USRE45303E1 - Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly - Google Patents

Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly Download PDF

Info

Publication number
USRE45303E1
USRE45303E1 US13/895,671 US201313895671A USRE45303E US RE45303 E1 USRE45303 E1 US RE45303E1 US 201313895671 A US201313895671 A US 201313895671A US RE45303 E USRE45303 E US RE45303E
Authority
US
United States
Prior art keywords
depth
central frame
hydraulic cylinder
work units
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active - Reinstated
Application number
US13/895,671
Inventor
James W. Henry
Dean Knobloch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNH Industrial Canada Ltd
Original Assignee
CNH Industrial Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNH Industrial Canada Ltd filed Critical CNH Industrial Canada Ltd
Priority to US13/895,671 priority Critical patent/USRE45303E1/en
Assigned to CNH INDUSTRIAL CANADA, LTD. reassignment CNH INDUSTRIAL CANADA, LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CNH CANADA, LTD.
Application granted granted Critical
Publication of USRE45303E1 publication Critical patent/USRE45303E1/en
Active - Reinstated legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/14Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors
    • A01B63/16Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors with wheels adjustable relatively to the frame
    • A01B63/22Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors with wheels adjustable relatively to the frame operated by hydraulic or pneumatic means

Definitions

  • the present invention relates generally to farm and agricultural related machinery and, more particularly, to a method and system for controlling the depth of a work unit mounted to a frame that is raised and lowered by a hydraulic cylinder.
  • An agricultural implement is generally composed of a number of work units, such as seed or fertilizer dispensers, or soil preparation tools, e.g., discs, tillers, cultivators, plows, and the like, that are typically carried by an implement frame that is hitched to and towed by a tractor, combine or similar wheeled device.
  • the implement frame is generally supported above the ground by a pair of frame supporting wheels, which are mounted to wheel mounting spars that are rigidly attached to a rockshaft.
  • the rockshaft may be rotated by a hydraulic cylinder to effectively raise and lower the implement frame and thus the work units.
  • U.S. Pat. No. 6,076,611 to Rozendaal et al. discloses an implement mounted depth control system whereby an electronic position sensor is mounted to the implement frame and senses the rotational position of the rockshaft. The rotational position of the rockshaft is used by a monitor to derive a depth of the work units and control the hydraulic cylinder to raise or lower the implement frame to raise or lower the work units to an operator-selected depth.
  • the depth control system further allows an operator to raise and lower the implement frame using controls within the operator cab.
  • the present invention is directed to an agricultural implement towed by a tractor or other vehicle and having a depth control system in which a position sensor directly measures linear translation of a hydraulic cylinder that lifts and lowers the implement frame to set and adjust the depth of the implement frame.
  • the position sensor may be positioned adjacent or integrally formed with the hydraulic cylinder, and provides a signal to a controller remote from the implement.
  • the controller automatically adjusts the flow of hydraulic fluid to and from the hydraulic cylinder to maintain the depth of the implement frame at an operator-selected level.
  • an operator raises or lowers the implement frame to a desired depth.
  • the operator may then depress or otherwise activate a set depth selector that causes the controller to read the output of the position sensor.
  • the output of the position sensor has a voltage level that establishes a baseline voltage to which subsequent voltage readings of the position sensor are compared. More particularly, as the implement is towed along the field, voltage signals are output by the position sensor and those readings are compared by the controller to the baseline voltage.
  • the controller then controls the flow of hydraulic fluid to and from the cylinder so that the cylinder raises or lowers the implement frame.
  • new readings are provided by the position sensor and used by the controller to control hydraulic pressure to minimize the difference between the real-time readings of the position sensor and the baseline voltage.
  • the present invention also allows the operator to manually adjust the depth of the implement frame remotely from within the operator cab.
  • an agricultural machine includes a frame configured to carry a plurality of farming related work units.
  • a cylinder is coupled to the frame and configured to raise and lower the frame to adjust the depth of the work units.
  • a sensor is associated with the cylinder and measures the linear displacement of the cylinder. The output of the sensor is a value indicative of the linear displacement and thus is indicative of the depth of the frame.
  • a method of controlling the depth of an agricultural work unit includes providing a set-point value based on an initial position of the work unit and measuring a linear translation of a hydraulic cylinder coupled to the work unit. The method further includes providing a measured value based on the linear translation of the hydraulic cylinder and comparing the measured value to the set-point value. The method also includes controlling hydraulic fluid flow to and from the hydraulic cylinder based on the comparison to reduce a difference between the measured value and the set-point value.
  • a farming machine includes a frame and a plurality of work units coupled to the frame.
  • a hydraulic cylinder is coupled to the frame and operative to raise and lower the frame.
  • a sensor is proximate the cylinder and measures the linear displacement of the cylinder.
  • a control receives the output of the sensor and automatically controls pressure in the hydraulic cylinder based on the output of the sensor.
  • FIG. 1 is a top view of an agricultural machine and an agricultural implement hitched to the agricultural machine and having a depth control system according to one embodiment of the invention
  • FIG. 2 is a partial isometric view of the agricultural implement of FIG. 1 ;
  • FIG. 3 is a schematic diagram of a depth control system according to the present invention.
  • FIG. 4 is a flow chart setting forth the steps of a method of setting the depth of the agricultural implement of FIG. 1 .
  • the present invention is directed to an agricultural implement having a frame that carries a number of farming related tools, such as discs, tillers, sweeps, or dispensers, whose depth is controlled by a depth control system.
  • the depth control system includes a sensor, such as a linear potentiometer, that outputs a signal having characteristics that are a function of the linear displacement of a hydraulic cylinder that raises and lowers the implement frame.
  • the hydraulic cylinder includes an extendable piston or ram that when extended lifts the implement frame and when retracted lowers the implement frame.
  • the sensor includes an integrated linear position sensor, such as those described in U.S. Pat. Nos. 7,307,418, 7,259,553, and 7,034,527, the disclosures of which are incorporated herein by reference.
  • an implement 10 having a central frame 12 , two wings 14 and 16 pivotally coupled to the central frame, lift actuators 18 and 20 for lifting the wings above the frame, wheel actuators 22 , 24 , 26 , and 28 for raising and lowering wheel sets 30 , 32 , 34 , and 36 , front tool gang 38 fixed to the front of the frame and wings, rear tool gang 40 fixed to the rear of the frame and wings.
  • the implement may optionally have a leveling mechanism for leveling the implement, as described in U.S. Pat. No. 7,063,167.
  • Front tool gang 38 includes inner forward gang tubes 44 and 46 which are bolted to central frame 12 and extend laterally away from the central frame. These gang tubes have pivotal couplings 48 and 50 disposed at their outer ends to which outer forward gang tubes 52 , 54 , respectively, are pivotally connected.
