USRE45569E1 - Volume control for audio signals - Google Patents

Volume control for audio signals Download PDF

Info

Publication number
USRE45569E1
USRE45569E1 US13/341,871 US201113341871A USRE45569E US RE45569 E1 USRE45569 E1 US RE45569E1 US 201113341871 A US201113341871 A US 201113341871A US RE45569 E USRE45569 E US RE45569E
Authority
US
United States
Prior art keywords
gain
volume control
channel
channels
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US13/341,871
Inventor
Stephen M. Jacobs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby Laboratories Licensing Corp
Original Assignee
Dolby Laboratories Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby Laboratories Licensing Corp filed Critical Dolby Laboratories Licensing Corp
Priority to US13/341,871 priority Critical patent/USRE45569E1/en
Assigned to DOLBY LABORATORIES LICENSING CORPORATION reassignment DOLBY LABORATORIES LICENSING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JACOBS, STEPHEN
Application granted granted Critical
Publication of USRE45569E1 publication Critical patent/USRE45569E1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems

Definitions

  • the invention relates generally to the processing of audio signals. More particularly, the invention relates to control of the loudness of motion picture soundtracks when reproduced.
  • Dolby Laboratories introduced a calibration recommendation for monitor levels in movie soundtracks (“Dolby” is a trademark of Dolby Laboratories, Inc.).
  • Dolby is a trademark of Dolby Laboratories, Inc.
  • a pink noise reference signal was used in the record chain to adjust the audio monitor level to 85 dBc. All theatres equipped for playback of the new stereo optical soundtracks were set up such that an equivalent pink noise signal in a soundtrack channel generated the same 85 dBc with the playback volume control (fader) set to the calibrated setting.
  • FIG. 1 shows maximum sound pressure level of one reproduced soundtrack channel versus frequency for four photographic soundtrack formats, Academy mono, Dolby A-type, Dolby SR and Dolby Digital. The curves are normalized with respect to their reference levels.
  • the maximum sound pressure level in a theater is also a function of the number of soundtrack channels. For example, five channels can deliver 2.5 times as much power as two channels, resulting in an increase of 4 dB in sound pressure level. Thus, in the case of five or seven channel digital soundtrack reproduction, for example, the increase in peak sound pressure level is even greater than that shown in FIG. 1 .
  • the “non-associative” loudness of effects and music has risen to fill the available headroom space.
  • loud sounds like explosions are often 20 dB or more louder (explosions reach full scale peak level of 25 dB above dialogue level), and some quiet sounds, which are intended to be heard by all listeners, such as leaves rustling, may be 50 dB quieter.
  • volume control setting (fader level) of “6” or “51 ⁇ 2,” as opposed to the calibrated level (volume control standard setting) of “7,” is not uncommon, representing a loudness reduction of approximately 4 or 6 dB.
  • Some cinemas have their volume control permanently turned down to such settings because projectionists operating multiplexes with many screens showing different movies simultaneously don't have the time or cannot be bothered to set the controls differently for different movies.
  • the volume control is turned down to avoid complaints of excessive loudness, the dialogue is quieter than the mixer intended, and audiences may complain instead that some dialogue is not intelligible in the presence of other sounds in the film and/or general background noise of the theater (popcorn eating, air-conditioning, people talking, etc.).
  • Theatre playback levels are often set by complaints generated by the loudest (and earliest) element of the show. If the playback level is set in response to the loudest trailer (preview), which is often louder than the feature film, the feature often plays at the same reduced level. The result is that the dialogue level of the feature is lowered by the same level deemed necessary to attenuate the trailer.
  • a feature film played with a loudness 6 dB below the calibrated level may have serious dialogue intelligibility problems and very quiet sounds may become inaudible.
  • the volume control was a mechanical potentiometer, often with a click-stop or detent at the standard setting. More recent (digital) equipment uses a shaft encoder or a pair of up-down buttons (with a numeric display for the setting), delivering a control signal that operates on multipliers (either digital or voltage-controlled amplifiers) to affect the gain applied to all channels of the reproduced soundtracks.
  • the volume control varies the gain gradually and relatively uniformly over a range of settings from about “4” to “10,” with the gain falling more rapidly at setting below about “4,” allowing a fade to inaudibility.
  • Such a typical prior art relationship between gain or loss and volume control setting is shown in the lower curve of FIG. 2 , described below.
  • all movie sound installations include three or more front loudspeakers including a center front.
  • film mixers place dialogue in the center front channel and it is rare for speech from an on-screen actor to be placed anywhere else. This applies both for a multitrack digital soundtrack (for instance 5.1- or 7.1-channels) or a two-channel analog optical soundtrack reproduced via a matrix decoder to derive left, center, right and surround outputs.
  • the center front channel may of course contain other material, but, generally, it is material important in following the action of the movie because the audience's attention is focused on the screen. At moments when the soundtrack is loud enough to provoke complaint, several channels are generally contributing to that loudness, not just any one, and in particular not just the center front.
  • a motion picture soundtrack reproduction system comprises a center front soundtrack channel and a plurality of other soundtrack channels.
  • a volume control adjusts the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the gain of the center front channel having substantially a first relationship to the volume control settings and the gain of the other channels having substantially a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel remains substantially constant while the gain of the other channels decreases as the setting decreases or decreases more gradually than the gain of the other channels as the setting decreases.
  • a motion picture soundtrack reproduction system comprises a center front soundtrack channel and a plurality of other soundtrack channels, each of the channels having adjustable gain and one or more loudspeakers, and a controller having a volume control for adjusting the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the gain of the center front channel having a first relationship to the volume control settings and the gain of the other channels having a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel remains substantially constant while the gain of the other channels decreases as the setting decreases or decreases more gradually than the gain of the other channels as the setting decreases.
  • the range of volume control settings less than the first setting extends down to the minimum control setting or, alternatively, down to a second setting above the minimum control setting.
