USRE45048E1 - Methods for weed control using plants having dicamba-degrading enzymatic activity - Google Patents
Methods for weed control using plants having dicamba-degrading enzymatic activity Download PDFInfo
- Publication number
- USRE45048E1 USRE45048E1 US13/751,021 US201313751021A USRE45048E US RE45048 E1 USRE45048 E1 US RE45048E1 US 201313751021 A US201313751021 A US 201313751021A US RE45048 E USRE45048 E US RE45048E
- Authority
- US
- United States
- Prior art keywords
- dicamba
- nucleic acid
- herbicide
- plant
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N57/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
- A01N57/18—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
- A01N57/20—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
Definitions
- the invention relates generally to the field of weed management. More specifically, the invention relates to methods for using auxin-like herbicides such as dicamba for controlling weeds.
- Weeds cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests.
- the losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, decreased land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds.
- weeds cause these effects are: 1) competing with crop plants for the essentials of growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of.
- the damage caused can be significant. For example, it is estimated that between 1972 and 1976 corn yields were reduced by about 10% due to weeds (Chandler, 1981).
- weeds that serve as hosts for crop pests for example, pepperweed and tansymustard (Descurainia sp.) maintain large populations of diamondback moths during the late fall, winter, and spring. They are also hosts to the turnip aphid and green peach aphid.
- weed species of the nightshade family Solanaceae
- Solanaceae are hosts to insects that commonly attack eggplant, pepper, potato, and tomato.
- horsenettle Solanum carolinense L.
- S. nigrum L. black nightshade
- Morning-glory is an important host of insects attacking sweet potato, especially the highly destructive sweet potato weevil.
- Ragweed serves as a host for Mansonia mosquitoes, an insect vector for the human diseases encephalitis and rural filariasis.
- Some weeds are undesirable in hay, pastures, and range-lands because of the mechanical injury that they inflict on livestock. Woody stems, thorns, and stiff seed awns cause injury to the mouth and digestive tract of livestock; and the hairs and fibers of some plants tend to ball up and obstruct the intestines, especially in horses, causing serious problems. Ingested by milk cows, some weeds such as ragweeds, wild garlic (Allium vineale L.), and mustard, among others, impart a distinctly distasteful odor or flavor to milk and butter. Barbed seed dispersal units may become so entangled in the wool of sheep as to greatly diminish its market value. Parasitic plants, such as dodder (Cuscuta sp.), broomrape (Orobanche sp.), and witchweed, rob their host plants of organic foodstuffs.
- Herbicides have provided an effective method of weed control over the years.
- Herbicides can generally be applied pre-emergence and/or post-emergence.
- Pre-emergence herbicides are applied in a field before a crop emerges from the soil. Such applications are typically applied to the soil before, at the same time, or soon after planting the crop. Such applications may kill weeds that are growing in the field prior to the emergence of the crop, and may also prevent or reduce germination of weeds that are present in the soil.
- Post-emergence herbicides are typically used to kill weeds after a crop has emerged in the field. Such applications may kill weeds in the field and prevent or reduce future weed germination. In either case, the herbicides may be applied to the surface of the soil, mixed with the soil, over the top of the plant, or applied by any other method known to those of skill in the art.
- One weed control strategy is to apply an herbicide such as dicamba to a field before sowing seeds.
- an herbicide such as dicamba
- a farmer has to wait at least several weeks before sowing the field with crop seeds such that the herbicide has killed most of the weeds and has degraded so as not injure the sown crop.
- plants are especially sensitive to dicamba and it has been recommended that dicamba formulations such as BanvelTM or SterlingTM be applied 30 days prior to planting for controlling weeds.
- dicamba formulations such as BanvelTM or SterlingTM be applied 30 days prior to planting for controlling weeds.
- a comprehensive list of weeds that are controlled by dicamba is available (Anonymous, 2007).
- the herbicide is particularly useful for control of taller weeds and more difficult to control weeds such as purslane, sicklepod, morninglory and wild buckwheat.
- Dicamba can be used to control weeds not susceptible to other herbicides.
- ClarityTM another formulation of dicamba, a minimum accumulation of one inch of rainfall or overhead irrigation followed by a 14 day waiting period for the 4 to 8 ounce/acre rates or a 28 day waiting period for the 16 ounce/acre rates has been recommend for controlling weeds in a soybean field (see Table 22 in VanGessel and Majek, 2005).
- Clarity® label recommends that it be applied at least 15 days prior to sorghum planting.
- a waiting period of 21 days is recommended after applying Clarity® or Banvel® to the field, before planting the cotton seeds (Craig et al., 2005, Crop Profile for Cotton (Gossypium hirsutum) in Tennessee, www.ipmcenters.org/cropprofiles/docs/tncotton.html) and no pre-emergence and post-emergence application are recommended.
- the waiting period is also dependent on the crop growing environment at any give time, such as the type of soil (soil having organic activity will degrade dicamba faster), moisture content, rainfall, temperature, as well as type of formulation and rate of application.
- the herbicide 2,4-D has been recommended for controlling certain weeds in a soybean field such as mustard spp., plantains, marestail, and 2,4-D susceptible annual broadleaf weeds by applying it 7 to 30 days prior to planting, depending on rate and formulation (ester or amine) (see Table 22 in VanGessel and Majek, 2005).
- DMO dicamba monooxygenase
- Dicamba is one member of a class of herbicides commonly referred to as “auxin-like” herbicides or “synthetic auxins.” These herbicides mimic or act like the natural plant growth regulators called auxins. Auxin-like herbicides appear to affect cell wall plasticity and nucleic acid metabolism, which can lead to uncontrolled cell division and growth. The injury symptoms caused by auxin-like herbicides include epinastic bending and twisting of stems and petioles, leaf cupping and curling, and abnormal leaf shape and venation.
- Dicamba is one of the many auxin-like herbicides that is a low-cost, environmentally-friendly herbicide that has been used as a pre-emergence herbicide (i.e., 30 days prior to planting) in dicots and as a pre- and/or post-emergence herbicide in corn, sorghum, small grains, pasture, hay, rangeland, sugarcane, asparagus, turf, and grass seed crops to effectively control annual and perennial broadleaf weeds and several grassy weeds (Crop Protection Chemicals Reference, 1995).
- dicamba can injure many commercial crops including beans, soybeans, cotton, peas, potatoes, sunflowers, tomatoes, tobacco, and fruit trees, ornamental plants and trees, and other broadleaf plants when it comes into contact with them.
- Soybean and cotton are particularly sensitive to dicamba.
- applications of dicamba must generally occur several weeks before planting of sensitive crops to ensure that residual dicamba is sufficiently cleared from the crop environment before crops emerge.
- dicamba is the 5th most widely used herbicide for broad leaf weeds.
- the optimal rate for broad leaf weed control is between 280 to 560 g/h (grams/hectare)
- the average use rate in corn is 168 g/h as at higher use rates and under certain environmental conditions, dicamba can injure corn.
- the invention provides a method for controlling weed growth in a field comprising: a) applying a herbicidally effective amount of an auxin-like herbicide to a crop-growing environment; and planting a transgenic seed of a dicotyledonous plant expressing a nucleic acid encoding dicamba monooxygenase in soil of the crop-growing environment, wherein the seed germinates within 30 days or less of applying the herbicide and wherein the dicamba monooxygenase comprises at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:2; and c) allowing the seed to germinate into a plant.
- the seed germinates within four weeks, three weeks, two weeks, or less than one week after treating the growing environment with the auxin-like herbicide.
- the treated growing environment may be, for example, a field in which a crop is planted.
- a population of seeds of a plant tolerant to the auxin-like herbicide may be planted in the field.
- Treating the environment can be carried out according to known techniques in the art using, for example, commercially available formulations of auxin-like herbicides such as dicamba.
- the environment includes an area for which control of weeds is desired and in which the seed of a plant tolerant to the auxin-like herbicide can be planted.
- a weed can be directly contacted with herbicide in the environment and soil in the environment can be contacted with the herbicide, preventing or reducing weed growth in the soil.
- the step of treating the environment with a herbicide may be carried out before, after, or concurrently with the step of planting the soil with the transgenic seed.
- the transgenic seed may be planted into soil in the environment, for example, within three weeks before or after treatment, including from between about two weeks, one week and 0 weeks before or after treatment, further including from between about 1, 2, 3, 4, 5, or 6 days before or after treatment, including concurrently with treatment.
- the seed may germinate, for example, from between about 30 days and 0 days after treating the environment, including between about 21, 18, 16, 14, 12, 10, 8, 6, 5, 4, 3, 2, 1 and about 0 days after treating the environment.
- the method may further comprise applying one or more additional treatments of an auxin-like herbicide after the seed germinates and/or the plant is growing.
- a second treatment is carried out at a time selected from the group consisting of between about the 1 to 2 leaf and 3 to 4 leaf stages, before flowering, at flowering, after flowering, and at seed formation.
- the second treatment comprises applying dicamba and/or a 2,4-dichlorophenoxyacetic compound (2,4-D).
- the auxin-like herbicide may be selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
- a phenoxy carboxylic acid compound include 2,4-dichlorophenoxyacetic acid and (4-chloro-2-methylphenoxy)acetic acid.
- a herbicidally effective amount of 2,4-D and/or (4-chloro-2-methylphenoxy)acetic acid used is between about 2 g/ha (grams/hectare) to about 5000 g/ha, including about 50 g/ha to about 2500 g/ha, about 60 g/ha to about 2000 g/ha, about 100 g/ha to about 2000 g/ha, about 75 g/ha to about 1000 g/ha, about 100 g/ha to about 500 g/ha, and from about 100 g/ha to about 280 g/ha.
- dicamba is used as the herbicide.
- a herbicidally effective amount of dicamba used may be from about 2.5 g/ha to about 10,080 g/ha, including about 2.5 g/ha to about 5,040 g/ha, about 5 g/ha to about 2,020 g/ha, about 10 g/a to about 820 g/h and about 50 g/ha to about 1,000 g/ha, about 100 g/ha to about 800 g/ha and about 250 g/ha to about 800 g/ha.
- a plant may be used exhibiting tolerance to auxin-like herbicides including dicamba.
- Such a plant may comprise a nucleic acid encoding a dicamba monooxygenase.
- the plant is defined as comprising a nucleic acid encoding a dicamba monooxygenase that has at least 70% identity to a polypeptide sequence of any one or more of SEQ ID NOs:2, 4, 6, 8, 10 or 12, including at least about 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% and greater sequence identity to these sequences.
- Polypeptide or polynucleotide comparisons may be carried out and identity determined as is known in the art, for example, using MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wis. 53715) with default parameters. Such software matches similar sequences by assigning degrees of similarity or identity.
- the methods of the invention may be used in connection with plants that exhibit susceptibility to auxin-like herbicides such as dicotyledonous (dicot) plants.
- a dicotyledonous plant is used selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
- the dicot is soybean, cotton, or canola.
- the invention provides a method for controlling a weed in a field comprising: a) planting a transgenic seed in a field, wherein the seed comprises transgenes conferring tolerance to an auxin-like herbicide and a second herbicide; b) growing the seed into a plant; and c) treating the field with an amount of the auxin-like herbicide and the second herbicide in amounts effective to control weed growth.
- the second herbicide may be glufosinate (De Block et al., 1987), a sulfonylurea (Sathasiivan et al., 1990), an imidazolinone (U.S. Pat. Nos.
- the second herbicide is glyphosate and the auxin-like herbicide is dicamba.
- the plant comprises a nucleic acid that has at least 70% sequence identity to a nucleic acid sequence of any one or more of SEQ ID NOs: 1, 3, 5, 7, 9, or 11, including at least about 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% and greater sequence identity to these sequence.
- a plant such as the foregoing is defined as comprising a transgene conferring glyphosate tolerance.
- Glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthases are well known in the art and disclosed, for example, in U.S. Pat. Nos. 5,627,061, 5,633,435, 6,040,497, 5,094,945, WO04074443, and WO04009761.
- Nucleic acids encoding glyphosate degrading enzymes for example, glyphosate oxidoreductase (GOX, U.S. Pat. No.
- the GAT enzyme comprises the sequence of GAT4601 (SEQ ID NO:19), or is encoded by a transgene comprising the nucleic acid sequence of SEQ ID NO:18.
- the GAT polypeptide is expressed using the SCP1 promoter.
- treating the field may be carried out at a time selected from the group consisting of between about the 1 to 2 leaf and 3 to 4 leaf stages, before flowering, at flowering, after flowering, and at seed formation. Treating the field may further be defined as carried out at a time proximate to step a) such that the seed germinates while the auxin-like herbicide remains in the soil in an amount effective to control growth of the weed. In the method, treating the field may be carried out about three weeks, two weeks 1 week or 0 weeks before step a).
- the auxin-like herbicide may be selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
- the phenoxy carboxylic acid compound may be selected from the group consisting of 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy)acetic acid, and 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB).
- the amount of 2,4-dichlorophenoxyacetic compound used may be lower than about 280 g/ha.
- the amount of 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) used may be lower than about 1120 g/ha.
- the amount of (4-chloro-2-methylphenoxy) acetic acid compound used may be lower than about 280 g/ha.
- the auxin like herbicide is dicamba.
- the amount of dicamba used may be, for example, from about 2.5 g/ha to about 10,080 g/ha, including about 2.5 g/ha to about 1040 g/ha, about 5 g/ha to about 2040 g/ha, about 10 g/a to about 820 g/h, and about 50 g/ha to about 1000 g/ha.
- the amount of glyphosate may be from about 200 g/ha to about 1,600 g/h, including from about 200 g/ha to about 1,000 g/h, from about 200 g/ha to about 800 g/h, from about 200 g/ha to about 400 g/h, and from about 400 g/ha to about 800 g/h.
- the invention provides a method for controlling weed growth in a crop-growing environment comprising: a) applying a herbicidally effective amount of an auxin-like herbicide to a crop-growing environment; b) planting a transgenic seed of a monocotyledonous plant comprising a nucleic acid encoding a dicamba degrading enzymatic activity, such as dicamba monooxygenase, in soil of the crop-growing environment within 21 days of applying the auxin-like herbicide, wherein the herbicidally effective amount is an amount that does not damage the transgenic seed or a plant that germinates therefrom but will damage a seed or a plant that germinates therefrom of the same genotype that lacks the nucleic acid and is planted under the same conditions as the transgenic seed, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:8, (2) a nucleic acid sequence comprising the sequence of SEQ
- herbicide treatments to monocot plants may be made at higher rates and/or in closer proximity to emergence of crops than previously could be made without damaging crops.
- a herbicidally effective amount of 2,4-D and/or MCPA such as, for example, at least about 200, 300, 300, 500, 590, 650, 700, 800 or more g/ha of either or both herbicides, including from about 300 to about 1200 g/ha, from about 500 to about 1200 g/ha, from about 600 to about 1200 g/ha, from about 590 to about 1400 g/ha, and from about 700 to about 1100 g/ha of either or both herbicides.
- the herbicide may also be dicamba and the herbicidally effective amount may be, for example, at least about 168, 175, 190, 200, 225, 250, 280, 300, 400, 500, 560 or more g/ha of dicamba, including from about 200 g/ha to about 600 g/ha, from about 250 g/ha to about 600 g/ha, from about 250 g/ha to about 800 g/ha, from about 225 g/ha to about 1120 g/ha, and from about 250 g/ha to about 1200 g/ha, from about 280 g/ha to about 1120 g/ha and from about 560 g/ha to about 1120 g/ha.
- the monocotyledonous plant is selected from the group consisting of corn, rice, sorghum, wheat, rye, millet, sugarcane, oat, triticale, switchgrass, and turfgrass.
- Expressing the transgenic dicamba-degrading enzymatic activity such as a monooxygenase, in a monocotyledonous crop plant, such as corn allows application of a higher level of dicamba to the crop for the purpose of weed control at any stage of plant growth, as compared to the level of dicamba that may be applied to a monocotyledonous crop plant that does not comprise a transgene that encodes such a dicamba-degrading enzymatic activity.
- the invention provides a method for controlling weed growth in a field comprising: a) applying a herbicidally effective amount of an auxin-like herbicide other than dicamba to a field, wherein the field comprises a transgenic dicotyledonous plant comprising a nucleic acid encoding dicamba monooxygenase or is planted with a seed that germinates into said transgenic dicotyledonous plant within 21 days of applying the herbicide, wherein the herbicidally effective amount is an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding dicamba monooxygenase, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:8, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:7, (3) a nucleic acid sequence that hybridizes to a complement of the nucle
- step a) may comprise applying the herbicidally effective amount of an auxin-like herbicide to a growing environment adjacent to a growing environment comprising the transgenic dicotyledonous plant and allowing the herbicide to drift onto the plant or soil in which the plant grows.
- the auxin-like herbicide may be any herbicide as described herein.
- step b) may comprise allowing the transgenic dicotyledonous plant to grow to maturity.
- the herbicidally effective amount may be defined as an amount that does not damage the transgenic plant.
- the invention provides a method for increasing the efficiency of use of a herbicide delivery device comprising: a) obtaining a device that has been used to deliver a first composition comprising an auxin-like herbicide; and b) delivering a second composition to the field using the device without first completely washing the device so that a herbicide residue comprising the auxin-like herbicide remains in the device and is delivered with the second composition to the field, wherein the field comprises a transgenic dicotyledonous plant expressing a nucleic acid encoding dicamba monooxygenase or is planted with a seed that germinates into said transgenic dicotyledonous plant within 21 days of delivering the second composition, wherein the herbicide residue is present in an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding dicamba monooxygenase, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid
- the invention relates, in one aspect, to the unexpected discovery that pre-emergent applications of auxin-like herbicides such as dicamba may be made close to, or even concurrently with the planting of crops.
- the invention provides superior weed control options, including reduction and/or prevention of herbicide tolerance in weeds.
- Pre-emergent applications of auxin-like herbicides such as dicamba have previously required herbicide applications well in advance of planting and germination of plants susceptible to auxin-like herbicides to allow breakdown of the herbicide in the environment and avoid significant crop damage or death.
- Most crop plants, and particularly dicotyledonous plants such as soybeans and cotton are extremely sensitive to dicamba. Thus, the recommended post-application delays in planting by manufacturers must be closely followed.
- auxin-like herbicides which are also called auxinic or growth regulator herbicides, or Group 4 herbicides (based on their mode of action). These types of herbicides mimic or act like the natural plant growth regulators called auxins.
- auxinic herbicides appears to affect cell wall plasticity and nucleic acid metabolism, which can lead to uncontrolled cell division and growth.
- Auxin-like herbicides include four chemical families: phenoxy, carboxylic acid (or pyridine), benzoic acid, and quinaline carboxylic acid. Phenoxy herbicides are most common and have been used as herbicides since the 1940s when (2,4-dichlorophenoxy)acetic acid (2,4-D) was discovered.
- carboxylic acid herbicides also called pyridine herbicides.
- carboxylic acid herbicides also called pyridine herbicides.
- examples include 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid), 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram), (2,4,5-trichlorophenoxy) acetic acid (triclopyr), and 4-amino-3,5-dichloro-6-fluoro-2-pyridyloxyacetic acid (fluoroxypyr).
- benzoic acids include 3,6-dichloro-o-anisic acid (dicamba) and 3-amino-2,5-dichlorobenzoic acid (choramben).
- Dicamba is a particularly useful herbicide for use in the present invention.
- a fourth chemical family of auxinic herbicides is the quinaline carboxylic acid family.
- Example includes 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac). This herbicide is unique in that it also will control some grass weeds, unlike the other auxin-like herbicides which essentially control only broadleaf or dicotyledonous plants.
- the other herbicide in this category is 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac).
- soybean plants transformed with dicamba monooxygenase (DMO)-encoding polynucleotide constructs were tolerant to even early pre-emergence application of dicamba, with less than 10% injury rates at even 9 ⁇ the labeled application rate (5,040 g/ha, 4.5 lb/acre; Table 1).
- the inventors found that, even using an 18 ⁇ application rate of 10,080 g/ha (9 lb/acre), injury to transgenic dicamba tolerant plants was less than 20% (Table 4). At an approximately 2 ⁇ rate of application of 1122 g/ha, less than 2% injury was observed.
- DMO dicamba monooxygenase
- Pre-emergent applications of dicamba according to the invention may therefore be combined with one or more herbicide applications post-emergence to dicamba-tolerant plants, while maintaining crop yield and obtaining improved weed control.
- one such herbicide application regime involved a late pre-emergence application of dicamba in conjunction with a post-emergence application of dicamba at the V2 stage of development.
- the post-emergence application may be carried out at any point from emergence to harvest. Particularly beneficial will be post-emergence application at any V stage until the soybean canopy closes, for example, at about the V1, V2, V3, V4, V5, V6 and/or later stages.
- dicamba and glyphosate allow use of decreased amounts of herbicide to achieve the same level of control of glyphosate-tolerant weeds and thus this embodiment provides a significant advance for the control of herbicide tolerance in commercial production fields.
- a tank mix of glyphosate and dicamba is applied pre- and/or post-emergence to plants. Glyphosate and dicamba may additionally be applied separately.
- the glyphosate and dicamba are preferably applied within a sufficient interval that both herbicides remain active and able to control weed growth.
- the invention therefore allows use of lower amounts of either herbicide to achieve the same degree of weed control as an application of only one of the herbicides.
- the invention provides methods of weed control comprising applying in a field planted with transgenic plants having tolerance to dicamba and glyphosate a herbicide composition comprising less than a 1 ⁇ rate of glyphosate and/or dicamba, relative to the standard manufacturer labeled rate.
- Examples of respective glyphosate and dicamba application rates include from about a 0.5 ⁇ -0.95 ⁇ of either herbicide, specifically including about 0.5 ⁇ , 0.6 ⁇ , 0.7 ⁇ , 0.8 ⁇ , 0.85 ⁇ , 0.9 ⁇ , and 0.95 ⁇ of either herbicide and all derivable combinations thereof, as well as higher rates such as 0.97 ⁇ and 0.99 ⁇ .
- 1 ⁇ and higher application rates may be made in view of the finding herein that even high application rates of dicamba did not significantly damage plants.
- the 1 ⁇ application rates are set by the manufacturer of a commercially available herbicide formulation and are known to those of skill in the art.
- the label for Fallow MasterTM a glyphosate and dicamba mixture having a ratio of glyphosate:dicamba of about 2:1 recommends application rates of about 451 g/ha (311 ae g/ha glyphosate:140 ae g/ha dicamba) to 621 ae g/ha (428 ae g/ha glyphosate: 193 ae g/ha dicamba) depending upon the weed species and weed height.
- Glyphosate refers to N-phosphonomethylglycine and salts thereof. Glyphosate is commercially available in numerous formulations. Examples of these formulations of glyphosate include, without limitation, those sold by Monsanto Company as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt, ROUNDUP® WEATHERMAX containing glyphosate as its potassium salt; ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and TOUCHDOWN® herbicide, which contains glyphosate as its trimethylsulf
- Dicamba refers to 3,6-dichloro-o-anisic acid or 3,6-dichloro-2-methoxy benzoic acid and its acids and salts. Its salts include isopropylamine, diglycoamine, dimethylamine, potassium and sodium. Examples of commercial formulations of dicamba include, without limitation, BanvelTM (as DMA salt), ClarityTM (as DGA salt), VEL-58-CS-11TM and VanquishTM (as DGA salt, BASF).
- Non-limiting examples of weeds that can be effectively controlled using dicamba are the following: cheese weed, chick weed, while clover, cocklebur, Asiatic dayflower, dead-nettle, red stem filaree, Carolina geranium, hemp sesbania, henbit, field horsetail (marestail), knotweed, kochia, lambs-quarter, morninglory, indian mustard, wild mustard, redroot pigweed, smooth pigweed, prickly sida, cutleaf evening primrose, common purslane, common ragweed, gaint ragweed, russian thistle, shepardspurse, pennsylvania smartweed, spurge, velvetleaf, field violet, wild buckwheat, wild radish, soybeanpurslane, sicklepod, morninglory, wild buckwheat, common ragweed, horseweed (marestail), hairy fleabane, buckhorn plantain, and palmer pigweed.
- Non-limiting examples of weeds that can be controlled using dicamba and glyphosate are the following: barnyardgrass, downy brome, volunteer cereals, Persian darnel, field sandbur, green foxtail, wild oats, wild buckwheat, volunteer canola, cowcockle, flix-weed, kochia, ladysthumb, lambsquarters, wild mustard, prickly lettuce, redroot pigweed, smartweed, stinkgrass, stinkweed, russian thistle, foxtail, and witchgrass.
- Combining glyphosate and dicamba achieves the same level of weed control with reduced herbicide amounts and thus the spectrum of weeds that may be controlled at any given herbicide application rate may be increased when the herbicides are combined.
- Dicamba tolerance may be conferred, for example, by a gene for dicamba monooxygenase (DMO) from Pseudomonas maltophilia (US Patent Application No: 20030135879).
- DMO dicamba monooxygenase
- Examples of sequences that may be used in this regard are nucleic acid encoding the polypeptides of SEQ ID Nos: 2, 4, 6, 8, 10, and 12. Examples of sequences encoding these polypeptides are given as SEQ ID NOS: 1, 3, 5, 7, 9, and 11.
- SEQ ID NO: 1 shows DMO from Pseudomonas maltophilia optimized for expression in dicots using Arabidopsis thaliana codon usage.
- SEQ ID NO:2 shows another Pseudomonas maltophilia DMO optimized for expression in dicots and encoding the polypeptide of SEQ ID NO:4, predicted to have an Leu, Thr, Cys at positions 2, 3, 112, respectively.
- SEQ ID NO:5 shows the coding sequence and SEQ ID NO:6 the polypeptide for dicot optimized DMO predicted to have a Leu, Thr, Trp at positions 2, 3, 112, respectively.
- SEQ ID NOS:7 and 8 show the coding and polypeptide sequences for DMO predicted to have an Ala, Thr, Cys at position 2, 3, 112, respectively.
- SEQ ID NOS:9 and 10 show the dicot-optimized coding sequence and polypeptide sequences for DMO predicted to have an Ala, Thr, Trp at positions 2, 3, 112, respectively.
- SEQ ID NOS:11 and 12 show coding sequence and polypeptide sequences for DMO from Pseudomonas maltophilia (US Patent Application No: 20030135879).
- Another exemplary DMO sequence may be a DMO predicted to have a Leu, Thr, Cys at position 2, 3, 112, respectively with codon usage of Pseudomonas maltophilia (US Patent Application No: 20030135879).
- glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthases EPSPS
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthases
- glyphosate decarboxylase WO05003362; US Patent Application 20040177399, herein incorporated by reference
- nucleic acids encoding glyphosate inactivating enzymes such as glyphosate-N-acetyl transferase (GAT, e.g. U.S. Patent publications 20030083480 and 20070079393, herein incorporated by reference).
- Variants of proteins having a capability to degrade auxin-like herbicides, glyphosate or other herbicides can readily be prepared and assayed for activity according to standard methods.
- Such sequences can also be identified by techniques know in the art, for example, from suitable organisms including bacteria that degrade auxin-like herbicides such as dicamba or other herbicides (U.S. Pat. No. 5,445,962; Cork and Krueger, 1991; Cork and Khalil, 1995).
- One means of isolating a DMO or other sequence is by nucleic acid hybridization, for example, to a library constructed from the source organism, or by RT-PCR using mRNA from the source organism and primers based on the disclosed desaturases.
- the invention therefore encompasses use of nucleic acids hybridizing under stringent conditions to a DMO encoding sequence described herein.
- conditions may be rendered less stringent by increasing salt concentration and decreasing temperature.
- hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.
- An example of high stringency conditions is 5 ⁇ SSC, 50% formamide and 42° C. By conducting a wash under such conditions, for example, for 10 minutes, those sequences not hybridizing to a particular target sequence under these conditions can be removed.
- Variants can also be chemically synthesized, for example, using the known DMO polynucleotide sequences according to techniques well known in the art. For instance, DNA sequences may be synthesized by phosphoamidite chemistry in an automated DNA synthesizer. Chemical synthesis has a number of advantages. In particular, chemical synthesis is desirable because codons preferred by the host in which the DNA sequence will be expressed may be used to optimize expression. Not all of the codons need to be altered to obtain improved expression, but preferably at least the codons rarely used in the host are changed to host-preferred codons. High levels of expression can be obtained by changing greater than about 50%, most preferably at least about 80%, of the codons to host-preferred codons.