  • Rear tool gang 40 includes inner rear gang tubes 56 and 58 which are bolted to central frame 12 and extend laterally away from the central frame. These gang tubes have pivotal couplings 60 and 62 disposed at their outer ends to which outer rearward gang tubes 64 and 66 , respectively, are pivotally connected.
  • a plurality of ground engaging tools here shown as discs 68 , are fixed to and disposed below each of the gang tubes. Like each pair of inner and outer gang tubes themselves, these discs are arranged in a substantially straight line.
  • the gang tubes on each side of the implement are bolted to a wing frame on that side of the implement.
  • Outer gang tubes 52 and 64 are coupled to wing frame 70
  • outer gang tubes 54 and 66 are coupled to wing frame 72 .
  • the outer gang tubes are pivotally coupled to the inner gang tubes to permit them to be lifted above and over the central frame to permit the implement to be folded up for clearance when towed over the road.
  • This lifting is provided by lift actuators 18 and 20 , here shown as hydraulic cylinders.
  • Lift actuator 18 is coupled between central frame 12 and wing frame 70 to lift wing 14
  • lift actuator 20 is coupled between central frame 14 and wing frame 72 to lift wing 16 .
  • lift actuators 18 and 20 When lift actuators 18 and 20 are retracted, they pull their associated wings 14 and 16 upward and over the top of central frame 12 about pivotal couplings 48 , 60 , and 50 , 62 , respectively.
  • Wing 14 includes wing frame 70 , front and rear gang tubes 52 and 64 , respectively, and the ground engaging tools attached to those tubes.
  • Wing 16 includes wing frame 72 , front and rear gang tubes 54 and 66 , and the ground engaging tools attached to those tubes.
  • central frame 12 includes two fore-and-aft extending members 74 and 76 to which wheel sets 32 and 34 , respectively, are pivotally mounted.
  • Side-to-side members 78 and 80 are disposed at the front and rear, respectively, of the frame and are coupled to members 74 and 76 to form a substantially rectangular framework.
  • a tongue 82 is coupled to central frame 12 and allows the implement to be hitched to a tractor in a known manner.
  • a rockshaft 84 extends laterally across central frame 12 and is supported in rotation at each end by bearings 86 and 88 that are mounted on fore-and-aft members 74 and 76 , respectively.
  • Bearings 86 and 88 constrain rockshaft 84 to rotate about its longitudinal axis with respect to central frame 12 .
  • Four wheel supports 90 , 92 , 94 and 96 extend downward and rearwardly from rockshaft 84 to which they are attached.
  • Wheel supports 90 and 92 are disposed on the inside and the outside, respectively, of bearing 86 and member 74 to which bearing 86 is attached.
  • Wheel supports 94 and 96 are disposed on the inside and outside, respectively, of bearing 88 and fore-and-aft member 76 to which bearing 86 is attached.
  • axles 98 and 100 are provided to which wheel sets 32 and 34 are mounted for rotation.
  • Axle 98 is mounted to the outer ends of wheel supports 90 and 92
  • axle 100 is mounted to the outer ends of wheel supports 94 and 96 .
  • Wheel set 32 has two wheels that are mounted to opposing ends of axle 98
  • wheel set 34 has two wheels that are mounted to opposing ends of axle 100 .
  • the wheels in each wheel set are disposed on opposite sides of their associated fore-and-aft member, one inside and one outside.
  • Wheel actuators 24 and 26 are pivotally coupled to fore-and-aft members 74 and 76 , at one end, and at the other end to brackets 102 and 104 .
  • Brackets 102 and 104 are mounted to rockshaft 84 to rotate with rockshaft 84 .
  • brackets 102 and 104 When wheel actuators 24 and 26 are retracted, the wheels are raised thereby causing a lowering of the implement and the work units coupled thereto.
  • actuators 24 and 26 When actuators 24 and 26 are extended, they push the upper ends of brackets 102 and 104 away from the actuators toward the rear of the implement.
  • the lower ends of brackets 102 and 104 are coupled to rockshaft 84 , which causes rockshaft 84 to rotate clockwise.
  • This clockwise rotation causes wheel supports 90 , 92 , 94 and 96 to also rotate clockwise.
  • the outer ends of the wheels supports and the two wheels sets coupled to the wheel supports also lower.
  • the wheels pivot about rockshaft 84 as they are lowered thereby lifting the implement.
  • the actuators 24 and 26 are hydraulic cylinders, with one of the cylinders including an integrated linear position sensor, such as those described in U.S. Pat. Nos. 7,307,418, 7,259,553, and 7,034,527, the disclosures of which are incorporated herein by reference. It is contemplated however that both cylinders may include a position sensor.
  • the depth control system 106 is schematically illustrated in FIG. 3 and controls the flow of hydraulic fluid to and from depth control hydraulic cylinder 108 .
  • Piston 110 is extendable and retractable from cylinder 108 and has an integrated linear potentiometer that provides a signal to a controller 114 of the tractor T.
  • the controller 114 selectively energizes a raise solenoid 116 and a lower solenoid 118 .
  • Hydraulic fluid is supplied to the cylinder 108 through supply port 120 and is returned through a return port 122 .
  • the solenoids 116 and 118 are fluidly connected to a fluid reservoir 124 that includes a pump 126 .
  • the controller 114 selectively energizes the solenoids 116 , 118 to maintain the depth of the implement at an operator selected level, which is selected using appropriate operator controls 128 within the operator cab of the tractor.
  • the operator cab may also include various displays 130 to provide feedback regarding operation of the depth control system and other systems of the implement or tractor.
  • the feedback provided by the integrated potentiometer 112 is used by the controller 114 to derive a relative depth of the implement 10 . More particularly, and referring now to FIG. 4 , the operator manually sets the implement to a desired depth. The depth can be set remotely using controls within the operator cab of the tractor if so equipped or at the implement itself. Once the depth has been selected, the operator activates a set-depth control which is detected by the controller at block 132 . Responsive thereto, the controller 114 reads and stores the output of the potentiometer 112 integrally formed with the cylinder 108 . The output of the potentiometer provides a baseline voltage that is stored in memory at block 134 .
  • the controller 114 iteratively reads the output of the potentiometer 112 . Any leakage of hydraulic fluid as the implement is being towed, which can cause a change in the depth of the implement, is detected by a change in the voltage output of the potentiometer 112 . That is, as the piston 110 is retracted and extended as a result of unintended changes in the flow of hydraulic fluid to and from the cylinder 108 , the output of the potentiometer 112 will also change. Those changes are detected by the controller at block 136 and compared to the baseline voltage at block 138 .
  • the controller selectively energizes one of the solenoids at block 140 to either extend or retract the piston 110 until the output voltage of the potentiometer 112 equals, within some tolerance, the baseline voltage. If the voltage substantially equals the baseline voltage, the controller 114 returns to block 136 with continued monitoring of the potentiometer.
  • one of the wheel actuators includes a cylinder with an integrated potentiometer.
  • each wheel actuator may have a cylinder with an integrated potentiometer and that the hydraulic pressure in the cylinders can be independently controlled to independently vary the position of the wheel actuators.
  • the position sensor is integrally formed with the hydraulic cylinder and its piston, but it is understood that other types of sensors could be used to directly measure the position of the piston and cylinder relative to one another. Moreover, sensors that measure voltage changes as a function of the displacement of a cylinder is representative and as such sensors that measure other types of parameters, such as sound, current, force, and the like, may be used and are considered within the scope of the invention.
  • the output of the sensor could be provided to the controller in a wired or wireless transmission.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