  • the gains of all the channels decrease in substantially the same way as the setting decreases and for such volume control settings the gain of the center front channel is greater than the gain of the other channels.
  • the gain of the center front channel is greater than the gain of the other channels by a substantially constant amount in the logarithmic domain.
  • the gains of all the channels may increase as the setting increases and for each of such volume control settings the gain of the center front channel and the gain of the other channels may be substantially the same.
  • each of the channels has a respective gain that produces a respective standard acoustic level in response to a signal having a respective standard reference level in the channel.
  • the first setting is about the standard setting.
  • the invention provides for reducing the maximum loudness, and thereby avoiding complaints, while maintaining the acoustic level of the center front containing dialogue and requiring only one user-operated control.
  • the cinema equipment is designed and installed in the conventional manner to the extent that with the volume control nominally at its standard setting, each of the reproduced soundtrack channels has a respective gain that produces a respective standard acoustic level in response to a signal having a respective standard reference level in the channel, thus matching the standard levels in a film mixing room.
  • the playback system with its volume control at the standard setting has an apparent loudness that is substantially the same as that intended by the film mixer.
  • the volume control is turned down below the standard setting in response to actual (or expected) complaints from the audience, over a limited range of settings all channels except the center front are attenuated equally, but the center front is reduced by a smaller degree (or not at all).
  • the effect is not only a reduction in the overall loudness but an increase in the proportionate contribution of the center front channel, with a potential improvement in intelligibility when the other channels are loud.
  • all channels are attenuated equally, maintaining fixed the altered balance.
  • FIG. 1 shows maximum sound pressure level versus frequency for four photographic soundtrack formats, Academy mono, Dolby A-type, Dolby SR and Dolby Digital.
  • FIG. 2 shows one set of suitable relationships between gain of the center front soundtrack channel and gain of each of the other soundtrack channels versus volume control setting, in which a gain of 0 dB is obtained for the standard volume control setting.
  • FIG. 3 is a simplified block diagram showing an implementation of the present invention from a structural standpoint.
  • FIG. 4 is a simplified block diagram showing an implementation of the present invention from a functional standpoint.
  • FIG. 2 illustrates idealized curves of gain/loss as a function of volume control setting, for the center front channel (upper line) and for each of the remaining channels (lower line).
  • the lower line also shows the typical gain/loss for all channels (rather than channels other than the center front channel, as in the present invention) as a function of volume control setting in prior art motion picture sound equipment. While the characteristic responses shown in the example of FIG. 2 are practical and useful ones, the precise characteristics are not critical. For example, the lower characteristic curve need not be the same as in the prior art gain/loss for all channels versus volume control setting The characteristics shown in the figures are just one example of suitable characteristics that fall within the scope of the invention
  • the gain of the center front channel has a first relationship to the volume control settings and that the gain of each of the other channels has a second relationship to the volume control settings.
  • 0 dB is defined as the gain with the volume control at a first setting, the standard “7” setting.
  • the gain of the center front channel decreases more gradually than the gain of the other channels as the setting decreases.
  • the center channel gain may be constant as the gain of the other channels changes.
  • such changes in gain may extend down to the minimum volume control setting
  • such changes in gain preferably do not extend down to the minimum setting but rather to a second setting, which may be a setting of about “5,” for example, as shown in FIG. 2 .
  • the gains of all the channels decrease in substantially the same way as the setting decreases and for such volume control settings the gain of the center front channel is greater than the gain of the other channels by a few dB, for example, as shown in FIG. 2 .
  • the gains of all the channels increase as the setting increases and for each of such volume control settings the gain of the center front channel and the gain of the other channels are substantially the same. It should be understood that the relationships between the gain of the center front channel, on one hand, and the gain of the other channels, on the other hand, versus the volume control settings need not be precisely in accordance with the examples of FIG. 2 , but are to be limited only by the scope of the appended claims.
  • a center front soundtrack channel has a gain adjuster 102 that controls the gain of the channel.
  • the channel feeds one or more loudspeakers 104 via a power amplifier (not shown).
  • the gain adjuster 102 may be, for example, the gain or volume control of a preamplifier or a passive variable loss at the output (preferably the output rather than the input) of a preamplifier.
  • a plurality of other channels shown for simplicity as two channels, each has a respective gain adjuster 106 and 108 .
  • Each channel feeds one or more respective loudspeakers 110 and 112 via respective power amplifiers (not shown).
  • the gain adjuster 102 for the center front channel is controlled by a first output of a controller 114 and the gain adjusters 106 and 108 for the other channels are controlled by a second output of controller 114 , in the manner described herein in response to the setting of the controller's volume control 116 .
  • the volume control setting may select values in first and second lookup tables 202 and 204 .
  • the first lookup table 202 in turn may adjust a multiplier controlling volume 206 in the center front channel, while the second lookup table 204 may adjust multipliers controlling volume 208 and 210 in the other channels.
  • Lookup table values in response to volume control settings may be chosen so as to provide the desired relationships between gains in the various channels versus setting.
  • the present invention and its various aspects may be implemented in analog circuitry, for example, with two suitable non-linear functions relating control setting to gain, or as software functions performed in digital signal processors, programmed general-purpose digital computers, and/or special purpose digital computers, or some combination of such devices and functions. Interfaces between analog and digital signal streams may be performed in appropriate hardware and/or as functions in software and/or firmware.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Studio Devices (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Studio Circuits (AREA)