- the codon preferences of many host cells are known (PCT WO 97/31115; PCT WO 97/11086; EP 646643; EP 553494; and U.S. Patent Nos: 5,689,052; 5,567,862; 5,567,600; 5,552,299 and 5,017,692).
- the codon preferences of other host cells can be deduced by methods known in the art.
- the sequence of the DNA molecule or its encoded protein can be readily changed to, for example, optimize expression (for example, eliminate mRNA secondary structures that interfere with transcription or translation), add unique restriction sites at convenient points, and delete protease cleavage sites.
- Modification and changes may be made to the polypeptide sequence of a protein such as the DMO sequences provided herein while retaining enzymatic activity.
- the following is a discussion based upon changing the amino acids of a protein to create an equivalent, or even an improved, modified polypeptide and corresponding coding sequences. It is known, for example, that certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the DMO peptide sequences described herein or other herbicide tolerance polypeptides and corresponding DNA coding sequences without appreciable loss of their biological utility or activity.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte et al., 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics (Kyte et al., 1982), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine ( ⁇ 0.4); threonine ( ⁇ 0.7); serine ( ⁇ 0.8); tryptophan ( ⁇ 0.9); tyrosine ( ⁇ 1.3); proline ( ⁇ 1.6); histidine ( ⁇ 3.2); glutamate ( ⁇ 3.5); glutamine ( ⁇ 3.5); aspartate ( ⁇ 3.5); asparagine ( ⁇ 3.5); lysine ( ⁇ 3.9); and arginine ( ⁇ 4.5).
- amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein.
- substitution of amino acids whose hydropathic indices are within ⁇ 2 is preferred, those which are within ⁇ 1 are particularly preferred, and those within ⁇ 0.5 are even more particularly preferred.
- hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ⁇ 1); glutamate (+3.0 ⁇ 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 ⁇ 1); alanine ( ⁇ 0.5); histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine ( ⁇ 1.8); isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); tryptophan ( ⁇ 3.4).
- an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent protein.
- substitution of amino acids whose hydrophilicity values are within ⁇ 2 is preferred, those which are within ⁇ 1 are particularly preferred, and those within ⁇ 0.5 are even more particularly preferred.
- Exemplary substitutions which take these and various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
- a gene conferring herbicide tolerance will typically be linked to a plant promoter driving expression of the gene in an amount sufficient to confer the herbicide tolerance.
- Promoters suitable for this and other uses are well known in the art. Examples describing such promoters include U.S. Pat. No. 6,437,217 (maize RS81 promoter), U.S. Pat. No. 5,641,876 (rice actin promoter), U.S. Pat. No. 6,426,446 (maize RS324 promoter), U.S. Pat. No. 6,429,362 (maize PR-1 promoter), U.S. Pat. No. 6,232,526 (maize A3 promoter), U.S. Pat. No.
- a nopaline synthase (NOS) promoter (Ebert et al., 1987), the octopine synthase (OCS) promoter (which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., 1987), the CaMV 35S promoter (Odell et al., 1985), the figwort mosaic virus 35S-promoter (Walker et al., 1987), the sucrose synthase promoter (Yang et al., 1990), the R gene complex promoter (Chandler et al., 1989), the chlorophyll a/b binding protein gene promoter, CaMV35S (U.S.
- NOS nopaline synthase
- OCS octopine synthase
- Benefit may be obtained for the expression of herbicide tolerance genes by use of a sequence coding for a transit peptide.
- a suitable chloroplast transit peptide such as, the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987), and the Petunia hybrida EPSPS CTP (della-Cioppa et al., 1986) has been shown to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants.
- Chloroplast transit peptides (CTPs) are engineered to be fused to the N-terminus of a protein to direct the protein into the plant chloroplast.
- chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide that is removed during the import process.
- chloroplast proteins include the small subunit (RbcS2) of ribulose-1,5,-bisphosphate carboxylase, ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, and thioredoxin F.
- chloroplast targeting sequences include the maize cab-m7 signal sequence (Becker et al., 1992; PCT WO 97/41228), the pea glutathione reductase signal sequence (Creissen et al., 1995; PCT WO 97/41228), and the CTP of the Nicotiana tabacum ribulose 1,5-bisphosphate carboxylase small subunit chloroplast transit peptide (SSU-CTP) (Mazur, et al., 1985).
- SSU-CTP Nicotiana tabacum ribulose 1,5-bisphosphate carboxylase small subunit chloroplast transit peptide
- a 5′ UTR that functions as a translation leader sequence is a DNA genetic element located between the promoter sequence of a gene and the coding sequence.
- the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
- the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency.
- Examples of translation leader sequences include maize and petunia heat shock protein leaders (U.S. Pat. No. 5,362,865), plant virus coat protein leaders, plant rubisco leaders, among others (Turner and Foster, 1995).
- Non-limiting examples of 5′ UTRs that may in particular be of benefit for use GmHsp (U.S. Pat. No. 5,659,122), PhDnaK (U.S. Pat. No. 5,362,865), AtAnt1, TEV (Carrington and Freed, 1990), and AGRtunos (GenBank Accession V00087; Bevan et al., 1983).
- the 3′ non-translated sequence, 3′ transcription termination region, or poly adenylation region means a DNA molecule linked to and located downstream of a structural polynucleotide molecule and includes polynucleotides that provide polyadenylation signal and other regulatory signals capable of affecting transcription, mRNA processing or gene expression.
- the polyadenylation signal functions in plants to cause the addition of polyadenylate nucleotides to the 3′ end of the mRNA precursor.
- the polyadenylation sequence can be derived from the natural gene, from a variety of plant genes, or from T-DNA genes.
- An example of a 3′ transcription termination region is the nopaline synthase 3′ region (nos 3′; Fraley et al., 1983).
- Intron sequences are known in the art to aid in the expression of transgenes in monocot plant cells.
- Examples of introns include the corn actin intron (U.S. Pat. No. 5,641,876), the corn HSP70 intron (ZmHSP70; U.S. Pat. No. 5,859,347; U.S. Pat. No. 5,424,412), and rice TPI intron (OsTPI; U.S. Pat. No. 7,132,528), and are of benefit in practicing this invention.
- Suitable methods for transformation of plants are believed to include virtually any method by which DNA can be introduced into a cell, such as by electroporation as illustrated in U.S. Pat. No. 5,384,253; micro-projectile bombardment as illustrated in U.S. Pat. Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208; 6,399,861; and 6,403,865; Agrobacterium-mediated transformation as illustrated in U.S. Pat. Nos.
- the next steps generally concern identifying the transformed cells for further culturing and plant regeneration.
- identifying the transformed cells for further culturing and plant regeneration.
- one may desire to employ a selectable or screenable marker gene with a transformation vector prepared in accordance with the invention.
- Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay may be cultured in media that supports regeneration of plants.
- any suitable plant tissue culture media for example, MS and N6 media may be modified by including further substances such as growth regulators.
- Tissue may be maintained on a basic media with growth regulators until sufficient tissue is available to begin plant regeneration efforts, or following repeated rounds of manual selection, until the morphology of the tissue is suitable for regeneration, typically at least 2 weeks, then transferred to media conducive to shoot formation. Cultures are transferred periodically until sufficient shoot formation has occurred. Once shoot are formed, they are transferred to media conducive to root formation. Once sufficient roots are formed, plants can be transferred to soil for further growth and maturity.
- assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCRTM; “biochemical” assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.
- transgeny denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention, wherein the progeny comprises a selected DNA construct prepared in accordance with the invention.
- a “transgenic plant” may thus be of any generation.
- Crossing a plant to provide a plant line having one or more added transgenes or alleles relative to a starting plant line, as disclosed herein, is defined as the techniques that result in a particular sequence being introduced into a plant line by crossing a starting line with a donor plant line that comprises a transgene or allele of the invention.
- compositions for use in connection with the current invention will be apparent to those of skill in the art in view of the disclosure.
- Such compositions which are commercially available, will typically include, in addition to the active ingredient, components such as surfactants, solid or liquid carriers, solvents and binders.
- compositions for application to plants may be solid or liquid. Where solid compositions are used, it may be desired to include one or more carrier materials with the active compound.
- carriers include mineral earths such as silicas, silica gels, silicates, talc, kaolin, attaclay, limestone, chalk, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, thiourea and urea, products of vegetable origin such as cereal meals, tree bark meal, wood meal and nutshell meal, cellulose powders, attapulgites, montmorillonites, mica, vermiculites, synthetic silicas and synthetic calcium silicates, or mixtures of these.
- water-soluble compounds or salts may be included, such as sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, sodium acetate, ammonium hydrogen sulfate, ammonium chloride, ammonium acetate, ammonium formate, ammonium oxalate, ammonium carbonate, ammonium hydrogen carbonate, ammonium thiosulfate, ammonium hydrogen diphosphate, ammonium dihydrogen monophosphate, ammonium sodium hydrogen phosphate, ammonium thiocyanate, ammonium sulfamate or ammonium carbamate.
- exemplary components in herbicidal compositions include binders such as polyvinylpyrrolidone, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, carboxymethylcellulose, starch, vinylpyrrolidone/vinyl acetate copolymers and polyvinyl acetate, or mixtures of these; lubricants such as magnesium stearate, sodium stearate, talc or polyethylene glycol, or mixtures of these; antifoams such as silicone emulsions, long-chain alcohols, phosphoric esters, acetylene diols, fatty acids or organofluorine compounds, and complexing agents such as: salts of ethylenediaminetetraacetic acid (EDTA), salts of trinitrilotriacetic acid or salts of polyphosphoric acids, or mixtures of these.
- binders such as polyvinylpyrrolidone, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate,
- Transgenic soybean plants were obtained by Agrobacterium transformation of soybean cotyledonary nodes using standard procedures and a binary vector containing the DMO-encoding polynucleotide given as SEQ ID NO:7, which encodes the polypeptide of SEQ ID NO:8.
- Four transgenic soybean events were prepared and designated Events 1-4.
- Transgenic soybean plants containing the events were tested for their tolerance to dicamba herbicide relative to controls, confirming herbicide tolerance.
- Non-transgenic soybean plants were used as controls.
- Transgenic and control soybean seeds were planted into 3.5-inch square plastic pots containing Redi-earthTM (Scotts-Sierra Horticultural Products Co., Marysville, Ohio).
- the soil surface was treated with various amounts (561 to 5040 g/ha, 0.5 to 4.5 lb/acre, or 1 ⁇ to 9 ⁇ labeled rates) of dicamba formulations (ClarityTM or BanvelTM, BASF, Raleigh, N.C.).
- the pots were placed on capillary matting in 35 inch ⁇ 60 inch fiberglass watering trays for overhead and/or sub-irrigation for the duration of the test period so as to maintain optimum soil moisture for plant growth and were fertilized with Osmocote (14-14-14 slow release; Scotts-Sierra Horticultural Products Co., Marysville, Ohio) at the rate of 100 gm/cu.ft. to sustain plant growth for the duration of greenhouse trials.
- the plants were grown in greenhouses at 27°/21° C. day/night temperature with relative humidity between 25%-75% to simulate warm season growing conditions of late spring. A 14 h minimum photoperiod was provided with supplemental light at about 600 ⁇ E as needed. Trials were established in a randomized block design randomized by rate with 4 to 6 replications of each treatment depending on plant quality, availability, and to account for any environmental variability that may have occurred within the confines of each greenhouse.
- Treated plants in greenhouse trials were visually assessed at a particular day after treatment (DAT) for injury on a scale of 0 to 100 percent relative to untreated control plants, with zero representing “no” injury and 100% representing “complete” injury or death. Data were collected and analyzed using suitable statistical methods.
- DAT day after treatment
- soybean plants transformed with the DMO-encoding polynucleotide construct were tolerant to even early pre-emergence application of dicamba.
- injury to the transgenic plants was less than 10% even at the highest application rate i.e., 5040 g/ha, 4.5 lb/acre, or 9 ⁇ labeled rates of dicamba.
- Example 2 In addition to the method described in Example 2 for early pre-emergence (at sowing) application of dicamba, post-emergence (V2 stage of soybean development) application of dicamba was made with a track sprayer using the Teejet 9501E flat fan nozzle (Spraying Systems Co, Wheaton, Ill.) with the air pressure set at a minimum of 24 psi (165 kpa). The spray nozzle was kept at a height of about 16 inches above the top of the plant material for spraying. The spray volume was 10 gallons per acre or 93 liters per hectare.
- soybean plants transformed with the DMO-encoding polynucleotide construct were tolerant to early pre-emergence applications of dicamba at sowing followed by post-emergence application of dicamba. Surprisingly, injury to transgenic plants was less than 20% at the overall dicamba rate of 10080 g/ha, 9 lb/acre or 18 ⁇ labeled rate.
- Non-transgenic and transgenic soybean seeds were planted around the beginning of the growing season at the time of optimum growth conditions depending on soil moisture, temperature, and seeding depth. Across all locations seeds were planted under split-plot design with dicamba treatments as whole-plot effects and events as split-plot effects. The design details were as follows: 6 locations, 2 replications/location, 2 rows/plot, row length 12 feet (+3 ft alley), 9 seeds/foot, 108 seeds/row, 5 events (Events 1-4 and a fifth event that was segregating); and 4 treatments as shown below in Table 5. In all 240 plots were planted at 6 locations (40 per location).
- Pre at sowing means 1.5 lb/acre of dicamba was applied at planting.
- Post at V3 means 1.5 lb/acre of dicamba was applied 4 weeks after planting.
- Pre and post means 1.5 lb/acre of dicamba was applied at planting and 1.5 lb/acre of dicamba was applied 4 weeks after planting.
- % inj means percentage injury on given date.
- % GR means percentage growth reduction.
- Marestail is one of the major weeds in a crop field. Marestail is effectively controlled by glyphosate, but the development of methods for controlling this common weed with other herbicides is important to minimize opportunities for herbicide tolerance to develop. An analysis was carried out to determine the extent to which this glyphosate tolerant weed could be controlled by applications of dicamba. Marestail (Conyza canadensis) plants of two biotypes, each from a different geographic region, California (CA) and Kentucky (KY), were grown, and treated at 4-6 inch diameter rosette leaf stage with dicamba as described in Example 2 and 3. The results of the study, as shown in Table 7, demonstrated that dicamba was equally effective in controlling both susceptible and tolerant biotypes of marestail from CA and KY.
- CA California
- KY Kentucky
- Dicamba was more effective in controlling resistant biotypes at lower application rates than glyphosate. For example, 2100 g/ha of glyphosate was required to obtain about 77% and 91% inhibition of CA and KY resistant biotypes, whereas only 280 g/ha of dicamba was required to obtain about 83% and about 91% control of CA and KY resistant biotypes.
- Transgenic seeds having dicamba tolerance are planted in a field that has been treated with glyphosate before planting the transgenic seeds.
- the field is then treated with a herbicidally effective amount of dicamba before or after planting the seeds to control glyphosate resistant weeds.
- the herbicidally effective amount of dicamba is such that the growth of glyphosate resistant weeds is controlled, but is not injurious to the planted crop as shown in the examples described herein.
- transgenic seeds having dicamba tolerance in combination with an effective amount of dicamba are useful for control of glyphosate resistant weeds.
- the method may be implemented without delaying planting of the dicamba tolerant crop plants, thus providing a significant advance over the prior art, in which dicamba must be applied sufficiently prior to planting such that the dicamba degrades in the environment sufficiently to avoid injury to crop plants.
- dicamba alone was more effective in controlling resistant biotypes at lower application rates than glyphosate. Further, it has unexpectedly been found that dicamba in combination with glyphosate allows control of glyphosate tolerant and susceptible weeds at lower application rates. For example, whereas 200 g/ha of glyphosate was able to control only 6% of marestail (KY resistant biotype) at 18 DAT and 40 g/ha of dicamba was able to control about 52% of the KY biotype at 18 DAT, a 200 g/ha glyphosate and 40 g/ha dicamba mixture was able to control about 79% of the KY biotype at 18 DAT.
- any formulation containing dicamba appeared to be more efficacious than glyphosate alone on the resistant biotype.
- the following trend in effectiveness of glyphosate to dicamba ratio on resistant biotype was found to be true at: 4:1>10:1>20:1>40:1>80:1.
- the results show that a glyphosate to dicamba mixture ratio of 4:1 containing 200 g/h glyphosate and 50 g/h dicamba provided superior control than either glyphosate or dicamba alone.
- transgenic seeds having glyphosate tolerance are known in the art and such seeds can be produced by persons of skill in the art by using a polynucleotide encoding glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) as described in U.S. Pat. Nos. 5,627,061, 5,633,435, 6,040,497 and in U.S. Pat. No. 5,094,945, WO04074443 and WO04009761, all of which are hereby incorporated by reference. Soybean breeding lines containing the Roundup Ready® trait event 40-3-2 (Padgette et al., 1995) have been produced. Seeds from soybean plant designated as MON19788 have been deposited under ATCC Accession No. PTA-6708.
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- Glyphosate tolerant plants can also be produced by incorporating polynucleotides encoding glyphosate degrading enzymes such as glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175, herein incorporated by reference), a glyphosate-N-acetyl transferase (GAT, U.S. Patent publication 20030083480, herein incorporated by reference), and a glyphosate decarboxylase (WO05003362; US Patent Application 20040177399, herein incorporated by reference).
- glyphosate degrading enzymes such as glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175, herein incorporated by reference), a glyphosate-N-acetyl transferase (GAT, U.S. Patent publication 20030083480, herein incorporated by reference), and a glyphosate decarboxylase
- Dicamba tolerant plants are disclosed herein.
- a suitable line from each is crossed and progeny seeds screened with herbicide applications of glyphosate and dicamba to obtain progeny expressing both genes and exhibiting tolerance to both dicamba and glyphosate.
- coding sequences conferring tolerance to one or both of the herbicides are directly introduced into a given line. Seeds from these plants are used for developing a method for controlling weed resistance development in a field as described below.
- Transgenic seeds having dicamba and glyphosate tolerances were tested for their tolerance to dicamba, glyphosate, or both herbicides.
- Table 9 shows tolerance of transgenic soybeans carrying glyphosate and dicamba tolerance transgenes to glyphosate, dicamba, and glyphosate and dicamba at various stages of plant growth. Damage was not seen on plants when either or both herbicides were applied at pre-emergence stage. Post-emergence treatments of either or both herbicides at V3, R1, and R3-4 showed only little injury.
- Transgenic seeds having dicamba and glyphosate tolerance prepared as described above are planted in a field.
- the field is treated with dicamba and glyphosate before or after planting the seeds using a mixture of dicamba and glyphosate in an effective amount to control weed growth.
- a 1 ⁇ application rate of either herbicide will be effective in controlling weed growth, but the rate may be varied depending upon environmental conditions and the type of weeds being controlled, as is known in the art.
- the rate of application may also be increased or decreased depending upon the rate of control desired.
- increasing the rate of one herbicide will allow a decrease in the rate of the second herbicide in order to obtain the same level of seed control.
- an application of from about 200 to about 1600 g/ha of glyphosate is combined with from about 20 to about 400 g/ha of dicamba.
- a desired application rate may be optimized in any particular environment or in the context of a particular weed can be determined using the experimental layout of Example 9 with the different formulation rates described therein.
- the herbicide level is selected to avoid using more herbicide than is needed on the one hand, and to avoid poor weed control that could lead to herbicide tolerant plants. Over application of herbicides could also damage herbicide tolerant crop. As shown in Example 9 above however, combining optimized applications of these herbicides provides significant levels of control of even herbicide tolerant weeds, and thus represents a major advance in the art.
- Examples 9 and 10 are applied to develop a method for controlling weed growth in a crop-growing environment involving planting a transgenic seed in a field containing a weed or a seed thereof and treating the field in a single pass though the field.
- the treatment comprises a herbicidally effective amount of dicamba, glyphosate, or a mixture thereof, administered contemporaneously with the planting of the seed.
- the planting, treating, and growing of the transgenic seed are achieved by standard agricultural methods.
- Such a method of planting the transgenic seed and treating the transgenic seed in one pass eliminates the need for a farmer to make multiple passes through the field, including once for planting and once for spraying. The technique therefore reduces fuel and wear-tear costs to farmers.
- Herbicide drift and contamination of herbicide delivery equipment is a serious concern in agriculture and can injure non-target crops resulting in losses to farmers.
- some level of drift is often inevitable due to changing environmental conditions such as wind and the proximity of growing fields.
- Often several rinses of herbicide delivery equipment are required before it can be used for another herbicide, which wastes water and cleaning chemicals.
- a transgenic crop tolerant to at least low levels of these herbicides would therefore be of significant value in managing injuries due to spray drift and contamination of herbicide equipment. This could also reduce the extent of equipment washing needed for herbicide delivery equipment.
- Transgenic soybean plants were obtained by Agrobacterium-mediated transformation of soybean explants with a DMO-encoding polynucleotide as described above for the events designated Events 1-4.
- a non-transgenic line was used as a control.
- Non-transgenic and transgenic soybean seeds were planted into 3.5-inch square plastic pots containing Redi-earthTM (Scotts-Sierra Horticultural Products Co., Marysville, Ohio). The pots were placed on capillary matting in 35 inch ⁇ 60 inch fiberglass watering trays for overhead and/or sub-irrigation for the duration of the test period so as to maintain optimum soil moisture for plant growth.
- the pots were fertilized with Osmocote (14-14-14 slow release; Scotts-Sierra Horticultural Products Co., Marysville, Ohio) at the rate of 100 gm/cu.ft. to sustain plant growth for the duration of greenhouse trials, and grown in greenhouses at 27°/21° C. day/night temperature, with relative humidity between 25%-75% to simulate warm season growing conditions of late spring.
- a 14 h minimum photoperiod was provided with supplemental light at about 600 ⁇ E as needed.
- Another auxin-like herbicide Butyrac 200 (2,4-DB; Albaugh) was also tested on transgenic soybean plants carrying a DMO gene for testing the plants tolerance to it.
- the herbicide was applied as a post-emergence treatment at three application rates on two transgenic soybean events and compared with a non-transgenic line for total crop injury across all three application rates: 280 g/ha (0.25 lb/a), 561 g/ha (0.5 lb/a) and 841 g/ha (0.75 lb/a) (see Table 11). Both transgenic soybean lines showed low level of tolerance to 2,4-DB.
- dicamba tolerant soybean is also tolerant to low levels of 2,4-DB and should be useful in managing damage from spray drift from the same or neighboring fields to prevent crop loses, and would exhibit tolerance to residual levels of 2,4-DB following incomplete washing of herbicide delivery equipment.
- transgenic soybean plants exhibit tolerance to other auxin-like herbicides, indicating a likely common deactivation mechanism for dicamba and other auxin-like herbicides such as 2,4-D and MCPA.
- dicamba a common deactivation mechanism for dicamba and other auxin-like herbicides
- the application rate of 280 g ae/ha appeared too stringent in this study and thus lower concentrations may be desired in most settings to reduce plant damage.
- a DMO polynucleotide containing soybean that is tolerant to dicamba is also tolerant to low levels of 2,4-D and MCPA and should prevent or minimize damage from spray drift from same or neighboring fields to prevent crop loses, and would exhibit tolerance to residual levels of these herbicides following incomplete washing of herbicide delivery equipment.
- the herbicide delivery equipment could include a tank, container, hose, strainer, boom, sprayer, nozzle, pump, and accessories such as coupling, elbows, shanks, and valves.
- the delivery equipment is operable manually or mechanically for example on a farm vehicle, airplane, and helicopter, among others.
- transgenic corn plants were produced that comprise a DMO gene as disclosed above with or without a transit peptide (e.g. Ta Waxy, CTP1, CTP2synthetic, CTP4) under the control of plant gene expression elements such as a promoter (e.g. PC1SV, e35S, OsAct1, OsTPI, OsAct15), and an intron (e.g. OsAct1, OsAct15, OsTPI, ZmHSP70).
- a promoter e.g. PC1SV, e35S, OsAct1, OsTPI, OsAct15
- an intron e.g. OsAct1, OsAct15, OsTPI, ZmHSP70.
- This expression element contains first intron and flanking UTR exon sequences from the rice actin 1 gene and includes 12 nt of exon 1 at the 5′ end and 7 nt of exon 2 at the 3′ end), and a 3′UTR (e.g. TaHsp17). Nucleotide sequences/and or patent references for various expression elements are disclosed in co-pending application U.S. Ser. No. 60/891,675.
- Transgenic corn plants were produced by the methods known in the art such as WO9506722 and US patent application 20040244075. Transgenic corn events having single copy were evaluated for dicamba tolerance at a single location replicated trial. Six events from each of the six constructs were used. The experimental design was as follows: rows/entry: 1; treatment: 0.5 lb/a of dicamba at V3 stage followed by 1 lb/a of dicamba at V8 stage (Clarity®, BASF, Raleigh, N.C.); replications: 2; row spacing: 30 inches; plot length: minimum 20 feet; plant density: about 30 plants/17.5 ft.; alleys: 2.5 feet. The entire plot was fertilized uniformly to obtain an agronomically acceptable crop.
- a soil insecticide such as Force® 3G Sudbury Crop Protection, Greensboro, N.C., USA
- Force® 3G Superiora Crop Protection, Greensboro, N.C., USA
- POUNCE® 3.2EC at 4 to 8 oz. per acre rate (FMC Corporation, Philadelphia, Pa.) was used.
- an insecticide spray program was used to control all above ground lepidopteran pests including European corn borer, corn earworm, and fall armyworm.
- POUNCE® 3.2EC at 4 to 8 oz. per acre was applied every 3 weeks to control lepidopteran pests; about 4 applications were made.
- the plot was kept weed free with a pre-emergence application of a herbicide such as Harness® Xtra 5.6 L (Monsanto, St. Louis, Mo.) and Degree Xtra® (Monsanto, St. Louis, Mo.). If weed escapes were observed in the untreated check, they were controlled by hand weeding or a post-emergence application of PERMIT (Monsanto, St. Louis, Mo.) or BUCTRIL® (Bayer, Research Triangle Park, NC) over the entire trial.
- a herbicide such as Harness® Xtra 5.6 L (Monsanto, St. Louis, Mo.) and Degree Xtra® (Monsanto, St. Louis, Mo.).
- Corn inbred lines transformed with DNA constructs comprising a DMO transgene were tested for dicamba tolerance by measuring brace root injury when treated with 0.5 lb/a of dicamba at V3 stage followed by 1 lb/a of dicamba at V8 stage.
- Brace root injury was evaluated visually by counting the number of plants in a row showing an “atypical” morphology of having the brace roots fused as compared to a typical morphology of “finger-like” structure.
- Table 12 corn plants transformed with DNA constructs coding for a DMO without linking it to a CTP (pMON73699, pMON73704) showed higher level of brace root injury, i.e. lower level of protection upon dicamba treatment.
- the constructs coding for a DMO linked to a CTP showed lower level of brace root injury, i.e. higher level of protection upon dicamba treatment.
- brace root injury as a measure of dicamba tolerance exhibited by transgenic corn plants transformed with DNA constructs carrying DMO.
- DMO gene in providing dicamba tolerance to cotton
- transgenic cotton plants were produced.
- Several DNA constructs carrying a DMO coding region as disclosed herein with a transit peptide (e.g., PsRbcS CTP, CTP1, CTP2) under the control of plant gene expression elements such as a promoter (e.g. PC1SV, FMV, or e35S), and a 3′UTR (e.g. E6; Accession # U30508) were produced and transformed into cotton (Gossypium hirsutum) as follows. Nucleotide sequences/and or patent references for various expression elements are disclosed in co-pending application U.S. Ser. No. 60/891,675. Media used are noted in Table 13.
- Cotton transformation was performed, for instance as described according to U.S. Patent Application Publication 20040087030, via an embryogenic approach.
- Explants of cotton cv Coker 130 were grown in vitro and with a liquid suspension of Agrobacterium tumefaciens carrying a DNA construct of interest, using selection on kanamycin containing media.
- Putative transgenic plantlets were then transferred to soil to obtain mature cotton plants. The transgenic nature of transformants was confirmed by DNA testing.