An agricultural implement has a depth control system in which a position sensor directly measures linear translation of a hydraulic cylinder that lifts and lowers the implement frame to set and adjust the depth of the implement frame. The position sensor may be positioned adjacent to or integrally formed with the hydraulic cylinder, and provides a voltage to a controller remote from the implement. The controller automatically adjusts the flow of hydraulic fluid to and from the hydraulic cylinder to maintain the depth of the implement frame at an operator-selected level.

Description

FIELD OF THE INVENTION
The present invention relates generally to farm and agricultural related machinery and, more particularly, to a method and system for controlling the depth of a work unit mounted to a frame that is raised and lowered by a hydraulic cylinder.
BACKGROUND OF THE INVENTION
An agricultural implement is generally composed of a number of work units, such as seed or fertilizer dispensers, or soil preparation tools, e.g., discs, tillers, cultivators, plows, and the like, that are typically carried by an implement frame that is hitched to and towed by a tractor, combine or similar wheeled device. The implement frame is generally supported above the ground by a pair of frame supporting wheels, which are mounted to wheel mounting spars that are rigidly attached to a rockshaft. The rockshaft may be rotated by a hydraulic cylinder to effectively raise and lower the implement frame and thus the work units.
For many agricultural implements, it is necessary for an operator to manually raise and lower the implement frame and the hydraulic cylinder holds the implement frame at the position set by the operator. More particularly, conventional depth control systems utilize a poppet valve to stop the flow of hydraulic fluid to the hydraulic cylinder to set the depth of the implement frame and thus the work units. Such stop valves have been found to be inconsistent in setting the depth of the implement frame and the valve is set until hydraulic fluid flow is reversed.
More recently, implements have been designed whereby the depth of the implement frame is monitored and hydraulic fluid flow to the hydraulic cylinder is controlled accordingly. U.S. Pat. No. 6,076,611 to Rozendaal et al. discloses an implement mounted depth control system whereby an electronic position sensor is mounted to the implement frame and senses the rotational position of the rockshaft. The rotational position of the rockshaft is used by a monitor to derive a depth of the work units and control the hydraulic cylinder to raise or lower the implement frame to raise or lower the work units to an operator-selected depth. The depth control system further allows an operator to raise and lower the implement frame using controls within the operator cab.
SUMMARY OF THE INVENTION
The present invention is directed to an agricultural implement towed by a tractor or other vehicle and having a depth control system in which a position sensor directly measures linear translation of a hydraulic cylinder that lifts and lowers the implement frame to set and adjust the depth of the implement frame. The position sensor may be positioned adjacent or integrally formed with the hydraulic cylinder, and provides a signal to a controller remote from the implement. In one implementation, the controller automatically adjusts the flow of hydraulic fluid to and from the hydraulic cylinder to maintain the depth of the implement frame at an operator-selected level.
Thus, in one embodiment, an operator raises or lowers the implement frame to a desired depth. The operator may then depress or otherwise activate a set depth selector that causes the controller to read the output of the position sensor. The output of the position sensor has a voltage level that establishes a baseline voltage to which subsequent voltage readings of the position sensor are compared. More particularly, as the implement is towed along the field, voltage signals are output by the position sensor and those readings are compared by the controller to the baseline voltage. The controller then controls the flow of hydraulic fluid to and from the cylinder so that the cylinder raises or lowers the implement frame. As the frame is raised or lowered, new readings are provided by the position sensor and used by the controller to control hydraulic pressure to minimize the difference between the real-time readings of the position sensor and the baseline voltage. The present invention also allows the operator to manually adjust the depth of the implement frame remotely from within the operator cab.
Therefore, in accordance with one aspect of the invention, an agricultural machine includes a frame configured to carry a plurality of farming related work units. A cylinder is coupled to the frame and configured to raise and lower the frame to adjust the depth of the work units. A sensor is associated with the cylinder and measures the linear displacement of the cylinder. The output of the sensor is a value indicative of the linear displacement and thus is indicative of the depth of the frame.
In accordance with another aspect of the invention, a method of controlling the depth of an agricultural work unit is provided. The method includes providing a set-point value based on an initial position of the work unit and measuring a linear translation of a hydraulic cylinder coupled to the work unit. The method further includes providing a measured value based on the linear translation of the hydraulic cylinder and comparing the measured value to the set-point value. The method also includes controlling hydraulic fluid flow to and from the hydraulic cylinder based on the comparison to reduce a difference between the measured value and the set-point value.
According to a further aspect of the invention, a farming machine includes a frame and a plurality of work units coupled to the frame. A hydraulic cylinder is coupled to the frame and operative to raise and lower the frame. A sensor is proximate the cylinder and measures the linear displacement of the cylinder. A control receives the output of the sensor and automatically controls pressure in the hydraulic cylinder based on the output of the sensor.