Abstract

A motion picture soundtrack reproduction system has a center front soundtrack channel and a plurality of other soundtrack channels. A volume control adjusts the gain of all the channels. The volume control has a range of settings from a minimum to a maximum, the gain of the center front channel having substantially a first relationship to the volume control settings and the gain of the other channels having substantially a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel remains substantially constant while the gain of the other channels decreases as the setting decreases or decreases more gradually than the gain of the other channels as the setting decreases.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS; BENEFIT CLAIM
More than one Reissue Application has been filed for the reissue of U.S. Pat. No. 7,251,337, issued Jul. 31, 2007. The reissue applications are application Ser. No. 12/493,111 filed Jun. 26, 2009, 13/341,861 filed Dec. 30, 2011 (copending application), Ser. No. 13/341,870 filed Dec. 30, 2011 (copending application), Ser. No. 13/341,873 filed Dec. 30, 2011 (copending application), and 13/341,871 filed Dec. 30, 2011 (the present application). The present application claims the benefit as a Reissue Continuation Application of application Ser. No. 12/493,111, filed Jun. 26, 2009 (now U.S. Pat. No. Re. 43,132, issued on Jan. 24, 2012), which is a Reissue Application of U.S. Pat. No. 7,251,337, issued Jul. 31, 2007 (application Ser. No. 10/423,829, filed Apr. 24, 2003), the entire contents of all of the foregoing are hereby incorporated by reference as if fully set forth herein, under 35 U.S.C. §120. Applicants hereby rescind any disclaimer of claim scope in the parent application(s) or the prosecution history thereof and advise the USPTO that the claims in this application may be broader than any claim in the parent application(s).
TECHNICAL FIELD
The invention relates generally to the processing of audio signals. More particularly, the invention relates to control of the loudness of motion picture soundtracks when reproduced.
BACKGROUND ART
In the mid-1970s, Dolby Laboratories introduced a calibration recommendation for monitor levels in movie soundtracks (“Dolby” is a trademark of Dolby Laboratories, Inc.). A pink noise reference signal was used in the record chain to adjust the audio monitor level to 85 dBc. All theatres equipped for playback of the new stereo optical soundtracks were set up such that an equivalent pink noise signal in a soundtrack channel generated the same 85 dBc with the playback volume control (fader) set to the calibrated setting. This meant that theatres playing films at the calibrated volume control setting (a setting of “7” in a range of “0” to “10” on most cinema processors) reproduced the same loudness level selected by the film director and audio engineers in the dubbing theatre (referred to herein as “the mixer”).
This system worked quite well for many years. Dolby Stereo (A-type encoded) films had limited headroom and the resulting constrained dynamic range yielded few audience complaints. Most theatres played films at the calibrated level. Soundtrack format technology has been significantly enhanced since Dolby Stereo. Dolby SR extended the headroom by 3 dB at midrange frequencies, and more at low and high frequencies. In recent years, the new digital formats have further increased the headroom. FIG. 1 shows maximum sound pressure level of one reproduced soundtrack channel versus frequency for four photographic soundtrack formats, Academy mono, Dolby A-type, Dolby SR and Dolby Digital. The curves are normalized with respect to their reference levels. Thus, they show the maximum sound pressure level that one channel of each different optical soundtrack system is capable of when playing a motion picture at the calibrated volume control setting in a properly set up theater. The maximum sound pressure level in a theater is also a function of the number of soundtrack channels. For example, five channels can deliver 2.5 times as much power as two channels, resulting in an increase of 4 dB in sound pressure level. Thus, in the case of five or seven channel digital soundtrack reproduction, for example, the increase in peak sound pressure level is even greater than that shown in FIG. 1.
Because the 85 dBc calibration technique has been maintained throughout evolving format changes, additional headroom is available on the newer soundtracks. However, feature films do have a consistent, subjective mix reference, independent of increased headroom, for dialogue record level, known as “associative loudness.” When the dubbing mixer sees an actor on the screen, and there is no conflict between the dialogue and music or effects, the dialogue level in a moderate close-up is set to be plausible for the visual impression. Within reasonable limits, this generally holds true to within 2 or 3 dB. This natural dialogue level does not hold true for narration, as there is no corresponding visual reference. Music and effects have no direct visual associative loudness. Most people are not familiar with the actual sound pressure levels of a Concorde takeoff or a 50 mm howitzer. The music score level is equally uncalibrated.
As the headroom capability of the recording medium has been extended, it has certainly been used: the “non-associative” loudness of effects and music has risen to fill the available headroom space. Using dialogue as a reference, loud sounds like explosions are often 20 dB or more louder (explosions reach full scale peak level of 25 dB above dialogue level), and some quiet sounds, which are intended to be heard by all listeners, such as leaves rustling, may be 50 dB quieter.
In response to audience complaints that movies are too loud, many theatres are playing films substantially below the calibrated level. A volume control setting (fader level) of “6” or “5½,” as opposed to the calibrated level (volume control standard setting) of “7,” is not uncommon, representing a loudness reduction of approximately 4 or 6 dB. Some cinemas have their volume control permanently turned down to such settings because projectionists operating multiplexes with many screens showing different movies simultaneously don't have the time or cannot be bothered to set the controls differently for different movies. If the volume control is turned down to avoid complaints of excessive loudness, the dialogue is quieter than the mixer intended, and audiences may complain instead that some dialogue is not intelligible in the presence of other sounds in the film and/or general background noise of the theater (popcorn eating, air-conditioning, people talking, etc.). Theatre playback levels are often set by complaints generated by the loudest (and earliest) element of the show. If the playback level is set in response to the loudest trailer (preview), which is often louder than the feature film, the feature often plays at the same reduced level. The result is that the dialogue level of the feature is lowered by the same level deemed necessary to attenuate the trailer. A feature film played with a loudness 6 dB below the calibrated level may have serious dialogue intelligibility problems and very quiet sounds may become inaudible.
In addition, it is possible that the increased use of headroom from Dolby A-type to Dolby SR and digital releases has not been matched by a corresponding increase in power amplifier and loudspeaker capability. The resultant distortion from overloaded equipment may well exacerbate the loudness problems of recent soundtracks, causing increased incidence of complaints.
In early cinema sound equipment employing calibration, the volume control was a mechanical potentiometer, often with a click-stop or detent at the standard setting. More recent (digital) equipment uses a shaft encoder or a pair of up-down buttons (with a numeric display for the setting), delivering a control signal that operates on multipliers (either digital or voltage-controlled amplifiers) to affect the gain applied to all channels of the reproduced soundtracks. In typical cinema sound equipment, the volume control varies the gain gradually and relatively uniformly over a range of settings from about “4” to “10,” with the gain falling more rapidly at setting below about “4,” allowing a fade to inaudibility. Such a typical prior art relationship between gain or loss and volume control setting is shown in the lower curve of FIG. 2, described below.
With the exception of monophonic installations, to which the present invention does not apply, all movie sound installations include three or more front loudspeakers including a center front. Historically, film mixers place dialogue in the center front channel and it is rare for speech from an on-screen actor to be placed anywhere else. This applies both for a multitrack digital soundtrack (for instance 5.1- or 7.1-channels) or a two-channel analog optical soundtrack reproduced via a matrix decoder to derive left, center, right and surround outputs. The center front channel may of course contain other material, but, generally, it is material important in following the action of the movie because the audience's attention is focused on the screen. At moments when the soundtrack is loud enough to provoke complaint, several channels are generally contributing to that loudness, not just any one, and in particular not just the center front.
DISCLOSURE OF INVENTION