- Transformed cotton plants that comprise a DNA construct, i.e, each comprising a different combination of a DMO coding region with a transit peptide, a promoter, and a 3′UTR, were treated with dicamba (Clarity®, BASF, Raleigh, N.C.) as a post-emergent treatment at V4-5 growth stage at the rate of 561 g ae/ha (0.5 lb/a) and found to be tolerant whereas untransformed cotton plants showed an injury rate of 79% to 86%. Transgenic plants showing more than 95% tolerance (equal to less than 5% injury) were selected for further studies. Transgenic plants were also tolerant to a subsequent post-emergent treatment of dicamba.
- the plants that were treated with 0.5 lb/acre of dicamba at V3-4 stage followed by either 1 or 2 lb/acre of dicamba at V5 or later stages were still tolerant to dicamba.
- R1 transgenic seeds and plants were also subjected to pre-emergence or pre-emergence and post-emergence dicamba treatment and found to be tolerant.
- This example shows that a DMO gene can provide dicamba tolerance to cotton at various stages of growth thus enabling application of dicamba at various stages to obtain effective weed control.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Toxicology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Catching Or Destruction (AREA)
Abstract
The invention provides methods for weed control with dicamba and related herbicides. It was found that pre-emergent applications of dicamba at or near planting could be made without significant crop damage or yield loss. The techniques can be combined with the herbicide glyphosate to improve the degree of weed control and permit control of herbicide tolerant weeds.
Description
This application claims the priority of U.S. Provisional Patent Application 60/811,276, filed Jun. 6, 2006, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The invention relates generally to the field of weed management. More specifically, the invention relates to methods for using auxin-like herbicides such as dicamba for controlling weeds.
2. Description of the Related Art
Weeds cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests. The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, decreased land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds. The principal means by which weeds cause these effects are: 1) competing with crop plants for the essentials of growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of. The damage caused can be significant. For example, it is estimated that between 1972 and 1976 corn yields were reduced by about 10% due to weeds (Chandler, 1981).
Among weeds that serve as hosts for crop pests, for example, pepperweed and tansymustard (Descurainia sp.) maintain large populations of diamondback moths during the late fall, winter, and spring. They are also hosts to the turnip aphid and green peach aphid. Several weed species of the nightshade family (Solanaceae) are hosts to insects that commonly attack eggplant, pepper, potato, and tomato. For example, horsenettle (Solanum carolinense L.) is a host of the Colorado potato beetle, and black nightshade (S. nigrum L.) is a host of the cabbage looper. Morning-glory is an important host of insects attacking sweet potato, especially the highly destructive sweet potato weevil. Ragweed serves as a host for Mansonia mosquitoes, an insect vector for the human diseases encephalitis and rural filariasis.
Some weeds are undesirable in hay, pastures, and range-lands because of the mechanical injury that they inflict on livestock. Woody stems, thorns, and stiff seed awns cause injury to the mouth and digestive tract of livestock; and the hairs and fibers of some plants tend to ball up and obstruct the intestines, especially in horses, causing serious problems. Ingested by milk cows, some weeds such as ragweeds, wild garlic (Allium vineale L.), and mustard, among others, impart a distinctly distasteful odor or flavor to milk and butter. Barbed seed dispersal units may become so entangled in the wool of sheep as to greatly diminish its market value. Parasitic plants, such as dodder (Cuscuta sp.), broomrape (Orobanche sp.), and witchweed, rob their host plants of organic foodstuffs.
Chemical herbicides have provided an effective method of weed control over the years. Herbicides can generally be applied pre-emergence and/or post-emergence. Pre-emergence herbicides are applied in a field before a crop emerges from the soil. Such applications are typically applied to the soil before, at the same time, or soon after planting the crop. Such applications may kill weeds that are growing in the field prior to the emergence of the crop, and may also prevent or reduce germination of weeds that are present in the soil. Post-emergence herbicides are typically used to kill weeds after a crop has emerged in the field. Such applications may kill weeds in the field and prevent or reduce future weed germination. In either case, the herbicides may be applied to the surface of the soil, mixed with the soil, over the top of the plant, or applied by any other method known to those of skill in the art.
One weed control strategy is to apply an herbicide such as dicamba to a field before sowing seeds. However, after applying the herbicide to a field, a farmer has to wait at least several weeks before sowing the field with crop seeds such that the herbicide has killed most of the weeds and has degraded so as not injure the sown crop. For example, plants are especially sensitive to dicamba and it has been recommended that dicamba formulations such as Banvel™ or Sterling™ be applied 30 days prior to planting for controlling weeds. A comprehensive list of weeds that are controlled by dicamba is available (Anonymous, 2007). The herbicide is particularly useful for control of taller weeds and more difficult to control weeds such as purslane, sicklepod, morninglory and wild buckwheat. Dicamba can be used to control weeds not susceptible to other herbicides. Following the application of Clarity™, another formulation of dicamba, a minimum accumulation of one inch of rainfall or overhead irrigation followed by a 14 day waiting period for the 4 to 8 ounce/acre rates or a 28 day waiting period for the 16 ounce/acre rates has been recommend for controlling weeds in a soybean field (see Table 22 in VanGessel and Majek, 2005). Also, the Clarity® label recommends that it be applied at least 15 days prior to sorghum planting. Similarly, for cotton, a waiting period of 21 days is recommended after applying Clarity® or Banvel® to the field, before planting the cotton seeds (Craig et al., 2005, Crop Profile for Cotton (Gossypium hirsutum) in Tennessee, www.ipmcenters.org/cropprofiles/docs/tncotton.html) and no pre-emergence and post-emergence application are recommended. The waiting period is also dependent on the crop growing environment at any give time, such as the type of soil (soil having organic activity will degrade dicamba faster), moisture content, rainfall, temperature, as well as type of formulation and rate of application.
The herbicide 2,4-D has been recommended for controlling certain weeds in a soybean field such as mustard spp., plantains, marestail, and 2,4-D susceptible annual broadleaf weeds by applying it 7 to 30 days prior to planting, depending on rate and formulation (ester or amine) (see Table 22 in VanGessel and Majek, 2005).
One method that has been successfully used to manage weeds combines herbicide treatments with crops that are tolerant to the herbicides. In this manner, herbicides that would normally injure a crop can be applied before and during growth of the crop without causing damage. Thus, weeds may be effectively controlled and new weed control options are made available to the grower. In recent years, crops tolerant to several herbicides have been developed. For example, crops tolerant to 2,4-dichlorophenoxyacetic acid (Streber and Willmitzer, 1989), bromoxynil (Stalker et al., 1988), glyphosate (Comai et al., 1985) and phosphinothricin (De Block et al., 1987) have been developed.
Recently, a gene for dicamba monooxygenase (DMO) was isolated from Pseudomonas maltophilia (US Patent Application No: 20030135879) which is involved in the conversion of a herbicidal form of the herbicide dicamba (3,6-dichloro-o-anisic acid) to a non-toxic 3,6-dichlorosalicylic acid. The inventors reported the transformation of the DMO gene into tobacco and Arabidopsis. The transformed plant tissue was selected on kanamycin and regenerated into a plant. However, herbicide tolerance was not demonstrated or suggested in immature tissues or seedlings or in other plants. Pre-emergence herbicide tolerance to dicamba was not described. Transgenic soybean plants and other plants tolerant to application of dicamba are described in Behrens et al. (2007).
Dicamba is one member of a class of herbicides commonly referred to as “auxin-like” herbicides or “synthetic auxins.” These herbicides mimic or act like the natural plant growth regulators called auxins. Auxin-like herbicides appear to affect cell wall plasticity and nucleic acid metabolism, which can lead to uncontrolled cell division and growth. The injury symptoms caused by auxin-like herbicides include epinastic bending and twisting of stems and petioles, leaf cupping and curling, and abnormal leaf shape and venation.
Dicamba is one of the many auxin-like herbicides that is a low-cost, environmentally-friendly herbicide that has been used as a pre-emergence herbicide (i.e., 30 days prior to planting) in dicots and as a pre- and/or post-emergence herbicide in corn, sorghum, small grains, pasture, hay, rangeland, sugarcane, asparagus, turf, and grass seed crops to effectively control annual and perennial broadleaf weeds and several grassy weeds (Crop Protection Chemicals Reference, 1995). Unfortunately, dicamba can injure many commercial crops including beans, soybeans, cotton, peas, potatoes, sunflowers, tomatoes, tobacco, and fruit trees, ornamental plants and trees, and other broadleaf plants when it comes into contact with them. Soybean and cotton are particularly sensitive to dicamba. Thus, applications of dicamba must generally occur several weeks before planting of sensitive crops to ensure that residual dicamba is sufficiently cleared from the crop environment before crops emerge. For post-emergent weed control in corn, dicamba is the 5th most widely used herbicide for broad leaf weeds. However, although the optimal rate for broad leaf weed control is between 280 to 560 g/h (grams/hectare), the average use rate in corn is 168 g/h as at higher use rates and under certain environmental conditions, dicamba can injure corn.
As noted above, current manufacturer's guidelines typically require at least a 30 day delay between the application of dicamba and the planting of sensitive crops. This inability to apply dicamba close to the time that crops are planted delays sowing time and shortens the growing season, thereby increasing the risk of exposing crops to frost in the fall. The delay also means that the farmers have to go through the field twice; once for planting and once for spraying, thereby increasing fuel and wear-tear costs to the farmers. Improvements over the state of the art that would eliminate the delay would positively impact the quality and quantity of the crop which could result and reduce economic losses to farmers. More effective weed control would also reduce the risk of weeds developing resistance to existing herbicides.
In one aspect, the invention provides a method for controlling weed growth in a field comprising: a) applying a herbicidally effective amount of an auxin-like herbicide to a crop-growing environment; and planting a transgenic seed of a dicotyledonous plant expressing a nucleic acid encoding dicamba monooxygenase in soil of the crop-growing environment, wherein the seed germinates within 30 days or less of applying the herbicide and wherein the dicamba monooxygenase comprises at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:2; and c) allowing the seed to germinate into a plant. In certain embodiments, the seed germinates within four weeks, three weeks, two weeks, or less than one week after treating the growing environment with the auxin-like herbicide. The treated growing environment may be, for example, a field in which a crop is planted. A population of seeds of a plant tolerant to the auxin-like herbicide may be planted in the field. Treating the environment can be carried out according to known techniques in the art using, for example, commercially available formulations of auxin-like herbicides such as dicamba. The environment includes an area for which control of weeds is desired and in which the seed of a plant tolerant to the auxin-like herbicide can be planted. A weed can be directly contacted with herbicide in the environment and soil in the environment can be contacted with the herbicide, preventing or reducing weed growth in the soil. The step of treating the environment with a herbicide may be carried out before, after, or concurrently with the step of planting the soil with the transgenic seed. The transgenic seed may be planted into soil in the environment, for example, within three weeks before or after treatment, including from between about two weeks, one week and 0 weeks before or after treatment, further including from between about 1, 2, 3, 4, 5, or 6 days before or after treatment, including concurrently with treatment. In the method, the seed may germinate, for example, from between about 30 days and 0 days after treating the environment, including between about 21, 18, 16, 14, 12, 10, 8, 6, 5, 4, 3, 2, 1 and about 0 days after treating the environment. The method may further comprise applying one or more additional treatments of an auxin-like herbicide after the seed germinates and/or the plant is growing. In certain embodiments, a second treatment is carried out at a time selected from the group consisting of between about the 1 to 2 leaf and 3 to 4 leaf stages, before flowering, at flowering, after flowering, and at seed formation. In one embodiment, the second treatment comprises applying dicamba and/or a 2,4-dichlorophenoxyacetic compound (2,4-D).
In a method of the invention, the auxin-like herbicide may be selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound. Examples of a phenoxy carboxylic acid compound include 2,4-dichlorophenoxyacetic acid and (4-chloro-2-methylphenoxy)acetic acid. In certain embodiments, a herbicidally effective amount of 2,4-D and/or (4-chloro-2-methylphenoxy)acetic acid used is between about 2 g/ha (grams/hectare) to about 5000 g/ha, including about 50 g/ha to about 2500 g/ha, about 60 g/ha to about 2000 g/ha, about 100 g/ha to about 2000 g/ha, about 75 g/ha to about 1000 g/ha, about 100 g/ha to about 500 g/ha, and from about 100 g/ha to about 280 g/ha. In one embodiment found to function particularly well with the invention, dicamba is used as the herbicide. In certain embodiments, a herbicidally effective amount of dicamba used may be from about 2.5 g/ha to about 10,080 g/ha, including about 2.5 g/ha to about 5,040 g/ha, about 5 g/ha to about 2,020 g/ha, about 10 g/a to about 820 g/h and about 50 g/ha to about 1,000 g/ha, about 100 g/ha to about 800 g/ha and about 250 g/ha to about 800 g/ha.
In a method of the invention a plant may be used exhibiting tolerance to auxin-like herbicides including dicamba. Such a plant may comprise a nucleic acid encoding a dicamba monooxygenase. In one embodiment, the plant is defined as comprising a nucleic acid encoding a dicamba monooxygenase that has at least 70% identity to a polypeptide sequence of any one or more of SEQ ID NOs:2, 4, 6, 8, 10 or 12, including at least about 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% and greater sequence identity to these sequences. Polypeptide or polynucleotide comparisons may be carried out and identity determined as is known in the art, for example, using MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wis. 53715) with default parameters. Such software matches similar sequences by assigning degrees of similarity or identity.
The methods of the invention may be used in connection with plants that exhibit susceptibility to auxin-like herbicides such as dicotyledonous (dicot) plants. In certain embodiments, a dicotyledonous plant is used selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon. In some embodiments, the dicot is soybean, cotton, or canola.
In another aspect, the invention provides a method for controlling a weed in a field comprising: a) planting a transgenic seed in a field, wherein the seed comprises transgenes conferring tolerance to an auxin-like herbicide and a second herbicide; b) growing the seed into a plant; and c) treating the field with an amount of the auxin-like herbicide and the second herbicide in amounts effective to control weed growth. In some embodiments, the second herbicide may be glufosinate (De Block et al., 1987), a sulfonylurea (Sathasiivan et al., 1990), an imidazolinone (U.S. Pat. Nos. 5,633,437; 6,613,963), bromoxynil (Stalker et al., 1988), dalapon or 2,2-Dichloropropionic acid (Buchanan-Wollaston et al., 1989), cyclohexanedione (U.S. Pat. No. 6,414,222), a protoporphyrinogen oxidase inhibitor (U.S. Pat. No. 5,939,602), norflurazon (Misawa et al., 1993 and Misawa et al., 1994), or isoxaflutole (WO 96/38567) herbicide, among others. The auxin-like herbicide and the second herbicide may be applied simultaneously or separately. In a particular embodiment, the second herbicide is glyphosate and the auxin-like herbicide is dicamba. In one embodiment, the plant comprises a nucleic acid that has at least 70% sequence identity to a nucleic acid sequence of any one or more of SEQ ID NOs: 1, 3, 5, 7, 9, or 11, including at least about 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% and greater sequence identity to these sequence.
In further embodiments, a plant such as the foregoing is defined as comprising a transgene conferring glyphosate tolerance. Glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthases (EPSPS) are well known in the art and disclosed, for example, in U.S. Pat. Nos. 5,627,061, 5,633,435, 6,040,497, 5,094,945, WO04074443, and WO04009761. Nucleic acids encoding glyphosate degrading enzymes, for example, glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175), and nucleic acids encoding glyphosate inactivating enzymes, such as glyphosate-N-acetyl transferase (GAT, U.S. Patent publication 20030083480; U.S. Patent Publication 20070079393) and glyphosate decarboxylase (WO05003362 and U.S. Patent Application No. 20040177399) are also known. In certain embodiments, the GAT enzyme comprises the sequence of GAT4601 (SEQ ID NO:19), or is encoded by a transgene comprising the nucleic acid sequence of SEQ ID NO:18. In a particular embodiment, the GAT polypeptide is expressed using the SCP1 promoter.
In the method, treating the field may be carried out at a time selected from the group consisting of between about the 1 to 2 leaf and 3 to 4 leaf stages, before flowering, at flowering, after flowering, and at seed formation. Treating the field may further be defined as carried out at a time proximate to step a) such that the seed germinates while the auxin-like herbicide remains in the soil in an amount effective to control growth of the weed. In the method, treating the field may be carried out about three weeks, two weeks 1 week or 0 weeks before step a). The auxin-like herbicide may be selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
The phenoxy carboxylic acid compound may be selected from the group consisting of 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy)acetic acid, and 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB). The amount of 2,4-dichlorophenoxyacetic compound used may be lower than about 280 g/ha. The amount of 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) used may be lower than about 1120 g/ha. The amount of (4-chloro-2-methylphenoxy) acetic acid compound used may be lower than about 280 g/ha. In one embodiment, the auxin like herbicide is dicamba. The amount of dicamba used may be, for example, from about 2.5 g/ha to about 10,080 g/ha, including about 2.5 g/ha to about 1040 g/ha, about 5 g/ha to about 2040 g/ha, about 10 g/a to about 820 g/h, and about 50 g/ha to about 1000 g/ha. The amount of glyphosate may be from about 200 g/ha to about 1,600 g/h, including from about 200 g/ha to about 1,000 g/h, from about 200 g/ha to about 800 g/h, from about 200 g/ha to about 400 g/h, and from about 400 g/ha to about 800 g/h.
In yet another aspect, the invention provides a method for controlling weed growth in a crop-growing environment comprising: a) applying a herbicidally effective amount of an auxin-like herbicide to a crop-growing environment; b) planting a transgenic seed of a monocotyledonous plant comprising a nucleic acid encoding a dicamba degrading enzymatic activity, such as dicamba monooxygenase, in soil of the crop-growing environment within 21 days of applying the auxin-like herbicide, wherein the herbicidally effective amount is an amount that does not damage the transgenic seed or a plant that germinates therefrom but will damage a seed or a plant that germinates therefrom of the same genotype that lacks the nucleic acid and is planted under the same conditions as the transgenic seed, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:8, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:7, (3) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO:7 under conditions of 5×SSC, 50% formamide and 42° C., (4) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:7, and (5) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:8; and c) allowing the seed to germinate into a plant. The nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:7 may encode a polypeptide comprising a cysteine residue at position 112. This embodiment may combined with any of the methods and compositions provided above.
In particular embodiments of the invention, herbicide treatments to monocot plants may be made at higher rates and/or in closer proximity to emergence of crops than previously could be made without damaging crops. In specific embodiments, a herbicidally effective amount of 2,4-D and/or MCPA, such as, for example, at least about 200, 300, 300, 500, 590, 650, 700, 800 or more g/ha of either or both herbicides, including from about 300 to about 1200 g/ha, from about 500 to about 1200 g/ha, from about 600 to about 1200 g/ha, from about 590 to about 1400 g/ha, and from about 700 to about 1100 g/ha of either or both herbicides. The herbicide may also be dicamba and the herbicidally effective amount may be, for example, at least about 168, 175, 190, 200, 225, 250, 280, 300, 400, 500, 560 or more g/ha of dicamba, including from about 200 g/ha to about 600 g/ha, from about 250 g/ha to about 600 g/ha, from about 250 g/ha to about 800 g/ha, from about 225 g/ha to about 1120 g/ha, and from about 250 g/ha to about 1200 g/ha, from about 280 g/ha to about 1120 g/ha and from about 560 g/ha to about 1120 g/ha. In particular embodiment, the monocotyledonous plant is selected from the group consisting of corn, rice, sorghum, wheat, rye, millet, sugarcane, oat, triticale, switchgrass, and turfgrass. Expressing the transgenic dicamba-degrading enzymatic activity such as a monooxygenase, in a monocotyledonous crop plant, such as corn, allows application of a higher level of dicamba to the crop for the purpose of weed control at any stage of plant growth, as compared to the level of dicamba that may be applied to a monocotyledonous crop plant that does not comprise a transgene that encodes such a dicamba-degrading enzymatic activity.
In yet another aspect, the invention provides a method for controlling weed growth in a field comprising: a) applying a herbicidally effective amount of an auxin-like herbicide other than dicamba to a field, wherein the field comprises a transgenic dicotyledonous plant comprising a nucleic acid encoding dicamba monooxygenase or is planted with a seed that germinates into said transgenic dicotyledonous plant within 21 days of applying the herbicide, wherein the herbicidally effective amount is an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding dicamba monooxygenase, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:8, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:7, (3) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO:7 under conditions of 5×SSC, 50% formamide and 42° C., (4) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:7, and (5) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:8; and b) allowing the transgenic dicotyledonous plant to grow. In the method, step a) may comprise applying the herbicidally effective amount of an auxin-like herbicide to a growing environment adjacent to a growing environment comprising the transgenic dicotyledonous plant and allowing the herbicide to drift onto the plant or soil in which the plant grows. The auxin-like herbicide may be any herbicide as described herein. In the method, step b) may comprise allowing the transgenic dicotyledonous plant to grow to maturity. In specific embodiments, the herbicidally effective amount may be defined as an amount that does not damage the transgenic plant.
In yet another aspect, the invention provides a method for increasing the efficiency of use of a herbicide delivery device comprising: a) obtaining a device that has been used to deliver a first composition comprising an auxin-like herbicide; and b) delivering a second composition to the field using the device without first completely washing the device so that a herbicide residue comprising the auxin-like herbicide remains in the device and is delivered with the second composition to the field, wherein the field comprises a transgenic dicotyledonous plant expressing a nucleic acid encoding dicamba monooxygenase or is planted with a seed that germinates into said transgenic dicotyledonous plant within 21 days of delivering the second composition, wherein the herbicide residue is present in an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding dicamba monooxygenase, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:8, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:7, (3) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO:7 under conditions of 5×SSC, 50% formamide and 42° C., (4) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:7, and (5) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:8.
The invention relates, in one aspect, to the unexpected discovery that pre-emergent applications of auxin-like herbicides such as dicamba may be made close to, or even concurrently with the planting of crops. The invention provides superior weed control options, including reduction and/or prevention of herbicide tolerance in weeds. Pre-emergent applications of auxin-like herbicides such as dicamba have previously required herbicide applications well in advance of planting and germination of plants susceptible to auxin-like herbicides to allow breakdown of the herbicide in the environment and avoid significant crop damage or death. Most crop plants, and particularly dicotyledonous plants such as soybeans and cotton are extremely sensitive to dicamba. Thus, the recommended post-application delays in planting by manufacturers must be closely followed.
Young plantlets and seeds are particularly sensitive to herbicides. Even in transgenic seeds and plants, immature tissues can insufficiently express the gene needed to render them tolerant to the herbicide, or may not have accumulated sufficient levels of the protein to confer tolerance. For example, mature plants have been found exhibiting high levels of tolerance to the herbicides Harness™ (acetochlor), Lasso™ (alachlor), Treflan™ (Trifluralin), Eptam™ (EPTC), and/or Far-Go™ (triallate) but susceptibility to the herbicides at germination. As a result of this variability in young tissues, crop response to post-emergence applications (e.g., in more mature vegetative tissues) of dicamba herbicides can significantly differ from the crop response to pre-emergent applications of herbicides in which younger more sensitive tissues are exposed. The former does not necessarily predict the latter. This is underscored in the case of plants highly sensitive to a given herbicide, such as dicots and the herbicide dicamba. Thus, the present invention unexpectedly shows that higher than predicted levels of crop safety can be achieved from pre-emergence applications of dicamba.
The present invention employs auxin-like herbicides, which are also called auxinic or growth regulator herbicides, or Group 4 herbicides (based on their mode of action). These types of herbicides mimic or act like the natural plant growth regulators called auxins. The action of auxinic herbicides appears to affect cell wall plasticity and nucleic acid metabolism, which can lead to uncontrolled cell division and growth.
Auxin-like herbicides include four chemical families: phenoxy, carboxylic acid (or pyridine), benzoic acid, and quinaline carboxylic acid. Phenoxy herbicides are most common and have been used as herbicides since the 1940s when (2,4-dichlorophenoxy)acetic acid (2,4-D) was discovered. Other examples include 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2-(2,4,5-Trichlorophenoxy)Propionic Acid (2,4,5-TP), 2-(2,4-dichloro-3-methylphenoxy)-N-phenylpropanamide (clomeprop), (4-chloro-2-methylphenoxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid (MCPB), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP).
The next largest chemical family is the carboxylic acid herbicides, also called pyridine herbicides. Examples include 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid), 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram), (2,4,5-trichlorophenoxy) acetic acid (triclopyr), and 4-amino-3,5-dichloro-6-fluoro-2-pyridyloxyacetic acid (fluoroxypyr). Examples of benzoic acids include 3,6-dichloro-o-anisic acid (dicamba) and 3-amino-2,5-dichlorobenzoic acid (choramben). Dicamba is a particularly useful herbicide for use in the present invention. A fourth chemical family of auxinic herbicides is the quinaline carboxylic acid family. Example includes 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac). This herbicide is unique in that it also will control some grass weeds, unlike the other auxin-like herbicides which essentially control only broadleaf or dicotyledonous plants. The other herbicide in this category is 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac).
It was found, for example, that soybean plants transformed with dicamba monooxygenase (DMO)-encoding polynucleotide constructs were tolerant to even early pre-emergence application of dicamba, with less than 10% injury rates at even 9× the labeled application rate (5,040 g/ha, 4.5 lb/acre; Table 1). The inventors found that, even using an 18× application rate of 10,080 g/ha (9 lb/acre), injury to transgenic dicamba tolerant plants was less than 20% (Table 4). At an approximately 2× rate of application of 1122 g/ha, less than 2% injury was observed. It was therefore indicated the improved weed control associated with pre- and post-emergence applications of herbicides may be used without any significant decreases in productivity due to herbicide damage. Pre-emergent applications of dicamba according to the invention may therefore be combined with one or more herbicide applications post-emergence to dicamba-tolerant plants, while maintaining crop yield and obtaining improved weed control. For example, one such herbicide application regime involved a late pre-emergence application of dicamba in conjunction with a post-emergence application of dicamba at the V2 stage of development. In certain embodiments, the post-emergence application may be carried out at any point from emergence to harvest. Particularly beneficial will be post-emergence application at any V stage until the soybean canopy closes, for example, at about the V1, V2, V3, V4, V5, V6 and/or later stages.
In accordance with the invention, methods and compositions for the control of weeds are provided comprising the use of plants exhibiting tolerance to glyphosate and auxin-like herbicides such as dicamba. As shown in the working examples, dicamba and glyphosate allow use of decreased amounts of herbicide to achieve the same level of control of glyphosate-tolerant weeds and thus this embodiment provides a significant advance for the control of herbicide tolerance in commercial production fields. In one embodiment, a tank mix of glyphosate and dicamba is applied pre- and/or post-emergence to plants. Glyphosate and dicamba may additionally be applied separately. In order to obtain the ability to use decreased amount of herbicide, the glyphosate and dicamba are preferably applied within a sufficient interval that both herbicides remain active and able to control weed growth.
This embodiment therefore allows use of lower amounts of either herbicide to achieve the same degree of weed control as an application of only one of the herbicides. For example, the invention provides methods of weed control comprising applying in a field planted with transgenic plants having tolerance to dicamba and glyphosate a herbicide composition comprising less than a 1× rate of glyphosate and/or dicamba, relative to the standard manufacturer labeled rate. Examples of respective glyphosate and dicamba application rates include from about a 0.5×-0.95× of either herbicide, specifically including about 0.5×, 0.6×, 0.7×, 0.8×, 0.85×, 0.9×, and 0.95× of either herbicide and all derivable combinations thereof, as well as higher rates such as 0.97× and 0.99×. Alternatively, in the case of more difficult to control weeds or where a greater degree of weed control is desired, 1× and higher application rates may be made in view of the finding herein that even high application rates of dicamba did not significantly damage plants. The 1× application rates are set by the manufacturer of a commercially available herbicide formulation and are known to those of skill in the art. For example, the label for Fallow Master™, a glyphosate and dicamba mixture having a ratio of glyphosate:dicamba of about 2:1 recommends application rates of about 451 g/ha (311 ae g/ha glyphosate:140 ae g/ha dicamba) to 621 ae g/ha (428 ae g/ha glyphosate: 193 ae g/ha dicamba) depending upon the weed species and weed height.