Other objects, features, and advantages of the invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout.
In the drawings:
FIG. 1 is a top view of an agricultural machine and an agricultural implement hitched to the agricultural machine and having a depth control system according to one embodiment of the invention;
FIG. 2 is a partial isometric view of the agricultural implement of FIG. 1;
FIG. 3 is a schematic diagram of a depth control system according to the present invention; and
FIG. 4 is a flow chart setting forth the steps of a method of setting the depth of the agricultural implement of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to an agricultural implement having a frame that carries a number of farming related tools, such as discs, tillers, sweeps, or dispensers, whose depth is controlled by a depth control system. As will be described, the depth control system includes a sensor, such as a linear potentiometer, that outputs a signal having characteristics that are a function of the linear displacement of a hydraulic cylinder that raises and lowers the implement frame. As known in the art, the hydraulic cylinder includes an extendable piston or ram that when extended lifts the implement frame and when retracted lowers the implement frame. In one embodiment, the sensor includes an integrated linear position sensor, such as those described in U.S. Pat. Nos. 7,307,418, 7,259,553, and 7,034,527, the disclosures of which are incorporated herein by reference.
In FIG. 1, an implement 10 is illustrated having a central frame 12, two wings 14 and 16 pivotally coupled to the central frame, lift actuators 18 and 20 for lifting the wings above the frame, wheel actuators 22, 24, 26, and 28 for raising and lowering wheel sets 30, 32, 34, and 36, front tool gang 38 fixed to the front of the frame and wings, rear tool gang 40 fixed to the rear of the frame and wings. The implement may optionally have a leveling mechanism for leveling the implement, as described in U.S. Pat. No. 7,063,167.
Front tool gang 38 includes inner forward gang tubes 44 and 46 which are bolted to central frame 12 and extend laterally away from the central frame. These gang tubes have pivotal couplings 48 and 50 disposed at their outer ends to which outer forward gang tubes 52, 54, respectively, are pivotally connected.
Rear tool gang 40 includes inner rear gang tubes 56 and 58 which are bolted to central frame 12 and extend laterally away from the central frame. These gang tubes have pivotal couplings 60 and 62 disposed at their outer ends to which outer rearward gang tubes 64 and 66, respectively, are pivotally connected.
A plurality of ground engaging tools, here shown as discs 68, are fixed to and disposed below each of the gang tubes. Like each pair of inner and outer gang tubes themselves, these discs are arranged in a substantially straight line.
The gang tubes on each side of the implement are bolted to a wing frame on that side of the implement. Outer gang tubes 52 and 64 are coupled to wing frame 70, and outer gang tubes 54 and 66 are coupled to wing frame 72.
The outer gang tubes are pivotally coupled to the inner gang tubes to permit them to be lifted above and over the central frame to permit the implement to be folded up for clearance when towed over the road. This lifting is provided by lift actuators 18 and 20, here shown as hydraulic cylinders. Lift actuator 18 is coupled between central frame 12 and wing frame 70 to lift wing 14, and lift actuator 20 is coupled between central frame 14 and wing frame 72 to lift wing 16. When lift actuators 18 and 20 are retracted, they pull their associated wings 14 and 16 upward and over the top of central frame 12 about pivotal couplings 48, 60, and 50, 62, respectively.
Wing 14 includes wing frame 70, front and rear gang tubes 52 and 64, respectively, and the ground engaging tools attached to those tubes. Wing 16 includes wing frame 72, front and rear gang tubes 54 and 66, and the ground engaging tools attached to those tubes.
Referring to FIG. 2, central frame 12 includes two fore-and- aft extending members 74 and 76 to which wheel sets 32 and 34, respectively, are pivotally mounted. Side-to- side members 78 and 80 are disposed at the front and rear, respectively, of the frame and are coupled to members 74 and 76 to form a substantially rectangular framework. A tongue 82 is coupled to central frame 12 and allows the implement to be hitched to a tractor in a known manner.
A rockshaft 84 extends laterally across central frame 12 and is supported in rotation at each end by bearings 86 and 88 that are mounted on fore-and-aft members 74 and 76, respectively. Bearings 86 and 88 constrain rockshaft 84 to rotate about its longitudinal axis with respect to central frame 12. Four wheel supports 90, 92, 94 and 96 extend downward and rearwardly from rockshaft 84 to which they are attached. Wheel supports 90 and 92 are disposed on the inside and the outside, respectively, of bearing 86 and member 74 to which bearing 86 is attached. Wheel supports 94 and 96 are disposed on the inside and outside, respectively, of bearing 88 and fore-and-aft member 76 to which bearing 86 is attached. Thus, when rockshaft 84 rotates, it causes the outer ends of wheel supports 90, 92, 94 and 96 to simultaneously and equally raise or lower with respect to central frame 12. Two axles 98 and 100 are provided to which wheel sets 32 and 34 are mounted for rotation. Axle 98 is mounted to the outer ends of wheel supports 90 and 92, and axle 100 is mounted to the outer ends of wheel supports 94 and 96. Wheel set 32 has two wheels that are mounted to opposing ends of axle 98, and wheel set 34 has two wheels that are mounted to opposing ends of axle 100. The wheels in each wheel set are disposed on opposite sides of their associated fore-and-aft member, one inside and one outside. Wheel actuators 24 and 26 are pivotally coupled to fore-and-aft members 74 and 76, at one end, and at the other end to brackets 102 and 104. Brackets 102 and 104 are mounted to rockshaft 84 to rotate with rockshaft 84.