In accordance with the present invention, a motion picture soundtrack reproduction system comprises a center front soundtrack channel and a plurality of other soundtrack channels. A volume control adjusts the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the gain of the center front channel having substantially a first relationship to the volume control settings and the gain of the other channels having substantially a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel remains substantially constant while the gain of the other channels decreases as the setting decreases or decreases more gradually than the gain of the other channels as the setting decreases.
Also in accordance with the present invention, a motion picture soundtrack reproduction system comprises a center front soundtrack channel and a plurality of other soundtrack channels, each of the channels having adjustable gain and one or more loudspeakers, and a controller having a volume control for adjusting the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the gain of the center front channel having a first relationship to the volume control settings and the gain of the other channels having a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel remains substantially constant while the gain of the other channels decreases as the setting decreases or decreases more gradually than the gain of the other channels as the setting decreases.
The range of volume control settings less than the first setting extends down to the minimum control setting or, alternatively, down to a second setting above the minimum control setting. In the latter case, for settings less than the second setting the gains of all the channels decrease in substantially the same way as the setting decreases and for such volume control settings the gain of the center front channel is greater than the gain of the other channels. Optionally, for settings less than the second setting the gain of the center front channel is greater than the gain of the other channels by a substantially constant amount in the logarithmic domain.
For settings greater than the first setting the gains of all the channels may increase as the setting increases and for each of such volume control settings the gain of the center front channel and the gain of the other channels may be substantially the same.
The invention is particularly advantageous in an arrangement in which when the volume control is set to a standard setting, each of the channels has a respective gain that produces a respective standard acoustic level in response to a signal having a respective standard reference level in the channel. In that case, the first setting is about the standard setting.
The invention provides for reducing the maximum loudness, and thereby avoiding complaints, while maintaining the acoustic level of the center front containing dialogue and requiring only one user-operated control. According to an embodiment of the invention, the cinema equipment is designed and installed in the conventional manner to the extent that with the volume control nominally at its standard setting, each of the reproduced soundtrack channels has a respective gain that produces a respective standard acoustic level in response to a signal having a respective standard reference level in the channel, thus matching the standard levels in a film mixing room. Thus, when calibrated, the playback system with its volume control at the standard setting has an apparent loudness that is substantially the same as that intended by the film mixer. However, in accordance with the present invention, if the volume control is turned down below the standard setting in response to actual (or expected) complaints from the audience, over a limited range of settings all channels except the center front are attenuated equally, but the center front is reduced by a smaller degree (or not at all). The effect is not only a reduction in the overall loudness but an increase in the proportionate contribution of the center front channel, with a potential improvement in intelligibility when the other channels are loud. Optionally, after some degree of changing the balance of the center front to other channels down to a setting below the standard setting, for further lowering of the settings all channels are attenuated equally, maintaining fixed the altered balance.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 shows maximum sound pressure level versus frequency for four photographic soundtrack formats, Academy mono, Dolby A-type, Dolby SR and Dolby Digital.
FIG. 2 shows one set of suitable relationships between gain of the center front soundtrack channel and gain of each of the other soundtrack channels versus volume control setting, in which a gain of 0 dB is obtained for the standard volume control setting.
FIG. 3 is a simplified block diagram showing an implementation of the present invention from a structural standpoint.
FIG. 4 is a simplified block diagram showing an implementation of the present invention from a functional standpoint.
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 illustrates idealized curves of gain/loss as a function of volume control setting, for the center front channel (upper line) and for each of the remaining channels (lower line). The lower line also shows the typical gain/loss for all channels (rather than channels other than the center front channel, as in the present invention) as a function of volume control setting in prior art motion picture sound equipment. While the characteristic responses shown in the example of FIG. 2 are practical and useful ones, the precise characteristics are not critical. For example, the lower characteristic curve need not be the same as in the prior art gain/loss for all channels versus volume control setting The characteristics shown in the figures are just one example of suitable characteristics that fall within the scope of the invention
Still referring to FIG. 2, it will be seen that the gain of the center front channel has a first relationship to the volume control settings and that the gain of each of the other channels has a second relationship to the volume control settings. In FIG. 2, 0 dB is defined as the gain with the volume control at a first setting, the standard “7” setting. As shown in FIG. 2, for settings less than the first setting down to a second setting, the gain of the center front channel decreases more gradually than the gain of the other channels as the setting decreases. Alternatively, over a limited range of settings just below the standard setting, for instance between a setting of “7” and a setting of “6,” the center channel gain may be constant as the gain of the other channels changes. Although such changes in gain (either alternative) may extend down to the minimum volume control setting, in a practical embodiment such changes in gain preferably do not extend down to the minimum setting but rather to a second setting, which may be a setting of about “5,” for example, as shown in FIG. 2. In that case, for settings below the second setting, the gains of all the channels decrease in substantially the same way as the setting decreases and for such volume control settings the gain of the center front channel is greater than the gain of the other channels by a few dB, for example, as shown in FIG. 2. Preferably, for settings above the nominal standard setting up to a maximum setting, the gains of all the channels increase as the setting increases and for each of such volume control settings the gain of the center front channel and the gain of the other channels are substantially the same. It should be understood that the relationships between the gain of the center front channel, on one hand, and the gain of the other channels, on the other hand, versus the volume control settings need not be precisely in accordance with the examples of FIG. 2, but are to be limited only by the scope of the appended claims.
An exemplary system according to the present invention is shown in FIG. 3. A center front soundtrack channel has a gain adjuster 102 that controls the gain of the channel. The channel feeds one or more loudspeakers 104 via a power amplifier (not shown). In practice, the gain adjuster 102 may be, for example, the gain or volume control of a preamplifier or a passive variable loss at the output (preferably the output rather than the input) of a preamplifier. A plurality of other channels, shown for simplicity as two channels, each has a respective gain adjuster 106 and 108. Each channel feeds one or more respective loudspeakers 110 and 112 via respective power amplifiers (not shown). The gain adjuster 102 for the center front channel is controlled by a first output of a controller 114 and the gain adjusters 106 and 108 for the other channels are controlled by a second output of controller 114, in the manner described herein in response to the setting of the controller's volume control 116.
In a practical arrangement employing digital controls, as shown in FIG. 4, the volume control setting may select values in first and second lookup tables 202 and 204. The first lookup table 202 in turn may adjust a multiplier controlling volume 206 in the center front channel, while the second lookup table 204 may adjust multipliers controlling volume 208 and 210 in the other channels. Lookup table values in response to volume control settings may be chosen so as to provide the desired relationships between gains in the various channels versus setting.
The present invention and its various aspects may be implemented in analog circuitry, for example, with two suitable non-linear functions relating control setting to gain, or as software functions performed in digital signal processors, programmed general-purpose digital computers, and/or special purpose digital computers, or some combination of such devices and functions. Interfaces between analog and digital signal streams may be performed in appropriate hardware and/or as functions in software and/or firmware.