“Glyphosate” refers to N-phosphonomethylglycine and salts thereof. Glyphosate is commercially available in numerous formulations. Examples of these formulations of glyphosate include, without limitation, those sold by Monsanto Company as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt, ROUNDUP® WEATHERMAX containing glyphosate as its potassium salt; ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and TOUCHDOWN® herbicide, which contains glyphosate as its trimethylsulfonium salt. “Dicamba” refers to 3,6-dichloro-o-anisic acid or 3,6-dichloro-2-methoxy benzoic acid and its acids and salts. Its salts include isopropylamine, diglycoamine, dimethylamine, potassium and sodium. Examples of commercial formulations of dicamba include, without limitation, Banvel™ (as DMA salt), Clarity™ (as DGA salt), VEL-58-CS-11™ and Vanquish™ (as DGA salt, BASF).
Non-limiting examples of weeds that can be effectively controlled using dicamba are the following: cheese weed, chick weed, while clover, cocklebur, Asiatic dayflower, dead-nettle, red stem filaree, Carolina geranium, hemp sesbania, henbit, field horsetail (marestail), knotweed, kochia, lambs-quarter, morninglory, indian mustard, wild mustard, redroot pigweed, smooth pigweed, prickly sida, cutleaf evening primrose, common purslane, common ragweed, gaint ragweed, russian thistle, shepardspurse, pennsylvania smartweed, spurge, velvetleaf, field violet, wild buckwheat, wild radish, soybeanpurslane, sicklepod, morninglory, wild buckwheat, common ragweed, horseweed (marestail), hairy fleabane, buckhorn plantain, and palmer pigweed. Non-limiting examples of weeds that can be controlled using dicamba and glyphosate are the following: barnyardgrass, downy brome, volunteer cereals, Persian darnel, field sandbur, green foxtail, wild oats, wild buckwheat, volunteer canola, cowcockle, flix-weed, kochia, ladysthumb, lambsquarters, wild mustard, prickly lettuce, redroot pigweed, smartweed, stinkgrass, stinkweed, russian thistle, foxtail, and witchgrass. Combining glyphosate and dicamba achieves the same level of weed control with reduced herbicide amounts and thus the spectrum of weeds that may be controlled at any given herbicide application rate may be increased when the herbicides are combined.
Transgenic plants having herbicide tolerance may be made as described in the art. Dicamba tolerance may be conferred, for example, by a gene for dicamba monooxygenase (DMO) from Pseudomonas maltophilia (US Patent Application No: 20030135879). Examples of sequences that may be used in this regard are nucleic acid encoding the polypeptides of SEQ ID Nos: 2, 4, 6, 8, 10, and 12. Examples of sequences encoding these polypeptides are given as SEQ ID NOS: 1, 3, 5, 7, 9, and 11. SEQ ID NO: 1 shows DMO from Pseudomonas maltophilia optimized for expression in dicots using Arabidopsis thaliana codon usage. The polypeptide, predicted to have an Ala, Thr, Cys at positions 2, 3, 112, respectively, is given in SEQ ID NO:2. SEQ ID NO:3 shows another Pseudomonas maltophilia DMO optimized for expression in dicots and encoding the polypeptide of SEQ ID NO:4, predicted to have an Leu, Thr, Cys at positions 2, 3, 112, respectively. SEQ ID NO:5 shows the coding sequence and SEQ ID NO:6 the polypeptide for dicot optimized DMO predicted to have a Leu, Thr, Trp at positions 2, 3, 112, respectively. SEQ ID NOS:7 and 8 show the coding and polypeptide sequences for DMO predicted to have an Ala, Thr, Cys at position 2, 3, 112, respectively. SEQ ID NOS:9 and 10 show the dicot-optimized coding sequence and polypeptide sequences for DMO predicted to have an Ala, Thr, Trp at positions 2, 3, 112, respectively. SEQ ID NOS:11 and 12 show coding sequence and polypeptide sequences for DMO from Pseudomonas maltophilia (US Patent Application No: 20030135879). Another exemplary DMO sequence may be a DMO predicted to have a Leu, Thr, Cys at position 2, 3, 112, respectively with codon usage of Pseudomonas maltophilia (US Patent Application No: 20030135879).
Sequences conferring glyphosate tolerance are also known, including glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthases (EPSPS) as described in U.S. Pat. Nos. 5,627,061, 5,633,435, 6,040,497, 5,094,945, WO04074443, WO04009761, all of which are hereby incorporated by reference; by expression of nucleic acids encoding glyphosate degrading enzymes, for example, glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175, herein incorporated by reference), glyphosate decarboxylase (WO05003362; US Patent Application 20040177399, herein incorporated by reference); and by expression of nucleic acids encoding glyphosate inactivating enzymes, such as glyphosate-N-acetyl transferase (GAT, e.g. U.S. Patent publications 20030083480 and 20070079393, herein incorporated by reference).
Variants of proteins having a capability to degrade auxin-like herbicides, glyphosate or other herbicides can readily be prepared and assayed for activity according to standard methods. Such sequences can also be identified by techniques know in the art, for example, from suitable organisms including bacteria that degrade auxin-like herbicides such as dicamba or other herbicides (U.S. Pat. No. 5,445,962; Cork and Krueger, 1991; Cork and Khalil, 1995). One means of isolating a DMO or other sequence is by nucleic acid hybridization, for example, to a library constructed from the source organism, or by RT-PCR using mRNA from the source organism and primers based on the disclosed desaturases. The invention therefore encompasses use of nucleic acids hybridizing under stringent conditions to a DMO encoding sequence described herein. One of skill in the art understands that conditions may be rendered less stringent by increasing salt concentration and decreasing temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results. An example of high stringency conditions is 5×SSC, 50% formamide and 42° C. By conducting a wash under such conditions, for example, for 10 minutes, those sequences not hybridizing to a particular target sequence under these conditions can be removed.
Variants can also be chemically synthesized, for example, using the known DMO polynucleotide sequences according to techniques well known in the art. For instance, DNA sequences may be synthesized by phosphoamidite chemistry in an automated DNA synthesizer. Chemical synthesis has a number of advantages. In particular, chemical synthesis is desirable because codons preferred by the host in which the DNA sequence will be expressed may be used to optimize expression. Not all of the codons need to be altered to obtain improved expression, but preferably at least the codons rarely used in the host are changed to host-preferred codons. High levels of expression can be obtained by changing greater than about 50%, most preferably at least about 80%, of the codons to host-preferred codons. The codon preferences of many host cells are known (PCT WO 97/31115; PCT WO 97/11086; EP 646643; EP 553494; and U.S. Patent Nos: 5,689,052; 5,567,862; 5,567,600; 5,552,299 and 5,017,692). The codon preferences of other host cells can be deduced by methods known in the art. Also, using chemical synthesis, the sequence of the DNA molecule or its encoded protein can be readily changed to, for example, optimize expression (for example, eliminate mRNA secondary structures that interfere with transcription or translation), add unique restriction sites at convenient points, and delete protease cleavage sites.
Modification and changes may be made to the polypeptide sequence of a protein such as the DMO sequences provided herein while retaining enzymatic activity. The following is a discussion based upon changing the amino acids of a protein to create an equivalent, or even an improved, modified polypeptide and corresponding coding sequences. It is known, for example, that certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the DMO peptide sequences described herein or other herbicide tolerance polypeptides and corresponding DNA coding sequences without appreciable loss of their biological utility or activity.
In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte et al., 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics (Kyte et al., 1982), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
It is known in the art that amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.
It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryptophan (−3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred. Exemplary substitutions which take these and various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
A gene conferring herbicide tolerance will typically be linked to a plant promoter driving expression of the gene in an amount sufficient to confer the herbicide tolerance. Promoters suitable for this and other uses are well known in the art. Examples describing such promoters include U.S. Pat. No. 6,437,217 (maize RS81 promoter), U.S. Pat. No. 5,641,876 (rice actin promoter), U.S. Pat. No. 6,426,446 (maize RS324 promoter), U.S. Pat. No. 6,429,362 (maize PR-1 promoter), U.S. Pat. No. 6,232,526 (maize A3 promoter), U.S. Pat. No. 6,177,611 (constitutive maize promoters), U.S. Pat. Nos. 5,322,938, 5,352,605, 5,359,142 and 5,530,196 (35S promoter), U.S. Pat. No. 6,433,252 (maize L3 oleosin promoter), U.S. Pat. No. 6,429,357 (rice actin 2 promoter as well as a rice actin 2 intron), U.S. Pat. No. 5,837,848 (root specific promoter), U.S. Pat. No. 6,294,714 (light inducible promoters), U.S. Pat. No. 6,140,078 (salt inducible promoters), U.S. Pat. No. 6,252,138 (pathogen inducible promoters), U.S. Pat. No. 6,175,060 (phosphorus deficiency inducible promoters), U.S. Pat. No. 6,388,170 (PC1SV promoter), U.S. Pat. No. 6,635,806 (gamma-coixin promoter), and U.S. patent application Ser. No. 09/757,089 (maize chloroplast aldolase promoter). Additional promoters that may find use are a nopaline synthase (NOS) promoter (Ebert et al., 1987), the octopine synthase (OCS) promoter (which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., 1987), the CaMV 35S promoter (Odell et al., 1985), the figwort mosaic virus 35S-promoter (Walker et al., 1987), the sucrose synthase promoter (Yang et al., 1990), the R gene complex promoter (Chandler et al., 1989), the chlorophyll a/b binding protein gene promoter, CaMV35S (U.S. Pat. Nos. 5,322,938; 5,352,605; 5,359,142; and 5,530,196), FMV35S (U.S. Pat. Nos. 6,051,753; 5,378,619), a PC1SV promoter (U.S. Pat. No. 5,850,019; or SEQ ID NO:20), the SCP promoter (U.S. Pat. No. 6,677,503), and AGRtu.nos (GenBank Accession V00087; Depicker et al, 1982; Bevan et al., 1983) promoters, and the like (see also see Table 1).
Benefit may be obtained for the expression of herbicide tolerance genes by use of a sequence coding for a transit peptide. For example, incorporation of a suitable chloroplast transit peptide, such as, the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987), and the Petunia hybrida EPSPS CTP (della-Cioppa et al., 1986) has been shown to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants. Chloroplast transit peptides (CTPs) are engineered to be fused to the N-terminus of a protein to direct the protein into the plant chloroplast. Such sequences may find use in connection with a nucleic acid conferring dicamba tolerance in particular. Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide that is removed during the import process. Examples of chloroplast proteins include the small subunit (RbcS2) of ribulose-1,5,-bisphosphate carboxylase, ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, and thioredoxin F. Other exemplary chloroplast targeting sequences include the maize cab-m7 signal sequence (Becker et al., 1992; PCT WO 97/41228), the pea glutathione reductase signal sequence (Creissen et al., 1995; PCT WO 97/41228), and the CTP of the Nicotiana tabacum ribulose 1,5-bisphosphate carboxylase small subunit chloroplast transit peptide (SSU-CTP) (Mazur, et al., 1985). Use of AtRbcS4 (CTP1; U.S. Pat. No. 5,728,925), AtShkG (CTP2; Klee et al., 1987), AtShkGZm (CTP2synthetic; see SEQ ID NO:14 of WO04009761), and PsRbcS (Coruzzi et al., 1984), as well as others disclosed, for instance, in U.S. Provisional Patent Application 60/891,675, peptide and nucleic acid sequences for which are listed herein at SEQ ID NOs:21-32, may be of benefit for use with the invention.
A 5′ UTR that functions as a translation leader sequence is a DNA genetic element located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences include maize and petunia heat shock protein leaders (U.S. Pat. No. 5,362,865), plant virus coat protein leaders, plant rubisco leaders, among others (Turner and Foster, 1995). Non-limiting examples of 5′ UTRs that may in particular be of benefit for use GmHsp (U.S. Pat. No. 5,659,122), PhDnaK (U.S. Pat. No. 5,362,865), AtAnt1, TEV (Carrington and Freed, 1990), and AGRtunos (GenBank Accession V00087; Bevan et al., 1983).
The 3′ non-translated sequence, 3′ transcription termination region, or poly adenylation region means a DNA molecule linked to and located downstream of a structural polynucleotide molecule and includes polynucleotides that provide polyadenylation signal and other regulatory signals capable of affecting transcription, mRNA processing or gene expression. The polyadenylation signal functions in plants to cause the addition of polyadenylate nucleotides to the 3′ end of the mRNA precursor. The polyadenylation sequence can be derived from the natural gene, from a variety of plant genes, or from T-DNA genes. An example of a 3′ transcription termination region is the nopaline synthase 3′ region (nos 3′; Fraley et al., 1983). The use of different 3′ nontranslated regions is exemplified (Ingelbrecht et al., 1989). Polyadenylation molecules from a Pisum sativum RbcS2 gene (Ps.R-bcS2-E9; Coruzzi et al., 1984) and AGRtu.nos (Rojiyaa et al., 1987, Genbank Accession E01312) in particular may be of benefit for use with the invention.
Intron sequences are known in the art to aid in the expression of transgenes in monocot plant cells. Examples of introns include the corn actin intron (U.S. Pat. No. 5,641,876), the corn HSP70 intron (ZmHSP70; U.S. Pat. No. 5,859,347; U.S. Pat. No. 5,424,412), and rice TPI intron (OsTPI; U.S. Pat. No. 7,132,528), and are of benefit in practicing this invention.
Any of the techniques known in the art for introduction of transgenes into plants may be used to prepare a herbicide tolerant plant in accordance with the invention (see, for example, Miki et al., 1993). Suitable methods for transformation of plants are believed to include virtually any method by which DNA can be introduced into a cell, such as by electroporation as illustrated in U.S. Pat. No. 5,384,253; micro-projectile bombardment as illustrated in U.S. Pat. Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208; 6,399,861; and 6,403,865; Agrobacterium-mediated transformation as illustrated in U.S. Pat. Nos. 5,635,055; 5,824,877; 5,591,616; 5,981,840; and 6,384,301; and protoplast transformation as illustrated in U.S. Pat. No. 5,508,184, etc. Through the application of techniques such as these, the cells of virtually any plant species may be stably transformed, and these cells developed into transgenic plants. Techniques that may be particularly useful in the context of cotton transformation are disclosed in U.S. Pat. Nos. 5,846,797, 5,159,135, 5,004,863, and 6,624,344; and techniques for transforming Brassica plants in particular are disclosed, for example, in U.S. Pat. No. 5,750,871; and techniques for transforming soybean are disclosed in for example in Zhang et al., 1999 and U.S. Pat. No. 6,384,301). Corn can be transformed using methods described in WO9506722 and US patent application 20040244075.
After effecting delivery of exogenous DNA to recipient cells, the next steps generally concern identifying the transformed cells for further culturing and plant regeneration. In order to improve the ability to identify transformants, one may desire to employ a selectable or screenable marker gene with a transformation vector prepared in accordance with the invention. In this case, one would then generally assay the potentially transformed cell population by exposing the cells to a selective agent or agents, or one would screen the cells for the desired marker gene trait.
Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. In an exemplary embodiment, any suitable plant tissue culture media, for example, MS and N6 media may be modified by including further substances such as growth regulators. Tissue may be maintained on a basic media with growth regulators until sufficient tissue is available to begin plant regeneration efforts, or following repeated rounds of manual selection, until the morphology of the tissue is suitable for regeneration, typically at least 2 weeks, then transferred to media conducive to shoot formation. Cultures are transferred periodically until sufficient shoot formation has occurred. Once shoot are formed, they are transferred to media conducive to root formation. Once sufficient roots are formed, plants can be transferred to soil for further growth and maturity.
To confirm the presence of the exogenous DNA or “transgene(s)” in the regenerating plants, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCR™; “biochemical” assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.
Once a transgene has been introduced into a plant, that gene can be introduced into any plant sexually compatible with the first plant by crossing, without the need for ever directly transforming the second plant. Therefore, as used herein the term “progeny” denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention, wherein the progeny comprises a selected DNA construct prepared in accordance with the invention. A “transgenic plant” may thus be of any generation. “Crossing” a plant to provide a plant line having one or more added transgenes or alleles relative to a starting plant line, as disclosed herein, is defined as the techniques that result in a particular sequence being introduced into a plant line by crossing a starting line with a donor plant line that comprises a transgene or allele of the invention. To achieve this one could, for example, perform the following steps: (a) plant seeds of the first (starting line) and second (donor plant line that comprises a desired transgene or allele) parent plants; (b) grow the seeds of the first and second parent plants into plants that bear flowers; (c) pollinate a flower from the first parent plant with pollen from the second parent plant; and (d) harvest seeds produced on the parent plant bearing the fertilized flower.
The preparation of herbicide compositions for use in connection with the current invention will be apparent to those of skill in the art in view of the disclosure. Such compositions, which are commercially available, will typically include, in addition to the active ingredient, components such as surfactants, solid or liquid carriers, solvents and binders. Examples of surfactants that may be used for application to plants include the alkali metal, alkaline earth metal or ammonium salts of aromatic sulfonic acids, e.g., ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids of arylsulfonates, of alkyl ethers, of lauryl ethers, of fatty alcohol sulfates and of fatty alcohol glycol ether sulfates, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalenesulfonic acids with phenol and formaldehyde, condensates of phenol or phenolsulfonic acid with formaldehyde, condensates of phenol with formaldehyde and sodium sulfite, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octyl- or nonylphenol, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, ethoxylated castor oil, ethoxylated triarylphenols, salts of phosphated triarylphenolethoxylates, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose, or mixtures of these. Common practice in the case of surfactant use is about 0.25% to 1.0% by weight, and more commonly about 0.25% to 0.5% by weight.
Compositions for application to plants may be solid or liquid. Where solid compositions are used, it may be desired to include one or more carrier materials with the active compound. Examples of carriers include mineral earths such as silicas, silica gels, silicates, talc, kaolin, attaclay, limestone, chalk, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, thiourea and urea, products of vegetable origin such as cereal meals, tree bark meal, wood meal and nutshell meal, cellulose powders, attapulgites, montmorillonites, mica, vermiculites, synthetic silicas and synthetic calcium silicates, or mixtures of these.
For liquid solutions, water-soluble compounds or salts may be included, such as sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, sodium acetate, ammonium hydrogen sulfate, ammonium chloride, ammonium acetate, ammonium formate, ammonium oxalate, ammonium carbonate, ammonium hydrogen carbonate, ammonium thiosulfate, ammonium hydrogen diphosphate, ammonium dihydrogen monophosphate, ammonium sodium hydrogen phosphate, ammonium thiocyanate, ammonium sulfamate or ammonium carbamate.
Other exemplary components in herbicidal compositions include binders such as polyvinylpyrrolidone, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, carboxymethylcellulose, starch, vinylpyrrolidone/vinyl acetate copolymers and polyvinyl acetate, or mixtures of these; lubricants such as magnesium stearate, sodium stearate, talc or polyethylene glycol, or mixtures of these; antifoams such as silicone emulsions, long-chain alcohols, phosphoric esters, acetylene diols, fatty acids or organofluorine compounds, and complexing agents such as: salts of ethylenediaminetetraacetic acid (EDTA), salts of trinitrilotriacetic acid or salts of polyphosphoric acids, or mixtures of these.
Equipment and methods known in the art are used to apply various herbicide treatments as disclosed herein. The application rates of herbicides maybe varied, for instance as described above, depending upon the soil texture, pH, organic matter content, tillage systems, and the size of the weed, and can be determined by consulting the herbicide label for the proper herbicide rate.
The following examples are included to illustrate embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventor to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Transgenic soybean plants were obtained by Agrobacterium transformation of soybean cotyledonary nodes using standard procedures and a binary vector containing the DMO-encoding polynucleotide given as SEQ ID NO:7, which encodes the polypeptide of SEQ ID NO:8. Four transgenic soybean events were prepared and designated Events 1-4. Transgenic soybean plants containing the events were tested for their tolerance to dicamba herbicide relative to controls, confirming herbicide tolerance. Non-transgenic soybean plants were used as controls.
Transgenic and control soybean seeds were planted into 3.5-inch square plastic pots containing Redi-earth™ (Scotts-Sierra Horticultural Products Co., Marysville, Ohio). The soil surface was treated with various amounts (561 to 5040 g/ha, 0.5 to 4.5 lb/acre, or 1× to 9× labeled rates) of dicamba formulations (Clarity™ or Banvel™, BASF, Raleigh, N.C.). The pots were placed on capillary matting in 35 inch×60 inch fiberglass watering trays for overhead and/or sub-irrigation for the duration of the test period so as to maintain optimum soil moisture for plant growth and were fertilized with Osmocote (14-14-14 slow release; Scotts-Sierra Horticultural Products Co., Marysville, Ohio) at the rate of 100 gm/cu.ft. to sustain plant growth for the duration of greenhouse trials.
The plants were grown in greenhouses at 27°/21° C. day/night temperature with relative humidity between 25%-75% to simulate warm season growing conditions of late spring. A 14 h minimum photoperiod was provided with supplemental light at about 600 μE as needed. Trials were established in a randomized block design randomized by rate with 4 to 6 replications of each treatment depending on plant quality, availability, and to account for any environmental variability that may have occurred within the confines of each greenhouse.
Treated plants in greenhouse trials were visually assessed at a particular day after treatment (DAT) for injury on a scale of 0 to 100 percent relative to untreated control plants, with zero representing “no” injury and 100% representing “complete” injury or death. Data were collected and analyzed using suitable statistical methods.
The results of the study surprisingly showed that soybean plants transformed with the DMO-encoding polynucleotide construct were tolerant to even early pre-emergence application of dicamba. As indicated in Table 1 below, injury to the transgenic plants was less than 10% even at the highest application rate i.e., 5040 g/ha, 4.5 lb/acre, or 9× labeled rates of dicamba.
TABLE 1 |
Percentage injury to non-transgenic or transgenic soybean |
plants from early pre-emergence application of dicamba at |
sowing. The % injury was represented as ANOVA mean |
comparisons. Similar letters represent no statistical |
difference at the p = 0.05 level. |
% injury at shown | ||
Formulation | rates (g ae/ha*) at 14 DAT |
Clarity ™ | ID | 561 | 840 | 2244 | 4485 | 5040 |
Control | 67.0 | a | 73.0 | b | 96.6 | a | 98.2 | a | 99.5 | a | |
Control | 61.0 | a | 86.0 | a | 98.1 | a | 98.3 | a | 99.8 | a | |
Event 1 | 0.0 | b | 0.0 | c | 1.7 | bc | 0.7 | b | 3.1 | b | |
Event 2 | 0.0 | b | 0.0 | c | 1.1 | c | 1.0 | b | 2.2 | b | |
Event 3 | 0.0 | b | 0.0 | c | 1.1 | c | 0.6 | b | 3.5 | b | |
Event 4 | 0.0 | b | 0.0 | c | 4.4 | b | 0.8 | b | 7.2 | b | |
LSD | 9.9 | 7.2 | 3.2 | 2.2 | 5.1 | ||||||
In addition to the method described in Example 2 for early pre-emergence (at sowing) application of dicamba, post-emergence (V2 stage of soybean development) application of dicamba was made with a track sprayer using the Teejet 9501E flat fan nozzle (Spraying Systems Co, Wheaton, Ill.) with the air pressure set at a minimum of 24 psi (165 kpa). The spray nozzle was kept at a height of about 16 inches above the top of the plant material for spraying. The spray volume was 10 gallons per acre or 93 liters per hectare.
As shown in Table 2, soybean plants transformed with the DMO-encoding polynucleotide construct were tolerant to early pre-emergence applications of dicamba at sowing followed by post-emergence application of dicamba. Surprisingly, injury to transgenic plants was less than 20% at the overall dicamba rate of 10080 g/ha, 9 lb/acre or 18× labeled rate.
TABLE 2 |
Percentage injury to non-transgenic or transgenic soybean |
plants from application of dicamba at sowing followed |
by post-emergence application at V2 stage.* |
Formulation | % injury at shown rates (g ae/ha*) at 28 DAT |
Clarity ™ | Plants | 1122 | 1680 | 4488 | 8970 | 10080 |
Control | 97.5 | a | 98.8 | a | 99.8 | a | 100.0 | a | 100.0 | a | |
Control | 95.6 | a | 98.1 | a | 99.4 | a | 100.0 | a | 100.0 | a | |
Event 1 | 0.0 | c | 1.8 | b | 4.5 | d | 11.9 | c | 16.9 | b | |
Event 2 | 2.6 | bc | 3.9 | b | 8.1 | bc | 13.8 | b | 16.9 | b | |
Event 3 | 3.1 | b | 2.9 | b | 8.8 | b | 11.9 | c | 17.5 | b | |
Event 4 | 2.3 | bc | 2.0 | b | 6.9 | c | 11.9 | c | 15.6 | b | |
LSD | 3.1 | 2.2 | 1.4 | 1.6 | 1.9 | ||||||
*The % injury was represented as ANOVA mean comparisons. Similar letters represent no statistical difference at the p = 0.05 level. |
An analysis was carried out of the effect of late pre-emergence applications of dicamba at soil cracking due to emergence of soybean seedling hypocotyls. Dicamba applications were made using a track sprayer as described in the previous examples. As shown in Table 3, soybean plants transformed with the DMO-encoding polynucleotide construct were found to be tolerant to late pre-emergence application of dicamba at soil cracking. Significantly, injury in the transgenic events was less than 5% even at the highest rate i.e., 5040 g/ha, 4.5 lb/acre, or 9× labeled rates of dicamba.
TABLE 3 |
Percentage injury to non-transgenic or transgenic |
soybean plants from late pre-emergence |
application of dicamba at soil cracking.* |
% injury at shown | ||
Formulation | rates (g ae/ha*) at 14 DAT |
Clarity ™ | Plants | 561 | 840 | 2244 | 4485 | 5040 |
Control | 86.9 | a | 96.8 | a | 98.4 | A | 98.5 | a | 99.2 | a | |
Control | 89.6 | a | 91.9 | a | 98.4 | A | 99.0 | a | 99.4 | a | |
Event 1 | 0.0 | b | 0.0 | b | 0.5 | C | 2.5 | bc | 2.0 | b | |
Event 2 | 0.0 | b | 0.0 | b | 2.9 | bc | 0.0 | c | 1.5 | b | |
Event 3 | 0.0 | b | 0.0 | b | 1.5 | bc | 4.4 | b | 1.3 | b | |
Event 4 | 0.0 | b | 0.5 | b | 3.3 | B | 3.0 | bc | 1.3 | b | |
LSD | 8.1 | 5.4 | 2.4 | 3.9 | 2.3 | ||||||
*The % injury was represented as ANOVA mean comparisons. Similar letters represent no statistical difference at the p = 0.05 level. |
In addition to the studies above, an analysis was carried out of the effect of late pre-emergence applications of dicamba at soil cracking followed by post-emergence application of dicamba at the V2 stage of development. As shown in Table 4, soybean plants transformed with the DMO-encoding polynucleotide construct were tolerant to late pre-emergence application of dicamba at soil cracking and post-emergence application of dicamba. Injury to transgenic events was less than 20% even at the overall dicamba rate of 10080 g/ha, 9 lb/acre, or 18× labeled rate.
TABLE 4 |
Percentage injury to non-transgenic or transgenic soybean |
plants from late pre-emergence application of dicamba at |
soil cracking followed by post-emergence application at V2 stage.* |
% injury at shown | ||
Formulation | rates (g ae/ha*) at 28 DAT |
Clarity ™ | Plants | 1122 | 1680 | 4488 | 8970 | 10080 |
Control | 95.6 | a | 98.1 | a | 100.0 | a | 100.0 | a | 100.0 | a | |
Control | 95.0 | a | 98.1 | a | 99.4 | a | 99.8 | a | 100.0 | a | |
Event 1 | 0.3 | b | 0.9 | b | 6.3 | b | 13.1 | b | 16.3 | bc | |
Event 2 | 0.8 | b | 1.6 | b | 6.0 | b | 11.3 | c | 15.0 | c | |
Event 3 | 1.0 | b | 1.4 | b | 7.5 | b | 11.3 | c | 17.5 | b | |
Event 4 | 1.8 | b | 1.8 | b | 7.5 | b | 13.1 | b | 16.3 | bc | |
LSD | 4.5 | 2.7 | 1.6 | 1.6 | 1.9 | ||||||
*The % injury was represented as ANOVA mean comparisons. Similar letters represent no statistical difference at the p = 0.05 level. |
Non-transgenic and transgenic soybean seeds were planted around the beginning of the growing season at the time of optimum growth conditions depending on soil moisture, temperature, and seeding depth. Across all locations seeds were planted under split-plot design with dicamba treatments as whole-plot effects and events as split-plot effects. The design details were as follows: 6 locations, 2 replications/location, 2 rows/plot, row length 12 feet (+3 ft alley), 9 seeds/foot, 108 seeds/row, 5 events (Events 1-4 and a fifth event that was segregating); and 4 treatments as shown below in Table 5. In all 240 plots were planted at 6 locations (40 per location).