When wheel actuators 24 and 26 are retracted, the wheels are raised thereby causing a lowering of the implement and the work units coupled thereto. When actuators 24 and 26 are extended, they push the upper ends of brackets 102 and 104 away from the actuators toward the rear of the implement. The lower ends of brackets 102 and 104 are coupled to rockshaft 84, which causes rockshaft 84 to rotate clockwise. This clockwise rotation causes wheel supports 90, 92, 94 and 96 to also rotate clockwise. As the wheel supports rotate clockwise, the outer ends of the wheels supports and the two wheels sets coupled to the wheel supports also lower. As a result, the wheels pivot about rockshaft 84 as they are lowered thereby lifting the implement.
In one embodiment, the actuators 24 and 26 are hydraulic cylinders, with one of the cylinders including an integrated linear position sensor, such as those described in U.S. Pat. Nos. 7,307,418, 7,259,553, and 7,034,527, the disclosures of which are incorporated herein by reference. It is contemplated however that both cylinders may include a position sensor.
The depth control system 106 is schematically illustrated in FIG. 3 and controls the flow of hydraulic fluid to and from depth control hydraulic cylinder 108. Piston 110 is extendable and retractable from cylinder 108 and has an integrated linear potentiometer that provides a signal to a controller 114 of the tractor T. As will be described, the controller 114 selectively energizes a raise solenoid 116 and a lower solenoid 118. Hydraulic fluid is supplied to the cylinder 108 through supply port 120 and is returned through a return port 122. The solenoids 116 and 118 are fluidly connected to a fluid reservoir 124 that includes a pump 126.
When raise solenoid 116 is energized, hydraulic fluid is supplied to the cylinder 108 along a fluid path between reservoir 124 and cylinder 108, thereby causing an extension of piston 110 that is coupled to bracket 102, FIG. 2. As the piston is extended, the bracket 102 rotates rearwardly or in a counterclockwise direction thereby causing the implement to lift. Conversely, when solenoid 118 is energized, a fluid path is open between the cylinder 108 and the reservoir 124 resulting in fluid being drawing from the cylinder 108. This causes a retraction of the piston 110 and thus a lowering of the implement.
The controller 114 selectively energizes the solenoids 116, 118 to maintain the depth of the implement at an operator selected level, which is selected using appropriate operator controls 128 within the operator cab of the tractor. The operator cab may also include various displays 130 to provide feedback regarding operation of the depth control system and other systems of the implement or tractor.
The feedback provided by the integrated potentiometer 112 is used by the controller 114 to derive a relative depth of the implement 10. More particularly, and referring now to FIG. 4, the operator manually sets the implement to a desired depth. The depth can be set remotely using controls within the operator cab of the tractor if so equipped or at the implement itself. Once the depth has been selected, the operator activates a set-depth control which is detected by the controller at block 132. Responsive thereto, the controller 114 reads and stores the output of the potentiometer 112 integrally formed with the cylinder 108. The output of the potentiometer provides a baseline voltage that is stored in memory at block 134. As the implement is towed along the field, the controller 114 iteratively reads the output of the potentiometer 112. Any leakage of hydraulic fluid as the implement is being towed, which can cause a change in the depth of the implement, is detected by a change in the voltage output of the potentiometer 112. That is, as the piston 110 is retracted and extended as a result of unintended changes in the flow of hydraulic fluid to and from the cylinder 108, the output of the potentiometer 112 will also change. Those changes are detected by the controller at block 136 and compared to the baseline voltage at block 138. If the position of the piston 110 has changed, which would result in a change in the depth of the implement, the voltage output of the potentiometer 112 will differ from the baseline voltage. Thus, if the voltage is different, the controller selectively energizes one of the solenoids at block 140 to either extend or retract the piston 110 until the output voltage of the potentiometer 112 equals, within some tolerance, the baseline voltage. If the voltage substantially equals the baseline voltage, the controller 114 returns to block 136 with continued monitoring of the potentiometer.
In the above described embodiment, one of the wheel actuators includes a cylinder with an integrated potentiometer. Thus, changes in depth readings are measured at that cylinder and any changes in hydraulic flow to maintain the depth of the implement at the operator selected level are made in that and the other wheel actuators. It is also contemplated however that each wheel actuator may have a cylinder with an integrated potentiometer and that the hydraulic pressure in the cylinders can be independently controlled to independently vary the position of the wheel actuators.
In a preferred embodiment, the position sensor is integrally formed with the hydraulic cylinder and its piston, but it is understood that other types of sensors could be used to directly measure the position of the piston and cylinder relative to one another. Moreover, sensors that measure voltage changes as a function of the displacement of a cylinder is representative and as such sensors that measure other types of parameters, such as sound, current, force, and the like, may be used and are considered within the scope of the invention.
Additionally, it is recognized that the output of the sensor could be provided to the controller in a wired or wireless transmission.
Many changes and will modifications could be made to the invention without departing from the spirit thereof. The scope of these changes will become apparent from the appended claims.