Claims (27)

The invention claimed is:
1. A motion picture soundtrack reproduction system, the system having a center front soundtrack channel and a plurality of other soundtrack channels, comprising
a controller having a volume control for adjusting the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the controller having a first output for controlling the gain of the center front channel and a second output for controlling the gain of the other channels in response to settings of the volume control, the gain of the center front channel having a first relationship to the volume control settings and the gain of the other channels having a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel (1) remains substantially constant while the gain of the other channels decreases as the setting decreases, or (2) decreases snore gradually than the gain of the other channels as the setting decreases.
2. A motion picture soundtrack reproduction system, comprising
a center front soundtrack channel and a plurality of other soundtrack channels, each of said channels having adjustable gain and one or more loudspeakers, and
a controller having a volume control for adjusting the gain of all the channels, the volume control having a range of settings from a minimum to a maximum, the controller having a first output for controlling the gain of the center front channel and a second output for controlling the gain of the other channels in response to settings of the volume control the gain of the center front channel having a first relationship to the volume control settings and the gain of the other channels having a second relationship to the volume control settings, the relationships being such that for a range of volume control settings less than a first setting the gain of the center front channel (1) remains substantially constant while the gain of the other channels decreases as the setting decreases or (2) decreases more gradually than the gain of the other channels as the setting decreases.
3. A system according to claim 1 or claim 2 wherein the range of volume control settings less than said first setting extends down to the minimum control setting.
4. A system according to claim 1 or claim 2 wherein the range of volume control settings less than said first setting extends down to a second setting above the minimum control setting.
5. A system according to claim 3 wherein for settings less than said second setting the gains of all the channels decrease in substantially the same way as the setting decreases and for such volume control settings the gain of the center front channel is greater than the gain of the other channels.
6. A system according to claim 5 wherein for settings less than said second setting the gain of the center front channel is greater than the gain of the other channels by a substantially constant amount in the logarithmic domain.
7. A system according to claims 1 wherein for settings greater than said first setting the gains of all the channels increase as the setting increases and for each of such volume control settings the gain of the center front channel and the gain of the other channels are substantially the same.
8. A system according to claims 1 wherein when the volume control is set to a standard setting, each of the channels has a respective gain that produces a respective standard acoustic level in response to a signal having a respective standard reference level in the channel.
9. A system according to claim 8 wherein said first setting is about said standard setting.
10. A method for volume control of a digital signal stream, comprising:
reducing a setting of a volume control that controls overall loudness of a plurality of channels of the digital stream, the setting ranging from a minimum to a maximum;
in response to the reducing, adjusting a gain of a first channel and a gain of a second channel of the plurality of channels of the digital stream, for a range of volume control settings above a first setting of the volume control the adjusting decreases a contribution of the first channel and the second channel to the overall loudness of the plurality of channels of the digital stream in a substantially same manner, at one or more specific settings of the volume control below the first setting of the volume control the adjusting increases a proportionate contribution of the first channel, in relation to the second channel, to the overall loudness of the plurality of channels of the digital stream;
feeding an audio signal of the first channel to a first output;
feeding an audio signal of the second channel to a second output.
11. The method of claim 10, wherein the reducing employs digital controls.
12. The method of claim 10, wherein the second output is at least one of a left output, right output, and surround output.
13. The method of claim 10, wherein the digital signal stream is in a Dolby Digital format.
14. The method of claim 10, wherein first output is a center channel output.
15. The method of claim 10, wherein the digital signal stream is a multitrack digital soundtrack.
16. An apparatus for volume control of a digital signal stream, comprising:
a subsystem, implemented at least partially in hardware that reduces a setting of a volume control that controls overall loudness of a plurality of channels of the digital stream, the setting ranging from a minimum to a maximum;
a subsystem, implemented at least partially in hardware that, in response to the reducing, adjusts a gain of a first channel and a gain of a second channel of the plurality of channels of the digital stream, for a range of volume control settings above a first setting of the volume control the gain adjust decreases a contribution of the first channel and the second channel to the overall loudness of the plurality of channels of the digital stream in a substantially same manner, at one or more specific settings of the volume control below the first setting of the volume control the gain adjust increases a proportionate contribution of the first channel, in relation to the second channel, to the overall loudness of the plurality of channels of the digital stream;
a subsystem, implemented at least partially in hardware that feeds an audio signal of the first channel to a first output;
a subsystem, implemented at least partially in hardware that feeds an audio signal of the second channel to a second output.
17. The apparatus of claim 16, wherein the reducing subsystem employs digital controls.
18. The apparatus of claim 16, wherein the second output is at least one of a left output, right output, and surround output.
19. The apparatus of claim 16, wherein the digital signal stream is in a Dolby Digital format.
20. The apparatus of claim 16, wherein first output is a center channel output.
21. The apparatus of claim 16, wherein the digital signal stream is a multitrack digital soundtrack.
22. A non-transitory computer readable medium, storing software instructions for volume control of a digital signal stream, which when executed by one or more processors cause performance of the steps of:
reducing a setting of a volume control that controls overall loudness of a plurality of channels of the digital stream, the setting ranging from a minimum to a maximum;
in response to the reducing, adjusting a gain of a first channel and a gain of a second channel of the plurality of channels of the digital stream, for a range of volume control settings above a first setting of the volume control the adjusting decreases a contribution of the first channel and the second channel to the overall loudness of the plurality of channels of the digital stream in a substantially same manner, at one or more specific settings of the volume control below the first setting of the volume control the adjusting increases a proportionate contribution of the first channel, in relation to the second channel, to the overall loudness of the plurality of channels of the digital stream;
feeding an audio signal of the first channel to a first output;
feeding an audio signal of the second channel to a second output.
23. The non-transitory computer readable medium of claim 22, wherein the reducing employs digital controls.
24. The non-transitory computer readable medium of claim 22, wherein the second output is at least one of a left output, right output, and surround output.
25. The non-transitory computer readable medium of claim 22, wherein the digital signal stream is in a Dolby Digital format.
26. The non-transitory computer readable medium of claim 22, wherein first output is a center channel output.
27. The non-transitory computer readable medium of claim 22, wherein the digital signal stream is a multitrack digital soundtrack.
US13/341,871 2003-04-24 2011-12-30 Volume control for audio signals Expired - Lifetime USRE45569E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/341,871 USRE45569E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/423,829 US7251337B2 (en) 2003-04-24 2003-04-24 Volume control in movie theaters
US12/493,111 USRE43132E1 (en) 2003-04-24 2009-06-26 Volume control for audio signals
US13/341,873 USRE44929E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,861 USRE44261E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,871 USRE45569E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,870 USRE45389E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/423,829 Reissue US7251337B2 (en) 2003-04-24 2003-04-24 Volume control in movie theaters

Publications (1)

Publication Number Publication Date
USRE45569E1 true USRE45569E1 (en) 2015-06-16

Family

ID=33299218

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/423,829 Ceased US7251337B2 (en) 2003-04-24 2003-04-24 Volume control in movie theaters
US12/493,111 Ceased USRE43132E1 (en) 2003-04-24 2009-06-26 Volume control for audio signals
US13/341,861 Expired - Lifetime USRE44261E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,871 Expired - Lifetime USRE45569E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,870 Expired - Lifetime USRE45389E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,873 Expired - Lifetime USRE44929E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/423,829 Ceased US7251337B2 (en) 2003-04-24 2003-04-24 Volume control in movie theaters
US12/493,111 Ceased USRE43132E1 (en) 2003-04-24 2009-06-26 Volume control for audio signals
US13/341,861 Expired - Lifetime USRE44261E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/341,870 Expired - Lifetime USRE45389E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals
US13/341,873 Expired - Lifetime USRE44929E1 (en) 2003-04-24 2011-12-30 Volume control for audio signals

Country Status (9)