TABLE 5 |
Details of 4 treatments applied to show the tolerance of |
transgenic soybean to dicamba. |
1st Application | 2nd Application |
Treatment | Rate | Plant Stage | Rate | Plant Stage |
1 | NO Dicamba | NO Dicamba | NO Dicamba | NO Dicamba |
2 | 1.5 lb ae/acre | At Planting | N/A | N/A |
3 | N/A | N/A | 1.5 lb ae/acre | V3-4 |
4 | 1.5 lb ae/acre | At Planting | 1.5 lb ae/acre | V3-4 |
Four non-transgenic border rows were planted all around the trial using a known commercial line such as A3525. Optimum production and management practices known in the art were followed. Maximum pest control and disease control was practiced as needed to prevent confounding effects of dicamba applications. The field was irrigated as needed according to standard practices.
All plants in the field were treated with pre-emergence and post-emergence applications of dicamba and visually assessed at a particular day after planting for injury on a scale of 0 to 100 percent relative to untreated control plants, with zero representing “no” injury and 100% representing “complete” injury or death. Seed planting and pre-emergence treatment were carried out approximately one-month apart in late spring in Monmouth, Ill. As shown in Table 6, it was found that all transgenic soybean plants had no or very little injury. A fifth transgenic event used appeared to be segregating, so a certain percentage of plants died after the treatments.
TABLE 6 |
Tolerance of soybean plants containing DMO- |
encoding polynucleotide construct to pre- and |
post-emergence application of dicamba in field.* |
% | % | % | % | % | % | % | |||
Event | Inj | Inj | Inj | Inj | GR | Inj | GR | Dead or | |
# | Trmt | 6/7 | 6/13 | 6/20 | 6/27 | 6/27 | 7/5 | 7/5 | Stunted |
1 | No spray | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
1 | No spray | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | No spray | 0 | 0 | 0 | 1 | 0 | 3 | 3 | 0 |
2 | No spray | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | No spray | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
3 | No spray | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
4 | No spray | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
4 | No spray | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
5 | No spray | 0 | 0 | 0 | 7 | 0 | 5 | 2 | 0 |
5 | No spray | 0 | 0 | 0 | 7 | 3 | 7 | 3 | 0 |
1 | Pre at | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
sowing | |||||||||
1 | Pre at | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
sowing | |||||||||
2 | Pre at | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
sowing | |||||||||
2 | Pre at | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
sowing | |||||||||
3 | Pre at | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 |
sowing | |||||||||
3 | Pre at | 0 | 2 | 0 | 5 | 0 | 3 | 0 | 0 |
sowing | |||||||||
4 | Pre at | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 0 |
sowing | |||||||||
4 | Pre at | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 |
sowing | |||||||||
5 | Pre at | 0 | 15 | 15 | 5 | 0 | 0 | 0 | 24 |
sowing | |||||||||
5 | Pre at | 0 | 8 | 10 | 2 | 0 | 0 | 0 | 14 |
sowing | |||||||||
1 | Post at V3 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
1 | Post at V3 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 2 |
2 | Post at V3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
2 | Post at V3 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 1 |
3 | Post at V3 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 |
3 | Post at V3 | 0 | 0 | 0 | 5 | 0 | 3 | 0 | 0 |
4 | Post at V3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
4 | Post at V3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
5 | Post at V3 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 15 |
5 | Post at V3 | 0 | 0 | 0 | 5 | 5 | 2 | 0 | 15 |
1 | Pre & Post | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 3 |
1 | Pre & Post | 0 | 2 | 2 | 5 | 3 | 0 | 0 | 0 |
2 | Pre & Post | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 |
2 | Pre & Post | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
3 | Pre & Post | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 |
3 | Pre & Post | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 |
4 | Pre & Post | 0 | 0 | 0 | 3 | 8 | 2 | 2 | 0 |
4 | Pre & Post | 0 | 1 | 0 | 3 | 3 | 0 | 0 | 0 |
5 | Pre & Post | 0 | 15 | 10 | 3 | 5 | 0 | 0 | 23 |
5 | Pre & Post | 0 | 10 | 10 | 1 | 0 | 0 | 0 | 20 |
*No spray means no dicamba was applied to the plants. | |||||||||
Pre at sowing means 1.5 lb/acre of dicamba was applied at planting. | |||||||||
Post at V3 means 1.5 lb/acre of dicamba was applied 4 weeks after planting. | |||||||||
Pre and post means 1.5 lb/acre of dicamba was applied at planting and 1.5 lb/acre of dicamba was applied 4 weeks after planting. | |||||||||
% inj means percentage injury on given date. | |||||||||
% GR means percentage growth reduction. |
Marestail is one of the major weeds in a crop field. Marestail is effectively controlled by glyphosate, but the development of methods for controlling this common weed with other herbicides is important to minimize opportunities for herbicide tolerance to develop. An analysis was carried out to determine the extent to which this glyphosate tolerant weed could be controlled by applications of dicamba. Marestail (Conyza canadensis) plants of two biotypes, each from a different geographic region, California (CA) and Kentucky (KY), were grown, and treated at 4-6 inch diameter rosette leaf stage with dicamba as described in Example 2 and 3. The results of the study, as shown in Table 7, demonstrated that dicamba was equally effective in controlling both susceptible and tolerant biotypes of marestail from CA and KY. Dicamba was more effective in controlling resistant biotypes at lower application rates than glyphosate. For example, 2100 g/ha of glyphosate was required to obtain about 77% and 91% inhibition of CA and KY resistant biotypes, whereas only 280 g/ha of dicamba was required to obtain about 83% and about 91% control of CA and KY resistant biotypes.
TABLE 7 |
Control of glyphosate tolerant weeds by dicamba. |
% Injury (21 DAT) |
MARESTAIL | MARESTAIL | MARESTAIL | MARESTAIL | ||
Rate | (CA) | (CA) | (KY) | (KY) | |
Formulation | g/ha | Susceptible | Resistant | Susceptible | Resistant |
Roundup | 840 | 97.2 | 55.0 | 76.7 | 58.3 |
WeatherMAX ™ | |||||
1680 | 100.0 | 64.2 | 97.5 | 79.2 | |
2100 | 100.0 | 76.7 | 100.0 | 90.8 | |
Clarity ™ | 50 | 68.3 | 61.7 | 78.3 | 78.3 |
140 | 82.5 | 80.8 | 90.0 | 88.3 | |
280 | 85.0 | 82.5 | 91.7 | 90.8 | |
Transgenic seeds having dicamba tolerance are planted in a field that has been treated with glyphosate before planting the transgenic seeds. The field is then treated with a herbicidally effective amount of dicamba before or after planting the seeds to control glyphosate resistant weeds. The herbicidally effective amount of dicamba is such that the growth of glyphosate resistant weeds is controlled, but is not injurious to the planted crop as shown in the examples described herein. Thus, transgenic seeds having dicamba tolerance in combination with an effective amount of dicamba are useful for control of glyphosate resistant weeds. The method may be implemented without delaying planting of the dicamba tolerant crop plants, thus providing a significant advance over the prior art, in which dicamba must be applied sufficiently prior to planting such that the dicamba degrades in the environment sufficiently to avoid injury to crop plants.
As shown in Table 8, dicamba alone was more effective in controlling resistant biotypes at lower application rates than glyphosate. Further, it has unexpectedly been found that dicamba in combination with glyphosate allows control of glyphosate tolerant and susceptible weeds at lower application rates. For example, whereas 200 g/ha of glyphosate was able to control only 6% of marestail (KY resistant biotype) at 18 DAT and 40 g/ha of dicamba was able to control about 52% of the KY biotype at 18 DAT, a 200 g/ha glyphosate and 40 g/ha dicamba mixture was able to control about 79% of the KY biotype at 18 DAT.
In general, any formulation containing dicamba appeared to be more efficacious than glyphosate alone on the resistant biotype. Also, in general, the following trend in effectiveness of glyphosate to dicamba ratio on resistant biotype was found to be true at: 4:1>10:1>20:1>40:1>80:1. The results show that a glyphosate to dicamba mixture ratio of 4:1 containing 200 g/h glyphosate and 50 g/h dicamba provided superior control than either glyphosate or dicamba alone.
TABLE 8 |
Effect of dicamba and glyphosate for controlling glyphosate resistant weeds. |
% Injury | % Injury | |||
(18 DAT) | (30 DAT) |
Marestail | Marestail | Marestail | Marestail | |||
CHEMICAL | Rate | Susceptible | Resistant | Susceptible | Resistant | |
FORMULATION | g/ha | RATIO | (KY) | (KY) | (KY) | (KY) |
Roundup | 200 | 86.0 | 5.8 | 96.3 | 0.0 | |
WeatherMAX ™ | 400 | 99.7 | 25.0 | 100.0 | 18.3 | |
800 | 100.0 | 46.7 | 100.0 | 44.2 | ||
1600 | 100.0 | 59.2 | 100.0 | 62.5 | ||
Clarity ™ | 2.5 | 6.7 | 10.8 | 15.8 | 7.5 | |
5 | 18.3 | 25.0 | 20.8 | 35.0 | ||
10 | 34.2 | 35.8 | 29.2 | 39.2 | ||
20 | 40.8 | 45.8 | 40.0 | 45.0 | ||
40 | 50.0 | 52.5 | 51.7 | 68.3 | ||
80 | 68.3 | 69.2 | 71.7 | 84.3 | ||
100 | 83.3 | 75.8 | 86.3 | 87.5 | ||
200 | 89.2 | 83.3 | 99.3 | 94.3 | ||
Roundup | 200 + 2.5 | 80:1 | 50.8 | 20.8 | 55.8 | 31.7 |
WeatherMAX ™ + | 400 + 5 | 80:1 | 85.8 | 39.2 | 97.7 | 40.8 |
Clarity ™ | 800 + 10 | 80:1 | 99.7 | 47.5 | 100.0 | 45.0 |
1600 + 20 | 80:1 | 100.0 | 50.8 | 100.0 | 63.3 | |
Roundup | 200 + 5 | 40:1 | 56.7 | 28.3 | 64.2 | 35.0 |
WeatherMAX ™ + | 400 + 10 | 40:1 | 82.5 | 40.0 | 94.2 | 43.3 |
Clarity ™ | 800 + 20 | 40:1 | 99.3 | 53.3 | 100.0 | 60.8 |
1600 + 40 | 40:1 | 100.0 | 70.8 | 100.0 | 80.8 | |
Roundup | 200 + 10 | 20:1 | 58.3 | 38.3 | 66.7 | 40.0 |
WeatherMAX ™ + | 400 + 20 | 20:1 | 81.7 | 56.7 | 93.3 | 50.0 |
Clarity ™ | 800 + 40 | 20:1 | 99.0 | 62.5 | 100.0 | 73.3 |
1600 + 80 | 20:1 | 99.7 | 77.5 | 100.0 | 88.3 | |
Roundup | 200 + 20 | 10:1 | 56.7 | 52.5 | 70.8 | 60.0 |
WeatherMAX ™ + | 400 + 40 | 10:1 | 84.2 | 79.2 | 93.3 | 86.3 |
Clarity ™ | 800 + 80 | 10:1 | 98.7 | 83.3 | 100.0 | 96.8 |
1600 + 160 | 10:1 | 99.7 | 89.2 | 100.0 | 99.3 | |
Roundup | 200 + 50 | 4:1 | 61.7 | 79.2 | 83.5 | 87.2 |
WeatherMAX ™ + | 400 + 100 | 4:1 | 89.2 | 88.3 | 99.7 | 98.7 |
Clarity ™ | 800 + 200 | 4:1 | 99.7 | 88.3 | 100.0 | 99.3 |
1600 + 400 | 4:1 | 100.0 | 89.7 | 100.0 | 100.0 | |
Methods for producing transgenic seeds having glyphosate tolerance are known in the art and such seeds can be produced by persons of skill in the art by using a polynucleotide encoding glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) as described in U.S. Pat. Nos. 5,627,061, 5,633,435, 6,040,497 and in U.S. Pat. No. 5,094,945, WO04074443 and WO04009761, all of which are hereby incorporated by reference. Soybean breeding lines containing the Roundup Ready® trait event 40-3-2 (Padgette et al., 1995) have been produced. Seeds from soybean plant designated as MON19788 have been deposited under ATCC Accession No. PTA-6708.
Glyphosate tolerant plants can also be produced by incorporating polynucleotides encoding glyphosate degrading enzymes such as glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175, herein incorporated by reference), a glyphosate-N-acetyl transferase (GAT, U.S. Patent publication 20030083480, herein incorporated by reference), and a glyphosate decarboxylase (WO05003362; US Patent Application 20040177399, herein incorporated by reference).
Dicamba tolerant plants are disclosed herein. A suitable line from each is crossed and progeny seeds screened with herbicide applications of glyphosate and dicamba to obtain progeny expressing both genes and exhibiting tolerance to both dicamba and glyphosate. Alternatively, coding sequences conferring tolerance to one or both of the herbicides are directly introduced into a given line. Seeds from these plants are used for developing a method for controlling weed resistance development in a field as described below.
Transgenic seeds having dicamba and glyphosate tolerances were tested for their tolerance to dicamba, glyphosate, or both herbicides. Table 9 shows tolerance of transgenic soybeans carrying glyphosate and dicamba tolerance transgenes to glyphosate, dicamba, and glyphosate and dicamba at various stages of plant growth. Injury was not seen on plants when either or both herbicides were applied at pre-emergence stage. Post-emergence treatments of either or both herbicides at V3, R1, and R3-4 showed only little injury.
TABLE 9 |
Tolerance of transgenic soybeans carrying glyphosate and dicamba tolerance |
transgenes to glyphosate, dicamba, and glyphosate and dicamba. |
Post-emergence | ||||
Pre-emergence | treatment |
treatment | V3 | R1 | R3-4 | |||
20 | 8 | 7 | 18 | |||
Rate | DAT | DAT | DAT | DAT |
gm | % injury | ||
Plant Line | Herbicide Applied | ae/ha | (Average of 4 replications) |
Non-transgenic Control | CLARITY | 561 | 99.0 | 83.8 | 71.3 | 85.0 |
RWMax | 841 | 0.0 | 81.3 | 66.3 | 67.5 | |
CLARITY + RWMax | 561 + 841 | 99.5 | 93.8 | 81.3 | 99.0 | |
RR1+ DMO Line 1 | CLARITY | 561 | 0.0 | 7.0 | 6.3 | 4.5 |
RWMax | 841 | 0.0 | 3.5 | 3.5 | 11.3 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 3.0 | 4.0 | 10.0 | |
RR1+ DMO Line 2 | CLARITY | 561 | 0.0 | 5.3 | 6.3 | 5.3 |
RWMax | 841 | 0.0 | 4.5 | 4.5 | 11.7 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 5.0 | 4.0 | 8.8 | |
RR1+ DMO Line 3 | CLARITY | 561 | 0.0 | 9.0 | 8.8 | 7.5 |
RWMax | 841 | 0.0 | 3.5 | 4.0 | 11.3 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 4.5 | 3.5 | 10.0 | |
RR1+ DMO Line 4 | CLARITY | 561 | 0.0 | 8.5 | 8.8 | 3.5 |
RWMax | 841 | 0.0 | 3.5 | 3.5 | 11.3 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 4.5 | 4.5 | 8.8 | |
RR2+ DMO Line 1 | CLARITY | 561 | 0.0 | 8.5 | 6.3 | 5.3 |
RWMax | 841 | 0.0 | 3.5 | 3.5 | 3.0 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 5.0 | 4.5 | 5.0 | |
RR2+ DMO Line 2 | CLARITY | 561 | 0.0 | 9.0 | 6.3 | 3.0 |
RWMax | 841 | 0.0 | 3.5 | 6.3 | 3.0 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 9.5 | 7.0 | 3.0 | |
RR2+ DMO Line 3 | CLARITY | 561 | 0.0 | 9.5 | 7.5 | 3.5 |
RWMax | 841 | 0.0 | 3.5 | 6.3 | 4.5 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 8.5 | 3.5 | 3.3 | |
RR2+ DMO Line 4 | CLARITY | 561 | 0.0 | 5.3 | 5.8 | 3.0 |
RWMax | 841 | 0.0 | 16.5 | 17.0 | 4.0 | |
CLARITY + RWMax | 561 + 841 | 0.0 | 11.0 | 3.5 | 5.3 | |
Transgenic seeds having dicamba and glyphosate tolerance prepared as described above are planted in a field. The field is treated with dicamba and glyphosate before or after planting the seeds using a mixture of dicamba and glyphosate in an effective amount to control weed growth. Typically about a 1× application rate of either herbicide will be effective in controlling weed growth, but the rate may be varied depending upon environmental conditions and the type of weeds being controlled, as is known in the art. The rate of application may also be increased or decreased depending upon the rate of control desired. Generally speaking, increasing the rate of one herbicide will allow a decrease in the rate of the second herbicide in order to obtain the same level of seed control. In specific embodiments, an application of from about 200 to about 1600 g/ha of glyphosate is combined with from about 20 to about 400 g/ha of dicamba.
A desired application rate may be optimized in any particular environment or in the context of a particular weed can be determined using the experimental layout of Example 9 with the different formulation rates described therein. In addition to desired level of weed control, the herbicide level is selected to avoid using more herbicide than is needed on the one hand, and to avoid poor weed control that could lead to herbicide tolerant plants. Over application of herbicides could also damage herbicide tolerant crop. As shown in Example 9 above however, combining optimized applications of these herbicides provides significant levels of control of even herbicide tolerant weeds, and thus represents a major advance in the art.
The procedures in Examples 9 and 10 are applied to develop a method for controlling weed growth in a crop-growing environment involving planting a transgenic seed in a field containing a weed or a seed thereof and treating the field in a single pass though the field. The treatment comprises a herbicidally effective amount of dicamba, glyphosate, or a mixture thereof, administered contemporaneously with the planting of the seed. The planting, treating, and growing of the transgenic seed are achieved by standard agricultural methods.
Such a method of planting the transgenic seed and treating the transgenic seed in one pass eliminates the need for a farmer to make multiple passes through the field, including once for planting and once for spraying. The technique therefore reduces fuel and wear-tear costs to farmers.
Herbicide drift and contamination of herbicide delivery equipment is a serious concern in agriculture and can injure non-target crops resulting in losses to farmers. However, some level of drift is often inevitable due to changing environmental conditions such as wind and the proximity of growing fields. Further, it is often difficult and expensive to eliminate all residual levels of a herbicide in a tank following herbicide application and residual herbicides often result in inadvertent injury to crops. Often several rinses of herbicide delivery equipment are required before it can be used for another herbicide, which wastes water and cleaning chemicals.
As herbicides such as 2,4-D and MCPA are post-emergent herbicides for some crops, but can cause serious damage to non-target crops, residual contamination with these herbicides is of particular concern. A transgenic crop tolerant to at least low levels of these herbicides would therefore be of significant value in managing injuries due to spray drift and contamination of herbicide equipment. This could also reduce the extent of equipment washing needed for herbicide delivery equipment.
An analysis was therefore carried out to determine whether soybean plants having DMO-encoding polynucleotide could deactivate other auxin-like herbicides in addition to dicamba, including 2,4-D and MCPA. This was carried out by applying various concentrations of commercially available formulations of other auxin-like herbicides such as 2,4-D (Helena, Collierville, Tenn.), MCPA (Agriliance, St. Paul, Minn), triclopyr (GARLON 3A; Dow Elanco, Indianapolis, Ind.), clopyralid (STINGER; Dow Elanco, Indianapolis, Ind.), picloram (TORDON 22K; Dow Elanco, Indianapolis, Ind.), or Banvel or CLARITY (BASF, Raleigh, N.C.) to DMO containing plant tissues or plants.
Transgenic soybean plants were obtained by Agrobacterium-mediated transformation of soybean explants with a DMO-encoding polynucleotide as described above for the events designated Events 1-4. A non-transgenic line was used as a control. Non-transgenic and transgenic soybean seeds were planted into 3.5-inch square plastic pots containing Redi-earth™ (Scotts-Sierra Horticultural Products Co., Marysville, Ohio). The pots were placed on capillary matting in 35 inch×60 inch fiberglass watering trays for overhead and/or sub-irrigation for the duration of the test period so as to maintain optimum soil moisture for plant growth. The pots were fertilized with Osmocote (14-14-14 slow release; Scotts-Sierra Horticultural Products Co., Marysville, Ohio) at the rate of 100 gm/cu.ft. to sustain plant growth for the duration of greenhouse trials, and grown in greenhouses at 27°/21° C. day/night temperature, with relative humidity between 25%-75% to simulate warm season growing conditions of late spring. A 14 h minimum photoperiod was provided with supplemental light at about 600 μE as needed.
All herbicide applications were made with the track sprayer using a Teejet 9501E flat fan nozzle (Spraying Systems Co, Wheaton, Ill.) with air pressure set at a minimum of 24 psi (165 kpa). The spray nozzle was kept at a height of about 16 inches above the top of plant material for spraying. The spray volume was 10 gallons per acre or 93 liters per hectare. Applications were made when plants had reached V-3 stage. All trials were established in a randomized block design (randomized by rate) with 4 to 6 replications of each treatment depending on plant quality, availability and to account for any environmental variability that may have occurred within the confines of each greenhouse.
All treated plants in greenhouse trials were visually assessed at about 4, 14, 18, and 21 days after treatment (DAT) for injury on a scale of 0 to 100 percent relative to untreated control plants, with zero representing “no” injury and 100% representing “complete” injury or death. Data were collected using a palm top computer and analyzed using standard statistical methods. The results shown in Table 10 clearly indicate tolerance of transgenic soybean to other auxin-like herbicides such as 2,4-D and MCPA relative to the non-transgenic line.
TABLE 10 |
Percentage injury relative to un-treated controls at 25 DAT |
post-V3 applications of different auxin-like herbicides to |
non-transgenic or transgenic soybean plants.* |
Herbicide | Plant/trial | 280 | 561 | 1120 |
% injury at shown | ||
rates (g ae/ha**) | ||
at 21 DAT |
Dicamba (Clarity) | Non-transgenic | 100 | 100 | |
Event 1 | 0.0 | 1.2 | ||
Event 2 | 0.0 | 1.7 | ||
Event 3 | 0.0 | 0.7 | ||
Event 4 | 0.0 | 1.5 | ||
Dicamba (Banvel) | Non-transgenic | 100.0 | 100.0 | |
Event 1 | 0.0 | 1.5 | ||
Event 2 | 0.0 | 0.7 | ||
Event 3 | 0.0 | 0.5 | ||
Event 4 | 0.0 | 1.3 | ||
2,4-D | Non-transgenic | 86.8 | 100.0 | 100.0 |
Event 1 | 58.3 | 75.0 | 100.0 | |
Event 2 | 64.2 | 94.7 | 100.0 | |
Event 3 | 40.0 | 85.0 | 100.0 | |
Event 4 | 45.8 | 84.2 | 100.0 | |
MCPA | Non-transgenic | 93.0 | 98.3 | 100.0 |
Event 1 | 72.5 | 99.3 | 100.0 | |
Event 2 | 55.0 | 95.0 | 99.7 | |
Event 3 | 55.0 | 95.8 | 100.0 | |
Event 4 | 88.3 | 98.8 | 100.0 | |
LSD | 16.3 | 10.6 | 3.7 |
% injury shown | ||
rates (g ae/ha**) | ||
at 14 DAT |
Triclopyr | Non-transgenic | 86.7 | 97.3 | 98.7 |
Event 1 | 88.3 | 95.7 | 99.3 | |
Event 2 | 86.7 | 98.7 | 99.3 | |
Event 3 | 86.7 | 94.0 | 96.3 | |
Event 4 | 90.8 | 98.0 | 99.2 | |
Clopyralid | Non-transgenic | 99.3 | 100.0 | 100.0 |
Event 1 | 99.2 | 100.0 | 100.0 | |
Event 2 | 98.2 | 99.7 | 100.0 | |
Event 3 | 99.3 | 100.0 | 100.0 | |
Event 4 | 99.7 | 100.0 | 100.0 | |
Picloram | Non-transgenic | 99.3 | 100.0 | 100.0 |
Event 1 | 99.7 | 100.0 | 100.0 | |
Event 2 | 99.3 | 100.0 | 100.0 | |
Event 3 | 99.3 | 99.7 | 100.0 | |
Event 4 | 99.3 | 100.0 | 100.0 |
% injury at shown | ||
rates (g ae/ha**) | ||
at 21 DAT |
LSD | 2.9 | 1.8 | 1.4 | |
*The % injury was represented as ANOVA mean comparisons. | ||||
**grams of active acid equivalent/hectare |
Another auxin-like herbicide Butyrac 200 (2,4-DB; Albaugh) was also tested on transgenic soybean plants carrying a DMO gene for testing the plants tolerance to it. The herbicide was applied as a post-emergence treatment at three application rates on two transgenic soybean events and compared with a non-transgenic line for total crop injury across all three application rates: 280 g/ha (0.25 lb/a), 561 g/ha (0.5 lb/a) and 841 g/ha (0.75 lb/a) (see Table 11). Both transgenic soybean lines showed low level of tolerance to 2,4-DB. This example shows that dicamba tolerant soybean is also tolerant to low levels of 2,4-DB and should be useful in managing damage from spray drift from the same or neighboring fields to prevent crop loses, and would exhibit tolerance to residual levels of 2,4-DB following incomplete washing of herbicide delivery equipment.
TABLE 11 |
Percentage injury relative to the untreated control at 16 DAT by the |
application of 2,4-DB to non-transgenic or transgenic soybean plants. |
% injury at shown rates | ||
(g ae/ha) at 16 DAT |
Herbicide | Plant | 280 | 561 | 1120 |
2,4-DB (Butyrac 200) |
Non-transgenic | 59.2 | 70.0 | 79.2 | |
NE3001 | ||||
462-1-21 | 25.0 | 43.3 | 75.8 | |
469-13-19 | 18.3 | 37.5 | 70.0 | |
This example shows that transgenic soybean plants exhibit tolerance to other auxin-like herbicides, indicating a likely common deactivation mechanism for dicamba and other auxin-like herbicides such as 2,4-D and MCPA. In case of triclopyr, clopyralid, and picloram, the application rate of 280 g ae/ha appeared too stringent in this study and thus lower concentrations may be desired in most settings to reduce plant damage. Thus, a DMO polynucleotide containing soybean that is tolerant to dicamba is also tolerant to low levels of 2,4-D and MCPA and should prevent or minimize damage from spray drift from same or neighboring fields to prevent crop loses, and would exhibit tolerance to residual levels of these herbicides following incomplete washing of herbicide delivery equipment. The herbicide delivery equipment could include a tank, container, hose, strainer, boom, sprayer, nozzle, pump, and accessories such as coupling, elbows, shanks, and valves. The delivery equipment is operable manually or mechanically for example on a farm vehicle, airplane, and helicopter, among others.
To test the use of a DMO gene in providing dicamba tolerance to monocots, transgenic corn plants were produced that comprise a DMO gene as disclosed above with or without a transit peptide (e.g. Ta Waxy, CTP1, CTP2synthetic, CTP4) under the control of plant gene expression elements such as a promoter (e.g. PC1SV, e35S, OsAct1, OsTPI, OsAct15), and an intron (e.g. OsAct1, OsAct15, OsTPI, ZmHSP70). This expression element contains first intron and flanking UTR exon sequences from the rice actin 1 gene and includes 12 nt of exon 1 at the 5′ end and 7 nt of exon 2 at the 3′ end), and a 3′UTR (e.g. TaHsp17). Nucleotide sequences/and or patent references for various expression elements are disclosed in co-pending application U.S. Ser. No. 60/891,675.