Claims (10)

We claim:
1. An agricultural machine, comprising:
a central frame configured to carry a plurality of farming related work units;
left and right wheel sets pivotally mounted to the central frame;
a left wheel actuator interconnecting the left wheel set and the central frame and being configured to raise and lower the central frame to adjust a depth of the work units, the left wheel actuator including a hydraulic cylinder and a piston extendable and retractable from the hydraulic cylinder;
a right wheel actuator interconnecting the right wheel set and the central frame and being configured to raise and lower the central frame to adjust a depth of the work units, the right wheel actuator including a hydraulic cylinder and a piston extendable and retractable from the hydraulic cylinder of the right wheel actuator;
a depth control system controlling the a flow of hydraulic fluid to and from the hydraulic cylinders of the left and right wheel actuators;
a left position sensor integrally formed with the hydraulic cylinder and the piston of the left wheel actuator, the left position sensor configured to measure a linear displacement of the piston of the left wheel actuator and provide a signal to the depth control system indicative of a depth of a first portion of the central frame;
a right position sensor integrally formed with the hydraulic cylinder and the piston of the right wheel actuator, the right position sensor configured to measure a linear displacement of the piston of the right wheel actuator and provide a signal to the depth control system indicative of a depth of a second portion of the central frame;
wherein:
at least one of the left and right position sensors is a linear potentiometer instrument that is configured to output a signal having a voltage that changes with linear displacement of the piston of the corresponding hydraulic cylinder;
the depth control system including a controller that receives the signal from the linear potentiometer and can store the voltage of the signal to define a baseline voltage upon selection of a depth of the plurality of farming related work units by an operator, the controller controlling flow of hydraulic fluid to the hydraulic cylinders so as to automatically control pressures in the hydraulic cylinders of the left and right wheel actuators in response to the signals received from the left and right position sensors relative to the baseline voltage to raise and lower the central frame such that the depth of the plurality of farming related work units is maintained at the depth of the plurality of farming related work units that was selected by the operator.
2. The agricultural machine of claim 1 wherein the work units are seed or fertilizer dispensers.
3. The agricultural machine of claim 1 wherein the work units are soil preparation devices.
4. The agricultural machine of claim 1 wherein the controller is further configured to control the flow of hydraulic fluid to the cylinders to minimize a difference between an instantaneous values of parameters measured by the sensors and set point values for the parameters.
5. The agricultural machine of claim 1 further comprising a fluid reservoir fluidly connected to the hydraulic cylinders and solenoids communicatively connected to the controller, wherein the controller controls operation of the solenoids to deliver hydraulic fluid to the hydraulic cylinders based on outputs of the linear potentiometers.
6. The agricultural machine of claim 5 wherein the fluid reservoir contains hydraulic oil.
7. The agricultural machine of claim 1 further comprising an operator cab remote from the central frame and comprising operator controls that allow an operator to vary the depth of the work units from within the operator cab.
8. A farming machine comprising:
a central frame, wherein said central frame includes first and second fore-and-aft extending members;
a left and right wheel set pivotally mounted on said first and second fore-and-aft extending members; respectively;
a front and back side member connected to said fore-and-aft members;
a left and right bearing mounted on each of said fore-and-aft members;
a rockshaft having opposing ends extending laterally across said central frame, wherein said left and right bearings constrain said rockshaft to rotate about a longitudinal axis with respect to said central frame;
a left bracket mounted on one of the outer ends of said rockshaft;
a right bracket mounted on opposing end of said rockshaft;
a plurality of work units coupled to the central frame;
a left hydraulic cylinder coupled to the first fore-and-aft member at one end and at the left bracket;
a right hydraulic cylinder coupled to the second fore-and-aft member at one end and at the said right bracket;
said left and right hydraulic cylinder operative to raise and lower the central frame;
a depth control system controlling the a flow of hydraulic fluid to and from the hydraulic cylinders, the hydraulic cylinders being depth control hydraulic cylinders;
pistons extendable and retractable from the depth control hydraulic cylinders;
sensors that measures linear displacement of the pistons with respect to the depth control hydraulic cylinders, the sensors integrally formed with the depth control hydraulic cylinders and the pistons so that each sensor outputs a signal with a voltage that corresponds to a position of relative extension or retraction of the piston with respect to the respective depth control hydraulic cylinder; and
a controller that receives the signals of the sensors, the controller including a memory and a set-depth control that can be activated by an operator when the plurality of work units has achieved a first depth that is set by the operator such that, upon activation of the set-depth control, the controller receives the signals from the sensors and stores the voltages of the signals in the memory so as to define a baseline voltage that is indicative of the position of relative extension or retraction of the piston with respect to the respective depth control hydraulic cylinder that corresponds to the first depth of the plurality of work units, and wherein the controller iteratively receives signals from the sensors and independently controls pressure in the depth control hydraulic cylinders based on the outputs of the sensors to raise and lower the central frame so as to attenuate deviation of the voltages from the baseline voltage and maintain the first depth of the plurality of work units.
9. The farming machine of claim 8 wherein the sensors are contained within the hydraulic cylinders.
10. The farming machine of claim 8 wherein the work units are one of seed or fertilizer dispensers and soil preparation tools.
US13/895,671 2008-06-05 2013-05-16 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly Active - Reinstated USRE45303E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/895,671 USRE45303E1 (en) 2008-06-05 2013-05-16 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/133,632 US8235130B2 (en) 2008-06-05 2008-06-05 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly
US13/895,671 USRE45303E1 (en) 2008-06-05 2013-05-16 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/133,632 Reissue US8235130B2 (en) 2008-06-05 2008-06-05 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly

Publications (1)

Publication Number Publication Date
USRE45303E1 true USRE45303E1 (en) 2014-12-30

Family

ID=41397425

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/133,632 Ceased US8235130B2 (en) 2008-06-05 2008-06-05 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly
US13/895,671 Active - Reinstated USRE45303E1 (en) 2008-06-05 2013-05-16 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/133,632 Ceased US8235130B2 (en) 2008-06-05 2008-06-05 Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly

Country Status (2)

Country Link
US (2) US8235130B2 (en)
CA (1) CA2648442C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053944A1 (en) * 2018-08-17 2020-02-20 Harvest International, Inc. Toolbar with hydraulic height control
US11470757B2 (en) 2019-04-25 2022-10-18 Cnh Industrial America Llc Plough
US11558993B2 (en) 2020-03-26 2023-01-24 Cnh Industrial America Llc Soil monitoring system for an agricultural tillage implement
US11602092B2 (en) 2020-03-26 2023-03-14 Cnh Industrial America Llc Frame control system for an agricultural implement
US11617294B2 (en) 2020-03-26 2023-04-04 Cnh Industrial America Llc Orientation control system for an agricultural implement
US11638393B2 (en) 2020-03-26 2023-05-02 Cnh Industrial America Llc Ground engaging tool monitoring system
US11730076B2 (en) 2020-03-26 2023-08-22 Cnh Industrial America Llc Control system for an agricultural implement
US12022756B2 (en) 2020-03-26 2024-07-02 Cnh Industrial America Llc Orientation control system for an agricultural implement