Country Link
US (6) US7251337B2 (en)
EP (1) EP1616462B1 (en)
JP (2) JP4829106B2 (en)
CN (1) CN100544504C (en)
AT (1) ATE369720T1 (en)
AU (1) AU2004234721B2 (en)
CA (1) CA2519607C (en)
DE (1) DE602004008053T2 (en)
WO (1) WO2004098050A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502480B2 (en) * 2003-08-19 2009-03-10 Microsoft Corporation System and method for implementing a flat audio volume control model
US7440577B2 (en) * 2004-04-01 2008-10-21 Peavey Electronics Corporation Methods and apparatus for automatic mixing of audio signals
JP4103846B2 (en) * 2004-04-30 2008-06-18 ソニー株式会社 Information processing apparatus, volume control method, recording medium, and program
CN101312600A (en) * 2007-05-22 2008-11-26 鸿富锦精密工业(深圳)有限公司 Volume regulating apparatus and automatic volume regulating method
WO2009086174A1 (en) * 2007-12-21 2009-07-09 Srs Labs, Inc. System for adjusting perceived loudness of audio signals
US20090172766A1 (en) * 2007-12-26 2009-07-02 Kabushiki Kaisha Toshiba Broadcast receiving apparatus and broadcast receiving method
EP2373067B1 (en) * 2008-04-18 2013-04-17 Dolby Laboratories Licensing Corporation Method and apparatus for maintaining speech audibility in multi-channel audio with minimal impact on surround experience
MX2011005132A (en) * 2008-11-14 2011-10-12 That Corp Dynamic volume control and multi-spatial processing protection.
US9380385B1 (en) 2008-11-14 2016-06-28 That Corporation Compressor based dynamic bass enhancement with EQ
JP4826625B2 (en) * 2008-12-04 2011-11-30 ソニー株式会社 Volume correction device, volume correction method, volume correction program, and electronic device
JP4844622B2 (en) * 2008-12-05 2011-12-28 ソニー株式会社 Volume correction apparatus, volume correction method, volume correction program, electronic device, and audio apparatus
JP5147680B2 (en) * 2008-12-26 2013-02-20 キヤノン株式会社 Audio processing apparatus and audio processing method
JP5120288B2 (en) 2009-02-16 2013-01-16 ソニー株式会社 Volume correction device, volume correction method, volume correction program, and electronic device
US9312829B2 (en) 2012-04-12 2016-04-12 Dts Llc System for adjusting loudness of audio signals in real time
WO2014083569A1 (en) * 2012-11-29 2014-06-05 Ghose Anirvan A system for recording and playback for achieving standardization of loudness of soundtracks in cinemas
US9363603B1 (en) * 2013-02-26 2016-06-07 Xfrm Incorporated Surround audio dialog balance assessment
US9385678B2 (en) * 2013-05-03 2016-07-05 Honda Motor Co., Ltd. Methods and systems for controlling volume
CN105493182B (en) * 2013-08-28 2020-01-21 杜比实验室特许公司 Hybrid waveform coding and parametric coding speech enhancement
WO2016019130A1 (en) * 2014-08-01 2016-02-04 Borne Steven Jay Audio device
US10014839B2 (en) 2014-10-06 2018-07-03 Motorola Solutions, Inc. Methods and systems for intelligent dual-channel volume adjustment
US9792952B1 (en) * 2014-10-31 2017-10-17 Kill the Cann, LLC Automated television program editing
US9877137B2 (en) 2015-10-06 2018-01-23 Disney Enterprises, Inc. Systems and methods for playing a venue-specific object-based audio
US10795637B2 (en) * 2017-06-08 2020-10-06 Dts, Inc. Adjusting volume levels of speakers
US12081959B2 (en) * 2019-08-27 2024-09-03 Lg Electronics Inc. Display device and surround sound system

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019615A (en) 1933-11-21 1935-11-05 Electrical Res Prod Inc Sound transmission system
GB1328141A (en) 1969-08-28 1973-08-30 Scheiber P Audio systems
US3772479A (en) * 1971-10-19 1973-11-13 Motorola Inc Gain modified multi-channel audio system
US3821471A (en) * 1971-03-15 1974-06-28 Cbs Inc Apparatus for reproducing quadraphonic sound
US3987402A (en) 1974-01-18 1976-10-19 Russell Peter Smith Multi-channel gain controls
US4024344A (en) * 1974-11-16 1977-05-17 Dolby Laboratories, Inc. Center channel derivation for stereophonic cinema sound
US4061874A (en) 1976-06-03 1977-12-06 Fricke J P System for reproducing sound information
GB2031638A (en) 1978-09-27 1980-04-23 Paramount Pictures Corp Method and system of controlling sound and effects devices by a film strip
JPS59177534A (en) 1983-03-14 1984-10-08 ドルビ−・ラボラトリ−ズ・ライセンシング・コ−ポレ−シヨン Optical sound track of stereo sound movies and apparatus forrecording and reproducing same
JPS59186500A (en) 1983-04-07 1984-10-23 Pioneer Electronic Corp Stereophonic reproducing device
US4589129A (en) * 1984-02-21 1986-05-13 Kintek, Inc. Signal decoding system
JPH0246012A (en) 1988-08-08 1990-02-15 Pioneer Electron Corp Sound volume balance adjusting device
JPH02170796A (en) 1988-12-23 1990-07-02 Toshiba Corp Audio reproducing device
US5113447A (en) * 1990-01-05 1992-05-12 Electronic Engineering And Manufacturing, Inc. Method and system for optimizing audio imaging in an automotive listening environment
US5128999A (en) * 1990-10-29 1992-07-07 Pioneer Electronic Corporation Sound field correcting apparatus
US5138665A (en) 1989-12-19 1992-08-11 Pioneer Electronic Corporation Audio reproduction system
US5200708A (en) 1991-09-11 1993-04-06 Thomson Consumer Electronics, Inc. Apparatus for the virtual expansion of power supply capacity
US5305388A (en) 1991-06-21 1994-04-19 Matsushita Electric Industrial Co., Ltd. Bass compensation circuit for use in sound reproduction device
JPH06232662A (en) 1993-02-04 1994-08-19 Mitsubishi Electric Corp Sound volume controller
JPH077800A (en) 1993-03-30 1995-01-10 Toshiba Corp Stereo sound field enlarging device
US5530760A (en) * 1994-04-29 1996-06-25 Audio Products International Corp. Apparatus and method for adjusting levels between channels of a sound system
WO1999026455A1 (en) 1997-11-14 1999-05-27 Xd Lab R & D Inc. Post-amplification stereophonic to surround sound decoding circuit
JP2907847B2 (en) 1988-12-23 1999-06-21 株式会社東芝 Volume control circuit
DE19818217A1 (en) 1998-04-24 1999-10-28 Rainer Berthold Auxiliary device for television receiver
US6026168A (en) * 1997-11-14 2000-02-15 Microtek Lab, Inc. Methods and apparatus for automatically synchronizing and regulating volume in audio component systems
US6148085A (en) 1997-08-29 2000-11-14 Samsung Electronics Co., Ltd. Audio signal output apparatus for simultaneously outputting a plurality of different audio signals contained in multiplexed audio signal via loudspeaker and headphone
WO2001039370A2 (en) 1999-11-29 2001-05-31 Syfx Signal processing system and method
US6311155B1 (en) 2000-02-04 2001-10-30 Hearing Enhancement Company Llc Use of voice-to-remaining audio (VRA) in consumer applications
US6351733B1 (en) * 2000-03-02 2002-02-26 Hearing Enhancement Company, Llc Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
JP2002171600A (en) 2000-12-04 2002-06-14 Sony Corp Sound output device, and its sound volume setting method
US20020076072A1 (en) * 1999-04-26 2002-06-20 Cornelisse Leonard E. Software implemented loudness normalization for a digital hearing aid
JP2002191099A (en) 2000-09-26 2002-07-05 Matsushita Electric Ind Co Ltd Signal processor
US6442278B1 (en) * 1999-06-15 2002-08-27 Hearing Enhancement Company, Llc Voice-to-remaining audio (VRA) interactive center channel downmix
EP1253805A2 (en) 2001-04-27 2002-10-30 Pioneer Corporation Automatic sound field correcting device
JP2002354600A (en) 2001-05-29 2002-12-06 Pioneer Electronic Corp Acoustic device
US6498855B1 (en) * 1998-04-17 2002-12-24 International Business Machines Corporation Method and system for selectively and variably attenuating audio data
US6501717B1 (en) * 1998-05-14 2002-12-31 Sony Corporation Apparatus and method for processing digital audio signals of plural channels to derive combined signals with overflow prevented
US20040008851A1 (en) 2002-07-09 2004-01-15 Yamaha Corporation Digital compressor for multi-channel audio system
US6985594B1 (en) * 1999-06-15 2006-01-10 Hearing Enhancement Co., Llc. Voice-to-remaining audio (VRA) interactive hearing aid and auxiliary equipment
US7110550B2 (en) * 2000-03-17 2006-09-19 Fujitsu Ten Limited Sound system
US7190292B2 (en) 1999-11-29 2007-03-13 Bizjak Karl M Input level adjust system and method
US7415120B1 (en) * 1998-04-14 2008-08-19 Akiba Electronics Institute Llc User adjustable volume control that accommodates hearing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2109615A (en) * 1935-08-14 1938-03-01 Vaco Products Inc Gear shifter
GB1253805A (en) 1967-11-20 1971-11-17 Margaret Elise Wallace Improvements in or relating to drinking devices for animals
US3746792A (en) * 1968-01-11 1973-07-17 P Scheiber Multidirectional sound system
JPH03236691A (en) * 1990-02-14 1991-10-22 Hitachi Ltd Audio circuit for television receiver
JP3284747B2 (en) * 1994-05-12 2002-05-20 松下電器産業株式会社 Sound field control device
JPH10322800A (en) * 1997-05-15 1998-12-04 Matsushita Electric Ind Co Ltd Television receiver provided with center speaker
US7266501B2 (en) * 2000-03-02 2007-09-04 Akiba Electronics Institute Llc Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
WO2001076120A2 (en) * 2000-04-04 2001-10-11 Stick Networks, Inc. Personal communication device for scheduling presentation of digital content
JP2002095095A (en) * 2000-09-13 2002-03-29 Toshiba Corp Sound volume control device
JP4215967B2 (en) * 2001-05-29 2009-01-28 パイオニア株式会社 Sound equipment