Transgenic corn plants were produced by the methods known in the art such as WO9506722 and US patent application 20040244075. Transgenic corn events having single copy were evaluated for dicamba tolerance at a single location replicated trial. Six events from each of the six constructs were used. The experimental design was as follows: rows/entry: 1; treatment: 0.5 lb/a of dicamba at V3 stage followed by 1 lb/a of dicamba at V8 stage (Clarity®, BASF, Raleigh, N.C.); replications: 2; row spacing: 30 inches; plot length: minimum 20 feet; plant density: about 30 plants/17.5 ft.; alleys: 2.5 feet. The entire plot was fertilized uniformly to obtain an agronomically acceptable crop. A soil insecticide such as Force® 3G (Syngenta Crop Protection, Greensboro, N.C., USA) at 5 oz. per 1000 ft. of row for control of corn rootworm was applied at planting time. If black cutworm infestation was observed, POUNCE® 3.2EC at 4 to 8 oz. per acre rate (FMC Corporation, Philadelphia, Pa.) was used. In addition, an insecticide spray program was used to control all above ground lepidopteran pests including European corn borer, corn earworm, and fall armyworm. POUNCE® 3.2EC at 4 to 8 oz. per acre was applied every 3 weeks to control lepidopteran pests; about 4 applications were made. The plot was kept weed free with a pre-emergence application of a herbicide such as Harness® Xtra 5.6 L (Monsanto, St. Louis, Mo.) and Degree Xtra® (Monsanto, St. Louis, Mo.). If weed escapes were observed in the untreated check, they were controlled by hand weeding or a post-emergence application of PERMIT (Monsanto, St. Louis, Mo.) or BUCTRIL® (Bayer, Research Triangle Park, NC) over the entire trial.
Corn inbred lines transformed with DNA constructs comprising a DMO transgene were tested for dicamba tolerance by measuring brace root injury when treated with 0.5 lb/a of dicamba at V3 stage followed by 1 lb/a of dicamba at V8 stage. Brace root injury was evaluated visually by counting the number of plants in a row showing an “atypical” morphology of having the brace roots fused as compared to a typical morphology of “finger-like” structure. As shown in Table 12, corn plants transformed with DNA constructs coding for a DMO without linking it to a CTP (pMON73699, pMON73704) showed higher level of brace root injury, i.e. lower level of protection upon dicamba treatment. The constructs coding for a DMO linked to a CTP (pMON73716, pMON73700, pMON73715, pMON73703) showed lower level of brace root injury, i.e. higher level of protection upon dicamba treatment.
TABLE 12 |
Percentage brace root injury as a measure of dicamba tolerance |
exhibited by transgenic corn plants transformed with DNA |
constructs carrying DMO. |
Brace | ||
Inbreds/ | root | |
Constructs | Details | injury |
01CSI6 | Susceptible inbred to dicamba | 95.4 |
LH244 | Resistant inbred to dicamba | 93.8 |
pMON73699 | PC1SV/I-OsAct1/DMO-Wmc/TaHsp17 | 93.2 |
pMON73704 | e35S/I-OsAct1/DMO-Wmc/TaHsp17 | 91.3 |
pMON73716 | PC1SV/I-OsAct1/TaWaxy/DMO-Wmc/TaHsp17 | 78.8 |
pMON73700 | PC1SV/I-OsAct1/CTP1/DMO-Wmc/TaHsp17 | 74.4 |
pMON73715 | PC1SV/I-OsAct1/CTP2syn/DMO-Wmc/TaHsp17 | 68.2 |
pMON73703 | e35S/I-OsAct1/CTP1/DMO-Wmc/TaHsp17 | 68.8 |
To test the use of DMO gene in providing dicamba tolerance to cotton, transgenic cotton plants were produced. Several DNA constructs carrying a DMO coding region as disclosed herein with a transit peptide (e.g., PsRbcS CTP, CTP1, CTP2) under the control of plant gene expression elements such as a promoter (e.g. PC1SV, FMV, or e35S), and a 3′UTR (e.g. E6; Accession # U30508) were produced and transformed into cotton (Gossypium hirsutum) as follows. Nucleotide sequences/and or patent references for various expression elements are disclosed in co-pending application U.S. Ser. No. 60/891,675. Media used are noted in Table 13.
Cotton transformation was performed, for instance as described according to U.S. Patent Application Publication 20040087030, via an embryogenic approach. Explants of cotton cv Coker 130 were grown in vitro and with a liquid suspension of Agrobacterium tumefaciens carrying a DNA construct of interest, using selection on kanamycin containing media. Putative transgenic plantlets were then transferred to soil to obtain mature cotton plants. The transgenic nature of transformants was confirmed by DNA testing.
TABLE 13 |
Composition of various media used for cotton transformation. |
Amount/L |
Components | Glucose | Sucrose | UMO | TRP+ | SHSU |
MS basal salts | 4.33 | g | 4.33 | g | 4.33 | g | 4.33 | g | — |
(Phytotech.) | |||||||||
Gamborg's B5 vitamins | 2 | ml | 2 | ml | 2 | ml | 2 | ml | — |
(Phytotech) (500X) |
2,4-D (1 mg/ml) | 0.1 | ml | 0.1 | ml | — | — |
Stewart and Hsu | — | — | — | — | 100 | ml |
majors (10X) | ||||||
Stewart and Hsu | — | — | — | — | 10 | ml |
minors (100X) | ||||||
Steward and Hsu | — | — | — | — | 10 | ml |
organic (100X) |
Kinetin (0.5 mg/ml) | 1 | ml | 1 | ml | — | — | — |
Chelated iron (100X) | — | — | — | — | 1.5 | ml |
Glucose | 30 | g | 30 | g | 30 | g | 30 | g | 5 | g |
Potassium nitrate | — | — | — | 1.9 | g | — |
Casein hydrolysate | — | — | — | 0.1 | g | — |
pH | 5.8 | 5.8 | 5.8 | 5.8 | 6.8 |
Phytagel (Sigma) | 2.5 | g | 2.5 | g | — | — | — |
Gelrite (Kelco) | — | — | 3.5 | g | 3.5 | g | 2.2 | g |
Carbenicillin | 1.7 | ml | 1.7 | ml | 1.7 | ml | 1.7 | ml | — |
(250 mg/ml) | |||||||||
Cefotaxime (100 mg/ml) | 1 | ml | 1 | ml | 1 | ml | 1 | ml | — |
Benlate (50 mg/ml) | — | — | — | 1 | ml | 1 | ml |
Kanamycin (50 mg/ml) | 0.8-1.0 | ml | 0.8-1.0 | ml | 1 | ml | — | — |
Sucrose | — | 0.1 | g | — | — | — |
Ascorbic acid | — | — | 100 | mg | ||
Transformed cotton plants that comprise a DNA construct, i.e, each comprising a different combination of a DMO coding region with a transit peptide, a promoter, and a 3′UTR, were treated with dicamba (Clarity®, BASF, Raleigh, N.C.) as a post-emergent treatment at V4-5 growth stage at the rate of 561 g ae/ha (0.5 lb/a) and found to be tolerant whereas untransformed cotton plants showed an injury rate of 79% to 86%. Transgenic plants showing more than 95% tolerance (equal to less than 5% injury) were selected for further studies. Transgenic plants were also tolerant to a subsequent post-emergent treatment of dicamba. For example, the plants that were treated with 0.5 lb/acre of dicamba at V3-4 stage followed by either 1 or 2 lb/acre of dicamba at V5 or later stages were still tolerant to dicamba. R1 transgenic seeds and plants were also subjected to pre-emergence or pre-emergence and post-emergence dicamba treatment and found to be tolerant. This example shows that a DMO gene can provide dicamba tolerance to cotton at various stages of growth thus enabling application of dicamba at various stages to obtain effective weed control.
All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
The references listed below are incorporated herein by reference to the extent that they supplement, explain, provide a background for, or teach methodology, techniques, and/or compositions employed herein.
- U.S. Pat. Nos. 4,554,101; 5,004,863; 5,015,580; 5,017,692; 5,094,945; 5,159,135; 5,322,938; 5,352,605; 5,359,142; 5,384,253; 5,424,412; 5,445,962; 5,463,175; 5,508,184; 5,530,196; 5,538,880; 5,550,318; 5,552,299; 5,567,600; 5,567,862; 5,591,616; 5,627,061; 5,633,435; 5,633,437; 5,635,055; 5,641,876; 5,689,052; 5,750,871; 5,824,877; 5,837,848; 5,846,797; 5,859,347; 5,939,602; 5,981,840; 6,040,497; 6,140,078; 6,160,208; 6,175,060; 6,177,611; 6,232,526; 6,252,138; 6,294,714; 6,384,301; 6,388,170; 6,399,861; 6,403,865; 6,414,222; 6,426,446; 6,429,357; 6,429,362; 6,433,252; 6,437,217; 6,613,963; 6,635,806; 6,677,503; 7,132,528
- U.S. application Ser. No. 09/757,089
- U.S. Patent Appln. Publication 20030083480
- U.S. Patent Appln. Publication 20030135879
- U.S. Patent Appln. Publication 2004087030
- U.S. Patent Appln. Publication 20070079393
- U.S. Provisional Patent Appl. Ser. No. 60/891,675
- Anonymous, Greenbook Crop Protection Reference, 23rd edition, Greenbook Products, Lenexa, Kans., 2007.
- Becker et al., Plant Mol. Biol., 20(1):49-60, 1992.
- Behrens et al., Science 316: 1185-1188, 2007.
- Buchanan-Wollaston et al., J. Cell. Biochem., Supp. 13D, 330, 1989.
- Chandler et al., Plant Cell, 1:1175-1183, 1989.
- Chandler, In: CRC Handbook of Pest Management in Agriculture, Pimentel (Ed.), I:95-109, 1981.
- Comai et al., Nature, 317:741, 1985.
- Cork and Khalil, Adv. Appl. Microbiol., 40:289-321, 1995.
- Cork and Krueger, Adv. Appl. Microbiol., 36:1-66, 1991.
- Coruzzi et al., EMBO J., 3: 1671, 1984.
- Creissen et al., Plant J., 8(2):167-175, 1995.
- Crop Protection Chemicals Reference, Chemical & Pharmaceutical Press, Inc., NY, 11th Ed., 1803-1821, 1995
- De Block et al., EMBO J., 6(9):2513-2518, 1987.
- della-Cioppa et al., Proc. Natl. Acad. Sci. USA, 83:6873-6877, 1986.
- Ebert et al., Proc. Natl. Acad. Sci. USA, 84:5745-5749, 1987.
- European Appln. 553494
- European Appln. 646643
- Klee et al., Mol. Gen. Genet., 210:437-442, 1987.
- Kyte and Doolittle, J. Mol. Biol., 157(1):105-132, 1982.
- Lawton et al., Plant Mol. Biol. 9:315-324, 1987.
- Mazur, et al., Nucleic Acids Res., 13(7):2373-2386, 1985.
- Miki et al., In: Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson (Eds.), CRC Press, 67-88, 1993.
- Misawa et al, Plant J., 4:833-840, 1993.
- Misawa et al, Plant J., 6:481-489, 1994.
- Odell et al., Nature, 313:810-812, 1985.
- Padgette et al., Crop Sci., 35:1451-1461, 1995.
- PCT Appln. WO 95/06722
- PCT Appln. WO 97/41228
- PCT Appln. WO 96/38567
- PCT Appln. WO 97/31115
- PCT Appln. WO 97/11086
- PCT Appln. WO 04009761
- PCT Appln. WO 04074443
- Sathasiivan et al., Nucl. Acids Res., 18:2188-2193, 1990.
- Stalker et al., Science, 242:419, 1988.
- Stalker et al., Science, 242:419-422, 1988.
- Streber and Willmitzer, Bio/Technology, 7:811, 1989.
- VanGessel and Majek, 2005 Soybean Weed Management Guide: for Delaware and New Jersey, University of Delaware and Rutgers University, 2005.
- Walker et al., Proc. Natl. Acad. Sci. USA, 84:6624, 1987.
- Yang and Russell, Proc. Natl. Acad. Sci. USA, 87:4144-4148, 1990.
- Zhang et al. Plant Cell, Tissue and Organ Culture 56: 37-46, 1999.
Claims (60)
1. A method for controlling weed growth in a crop-growing environment comprising:
a) applying a herbicidally effective amount of an auxin-like dicamba herbicide to a crop-growing environment;
b) planting a transgenic seed of a dicotyledonous plant comprising a nucleic acid encoding a polypeptide having dicamba-degrading enzymatic activity in soil of the crop-growing environment within 21 days of applying the herbicide; and
c) allowing the seed to germinate into a plant.
2. The method of claim 1 , wherein the herbicide is applied prior to, concurrently with, or after the planting of the seed.
3. The method of claim 1 , wherein the transgenic seed is planted in the soil within about 12, 10, 7, or 3 days before or after the herbicide is applied.
4. The method of claim 1 , wherein the transgenic seed germinates from between about 18 days and 0 days after treating the soil.
5. The method of claim 1 , wherein the transgenic seed germinates from between about 14 days and 0 day days after treating the soil.
6. The method of claim 1 , wherein the transgenic seed germinates from between about 7 days and 0 days after treating the soil.
7. The method of claim 1 , wherein the auxin-like herbicide is selected from the group consisting of a phenoxy carboxylic acid compound, a benzoic acid compound, a pyridine carboxylic acid compound, a quinoline carboxylic acid compound, and a benazolinethyl compound.
8. The method of claim 7 , wherein the phenoxy carboxylic acid compound is selected from the group consisting of: 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy) acetic acid (MCPA), and 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB).
9. The method of claim 8 , wherein the herbicidally effective amount of 2,4-dichlorophenoxyacetic, (4-chloro-2-methylphenoxy) acetic acid (MCPA), or 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) is lower than about 1120 g/ha.
10. The method of claim 7 , wherein the benzoic acid compound is dicamba.
11. The method of claim 10 1, wherein the herbicidally effective amount of dicamba is from about 2.5 g/ha to about 10,080 g/ha.
12. The method of claim 1 , wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 6, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO: 5, (3) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO: 5 under conditions of 5×SSC, 50% formamide and 42° C., (4) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO: 5, and (5) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:6.
13. The method of claim 1 , wherein the dicotyledonous plant is selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
14. The method of claim 13 , wherein the dicotyledonous plant is a soybean, cotton or rapeseed plant.
15. The method of claim 1 , further comprising applying a second treatment of an auxin-like dicamba herbicide after the seed germinates.
16. The method of claim 15 , wherein the second treatment is carried out at a time selected from the group consisting of between about the V1 to V2 and V3 to V4 stages, before flowering, at flowering, after flowering, and at seed formation.
17. The method of claim 1 , further comprising allowing a spray drift from an application of auxin-like dicamba herbicide to a second crop-growing environment to contact said plant, wherein the plant is tolerant to the spray drift.
18. A method for controlling a glyphosate tolerant weed in a field comprising:
a) planting a transgenic seed in a field comprising a glyphosate tolerant weed or a seed thereof, wherein the seed comprises a transgene conferring glyphosate tolerance and a transgene encoding dicamba monooxygenase, the transgene encoding dicamba monooxygenase which displays dicamba-degrading enzymatic activity comprising a nucleic acid sequence selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:6, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:5, and (3) a nucleic acid sequence encoding a polypeptide with at least 90% sequence identity to the polypeptide of SEQ ID NO:6, wherein the polypeptide has dicamba monooxygenase activity;
b) growing the seed into a plant; and
c) treating the field with an amount of an auxin-like dicamba herbicide and glyphosate effective to control weed growth of the glyphosate tolerant weed.
19. The method of claim 18 , wherein the transgene conferring glyphosate tolerance encodes a protein selected from the group consisting of glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), glyphosate oxidoreductase (GOX), glyphosate-N-acetyl transferase (GAT) and glyphosate decarboxylase.
20. The method of claim 19 , wherein the transgene encoding GAT comprises the nucleic acid sequence of SEQ ID NO:18, or encodes the polypeptide of SEQ ID NO:19.
21. The method of claim 18 , wherein the seed is from a dicotyledonous plant selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
22. The method of claim 21 , wherein the dicotyledonous plant is a soybean, cotton or rapeseed plant.
23. The method of claim 18 , wherein treating the field is carried out at a time selected from the group consisting of between about the V1 to V2 and V3 to V4 leaf stages, before flowering, at flowering, after flowering, and at seed formation.
24. The method of claim 18 , wherein treating the field is carried out after the seed germinates.
25. The method of claim 18 , wherein treating the field is carried out about four weeks, three weeks, two weeks, 1 week, or 0 weeks before step a).
26. The method of claim 18 , wherein treating the field is carried out concurrently with the planting of the seed.
27. The method of claim 18 , wherein the transgenic seed is planted in the soil within about 15, 12, 10, 7 or about 3 days before or after applying the herbicide.
28. The method of claim 18 , wherein the transgenic seed germinates from between about 0 and about 18, 14, 7, or 1 days after treating the soil.
29. The method of claim 18 , wherein the auxin-like herbicide is selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
30. The method of claim 29 , wherein the phenoxy carboxylic acid compound is selected from the group consisting of 2,4-dichlorophenoxyacetic acid and (4-chloro-2-methylphenoxy) acetic acid.
31. The method of claim 30 , wherein the amount of 2,4-dichlorophenoxyacetic compound is lower than about 1120 g/ha.
32. The method of claim 30 , wherein the amount of 2,4-dichlorophenoxyacetic compound is lower than about 280 g/ha.
33. The method of claim 30 , wherein the amount of (4-chloro-2-methylphenoxy) acetic acid compound is lower than about 1120 g/ha.
34. The method of claim 30 , wherein the amount of (4-chloro-2-methylphenoxy) acetic acid compound is lower than about 280 g/ha.
35. The method of claim 29 , wherein the benzoic acid is dicamba.
36. The method of claim 35 18, wherein the amount of dicamba is from about 2.5 g/ha to about 10,080 g/ha.
37. The method of claim 23 , wherein the amount of glyphosate is from about 200 g/ha to about 1,600 g/ha.
38. The method of claim 18 , wherein the auxin-like dicamba herbicide and glyphosate are applied substantially simultaneously.
39. A method for controlling weed growth in a field comprising:
a) applying a herbicidally effective amount of an auxin-like herbicide other than dicamba to a field, wherein the field comprises a transgenic dicotyledonous plant comprising a nucleic acid encoding a polypeptide having dicamba degrading enzymatic activity or is planted with a seed that germinates into said transgenic dicotyledonous plant within 21 days of applying the herbicide, wherein the herbicidally effective amount is an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding a polypeptide having dicamba degrading enzymatic activity, wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:6, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:5, (3) a nucleic acid sequence encoding a polypeptide with at least 90% sequence identity to the polypeptide of SEQ ID NO:6, wherein the polypeptide has dicamba monooxygenase activity; and
b) allowing the transgenic dicotyledonous plant to grow.
40. The method of claim 39 , wherein step a) comprises applying the herbicidally effective amount of an auxin-like herbicide to a growing environment adjacent to a growing environment comprising the transgenic dicotyledonous plant and allowing the herbicide to drift onto the plant or soil in which the plant grows.
41. The method of claim 39 , wherein the auxin-like herbicide is selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
42. The method of claim 41 , wherein the phenoxy carboxylic acid compound is selected from the group consisting of 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy) acetic acid and 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB).
43. The method of claim 39 , wherein step b) comprises allowing the transgenic dicotyledonous plant to grow to maturity.
44. The method of claim 39 , wherein the transgenic dicotyledonous plant is a selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
45. The method of claim 39 , wherein the transgenic dicotyledonous plant is a soybean, cotton or rapeseed plant.
46. A method for increasing the efficiency of use of a herbicide delivery device comprising:
a) obtaining a device that has been used to deliver a first composition comprising an auxin-like dicamba herbicide;
b) delivering a second composition to the field using the device without first completely washing the device so that a herbicide residue comprising the auxin-like dicamba herbicide remains in the device and is delivered with the second composition to the field, wherein the field comprises a transgenic dicotyledonous plant expressing a nucleic acid encoding dicamba monooxygenase which displays dicamba-degrading enzymatic activity or is planted with a seed that germinates into said transgenic dicotyledonous plant, and wherein the herbicide residue is present in an amount that does not damage the transgenic dicotyledonous plant but will damage a plant of the same genotype that lacks the nucleic acid encoding dicamba monooxygenase which displays dicamba-degrading enzymatic activity.
47. The method of claim 46 , wherein the nucleic acid is selected from the group consisting of (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:6, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:5, (3) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO:5 under conditions of 5× SSC, 50% formamide and 42° C., (4) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:5, and (5) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:6.
48. The method of claim 46 , wherein the auxin-like herbicide is selected from the group consisting of a phenoxy carboxylic acid compound, benzoic acid compound, pyridine carboxylic acid compound, quinoline carboxylic acid compound, and benazolinethyl compound.
49. The method of claim 48 , wherein the phenoxy carboxylic acid compound is 2,4-dichlorophenoxyacetic acid, (4-chloro-2-methylphenoxy) acetic acid (MCPA), or 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB).
50. The method of claim 48 , wherein the benzoic acid compound is dicamba.
51. The method of claim 48 46, wherein the dicotyledonous plant is selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon.
52. The method of claim 51 , wherein the dicotyledonous plant is a soybean, cotton or rapeseed plant.
53. A method for controlling weed growth in a crop-growing environment comprising:
a) planting a transgenic seed in a field comprising a weed or a seed thereof, wherein the transgenic seed comprises a transgene conferring glyphosate tolerance and a transgene conferring dicamba tolerance;
b) treating the field with a herbicidally effective amount of dicamba, glyphosate, or a mixture thereof, wherein the planting and the treating is done in a single pass through the field; and
c) growing the transgenic seed into a plant.
54. The method of claim 53 , wherein the transgene conferring glyphosate tolerance encodes a protein selected from the group consisting of glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase, glyphosate oxidoreductase, and glyphosate-N-acetyl transferase, and glyphosate decarboxylase.
55. The method of claim 54 , wherein the transgene encoding GAT comprises the nucleic acid sequence of SEQ ID NO:18, or encodes the polypeptide of SEQ ID NO:19.
56. The method of claim 53 , wherein the transgene conferring dicamba tolerance encodes a dicamba monooxygenase comprising a nucleic acid sequence selected from the group consisting of (a) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:6, (b) a nucleic acid sequence comprising the sequence of SEQ ID NO:5, (c) a nucleic acid sequence that hybridizes to a complement of the nucleic acid sequence of SEQ ID NO:5 under conditions of 5× SSC, 50% formamide and 42° C., (d) a nucleic acid sequence having at least 70% sequence identity to the nucleic acid sequence of SEQ ID NO:5, and e) a nucleic acid sequence encoding a polypeptide having at least 70% sequence identity to the polypeptide sequence of SEQ ID NO:6.
57. The method of claim 53 , wherein the transgenic seed if from a dicotyledonous plant is selected from the group consisting of alfalfa, beans, broccoli, cabbage, carrot, cauliflower, celery, cotton, cucumber, eggplant, lettuce, melon, pea, pepper, pumpkin, radish, rapeseed, spinach, soybean, squash, tomato, and watermelon seed.