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336639B2 (en) * 2010-11-04 2012-12-25 Agco Corporation Implement tongue locking mechanism
US8857530B2 (en) 2011-03-07 2014-10-14 Cnh Industrial Canada, Ltd. Automatic depth control system for an agricultural implement
SE535908C2 (en) * 2011-03-14 2013-02-12 Vaederstad Verken Ab Agricultural implements and procedure for controlling an agricultural implement
UA115123C2 (en) * 2011-06-03 2017-09-25 Пресіжн Плентінг Елелсі Agricultural toolbar apparatus, systems, and methods
US8573319B1 (en) 2012-06-20 2013-11-05 Deere & Company Position and pressure depth control system for an agricultural implement
CA2866050C (en) * 2013-12-11 2019-02-26 Cnh Industrial Canada, Ltd. Agricultural implement actuator sensor protection
CA2866045C (en) 2013-12-11 2019-12-31 Cnh Industrial Canada, Ltd. Remote leveling of tillage implements using three way valves
US10299423B2 (en) 2013-12-11 2019-05-28 Cnh Industrial Canada, Ltd. Computer controlled hydraulic bleed sequence
US9554504B2 (en) 2014-02-19 2017-01-31 Shane Houck Depth control for a seed planting system
US10070574B2 (en) 2014-12-02 2018-09-11 Cnh Industrial America Llc Agricultural tillage implement fold/raise and lower control
US9615499B2 (en) * 2014-12-03 2017-04-11 Cnh Industrial Canada, Ltd. Hydraulic work unit leveling and calibration system for an agricultural implement
US9826677B2 (en) 2014-12-16 2017-11-28 Cnh Industrial Canada, Ltd. Seed implement incorporating a down pressure sensing and adjustment system
US10440876B2 (en) 2016-03-02 2019-10-15 Deere & Company Automated leveling and depth control system of a work machine and method thereof
US10667454B2 (en) 2016-03-02 2020-06-02 Deere & Company Hydraulic control system of an implement for a work machine and method thereof
US10750653B2 (en) 2016-03-02 2020-08-25 Deere & Company Automated leveling and depth control system of a work machine and method thereof
US9980422B2 (en) 2016-06-15 2018-05-29 Cnh Industrial America Llc System and method for leveling an agricultural implement
US10264724B2 (en) 2017-01-17 2019-04-23 Cnh Industrial America Llc Depth and down pressure control of an agricultural fertilizer row unit
US10182522B2 (en) 2017-01-17 2019-01-22 Cnh Industrial America Llc Depth control of an agricultural fertilizer row unit
DE102017121152B4 (en) * 2017-04-24 2023-10-26 Pöttinger Landtechnik Gmbh Agricultural tillage equipment
US11122725B2 (en) 2017-06-21 2021-09-21 Honey Bee Manufacturing Ltd. Tillage apparatuses and related methods
US10779454B2 (en) 2018-01-30 2020-09-22 Exmark Manufacturing Company, Incorporated Soil penetrating apparatus with depth control
US11019762B2 (en) 2018-07-12 2021-06-01 Cnh Industrial Canada, Ltd. Precision depth control of seed planting units of an agricultural implement
US10798866B2 (en) * 2018-08-10 2020-10-13 Cnh Industrial America Llc Depth control system for raising and lowering a work unit of an implement
US12114584B2 (en) 2020-10-30 2024-10-15 Honey Bee Manufacturing Ltd. Agricultural implement with tine assembly
PL4070634T3 (en) 2021-04-08 2024-05-20 Czajkowski Maszyny Sp. Z O.O. Cultivator for tillage and/or for spreading of seeds and/or fertilisers

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1043003A (en) 1976-10-18 1978-11-21 James M. Sakundiak Depth sensing system for tillage implements
US4221266A (en) 1978-10-13 1980-09-09 International Harvester Company Digital memory depth tillage system
US4279138A (en) 1978-04-20 1981-07-21 C. Van Der Lely N. V. Vehicle with a lifting device responsive to ground irregularities
US4506898A (en) 1984-02-02 1985-03-26 Hesston Corporation Drift eliminator for series hydraulic lift system on tillage implements and the like
US4600060A (en) 1983-10-28 1986-07-15 Deere & Company Depth sensing structure for an agricultural implement
DE3743552A1 (en) 1987-12-22 1989-07-13 Kloeckner Humboldt Deutz Ag Hydraulic lifting device on a tractor
US5160239A (en) * 1988-09-08 1992-11-03 Caterpillar Inc. Coordinated control for a work implement
US5300918A (en) 1992-03-06 1994-04-05 Deere & Company Shaft rotary position sensor
US5339906A (en) 1993-01-08 1994-08-23 Deere & Company Positon feedback mechanism for an implement
US6076611A (en) 1998-12-17 2000-06-20 Agco Corporation Implement mounted depth control system
US6085846A (en) 1999-07-01 2000-07-11 Automatic Depth Control, Llc Potentiometer-based gauge wheel device positioning system and method
US6129155A (en) * 1998-12-02 2000-10-10 Caterpillar Inc. Method and apparatus for controlling a work implement having multiple degrees of freedom
US6269885B1 (en) * 1999-12-15 2001-08-07 Husco International, Inc. Blade height control system for a motorized grader
US6371214B1 (en) * 1999-06-11 2002-04-16 Caterpillar Inc. Methods for automating work machine functions
US6698523B2 (en) 2002-07-02 2004-03-02 Husco International, Inc. Electrohydraulic control system for implement lift cylinders
US20050173137A1 (en) 2004-02-10 2005-08-11 Buchl Gregg N. Selective position control system and method
US7034527B2 (en) 2003-05-06 2006-04-25 Sri International Systems of recording piston rod position information in a magnetic layer on a piston rod
US7063167B1 (en) 2000-06-16 2006-06-20 Case Corporation Self leveling towed implement
US20070066374A1 (en) * 2005-09-19 2007-03-22 Cnh America Llc Compactor control logic for a cotton harvester
US7259553B2 (en) 2005-04-13 2007-08-21 Sri International System and method of magnetically sensing position of a moving component