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019615A (en) 1933-11-21 1935-11-05 Electrical Res Prod Inc Sound transmission system
GB1328141A (en) 1969-08-28 1973-08-30 Scheiber P Audio systems
US3821471A (en) * 1971-03-15 1974-06-28 Cbs Inc Apparatus for reproducing quadraphonic sound
US3772479A (en) * 1971-10-19 1973-11-13 Motorola Inc Gain modified multi-channel audio system
US3987402A (en) 1974-01-18 1976-10-19 Russell Peter Smith Multi-channel gain controls
US4024344A (en) * 1974-11-16 1977-05-17 Dolby Laboratories, Inc. Center channel derivation for stereophonic cinema sound
US4061874A (en) 1976-06-03 1977-12-06 Fricke J P System for reproducing sound information
GB2031638A (en) 1978-09-27 1980-04-23 Paramount Pictures Corp Method and system of controlling sound and effects devices by a film strip
JPS59177534A (en) 1983-03-14 1984-10-08 ドルビ−・ラボラトリ−ズ・ライセンシング・コ−ポレ−シヨン Optical sound track of stereo sound movies and apparatus forrecording and reproducing same
US4577305A (en) 1983-03-14 1986-03-18 Dolby Laboratories Licensing Corporation Stereophonic motion picture photographic sound-tracks compatible with different sound projection formats and record and playback apparatus therefore
JPS59186500A (en) 1983-04-07 1984-10-23 Pioneer Electronic Corp Stereophonic reproducing device
US4589129A (en) * 1984-02-21 1986-05-13 Kintek, Inc. Signal decoding system
JPH0246012A (en) 1988-08-08 1990-02-15 Pioneer Electron Corp Sound volume balance adjusting device
JPH02170796A (en) 1988-12-23 1990-07-02 Toshiba Corp Audio reproducing device
JP2907847B2 (en) 1988-12-23 1999-06-21 株式会社東芝 Volume control circuit
US5138665A (en) 1989-12-19 1992-08-11 Pioneer Electronic Corporation Audio reproduction system
US5113447A (en) * 1990-01-05 1992-05-12 Electronic Engineering And Manufacturing, Inc. Method and system for optimizing audio imaging in an automotive listening environment
US5128999A (en) * 1990-10-29 1992-07-07 Pioneer Electronic Corporation Sound field correcting apparatus
US5305388A (en) 1991-06-21 1994-04-19 Matsushita Electric Industrial Co., Ltd. Bass compensation circuit for use in sound reproduction device
US5200708A (en) 1991-09-11 1993-04-06 Thomson Consumer Electronics, Inc. Apparatus for the virtual expansion of power supply capacity
JPH06232662A (en) 1993-02-04 1994-08-19 Mitsubishi Electric Corp Sound volume controller
JPH077800A (en) 1993-03-30 1995-01-10 Toshiba Corp Stereo sound field enlarging device
US5530760A (en) * 1994-04-29 1996-06-25 Audio Products International Corp. Apparatus and method for adjusting levels between channels of a sound system
US6148085A (en) 1997-08-29 2000-11-14 Samsung Electronics Co., Ltd. Audio signal output apparatus for simultaneously outputting a plurality of different audio signals contained in multiplexed audio signal via loudspeaker and headphone
WO1999026455A1 (en) 1997-11-14 1999-05-27 Xd Lab R & D Inc. Post-amplification stereophonic to surround sound decoding circuit
US6026168A (en) * 1997-11-14 2000-02-15 Microtek Lab, Inc. Methods and apparatus for automatically synchronizing and regulating volume in audio component systems
US7415120B1 (en) * 1998-04-14 2008-08-19 Akiba Electronics Institute Llc User adjustable volume control that accommodates hearing
US20020013698A1 (en) 1998-04-14 2002-01-31 Vaudrey Michael A. Use of voice-to-remaining audio (VRA) in consumer applications
US6498855B1 (en) * 1998-04-17 2002-12-24 International Business Machines Corporation Method and system for selectively and variably attenuating audio data
DE19818217A1 (en) 1998-04-24 1999-10-28 Rainer Berthold Auxiliary device for television receiver
US6501717B1 (en) * 1998-05-14 2002-12-31 Sony Corporation Apparatus and method for processing digital audio signals of plural channels to derive combined signals with overflow prevented
US20020076072A1 (en) * 1999-04-26 2002-06-20 Cornelisse Leonard E. Software implemented loudness normalization for a digital hearing aid
US6985594B1 (en) * 1999-06-15 2006-01-10 Hearing Enhancement Co., Llc. Voice-to-remaining audio (VRA) interactive hearing aid and auxiliary equipment
US6650755B2 (en) * 1999-06-15 2003-11-18 Hearing Enhancement Company, Llc Voice-to-remaining audio (VRA) interactive center channel downmix
US20030002683A1 (en) 1999-06-15 2003-01-02 Vaudrey Michael A. Voice-to-remaining audio (VRA) interactive center channel downmix
US6442278B1 (en) * 1999-06-15 2002-08-27 Hearing Enhancement Company, Llc Voice-to-remaining audio (VRA) interactive center channel downmix
US7212640B2 (en) 1999-11-29 2007-05-01 Bizjak Karl M Variable attack and release system and method
US20030035549A1 (en) 1999-11-29 2003-02-20 Bizjak Karl M. Signal processing system and method
US20020172374A1 (en) 1999-11-29 2002-11-21 Bizjak Karl M. Noise extractor system and method
US6675125B2 (en) 1999-11-29 2004-01-06 Syfx Statistics generator system and method
US7558391B2 (en) 1999-11-29 2009-07-07 Bizjak Karl L Compander architecture and methods
US7027981B2 (en) 1999-11-29 2006-04-11 Bizjak Karl M System output control method and apparatus
US6778966B2 (en) 1999-11-29 2004-08-17 Syfx Segmented mapping converter system and method
EP1254513A2 (en) 1999-11-29 2002-11-06 Syfx Signal processing system and method
WO2001039370A2 (en) 1999-11-29 2001-05-31 Syfx Signal processing system and method
US7190292B2 (en) 1999-11-29 2007-03-13 Bizjak Karl M Input level adjust system and method
US20020172376A1 (en) 1999-11-29 2002-11-21 Bizjak Karl M. Output processing system and method
US7206420B2 (en) 1999-11-29 2007-04-17 Syfx Tekworks Softclip method and apparatus
US6311155B1 (en) 2000-02-04 2001-10-30 Hearing Enhancement Company Llc Use of voice-to-remaining audio (VRA) in consumer applications
US20020040295A1 (en) 2000-03-02 2002-04-04 Saunders William R. Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
US6351733B1 (en) * 2000-03-02 2002-02-26 Hearing Enhancement Company, Llc Method and apparatus for accommodating primary content audio and secondary content remaining audio capability in the digital audio production process
US7110550B2 (en) * 2000-03-17 2006-09-19 Fujitsu Ten Limited Sound system
JP2002191099A (en) 2000-09-26 2002-07-05 Matsushita Electric Ind Co Ltd Signal processor
JP2002171600A (en) 2000-12-04 2002-06-14 Sony Corp Sound output device, and its sound volume setting method
EP1253805A2 (en) 2001-04-27 2002-10-30 Pioneer Corporation Automatic sound field correcting device
JP2002354600A (en) 2001-05-29 2002-12-06 Pioneer Electronic Corp Acoustic device
US20040008851A1 (en) 2002-07-09 2004-01-15 Yamaha Corporation Digital compressor for multi-channel audio system