58. The method of claim 57 , wherein the dicotyledonous plant is a soybean, cotton or rapeseed plant.
59. The method of claim 53 , wherein the amount of dicamba is from about 2.5 g/ha to about 10,080 g/ha.
60. The method of claim 53 , wherein the amount of glyphosate is from about 200 g/ha to about 1,600 g/ha.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/751,021 USRE45048E1 (en) | 2006-06-06 | 2013-01-25 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81127606P | 2006-06-06 | 2006-06-06 | |
US11/758,653 US7855326B2 (en) | 2006-06-06 | 2007-06-05 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
US13/751,021 USRE45048E1 (en) | 2006-06-06 | 2013-01-25 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/758,653 Reissue US7855326B2 (en) | 2006-06-06 | 2007-06-05 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE45048E1 true USRE45048E1 (en) | 2014-07-22 |
Family
ID=38650176
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/758,653 Ceased US7855326B2 (en) | 2006-06-06 | 2007-06-05 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
US12/942,905 Active 2028-08-22 US8629328B2 (en) | 2006-06-06 | 2010-11-09 | Methods for weed control using plants transformed with dicamba monooxygenase |
US13/751,021 Active 2028-10-10 USRE45048E1 (en) | 2006-06-06 | 2013-01-25 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/758,653 Ceased US7855326B2 (en) | 2006-06-06 | 2007-06-05 | Methods for weed control using plants having dicamba-degrading enzymatic activity |
US12/942,905 Active 2028-08-22 US8629328B2 (en) | 2006-06-06 | 2010-11-09 | Methods for weed control using plants transformed with dicamba monooxygenase |
Country Status (8)
Country | Link |
---|---|
US (3) | US7855326B2 (en) |
EP (1) | EP2023719A2 (en) |
AU (1) | AU2007256618B2 (en) |
BR (1) | BRPI0712682A2 (en) |
CA (1) | CA2653739C (en) |
GT (1) | GT200800275A (en) |
MX (1) | MX2008015743A (en) |
WO (1) | WO2007143690A2 (en) |
Cited By (579)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015035099A1 (en) | 2013-09-04 | 2015-03-12 | Symbiota, Inc. | Agricultural endophyte-plant compositions, and methods of use |
CN104611304A (en) * | 2014-12-22 | 2015-05-13 | 北京大北农科技集团股份有限公司生物技术中心 | A herbicide tolerant protein, a coding gene thereof and uses of the protein |
US9271470B1 (en) | 2014-11-24 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB69F14R2 |
US9271462B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB49AE13 |
US9271464B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB35Y13 |
US9271463B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB56V13 |
US9320241B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR37Z14RX |
US9320238B1 (en) | 2014-11-24 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XB20AA14R2 |
US9320243B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR45Z14RX |
US9320233B1 (en) | 2013-08-29 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XB55B13 |
US9320240B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR35AS14RX |
US9320242B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR43A14RX |
US9320239B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR35AR14RX |
US9332716B1 (en) | 2014-11-24 | 2016-05-10 | Monsanto Technology LC | Soybean variety XB42A14R2 |
US9332711B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB23AB13 |
US9332712B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB28T13 |
US9332709B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB21Z13 |
US9332717B1 (en) | 2014-11-19 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XR68D14RX |
US9332713B1 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB44K13 |
US9332710B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB22A13 |
US9332707B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB04F13 |
US9332708B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XBO9AE13 |
US9332706B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB007G13 |
US9351467B1 (en) | 2015-03-02 | 2016-05-31 | Monsanto Technology Llc | Soybean variety XB32AQ13R2 |
US9386754B2 (en) | 2013-12-17 | 2016-07-12 | Monsanto Technology, Llc | Soybean variety 01046551 |
US9402362B1 (en) | 2014-11-19 | 2016-08-02 | Monsanto Technology Llc | Soybean variety XR47AB14RX |
US9408358B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB34Y13 |
US9408357B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB35X13 |
US9408359B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB36G13 |
US9414562B1 (en) | 2014-11-24 | 2016-08-16 | Monsanto Technology Llc | Soybean variety XB47AA14R2 |
US9433180B1 (en) | 2014-11-24 | 2016-09-06 | Monsanto Technology Llc | Soybean variety XB35AL14R2 |
US9433175B2 (en) | 2013-08-29 | 2016-09-06 | Monsanto Technology Llc | Soybean variety XB33Z13 |
US9445569B2 (en) | 2013-12-17 | 2016-09-20 | Monsanto Technology Llc | Soybean variety 01046426 |
US9445567B1 (en) | 2013-08-29 | 2016-09-20 | Monsanto Technology Llc | Soybean variety XB39D13 |
US9445568B1 (en) | 2013-12-17 | 2016-09-20 | Monsanto Technology Llc | Soybean variety 01046626 |
US9480226B1 (en) | 2013-08-29 | 2016-11-01 | Monsanto Technology Llc | Soybean variety XB34Z13 |
US9480228B2 (en) | 2014-11-19 | 2016-11-01 | Monsanto Technology Llc | Soybean variety XR30AR14RX |
US9485932B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB40U13 |
US9485931B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB39C13 |
US9485930B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB35W13 |
US9504222B2 (en) | 2014-11-24 | 2016-11-29 | Monsanto Technology Llc | Soybean variety XB15R14R2 |
US9554538B2 (en) | 2014-11-19 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XR27AK14RX |
USRE46292E1 (en) | 2009-09-17 | 2017-01-31 | Monsanto Technology Llc | Soybean transgenic event MON 87708 and methods of use thereof |
US9554539B2 (en) | 2014-11-19 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XR30AT14RX |
US9554537B2 (en) | 2014-11-24 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XB07A14R2 |
US9560827B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR45C15X |
US9560829B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR47AG15X |
US9560828B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR46Z15X |
US9565821B1 (en) | 2016-03-21 | 2017-02-14 | Monsanto Technology Llc | Soybean variety XR47AF15X |
US9565822B1 (en) | 2016-03-21 | 2017-02-14 | Monsanto Technology Llc | Soybean variety XR37AE15X |
US9578849B1 (en) | 2016-03-22 | 2017-02-28 | Monsanto Technology Llc | Soybean cultivar 55021012 |
US9585321B1 (en) | 2014-11-19 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR34AT14RX |
US9585354B1 (en) | 2016-03-21 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR48C15X |
US9585356B1 (en) | 2016-03-22 | 2017-03-07 | Monsanto Technology Llc | Soybean cultivar 52232331 |
US9585357B1 (en) | 2016-03-22 | 2017-03-07 | Monsanto Technology Llc | Soybean cultivar 53146341 |
US9585355B1 (en) | 2016-03-21 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR40AA15X |
US9591827B1 (en) | 2016-03-22 | 2017-03-14 | Monsanto Technology Llc | Soybean cultivar 57160653 |
US9596819B1 (en) | 2016-03-21 | 2017-03-21 | Monsanto Technology Llc | Soybean variety XR33AU15X |
US9596818B1 (en) | 2016-03-21 | 2017-03-21 | Monsanto Technology Llc | Soybean variety XR30AX15X |
US9603331B1 (en) | 2016-03-21 | 2017-03-28 | Monsanto Technology Llc | Soybean variety XR39V15X |
US9609833B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 58111502 |
US9609832B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 53032202 |
US9609834B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 55030014 |
US9609831B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 56052100 |
US9635819B1 (en) | 2014-11-24 | 2017-05-02 | Monsanto Technology Llc | Soybean variety XB57E14R2 |
US9648818B1 (en) | 2014-11-24 | 2017-05-16 | Monsanto Technology Llc | Soybean variety XB37X14R2 |
US9648836B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 50262411 |
US9648834B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 51201110 |
US9648819B1 (en) | 2014-11-19 | 2017-05-16 | Monsanto Technology Llc | Soybean variety XR57F14RX |
US9648824B2 (en) | 2014-05-08 | 2017-05-16 | Monsanto Technology Llc | Soybean variety 01050938 |
US9648835B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 53030521 |
US9655336B1 (en) | 2016-03-22 | 2017-05-23 | Monsanto Technology Llc | Soybean cultivar 58150703 |
US9675026B1 (en) | 2014-11-19 | 2017-06-13 | Monsanto Technology Llc | Soybean variety XR35AP14RX |
US9700000B1 (en) | 2016-03-21 | 2017-07-11 | Monsanto Technology Llc | Soybean variety XR38W15X |
US9699999B1 (en) | 2016-03-21 | 2017-07-11 | Monsanto Technology Llc | Soybean variety XR22K15X |
US9706729B1 (en) | 2016-03-22 | 2017-07-18 | Monsanto Technology Llc | Soybean cultivar 51240902 |
US9730415B1 (en) | 2016-03-21 | 2017-08-15 | Monsanto Technology Llc | Soybean variety XR08A15X |
US9763414B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR25AL15X |
US9763413B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR23AQ15X |
US9763412B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR09AP15X |
US9763411B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR09AL15X |
US9770000B1 (en) | 2016-03-22 | 2017-09-26 | Monsanto Technology Llc | Soybean cultivar 56042428 |
US9788508B1 (en) | 2016-03-21 | 2017-10-17 | Monsanto Technology Llc | Soybean variety XR20AH15X |
US9861053B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR36AC15X |
US9861056B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR56J15X |
US9861055B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR39U15X |
US9861054B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR36Z15X |
US9888659B1 (en) | 2017-03-29 | 2018-02-13 | Monsanto Technology Llc | Soybean cultivar 61040705 |
US9894869B1 (en) | 2017-03-29 | 2018-02-20 | Monsanto Technology Llc | Soybean cultivar 64091728 |
US9907282B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 60371632 |
US9907283B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 62103227 |
US9907281B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 64291310 |
US9907280B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 64492916 |
US9907279B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 63282422 |
US9913448B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 63281310 |
US9913449B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 67272133 |
US9913450B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 68071303 |
US9930857B1 (en) | 2017-03-29 | 2018-04-03 | Monsato Technology Llc | Soybean cultivar 61311131 |
US9930856B1 (en) | 2017-03-29 | 2018-04-03 | Monsanto Technology Llc | Soybean cultivar 62030513 |
US9930858B1 (en) | 2017-03-29 | 2018-04-03 | Monsanto Technology Llc | Soybean cultivar 62232543 |
US9961868B1 (en) | 2017-03-29 | 2018-05-08 | Monsanto Technology Llc | Soybean cultivar 60111034 |
US9999193B1 (en) | 2017-03-29 | 2018-06-19 | Monsanto Technology Llc | Soybean cultivar 65090203 |
US10010040B1 (en) | 2016-03-21 | 2018-07-03 | Monsanto Technology Llc | Soybean variety XR50E15X |
US10039249B1 (en) | 2017-03-29 | 2018-08-07 | Monsanto Technology Llc | Soybean cultivar 61162227 |
US10113178B2 (en) | 2014-03-20 | 2018-10-30 | Monsanto Technology Llc | Transgenic maize event MON 87419 and methods of use thereof |
US10172310B1 (en) | 2017-06-28 | 2019-01-08 | Monsanto Technology Llc | Soybean variety 5PYFS21 |
US10178837B1 (en) | 2017-06-28 | 2019-01-15 | Monsanto Technology Llc | Soybean variety 5PHQP31 |
US10182539B1 (en) | 2017-06-28 | 2019-01-22 | Monsanto Technology Llc | Soybean variety 5PDZB74 |
US10188059B1 (en) | 2017-06-28 | 2019-01-29 | Monsanto Technology Llc | Soybean variety 5PUWT62 |
US10206350B1 (en) | 2017-06-28 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 5PDSD70 |
US10206349B1 (en) | 2017-06-28 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 5PPHU37 |
US10238080B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 79072143 |
US10238079B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 77301427 |
US10238066B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 73301323 |
US10258013B1 (en) | 2018-08-06 | 2019-04-16 | Monsanto Technology Llc | Soybean cultivar 64442216 |
US10258014B1 (en) | 2018-08-06 | 2019-04-16 | Monsanto Technology Llc | Soybean cultivar 76051047 |
US10264760B1 (en) | 2018-08-06 | 2019-04-23 | Monsanto Technology Llc | Soybean cultivar 79380729 |
US10321654B1 (en) | 2018-08-06 | 2019-06-18 | Monsanto Technology Llc | Soybean cultivar 76222418 |
US10342206B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 60390131 |
US10342207B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 68381333 |
US10342204B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 65382631 |
US10349608B1 (en) | 2018-08-06 | 2019-07-16 | Monsanto Technology Llc | Soybean cultivar 70520427 |
US10349607B1 (en) | 2018-08-06 | 2019-07-16 | Monsanto Technology Llc | Soybean cultivar 78091047 |
US10357010B1 (en) | 2018-08-06 | 2019-07-23 | Monsanto Technology Llc | Soybean cultivar 68352516 |
US10362758B1 (en) | 2018-08-06 | 2019-07-30 | Monsanto Technology Llc | Soybean cultivar 64272401 |
US10368521B1 (en) | 2018-08-06 | 2019-08-06 | Monsanto Technology Llc | Soybean cultivar 70490447 |
US10368519B1 (en) | 2018-05-24 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 5PYGS18 |
US10368520B1 (en) | 2018-05-24 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 5PCDJ10 |
US10398122B1 (en) | 2018-08-06 | 2019-09-03 | Monsanto Technology Llc | Soybean cultivar 77252418 |
US10412921B1 (en) | 2018-05-24 | 2019-09-17 | Monsanto Technology Llc | Soybean variety 5PYUP46 |
US10420313B1 (en) | 2018-05-24 | 2019-09-24 | Monsanto Technology Llc | Soybean variety 5PKVF24 |
US10420312B1 (en) | 2018-05-24 | 2019-09-24 | Monsanto Technology Llc | Soybean variety 5PKGL32 |
US10448610B1 (en) | 2018-08-24 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01067781 |
US10448608B1 (en) | 2018-08-23 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01067812 |
US10448609B1 (en) | 2018-08-23 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01072293 |
US10463013B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01069709 |
US10463011B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01068162 |
US10463010B1 (en) | 2018-08-24 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01068189 |
US10463012B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01069688 |
US10463000B1 (en) | 2018-08-23 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01072224 |
US10470395B1 (en) | 2018-08-24 | 2019-11-12 | Monsanto Technology Llc | Soybean variety 01067663 |
US10470425B1 (en) | 2018-08-24 | 2019-11-12 | Monsanto Technology Llc | Soybean variety 01067783 |
US10477823B1 (en) | 2018-08-27 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01069720 |
US10477822B1 (en) | 2018-08-27 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01069686 |
US10477821B1 (en) | 2018-08-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01067769 |
US10477818B1 (en) | 2018-05-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 5PTJB40 |
US10480005B1 (en) | 2018-05-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 5PEKB42 |
US10485213B1 (en) | 2018-08-24 | 2019-11-26 | Monsanto Technology Llc | Soybean variety 01068968 |
US10492451B1 (en) | 2018-08-24 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 0107226 |
US10492454B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01072256 |
US10492452B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01067646 |
US10492450B1 (en) | 2018-08-23 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01064752 |
US10492453B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01072254 |
US10499603B1 (en) | 2018-08-27 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01068207 |
US10499601B1 (en) | 2018-08-23 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01068356 |
US10499602B1 (en) | 2018-08-27 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01067553 |
US10506786B1 (en) | 2018-08-23 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01067789 |
US10506789B1 (en) | 2018-12-04 | 2019-12-17 | Monsanto Technology Llc | Soybean cultivar 61381330 |
US10506787B1 (en) | 2018-08-24 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01072220 |
US10506788B1 (en) | 2018-08-27 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01072292 |
US10512242B1 (en) | 2018-08-27 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01077436 |
US10512239B1 (en) | 2018-08-23 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072273 |
US10512240B1 (en) | 2018-08-24 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072228 |
US10512241B1 (en) | 2018-08-24 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072232 |
US10517255B1 (en) | 2018-08-06 | 2019-12-31 | Monsanto Technology Llc | Soybean cultivar 62391708 |
US10517259B1 (en) | 2018-08-24 | 2019-12-31 | Monsanto Technology Llc | Soybean variety 01068824 |
US10524446B1 (en) | 2018-08-23 | 2020-01-07 | Monsanto Technology Llc | Soybean variety 01072245 |
US10531629B1 (en) | 2018-08-24 | 2020-01-14 | Monsanto Technology Llc | Soybean variety 01072223 |
US10542721B1 (en) | 2018-08-24 | 2020-01-28 | Monsanto Technology Llc | Soybean variety 01072231 |
US10548273B1 (en) | 2019-06-06 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 87120510 |
US10548285B1 (en) | 2018-08-24 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01067703 |
US10548284B1 (en) | 2018-08-23 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01072294 |
US10548274B1 (en) | 2019-06-07 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 83262718 |
US10548286B1 (en) | 2018-08-27 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01068171 |
US10548289B1 (en) | 2019-06-06 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 82290447 |
US10548288B1 (en) | 2019-06-06 | 2020-02-04 | Mansanto Technology Llc | Soybean cultivar 80372800 |
US10548290B1 (en) | 2019-06-07 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 89031941 |
US10548287B1 (en) | 2019-06-05 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 86411138 |
US10555480B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068350 |
US10555492B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 81430038 |
US10555491B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 83072718 |
US10555490B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 85370909 |
US10555481B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068364 |
US10555485B1 (en) | 2018-08-23 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01073532 |
US10555482B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068427 |
US10555484B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068903 |
US10555489B1 (en) | 2018-08-27 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068972 |
US10555486B1 (en) | 2018-08-23 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068910 |
US10555487B1 (en) | 2018-08-24 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067694 |
US10555488B1 (en) | 2018-08-24 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067714 |
US10555483B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067598 |
US10561090B1 (en) | 2019-06-07 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 86370345 |
US10561102B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068182 |
US10561103B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01073501 |
US10561104B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01072234 |
US10561098B1 (en) | 2018-08-22 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01067649 |
US10561108B1 (en) | 2019-06-06 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 80431932 |
US10561107B1 (en) | 2018-08-27 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068807 |
US10561109B1 (en) | 2019-06-06 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 82042815 |
US10561105B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01072235 |
US10561089B1 (en) | 2019-06-07 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 84060345 |
US10561101B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068184 |
US10561100B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01067742 |
US10561099B1 (en) | 2018-08-22 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068352 |
US10561106B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068466 |
US10568284B1 (en) | 2019-06-06 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 87161804 |
US10568290B1 (en) | 2018-08-27 | 2020-02-25 | Monsanto Technology Llc | Soybean variety 01068219 |
US10568293B1 (en) | 2019-06-07 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar AR 86112649 |
US10568294B1 (en) | 2019-06-07 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 82440038 |
US10568292B1 (en) | 2019-06-06 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 80181322 |
US10568291B1 (en) | 2018-08-27 | 2020-02-25 | Monsanto Technology Llc | Soybean variety 01067741 |
US10575489B1 (en) | 2018-08-22 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067545 |
US10575490B1 (en) | 2018-08-22 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067547 |
US10575492B1 (en) | 2018-08-27 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01068915 |
US10575491B1 (en) | 2018-08-24 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01072289 |
US10575493B1 (en) | 2018-08-27 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067819 |
US10582690B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067790 |
US10582687B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01068359 |
US10582679B1 (en) | 2018-08-27 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01072243 |
US10582678B1 (en) | 2018-08-27 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01072239 |
US10582688B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067543 |
US10582686B1 (en) | 2018-08-22 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01064580 |
US10582689B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067573 |
US10602692B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01072252 |
US10602691B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01072253 |
US10602710B1 (en) | 2019-06-07 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 89282206 |
US10602709B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 86360847 |
US10602689B2 (en) | 2018-08-22 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068908 |
US10602707B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 85442619 |
US10602705B2 (en) | 2018-08-24 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068821 |
US10602693B1 (en) | 2019-06-04 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 81302732 |
US10602704B2 (en) | 2018-08-22 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068313 |
US10602690B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068227 |
US10602706B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01077437 |
US10602708B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 82370721 |
US10609883B1 (en) | 2019-06-05 | 2020-04-07 | Monsanto Technology Llc | Soybean cultivar 82340103 |
US10609889B1 (en) | 2019-06-06 | 2020-04-07 | Monsanto Technology Llc | Soybean cultivar 89001711 |
US10609888B2 (en) | 2018-08-23 | 2020-04-07 | Monsanto Technology Llc | Soybean variety 01068346 |
US10617089B2 (en) | 2018-08-22 | 2020-04-14 | Monsanto Technology Llc | Soybean variety 01067827 |
US10617080B1 (en) | 2019-06-04 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 87352527 |
US10617090B2 (en) | 2018-08-24 | 2020-04-14 | Monsanto Technology Llc | Soybean variety 01068163 |
US10617092B1 (en) | 2019-06-06 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 80411617 |
US10617091B1 (en) | 2019-06-04 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 86331141 |
US10624285B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01068376 |
US10624288B1 (en) | 2019-06-05 | 2020-04-21 | Monsanto Technology Llc | Soybean cultivar 85061635 |
US10624286B2 (en) | 2018-08-23 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072276 |
US10624304B2 (en) | 2018-08-24 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01068381 |
US10624302B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072280 |
US10624303B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072279 |
US10624305B1 (en) | 2019-06-04 | 2020-04-21 | Monsanto Technology Llc | Soybean cultivar 85161422 |
US10624287B2 (en) | 2018-08-23 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072275 |
US10631499B2 (en) | 2018-08-23 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01072291 |
US10631514B1 (en) | 2019-06-05 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 80131402 |
US10631508B2 (en) | 2018-08-27 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068228 |
US10631505B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01069676 |
US10631504B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01072295 |
US10631509B2 (en) | 2018-08-27 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067807 |
US10631486B2 (en) | 2018-08-23 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068187 |
US10631512B1 (en) | 2019-06-04 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 85322536 |
US10631506B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068838 |
US10631507B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068485 |
US10631503B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067814 |
US10631500B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067788 |
US10631502B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067840 |
US10631501B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067793 |
US10631487B1 (en) | 2019-06-06 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 83240828 |
US10631513B1 (en) | 2019-06-04 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 87181312 |
US10638713B1 (en) | 2019-06-05 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 85220103 |
US10638710B2 (en) | 2018-08-24 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068195 |
US10638707B2 (en) | 2018-08-23 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01067639 |
US10638709B2 (en) | 2018-08-24 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068191 |
US10638708B2 (en) | 2018-08-23 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068325 |
US10638686B1 (en) | 2019-06-05 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 84161023 |
US10638687B1 (en) | 2019-06-06 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 88103087 |
US10638714B1 (en) | 2019-06-06 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 84062517 |
US10645898B2 (en) | 2018-08-24 | 2020-05-12 | Monsanto Technology Llc | Soybean variety 01068192 |
US10660292B2 (en) | 2018-08-24 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01068157 |
US10660295B1 (en) | 2019-06-05 | 2020-05-26 | Monsanto Technology Llc | Soybean cultivar 86072029 |
US10660293B2 (en) | 2018-08-27 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01077434 |
US10660296B1 (en) | 2019-06-07 | 2020-05-26 | Monsanto Technology Llc | Soybean cultivar 84241941 |
US10660294B2 (en) | 2018-08-27 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01077435 |
US10667484B1 (en) | 2019-06-04 | 2020-06-02 | Monsanto Technology Llc | Soybean cultivar 82322805 |
US10687501B2 (en) | 2018-08-23 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068438 |
US10687503B2 (en) | 2018-08-27 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068213 |
US10687502B2 (en) | 2018-08-23 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068433 |
US10743493B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077438 |
US10743491B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077432 |
US10743492B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077433 |
US10785950B1 (en) | 2019-06-06 | 2020-09-29 | Stine Seed Farm, Inc. | Soybean cultivar 86190345 |
US10813335B1 (en) | 2019-06-06 | 2020-10-27 | Monsanto Technology Llc | Soybean cultivar 80261309 |
US10827714B1 (en) | 2019-07-30 | 2020-11-10 | Monsanto Technology Llc | Soybean variety 01073443 |
US10827715B1 (en) | 2019-07-31 | 2020-11-10 | Monsanto Technology Llc | Soybean variety 01077799 |
US10842117B1 (en) | 2019-07-31 | 2020-11-24 | Monsanto Technology Llc | Soybean variety 01072842 |
US10842116B1 (en) | 2019-07-31 | 2020-11-24 | Monsanto Technology Llc | Soybean variety 01072832 |
US10849300B1 (en) | 2019-07-29 | 2020-12-01 | Monsanto Technology Llc | Soybean variety 01073359 |
US10849301B1 (en) | 2019-07-30 | 2020-12-01 | Monsanto Technology Llc | Soybean variety 01072784 |
US10856507B1 (en) | 2019-07-30 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073444 |
US10856509B1 (en) | 2019-08-16 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073199 |
US10856508B1 (en) | 2019-07-30 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073445 |
US10863712B1 (en) | 2019-08-16 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073281 |
US10863709B1 (en) | 2019-07-29 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01072789 |
US10863710B1 (en) | 2019-07-31 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01072819 |
US10863708B1 (en) | 2019-07-29 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073439 |
US10863711B1 (en) | 2019-08-16 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073279 |
US10869454B1 (en) | 2019-08-16 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01073329 |
US10869453B1 (en) | 2019-07-31 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01072813 |
US10869452B1 (en) | 2019-07-29 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01072767 |
US10874078B1 (en) | 2019-07-31 | 2020-12-29 | Monsanto Technology Llc | Soybean variety 01072817 |
US10881074B1 (en) | 2019-07-30 | 2021-01-05 | Monsanto Technology Llc | Soybean variety 01072802 |
US10881073B1 (en) | 2019-07-30 | 2021-01-05 | Monsanto Technology Llc | Soybean variety 01072782 |
US10888063B1 (en) | 2019-07-30 | 2021-01-12 | Monsanto Technology Llc | Soybean variety 01072800 |
US10897868B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072327 |
US10897869B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072333 |
US10897864B1 (en) | 2019-07-30 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01073453 |
US10897870B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072322 |
US10905080B2 (en) | 2018-08-22 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072355 |
US10905079B1 (en) | 2019-08-16 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073335 |
US10905075B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073059 |
US10905073B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072883 |
US10905072B1 (en) | 2019-07-29 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073330 |
US10905074B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072906 |
US10905081B2 (en) | 2018-08-22 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072329 |
US10905071B1 (en) | 2019-07-29 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072744 |
US10912270B1 (en) | 2019-07-29 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01072737 |
US10912271B1 (en) | 2019-07-31 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01072822 |
US10912273B1 (en) | 2019-08-07 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01073355 |
US10918065B2 (en) | 2018-08-22 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072343 |
US10918055B1 (en) | 2019-07-30 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073472 |
US10918050B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072791 |
US10918053B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073354 |
US10918052B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073365 |
US10918054B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073353 |
US10918056B1 (en) | 2019-07-31 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01077815 |
US10918051B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072804 |
US10925240B1 (en) | 2019-07-30 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073455 |
US10925239B1 (en) | 2019-07-30 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073452 |
US10925237B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073288 |
US10925236B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072823 |
US10925241B1 (en) | 2019-08-01 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072974 |
US10925235B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072810 |