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1043003A (en) 1976-10-18 1978-11-21 James M. Sakundiak Depth sensing system for tillage implements
US4279138A (en) 1978-04-20 1981-07-21 C. Van Der Lely N. V. Vehicle with a lifting device responsive to ground irregularities
US4221266A (en) 1978-10-13 1980-09-09 International Harvester Company Digital memory depth tillage system
US4600060A (en) 1983-10-28 1986-07-15 Deere & Company Depth sensing structure for an agricultural implement
US4506898A (en) 1984-02-02 1985-03-26 Hesston Corporation Drift eliminator for series hydraulic lift system on tillage implements and the like
DE3743552A1 (en) 1987-12-22 1989-07-13 Kloeckner Humboldt Deutz Ag Hydraulic lifting device on a tractor
US5160239A (en) * 1988-09-08 1992-11-03 Caterpillar Inc. Coordinated control for a work implement
US5300918A (en) 1992-03-06 1994-04-05 Deere & Company Shaft rotary position sensor
US5339906A (en) 1993-01-08 1994-08-23 Deere & Company Positon feedback mechanism for an implement
US6129155A (en) * 1998-12-02 2000-10-10 Caterpillar Inc. Method and apparatus for controlling a work implement having multiple degrees of freedom
US6076611A (en) 1998-12-17 2000-06-20 Agco Corporation Implement mounted depth control system
US6371214B1 (en) * 1999-06-11 2002-04-16 Caterpillar Inc. Methods for automating work machine functions
US6085846A (en) 1999-07-01 2000-07-11 Automatic Depth Control, Llc Potentiometer-based gauge wheel device positioning system and method
US6269885B1 (en) * 1999-12-15 2001-08-07 Husco International, Inc. Blade height control system for a motorized grader
US7063167B1 (en) 2000-06-16 2006-06-20 Case Corporation Self leveling towed implement
US6698523B2 (en) 2002-07-02 2004-03-02 Husco International, Inc. Electrohydraulic control system for implement lift cylinders
US7034527B2 (en) 2003-05-06 2006-04-25 Sri International Systems of recording piston rod position information in a magnetic layer on a piston rod
US7307418B2 (en) 2003-05-06 2007-12-11 Sri International Systems for recording position information in a magnetic layer on a piston rod
US20050173137A1 (en) 2004-02-10 2005-08-11 Buchl Gregg N. Selective position control system and method
US7259553B2 (en) 2005-04-13 2007-08-21 Sri International System and method of magnetically sensing position of a moving component
US20070066374A1 (en) * 2005-09-19 2007-03-22 Cnh America Llc Compactor control logic for a cotton harvester

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053944A1 (en) * 2018-08-17 2020-02-20 Harvest International, Inc. Toolbar with hydraulic height control
US11612096B2 (en) * 2018-08-17 2023-03-28 Harvest International, Inc. Toolbar with hydraulic height control
US11470757B2 (en) 2019-04-25 2022-10-18 Cnh Industrial America Llc Plough
US11558993B2 (en) 2020-03-26 2023-01-24 Cnh Industrial America Llc Soil monitoring system for an agricultural tillage implement
US11602092B2 (en) 2020-03-26 2023-03-14 Cnh Industrial America Llc Frame control system for an agricultural implement
US11617294B2 (en) 2020-03-26 2023-04-04 Cnh Industrial America Llc Orientation control system for an agricultural implement
US11638393B2 (en) 2020-03-26 2023-05-02 Cnh Industrial America Llc Ground engaging tool monitoring system
US11730076B2 (en) 2020-03-26 2023-08-22 Cnh Industrial America Llc Control system for an agricultural implement
US12022756B2 (en) 2020-03-26 2024-07-02 Cnh Industrial America Llc Orientation control system for an agricultural implement

Also Published As

Publication number Publication date
US20090301743A1 (en) 2009-12-10
US8235130B2 (en) 2012-08-07
CA2648442C (en) 2015-10-13
CA2648442A1 (en) 2009-12-05

Similar Documents

Publication Publication Date Title
USRE45303E1 (en) Method and apparatus for controlling the depth of an agricultural work unit mounted to a frame that can be raised and lowered by a cylinder assembly
CA2911387C (en) Hydraulic work unit leveling and calibration system for an agricultural implement
US9839173B2 (en) Method of leveling an agricultural implement
US20200390021A1 (en) Automated leveling and depth control system of a work machine and method thereof
US8857530B2 (en) Automatic depth control system for an agricultural implement
US11140805B2 (en) Independent ground engaging tool depth control
US11696523B2 (en) System and method for hydraulically leveling a multi-wing agricultural implement
CA2866049C (en) Remote leveling of tillage implements
US20110202232A1 (en) Hydraulic Lift System And Control Method
US10912244B2 (en) Enhanced resolution fore/aft leveling of a towable tillage implement
US11464153B2 (en) Tillage implement with gauge wheels having hydraulic down-pressure
CA2591723C (en) Hydraulic control system having an upper depth stop valve with bypass
US10356972B2 (en) System and method for reducing variations in the penetration depths of ground-engaging tools of an agricultural implement based on monitored tire pressures
US10798866B2 (en) Depth control system for raising and lowering a work unit of an implement
US7543655B2 (en) Selective position control system and method
EP3420788B1 (en) Agricultural machine and method for operating an agricultural machine
EP3732944A1 (en) Method of controlling weight transfer of an implement and system thereof
EP3202243B1 (en) Vehicle implement control
US20230105332A1 (en) Hydraulic height control for agricultural tillage equipment
WO2016109882A1 (en) Split walking beams for raising and lowering respective sides of a vehicle or implement frame to control a tilt angle or height thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CNH INDUSTRIAL CANADA, LTD., CANADA

Free format text: CHANGE OF NAME;ASSIGNOR:CNH CANADA, LTD.;REEL/FRAME:034245/0841

Effective date: 20140301

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
REIN Reinstatement after maintenance fee payment confirmed
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20141230

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12