymerization gate in photopolymerizable composition
EP0738931A2 (en) 1995-04-21 1996-10-23 Agfa-Gevaert N.V. A diazo based imaging element comprising metal-free phtalocyanine as pigment
EP0778497A1 (en) 1995-12-04 1997-06-11 Bayer Corporation Aqueous developable negative acting photosensitive composition having improved image contrast
WO1999051690A1 (en) 1998-04-03 1999-10-14 Cabot Corporation Modified pigments having improved dispersing properties

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
"Exhibit 1 Complete" Handbook of Chemical Engineering Products, Dyes and Organic Pigments, 2nd Ed., Jan. 1995, pp. Cover page, 8, 464-471, 474-481, 484, 485, 488, 489, 502, 503, 510, 511, 516, 517, 522, 523, 536, 542, 547-551, 554, 555, 560, 561, 564, 565, 568, 571, 574, 581, 594, 595.
"Exhibit 1" Handbook of Chemical Engineering Products, Dyes and Organic Pigments, 2nd Ed., Jan. 1995, pp. 480, 478 and 587 (note pp. 578 and 579 of this handbook are on record already (See Reissue Petition).
"Exhibit 1," Handbook of Chemical Products, Dyes-Organic Pigments, 2nd Ed. Dyestuff Industry Science and Technology Information Centre of the Ministry of Chemical Industry, Chemical Industry Press, Beijing, 1995.
"Exhibit 10" Ranliao, Fensan [title of publication unknown].
"Exhibit 18," Christen, H.R., et al., Organic Chemistry, From the basics to research, vol. 1, pp. 1-5, 1988.
"Exhibit 2" Journal of East China Institute of Chemical Technology, vol. 1, 1988, pp. 59-63.
"Exhibit 3" CN 1036974A (CAS abstract of which is on record already (See Reissue Petition), 1989.
"Exhibit 4" CN 1085924A (equivalent to USP 5,393,308), 1994.
"Exhibit 5" "Dyestuff Industry," vol. 4, 1989, pp. 48-49.
"Exhibit 6" Foris, Anthony, The Analytical Chemistry of Synthetic Dyes, Dec. 1985 (chapter on NMR spectroscopy of synthetic dyes).
"Exhibit 7" Dyeing and Finishing Technology, China Textile Publishing House, Jul. 2001.
"Exhibit 8" Dye Application Handbook, China Textile Publishing House, Apr. 1994.
"Exhibit 9" Dye Application Handbook.
Chemical Abstract, vol. 114 (1991), p. 101, Abstract No. 145436d.
Chemical Engineering Product Handbook-Dyes Organic Pigments, 2nd ed. 1995, pp. 578 and 579 (Chinese original and English translation enclosed).
CN-1 1 036 974, Preparing N-cyanoethyl-N-benzylaniline derivatives for disperse azo dyes, 1989.
Decision of Technical Board of Appeal 3.3.01 dated Nov. 9, 2005, Case No. T0005/05-3.3.01, regarding revocation of EP0945493.
Decision of Technical Board of Appeal 3.3.01, dated Mar. 4, 2008, Case No. T 1701/06-3.3.01, regarding revocation of EP0945493.
Exhibit 19,: Griesser, W., Clariant (Schweiz) AG, Alkaline dyeing of polyester fibres, pp. 1-8, 1996.
Facts and Requests dated "CodingDate", regarding European Application No. 99104880.2, pp. 1-5.
Facts and Requests dated Sep. 18, 2006, regarding European Application No. 99104880.2, pp. 1-6.
PubMed abstract of G. de Aragao Umbuzeiro et al., Food Chem. Toxicol., vol. 43, No. 1, Jan. 2005, 49-56.
Shade Card on Foronschwarz RD-3G 300 from Sandoz, Sep. 17, 1997.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560480B2 (en) * 2019-03-27 2023-01-24 Dystar Colours Distribution Gmbh High wet fast disperse dye mixtures of N-[4-(5-fluoro-2,4-dinitro-phenylazo)-phenyl]-amine derivatives and N-[4-(4-nitro-phenylazo)-phenyl]-amine derivatives

Also Published As

Publication number Publication date
DE59900612D1 (en) 2002-02-21
CN101007908A (en) 2007-08-01
DE19816056A1 (en) 1999-09-30

Similar Documents

Publication Publication Date Title
US6121352A (en) Disperse azo dye mixtures
US20100112304A1 (en) Disperse azo dye mixtures
USRE46018E1 (en) Disperse azo dye mixtures
EP1893696A1 (en) Disperse azo dyes and mixtures comprising these disperse azo dyes
CN115850991A (en) High-wet fast dispersing dye and its mixture
JPH02242862A (en) Monoazo dye mixture
JPS62115070A (en) Blue disperse dye blend and its use in dyeing polyester
US4985045A (en) Mixtures of mon-azo dyestuffs for dyeing and printing hydrophobic synthetic fiber materials
EP0196537B1 (en) Water insoluble red monoazo dyes, their preparation and their use
JPH0216342B2 (en)
US5174792A (en) Mixtures of monoazo dyes: dicyano-nitrobenzene azo compounds
US4985043A (en) Mixtures of monoazo dyes containing halogen and cyano substituents
US4069012A (en) Dyeing of polyester fabric with disazo dye
US4620853A (en) Dyestuff mixtures, process for their preparation and process for dyeing and printing hydrophobic fiber materials
US5292872A (en) Monoazo dispersed dyes, mixtures containing them, and the preparation and the use thereof
US5466791A (en) Monoazo dyes, their preparation and use
US5495004A (en) Monoazo dispersed dye and mixtures containing them and the preparation and use thereof
US5248314A (en) High temperature dyeing of polyester and polyester-containing textile materials with cyano group containing azo dye
KR20030021181A (en) Yellow dispersion dye mixture
KR100396142B1 (en) Dyestuff mixtures containing hydroxypyridone azo dyes and dyeing and printing methods using them
US5474579A (en) Mixtures of monoazo dyes
EP0439057B1 (en) Monoazo dyes, their preparation and use
EP0371327B1 (en) Monoazo dyes, their preparation and their use
US5216140A (en) Monoazo dye and preparation and use thereof
JPH01215860A (en) Water-soluble monoazo dye, and its production and use