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Applicant's admitted prior art, p. 1, line 12-p. 4, line 11, Figure 1.
Bauer, Benjamin B., et al., "The Measurement of Loudness Level," Journal of the Acoustical Society of America, Aug. 1971, pp. 405-414.
Current claims for JP foreign patent application No. 2006-510077 (2 pages).
Dolby Laboratories, Inc., "Dolby Model 737 Soundtrack Loudness Meter" brochure, Copyright 1998.
Dolby Laboratories, Inc., "Dolby Model 737 Soundtrack Loudness Meter," Copyright 2002.
Dolby Laboratories, Inc., "Dolby Model 737 Soundtrack Loudness Meter-Leq(m) Users' Manual Issue 3, Part No. 91533," Copyright 2000.
Dolby Laboratories, Inc., "Dolby Model DP564 Multichannel Audio Decoder Users' Manual Issue I, Part No. 91830," Copyright 2002.
Dolby Laboratories, Inc., "LM 100 Broadcast Loudness Meter Preliminary Information" brochure, Copyright 2002.
Dolby Laboratories, Inc., "LM 100 Broadcast Loudness Meter," Copyright 2002.
Dolby Laboratories, Inc., "Preliminary Specification LM100 Broadcast Loudness Meter," Copyright 2002.
Ioan Allen, "Are Movies Too Loud?," SMPTE Film Conference, Mar. 22, 1997.
JP Office Action for foreign patent application No. 2006-510077, dated Aug. 27, 2009 (4 pages of English translation and original OA).
Press Release-Dolby Laboratories, Inc., "Dolby Announces New Effort to Banish TV Volume Problems at AES-2002," 112th AES Convention in Munich, May 10-13, 2002.

Also Published As

Publication number Publication date
AU2004234721A1 (en) 2004-11-11
WO2004098050A2 (en) 2004-11-11
EP1616462A2 (en) 2006-01-18
USRE43132E1 (en) 2012-01-24
JP4829106B2 (en) 2011-12-07
EP1616462B1 (en) 2007-08-08
USRE45389E1 (en) 2015-02-24
AU2004234721B2 (en) 2008-12-04
CA2519607C (en) 2013-08-06
USRE44929E1 (en) 2014-06-03
DE602004008053T2 (en) 2008-04-17
US7251337B2 (en) 2007-07-31
USRE44261E1 (en) 2013-06-04
WO2004098050A3 (en) 2005-01-27
CA2519607A1 (en) 2004-11-11
ATE369720T1 (en) 2007-08-15
JP5285717B2 (en) 2013-09-11
JP2006524475A (en) 2006-10-26
CN100544504C (en) 2009-09-23
US20040213421A1 (en) 2004-10-28
CN1774955A (en) 2006-05-17
JP2011125042A (en) 2011-06-23
DE602004008053D1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
USRE45569E1 (en) Volume control for audio signals
US7551745B2 (en) Volume and compression control in movie theaters
AU761690B2 (en) Voice-to-remaining audio (VRA) interactive center channel downmix
EP1076928B1 (en) User adjustable volume control that accommodates hearing
Allen The X-Curve: Its Origins and History: Electro-Acoustic Characteristics in the Cinema and the Mix-Room, the Large Room and the Small
Moore A Proposal for a Standard to Improve Soundtrack Dynamic Range and Dialog Clarity for Better Enjoyment of Digital Cinema
Allen The X-Curve, its Origins and History

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOLBY LABORATORIES LICENSING CORPORATION, CALIFORN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JACOBS, STEPHEN;REEL/FRAME:028011/0513

Effective date: 20120403

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12