US10925238B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073320 |
US10932428B2 (en) | 2019-07-29 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01072749 |
US10932430B1 (en) | 2019-08-16 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01073203 |
US10932429B2 (en) | 2019-07-29 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01073265 |
US10939652B2 (en) | 2018-08-22 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072350 |
US10939648B2 (en) | 2019-07-31 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072899 |
US10939643B2 (en) | 2019-07-29 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072768 |
US10939647B2 (en) | 2019-07-31 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072860 |
US10939644B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073461 |
US10939645B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073480 |
US10939646B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073479 |
US10945397B2 (en) | 2019-07-31 | 2021-03-16 | Monsanto Technology Llc | Soybean variety 01073506 |
US10945398B2 (en) | 2019-08-15 | 2021-03-16 | Monsanto Technology Llc | Soybean variety 01073160 |
US10952391B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073150 |
US10952393B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073169 |
US10952392B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073151 |
US10959389B2 (en) | 2019-07-31 | 2021-03-30 | Monsanto Technology Llc | Soybean variety 01073503 |
US10959390B2 (en) | 2019-08-15 | 2021-03-30 | Monsanto Technology Llc | Soybean variety 01073069 |
US10973199B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072341 |
US10973198B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072340 |
US10973194B2 (en) | 2019-07-31 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072867 |
US10973200B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072342 |
US10973193B2 (en) | 2019-07-31 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072864 |
US10973196B2 (en) | 2019-08-16 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01073237 |
US10973201B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072339 |
US10973195B2 (en) | 2019-08-07 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01073325 |
US10980203B2 (en) | 2019-08-07 | 2021-04-20 | Monsanto Technology Llc | Soybean variety 01073305 |
US10993401B2 (en) | 2019-07-29 | 2021-05-04 | Monsanto Technology Llc | Soybean variety 01073256 |
US10993404B2 (en) | 2018-08-22 | 2021-05-04 | Monsanto Technology Llc | Soybean variety 01072356 |
US10999998B2 (en) | 2018-08-22 | 2021-05-11 | Monsanto Technology Llc | Soybean variety 01072346 |
US11006603B2 (en) | 2019-08-16 | 2021-05-18 | Monsanto Technology Llc | Soybean variety 01072287 |
US11006602B2 (en) | 2019-08-01 | 2021-05-18 | Monsanto Technology Llc | Soybean variety 01072946 |
US11013197B2 (en) | 2018-08-22 | 2021-05-25 | Monsanto Technology Llc | Soybean variety 01072368 |
US11013196B2 (en) | 2019-08-15 | 2021-05-25 | Monsanto Technology Llc | Soybean variety 01073094 |
US11019788B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01072980 |
US11019790B2 (en) | 2019-08-07 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01073304 |
US11019789B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01073534 |
US11019787B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01072951 |
US11026389B2 (en) | 2018-08-22 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01072367 |
US11026388B2 (en) | 2019-08-01 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01073060 |
US11026387B2 (en) | 2019-08-01 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01073016 |
US11039590B2 (en) | 2019-08-16 | 2021-06-22 | Monsanto Technology Llc | Soybean variety 01073272 |
US11039591B2 (en) | 2019-08-16 | 2021-06-22 | Monsanto Technology Llc | Soybean variety 01073340 |
US11044868B2 (en) | 2019-08-16 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073261 |
US11044869B2 (en) | 2019-08-16 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073270 |
US11044866B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073114 |
US11044867B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073133 |
US11044876B2 (en) | 2018-08-22 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01072345 |
US11044865B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073029 |
US11071271B2 (en) | 2019-08-15 | 2021-07-27 | Monsanto Technology Llc | Soybean variety 01073065 |
US11071272B2 (en) | 2019-08-16 | 2021-07-27 | Monsanto Technology Llc | Soybean variety 01073195 |
US11076552B2 (en) | 2019-08-07 | 2021-08-03 | Monsanto Technology Llc | Soybean variety 01073356 |
US11096361B2 (en) | 2019-08-15 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073072 |
US11096363B2 (en) | 2018-08-22 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01072331 |
US11096360B2 (en) | 2019-08-15 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01067560 |
US11096359B2 (en) | 2019-08-07 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01077377 |
US11096362B2 (en) | 2019-08-16 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073204 |
US11096357B2 (en) | 2019-07-29 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073351 |
US11109551B2 (en) | 2019-08-16 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01073253 |
US11109550B2 (en) | 2019-08-15 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01073116 |
US11109553B2 (en) | 2018-08-22 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01072328 |
US11109552B2 (en) | 2018-08-22 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01072332 |
US11122759B2 (en) | 2019-07-31 | 2021-09-21 | Monsanto Technology Llc | Soybean variety 01072870 |
US11129349B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073350 |
US11129347B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073210 |
US11129348B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073219 |
US11129346B2 (en) | 2019-08-01 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073533 |
US11160237B2 (en) | 2019-08-16 | 2021-11-02 | Monsanto Technology Llc | Soybean variety 01073183 |
US11178841B2 (en) | 2019-09-16 | 2021-11-23 | Monsanto Technology Llc | Soybean variety 01077386 |
US11185043B2 (en) | 2019-09-16 | 2021-11-30 | Monsanto Technology Llc | Soybean variety 01077334 |
US11185044B2 (en) | 2019-09-16 | 2021-11-30 | Monsanto Technology Llc | Soybean variety 01077343 |
US11206791B2 (en) | 2018-08-22 | 2021-12-28 | Monsanto Technology Llc | Soybean variety 01072337 |
US11206797B1 (en) | 2020-09-09 | 2021-12-28 | Monsanto Technology Llc | Soybean cultivar 97320218 |
US11229182B2 (en) | 2019-09-16 | 2022-01-25 | Monsanto Technology Llc | Soybean variety 01077387 |
US11229183B1 (en) | 2020-09-11 | 2022-01-25 | Monsanto Technology Llc | Soybean cultivar 93070703 |
US11234405B1 (en) | 2020-09-09 | 2022-02-01 | Monsanto Technology Llc | Soybean cultivar 90110208 |
US11234406B1 (en) | 2020-09-09 | 2022-02-01 | Monsanto Technology Llc | Soybean cultivar 98010818 |
US11252923B1 (en) | 2020-09-09 | 2022-02-22 | Monsanto Technology Llc | Soybean cultivar 99003018 |
US11252921B2 (en) | 2019-10-18 | 2022-02-22 | Monsanto Technology Llc | Soybean variety 01077393 |
US11252922B2 (en) | 2019-10-18 | 2022-02-22 | Monsanto Technology Llc | Soybean variety 01077391 |
US11259493B2 (en) | 2019-09-16 | 2022-03-01 | Monsanto Technology Llc | Soybean variety 01077341 |
US11259494B2 (en) | 2019-09-16 | 2022-03-01 | Monsanto Technology Llc | Soybean variety 01077345 |
US11259495B1 (en) | 2020-09-09 | 2022-03-01 | Monsanto Technology Llc | Soybean cultivar 90381408 |
US11266108B2 (en) | 2019-09-17 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081409 |
US11266110B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077337 |
US11266105B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077338 |
US11266109B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077385 |
US11266111B2 (en) | 2019-09-17 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077383 |
US11266107B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081408 |
US11266100B2 (en) | 2019-07-30 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01073441 |
US11266106B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081407 |
US11272679B2 (en) | 2019-10-18 | 2022-03-15 | Monsanto Technology Llc | Soybean variety 01077330 |
US11277997B1 (en) | 2020-11-05 | 2022-03-22 | Monsanto Technology Llc | Soybean variety 01077853 |
US11277996B1 (en) | 2020-09-11 | 2022-03-22 | Monsanto Technology Llc | Soybean cultivar 97051600 |
US11284593B1 (en) | 2020-11-05 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01083687 |
US11284592B1 (en) | 2020-09-11 | 2022-03-29 | Monsanto Technology Llc | Soybean cultivar 91030603 |
US11284594B1 (en) | 2020-11-05 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01077848 |
US11284587B2 (en) | 2019-09-16 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01077381 |
US11297792B2 (en) | 2019-09-17 | 2022-04-12 | Monsanto Technology Llc | Soybean variety 01077344 |
US11310989B2 (en) | 2020-09-15 | 2022-04-26 | Monsanto Technology Llc | Soybean cultivar 94071660 |
US11310988B2 (en) | 2020-09-11 | 2022-04-26 | Monsanto Technology Llc | Soybean cultivar 92340030 |
US11317589B2 (en) | 2020-09-15 | 2022-05-03 | Monsanto Technology Llc | Soybean cultivar 95430820 |
US11317587B2 (en) | 2020-09-11 | 2022-05-03 | Stine Seed Farm, Inc. | Soybean cultivar 96030600 |
US11317588B2 (en) | 2020-09-11 | 2022-05-03 | Stine Seed Farm, Inc. | Soybean cultivar 97080600 |
US11324182B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 95060020 |
US11324181B2 (en) | 2019-10-18 | 2022-05-10 | Monsanto Technology Llc | Soybean variety 01077335 |
US11324183B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 90250820 |
US11324184B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 97061850 |
US11330784B2 (en) | 2020-09-11 | 2022-05-17 | Monsanto Technology, Llc | Soybean cultivar 95322700 |
US11330785B1 (en) | 2020-11-06 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077941 |
US11330783B2 (en) | 2019-10-18 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077336 |
US11330777B2 (en) | 2019-10-18 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077390 |
US11337400B2 (en) | 2019-09-16 | 2022-05-24 | Monsanto Technology, Llc | Soybean variety 01077373 |
US11337401B2 (en) | 2020-09-15 | 2022-05-24 | Monsanto Technology, Llc | Soybean cultivar 90370640 |
US11343995B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083647 |
US11343990B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083439 |
US11343994B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083655 |
US11343991B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01078115 |
US11343989B2 (en) | 2020-09-15 | 2022-05-31 | Monsanto Technology, Llc | Soybean cultivar 92350300 |
US11343996B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01077875 |
US11343992B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01078550 |
US11343987B2 (en) | 2020-09-15 | 2022-05-31 | Stine Seed Farm, Inc. | Soybean cultivar 90401320 |
US11343993B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083650 |
US11343988B2 (en) | 2020-09-15 | 2022-05-31 | Stine Seed Farm, Inc. | Soybean cultivar 91041800 |
US11350601B2 (en) | 2020-11-06 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01077876 |
US11350596B2 (en) | 2020-09-11 | 2022-06-07 | Monsanto Technology, Llc | Soybean cultivar 96050600 |
US11350600B2 (en) | 2020-11-05 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01083699 |
US11350595B2 (en) | 2019-09-16 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01077372 |
US11350597B2 (en) | 2020-09-15 | 2022-06-07 | Monsanto Technology, Llc | Soybean cultivar 94111580 |
US11357201B2 (en) | 2020-09-15 | 2022-06-14 | Monsanto Technology, Llc | Soybean cultivar 94411660 |
US11357206B2 (en) | 2020-11-06 | 2022-06-14 | Monsanto Technology Llc | Soybean variety 01077974 |
US11357200B2 (en) | 2020-09-11 | 2022-06-14 | Monsanto Technology, Llc | Soybean cultivar 92131600 |
US11357205B2 (en) | 2020-11-05 | 2022-06-14 | Monsanto Technology Llc | Soybean variety 01083631 |
US11363779B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 90301201 |
US11363778B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 90221620 |
US11363780B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 93272026 |
US11369074B2 (en) | 2020-09-15 | 2022-06-28 | Monsanto Technology Llc | Soybean cultivar 99122620 |
US11369076B2 (en) | 2020-11-06 | 2022-06-28 | Monsanto Technology, Llc | Soybean variety 01078749 |
US11382301B2 (en) | 2020-11-06 | 2022-07-12 | Monsanto Technology, Llc | Soybean variety 01077881 |
US11399497B2 (en) | 2020-09-15 | 2022-08-02 | Monsanto Technology, Llc | Soybean cultivar 93333110 |
US11399496B2 (en) | 2020-09-15 | 2022-08-02 | Monsanto Technology, Llc | Soybean cultivar 90116100 |
US11406080B2 (en) | 2020-09-15 | 2022-08-09 | Stine Seed Farm, Inc. | Soybean cultivar 92420140 |
US11412694B2 (en) | 2020-11-05 | 2022-08-16 | Monsanto Technology Llc | Soybean variety 01077905 |
US11412692B2 (en) | 2020-09-15 | 2022-08-16 | Monsanto Technology Llc | Soybean cultivar 90290600 |
US11419299B2 (en) | 2020-09-15 | 2022-08-23 | Monsanto Technology Llc | Soybean cultivar 91361201 |
US11425879B2 (en) | 2020-09-15 | 2022-08-30 | Monsanto Technology, Llc | Soybean cultivar 93054930 |
US11432518B2 (en) | 2020-11-06 | 2022-09-06 | Monsanto Technology, Llc | Soybean variety 01078759 |
US11439111B2 (en) | 2020-09-11 | 2022-09-13 | Monsanto Technology Llc | Soybean cultivar 99354100 |
US11439114B2 (en) | 2020-11-06 | 2022-09-13 | Monsanto Technology, Llc | Soybean variety 01078032 |
US11445688B2 (en) | 2020-11-05 | 2022-09-20 | Monsanto Technology, Llc | Soybean variety 01077870 |
US11445690B2 (en) | 2020-11-06 | 2022-09-20 | Monsanto Technology Llc | Soybean variety 01083639 |
US11445689B2 (en) | 2020-11-05 | 2022-09-20 | Monsanto Technology, Llc | Soybean variety 01078100 |
US11457600B2 (en) | 2020-11-06 | 2022-10-04 | Monsanto Technology, Llc | Soybean variety 01083646 |
US11457591B2 (en) | 2020-11-05 | 2022-10-04 | Monsanto Technology, Llc | Soybean variety 01077893 |
US11457601B2 (en) | 2020-11-06 | 2022-10-04 | Monsanto Technology Llc | Soybean variety 01083638 |
US11464195B2 (en) | 2020-11-06 | 2022-10-11 | Monsanto Technology Llc | Soybean variety 01083654 |
US11477961B2 (en) | 2020-11-06 | 2022-10-25 | Monsanto Technology, Llc | Soybean variety 01077940 |
US11477960B2 (en) | 2020-11-02 | 2022-10-25 | Monsanto Technology Llc | Soybean variety 01077912 |
US11484000B2 (en) | 2020-11-06 | 2022-11-01 | Monsanto Technology, Llc | Soybean variety 01083661 |
US11510384B2 (en) | 2020-11-06 | 2022-11-29 | Monsanto Technology, Llc | Soybean variety 01078675 |
US11510382B2 (en) | 2020-11-02 | 2022-11-29 | Monsanto Technology Llc | Soybean variety 01078845 |
US11528879B2 (en) | 2020-11-06 | 2022-12-20 | Monsanto Technology, Llc | Soybean variety 01083659 |
US11533883B2 (en) | 2020-11-05 | 2022-12-27 | Monsanto Technology, Llc | Soybean variety 01077890 |
US11533884B2 (en) | 2020-11-06 | 2022-12-27 | Monsanto Technology, Llc | Soybean variety 01083660 |
US11547075B2 (en) | 2020-11-02 | 2023-01-10 | Monsanto Technology Llc | Soybean variety 01078822 |
US11547076B2 (en) | 2020-11-06 | 2023-01-10 | Monsanto Technology, Llc | Soybean variety 01077931 |
US11547077B2 (en) | 2020-11-06 | 2023-01-10 | Monsanto Technology, Llc | Soybean variety 01083688 |
US11553671B2 (en) | 2020-11-06 | 2023-01-17 | Monsanto Technology, Llc | Soybean variety 01083653 |
US11576341B2 (en) | 2019-09-17 | 2023-02-14 | Monsanto Technology, Llc | Soybean variety 01072361 |
US11576340B2 (en) | 2019-09-17 | 2023-02-14 | Monsanto Technology, Llc | Soybean variety 01081414 |
US11596122B2 (en) | 2020-11-02 | 2023-03-07 | Monsanto Technology Llc | Soybean variety 01077891 |
US11606926B2 (en) | 2020-09-15 | 2023-03-21 | Monsanto Technology Llc | Soybean cultivar 94030201 |
US11612128B2 (en) | 2020-11-02 | 2023-03-28 | Monsanto Technology Llc | Soybean variety 01083666 |
US11641837B2 (en) | 2021-08-24 | 2023-05-09 | Monsanto Technology Llc | Soybean cultivar 02340134 |
US11641838B2 (en) | 2021-08-24 | 2023-05-09 | Monsanto Technology Llc | Soybean cultivar 04130514 |
US11647727B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 04120446 |
US11647723B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 07060434 |
US11647726B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 04070902 |
US11647720B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 01130157 |
US11647725B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 07160416 |
US11647724B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 03230124 |
US11647721B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 02330517 |
US11647722B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 02140434 |
US11653613B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077829 |
US11653612B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077826 |
US11666031B2 (en) | 2021-08-24 | 2023-06-06 | Monsanto Technology Llc | Soybean cultivar 05140102 |
US11672230B2 (en) | 2021-08-31 | 2023-06-13 | Monsanto Technology, Llc | Soybean cultivar 03260108 |
US11672229B2 (en) | 2021-08-31 | 2023-06-13 | Monsanto Technology, Llc | Soybean cultivar 08180710 |
US11678635B2 (en) | 2021-08-24 | 2023-06-20 | Stine Seed Farm, Inc. | Soybean cultivar 01160922 |
US11678636B2 (en) | 2021-08-24 | 2023-06-20 | Monsanto Technology, Llc | Soybean cultivar 04070428 |
US11696558B2 (en) | 2021-08-31 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 02021411 |
US11696557B2 (en) | 2021-08-31 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 04060955 |
US11696556B2 (en) | 2021-08-24 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 07080746 |
US11700825B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 06170324 |
US11700826B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 02410315 |
US11700827B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 07220837 |
US11707044B2 (en) | 2021-09-28 | 2023-07-25 | Monsanto Technology, Llc | Soybean variety 01083999 |
US11716958B2 (en) | 2021-09-29 | 2023-08-08 | Monsanto Technology, Llc | Soybean variety 01091691 |
US11716957B2 (en) | 2021-09-29 | 2023-08-08 | Monsanto Technology, Llc | Soybean variety 01091574 |
US11716947B2 (en) | 2021-08-31 | 2023-08-08 | Monsanto Technology, Llc | Soybean cultivar 07030013 |
US11730132B2 (en) | 2021-09-28 | 2023-08-22 | Monsanto Technology, Llc | Soybean variety 01083701 |
US11744217B2 (en) | 2021-09-29 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091711 |
US11744216B2 (en) | 2021-09-29 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091693 |
US11744218B2 (en) | 2021-09-30 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091749 |
US11744211B2 (en) | 2020-09-15 | 2023-09-05 | Monsanto Technology, Llc | Soybean cultivar 92310017 |
US11744215B2 (en) | 2021-09-28 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01084068 |
US11751529B2 (en) | 2021-09-30 | 2023-09-12 | M.S. Technologies, L.L.C. | Soybean variety 01091734 |
US11758869B2 (en) | 2021-09-29 | 2023-09-19 | M.S. Technologies, L.L.C. | Soybean variety 01091607 |
US11800847B2 (en) | 2021-08-31 | 2023-10-31 | Monsanto Technology, Llc | Soybean cultivar 05050112 |
US11819003B2 (en) | 2021-09-28 | 2023-11-21 | Monsanto Technology, Llc | Soybean variety 01083835 |
US11825806B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083849 |
US11825804B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083877 |
US11825805B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083845 |
US11832578B2 (en) | 2021-10-04 | 2023-12-05 | Monsanto Technology, Llc | Soybean variety 01091795 |
US11839192B2 (en) | 2021-09-29 | 2023-12-12 | Monsanto Technology, Llc | Soybean variety 01091705 |
US11839193B2 (en) | 2021-10-04 | 2023-12-12 | Monsanto Technology, Llc | Soybean variety 01091798 |
US11856914B2 (en) | 2021-08-31 | 2024-01-02 | Monsanto Technology, Llc | Soybean cultivar 01140108 |
US11856918B2 (en) | 2021-09-28 | 2024-01-02 | Monsanto Technology, Llc | Soybean variety 01084034 |
US11903357B2 (en) | 2021-09-28 | 2024-02-20 | Monsanto Technology Llc | Soybean variety 01083737 |
US11903358B2 (en) | 2021-10-04 | 2024-02-20 | Monsanto Technology Llc | Soybean variety 01091805 |
US11917969B2 (en) | 2021-09-28 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01083899 |
US11917968B2 (en) | 2021-09-28 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01083684 |
US11917974B2 (en) | 2021-10-04 | 2024-03-05 | Monsanto Technology, Llc | Soybean variety 01091792 |
US11917970B2 (en) | 2021-09-29 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091697 |
US11917972B2 (en) | 2021-10-01 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091777 |
US11917971B2 (en) | 2021-09-29 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091703 |
US11917973B2 (en) | 2021-10-01 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091785 |
US11925161B2 (en) | 2021-09-29 | 2024-03-12 | Monsanto Technology Llc | Soybean variety 01091628 |
US11930768B2 (en) | 2021-09-29 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091702 |
US11930770B2 (en) | 2021-10-01 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091765 |
US11930769B2 (en) | 2021-09-30 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091763 |
US11963509B2 (en) | 2021-10-01 | 2024-04-23 | Monsanto Technology Llc | Soybean variety 01091775 |
US11985949B2 (en) | 2021-09-28 | 2024-05-21 | Monsanto Technology Llc | Soybean variety 01091555 |
US11997978B2 (en) | 2021-09-28 | 2024-06-04 | Monsanto Technology Llc | Soybean variety 01083711 |
US12004474B2 (en) | 2021-09-30 | 2024-06-11 | Monsanto Technology Llc | Soybean variety 01091721 |
US12004475B2 (en) | 2021-09-30 | 2024-06-11 | Monsanto Technology Llc | Soybean variety 01091767 |
US12029189B2 (en) | 2021-08-30 | 2024-07-09 | Monsanto Technology Llc | Soybean cultivar 02170813 |
US12082547B2 (en) | 2021-10-04 | 2024-09-10 | Monsanto Technology Llc | Soybean variety 01091811 |
US12089555B2 (en) | 2021-09-30 | 2024-09-17 | Monsanto Technology Llc | Soybean variety 01091725 |
Families Citing this family (502)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005087007A1 (en) | 2004-03-10 | 2005-09-22 | Monsanto Technology Llc | Herbicidal compositions containing n-phosphonomethyl glycine and an auxin herbicide |
CA2653742C (en) * | 2006-06-06 | 2016-01-05 | Monsanto Technology Llc | Method for selection of plant cells transformed with a polynucleotide encoding dicamba monooxygenase using auxin-like herbicides |
US7884262B2 (en) * | 2006-06-06 | 2011-02-08 | Monsanto Technology Llc | Modified DMO enzyme and methods of its use |
US7855326B2 (en) | 2006-06-06 | 2010-12-21 | Monsanto Technology Llc | Methods for weed control using plants having dicamba-degrading enzymatic activity |
EP2053916A2 (en) * | 2006-10-16 | 2009-05-06 | Monsanto Technology, LLC | Methods and compositions for improving plant health |
US8207092B2 (en) | 2006-10-16 | 2012-06-26 | Monsanto Technology Llc | Methods and compositions for improving plant health |
US7939721B2 (en) * | 2006-10-25 | 2011-05-10 | Monsanto Technology Llc | Cropping systems for managing weeds |
US20090081760A1 (en) * | 2007-01-12 | 2009-03-26 | Monsanto Technology Llc | Dmo methods and compositions |
US7838729B2 (en) * | 2007-02-26 | 2010-11-23 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
AU2015203032B2 (en) * | 2007-02-26 | 2017-03-02 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
CN101355490B (en) * | 2007-07-25 | 2012-05-23 | 华为技术有限公司 | Method, system and node equipment for routing information |
AR075466A1 (en) * | 2008-10-22 | 2011-04-06 | Basf Se | USE OF AUXINE TYPE HERBICIDES IN CULTIVATED PLANTS |
WO2011019652A2 (en) | 2009-08-10 | 2011-02-17 | Monsanto Technology Llc | Low volatility auxin herbicide formulations |
MX2012002726A (en) | 2009-09-30 | 2012-04-11 | Basf Se | Low volatile amine salts of anionic pesticides. |
AU2010321586C1 (en) * | 2009-11-23 | 2016-07-14 | BASF Agricultural Solutions Seed US LLC | Herbicide tolerant soybean plants and methods for identifying same |
BR112012012522A2 (en) * | 2009-11-24 | 2015-09-15 | Dow Agrosciences Llc | control of dicotyledonous volunteers with add in monocotyledonous crops |
BR112012012511A2 (en) * | 2009-11-24 | 2015-09-15 | Dow Agrosciences Llc | event 416 of the aad-12 gene related to transgenic soybean strains and their event-specific identification |
AU2010334818B2 (en) | 2009-12-23 | 2015-07-09 | Bayer Intellectual Property Gmbh | Plants tolerant to HPPD inhibitor herbicides |
AR079882A1 (en) | 2009-12-23 | 2012-02-29 | Bayer Cropscience Ag | TOLERANT PLANTS TO INHIBITING HERBICIDES OF HPPD |
BR112012015690A2 (en) | 2009-12-23 | 2015-08-25 | Bayer Intelectual Property Gmbh | Herbicide tolerant plants of hppd inhibitors. |
EA201290559A1 (en) | 2009-12-23 | 2013-01-30 | Байер Интеллектуэль Проперти Гмбх | PLANTS RESISTANT TO HERBICIDES - HPPD INHIBITORS |
MX2012007358A (en) | 2009-12-23 | 2012-11-06 | Bayer Ip Gmbh | Plants tolerant to hppd inhibitor herbicides. |
WO2011140020A2 (en) * | 2010-05-04 | 2011-11-10 | Dow Agrosciences Llc | Synergistic herbicidal composition containing a dicamba derivative and a glyphosate derivative |
PT2575431T (en) | 2010-06-04 | 2018-06-21 | Monsanto Technology Llc | Transgenic brassica event mon 88302 and methods of use thereof |
CN102308690A (en) * | 2010-07-02 | 2012-01-11 | 上海市农业科学院 | Rapid melon seed germination treatment method |
EP2460404A1 (en) | 2010-12-01 | 2012-06-06 | Basf Se | Compositions containing identical polyamine salts of mixed anionic pesticides |
EP2669373B1 (en) | 2010-11-10 | 2016-06-01 | Bayer CropScience AG | HPPD variants and methods of use |
UY33860A (en) * | 2011-01-07 | 2012-08-31 | Dow Agrosciences Llc | INCREASED TOLERANCE OF PLANTS ENABLED BY DHT TO AUXINICAL HERBICIDES RESULTING FROM DIFFERENCES OF PORTIONS IN MOLECULAR STRUCTURES OF THE HERBICIDE |
UA111193C2 (en) | 2011-03-25 | 2016-04-11 | Баєр Інтеллекчуел Проперті Гмбх | Use of n-(tetrazol-4-yl)- or n-(triazol-3-yl)arylcarboxamides or salts thereof for controlling unwanted plants in areas of transgenic crop plants being tolerant to hppd inhibitor herbicides |
AU2012234448A1 (en) | 2011-03-25 | 2013-10-17 | Bayer Intellectual Property Gmbh | Use of N-(1,2,5-Oxadiazol-3-yl)benzamides for controlling unwanted plants in areas of transgenic crop plants being tolerant to HPPD inhibitor herbicides |
CN103597079B (en) | 2011-03-30 | 2017-04-05 | 孟山都技术公司 | Cotton transgenic event MON88701 and its using method |
WO2012148820A2 (en) | 2011-04-27 | 2012-11-01 | Dow Agrosciences Llc | Method for controlling weeds in a field of cotton plants |
UA110973C2 (en) * | 2011-04-27 | 2016-03-10 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Method of controlling undesirable vegetation in a cotton field |
BR112013027778B1 (en) | 2011-05-02 | 2019-06-25 | Basf Se | METHOD FOR REDUCING VICTILITY OF DICAMBA, COMPOSITION AND METHOD FOR CONTROLLING UNDERSTOODED VEGETATION |
CA2835391A1 (en) | 2011-06-01 | 2012-12-06 | Basf Se | Method of preparing an aqueous tank mix comprising a base |
WO2013017402A1 (en) | 2011-08-02 | 2013-02-07 | Basf Se | Aqueous composition comprising a pesticide and a base selected from an alkali salt of hy-drogencarbonate |
US8571764B2 (en) | 2011-10-25 | 2013-10-29 | Agco Corporation | Dynamic spray buffer calculation |
BR122019001001B1 (en) | 2011-10-26 | 2019-08-27 | Monsanto Technology Llc | auxin herbicidal salts, herbicidal application mixture comprising them for use in the elimination and growth control of unwanted plants, as well as methods of controlling unwanted plants and plants susceptible to auxin herbicide |
WO2013123164A1 (en) * | 2012-02-14 | 2013-08-22 | Wilson John Hugh Mccleery | Method to increase plant yield |
US20150031539A1 (en) | 2012-03-21 | 2015-01-29 | Basf Se | Tank mix adjuvant comprising an alkyl polyglucoside and a base |
EA026531B1 (en) | 2012-03-21 | 2017-04-28 | Басф Се | Solid particulate tank mix adjuvant comprising a base selected from a carbonate and/or a phosphate |
WO2013139752A1 (en) | 2012-03-21 | 2013-09-26 | Basf Se | Liquid or particulate tank mix adjuvant comprising a base selected from a mixture of carbonate and hydrogencarbonate |
CA2865359A1 (en) | 2012-03-21 | 2013-09-26 | Basf Se | Glyphosate tank mix adjuvant comprising a base selected from a carbonate and/or a phosphate |
WO2013184622A2 (en) | 2012-06-04 | 2013-12-12 | Monsanto Technology Llc | Aqueous concentrated herbicidal compositions containing glyphosate salts and dicamba salts |
EA201500022A1 (en) | 2012-06-21 | 2015-06-30 | Басф Се | WATER COMPOSITION, CONTAINING DICAMBA AND MEANS, OBSTACLE TO DREAM |
JP2015521989A (en) | 2012-07-03 | 2015-08-03 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | High concentration aqueous formulation containing anionic pesticide and base |
KR20150036462A (en) | 2012-07-09 | 2015-04-07 | 바스프 코포레이션 | Drift control agent comprising polypropylene glycol and a triblock polymer |
UA119532C2 (en) | 2012-09-14 | 2019-07-10 | Байєр Кропсайєнс Лп | Hppd variants and methods of use |
WO2014100525A2 (en) | 2012-12-21 | 2014-06-26 | Pioneer Hi-Bred International, Inc. | Compositions and methods for auxin-analog conjugation |
WO2014134235A1 (en) | 2013-02-27 | 2014-09-04 | Monsanto Technology Llc | Glyphosate composition for dicamba tank mixtures with improved volatility |
US10221429B2 (en) | 2013-03-07 | 2019-03-05 | Bayer Cropscience Lp | Toxin genes and methods for their use |
AU2014241045B2 (en) * | 2013-03-13 | 2017-08-31 | Pioneer Hi-Bred International, Inc. | Glyphosate application for weed control in brassica |
BR112015023286A2 (en) | 2013-03-14 | 2018-03-06 | Arzeda Corp | recombinant polypeptide with dicamba decarboxylase activity, polynucleotide construct, cell, method of producing a host cell comprising a heterologous polynucleotide encoding a dicamba decarboxylase activity, method for decarboxylating dicamba, a dicamba derivative or a dicamba metabolite, method for detecting a polypeptide and method for detecting the presence of a polynucleotide encoding a polypeptide having dicamba decarboxylase activity |
CA2905595A1 (en) * | 2013-03-14 | 2014-09-25 | Pioneer Hi-Bred International, Inc. | Compositions having dicamba decarboxylase activity and methods of use |
CN103314991A (en) * | 2013-06-29 | 2013-09-25 | 四川省乐山市福华通达农药科技有限公司 | Glyphosate mixed preparation suitable for forest land and preparation method thereof |
CA2927180A1 (en) | 2013-10-18 | 2015-04-23 | Pioneer Hi-Bred International, Inc. | Glyphosate-n-acetyltransferase (glyat) sequences and methods of use |
US9497914B2 (en) | 2013-12-12 | 2016-11-22 | Monsanto Technology Llc | Soybean variety 01045730 |
US9554529B2 (en) | 2013-12-13 | 2017-01-31 | Monsanto Technology Llc | Soybean variety 01046035 |
US9554528B2 (en) | 2013-12-13 | 2017-01-31 | Monsanto Technology Llc | Soybean variety 01045954 |
US9357731B2 (en) | 2013-12-13 | 2016-06-07 | Monsanto Technology Llc | Soybean variety 01046948 |
US9370155B2 (en) | 2013-12-16 | 2016-06-21 | Monsanto Technology Llc | Soybean variety 01046182 |
US9370157B2 (en) | 2013-12-17 | 2016-06-21 | Monsanto Technology Llc | Soybean variety 01046703 |
US9345217B2 (en) | 2013-12-17 | 2016-05-24 | Monsanto Technology Llc | Soybean variety 01046814 |
US9363967B2 (en) | 2013-12-18 | 2016-06-14 | Monsanto Technology Llc | Soybean variety 01046942 |
US9370156B2 (en) | 2013-12-18 | 2016-06-21 | Monsanto Technology Llc | Soybean variety 01046863 |
US9357732B2 (en) | 2013-12-18 | 2016-06-07 | Monsanto Technology Llc | Soybean variety 01046898 |
CA2942171C (en) | 2014-03-11 | 2023-05-09 | Bayer Cropscience Lp | Hppd variants and methods of use |
US9510545B2 (en) | 2014-05-08 | 2016-12-06 | Monsanto Technology Llc | Soybean variety 01050923 |
US9363974B2 (en) | 2014-05-08 | 2016-06-14 | Monsanto Technology Llc | Soybean variety 01051545 |
US9521816B2 (en) | 2014-05-08 | 2016-12-20 | Monsanto Technology Llc | Soybean variety 01051547 |
US9510544B2 (en) | 2014-05-08 | 2016-12-06 | Monsanto Technology Llc | Soybean variety 01050893 |
US9363973B2 (en) | 2014-05-08 | 2016-06-14 | Monsanto Technology Llc | Soybean variety 01051540 |
US9345224B2 (en) | 2014-05-08 | 2016-05-24 | Monsanto Technology Llc | Soybean variety 01051076 |
US9655321B2 (en) | 2014-05-09 | 2017-05-23 | Monsanto Technology Llc | Soybean variety 01051585 |
US9345225B2 (en) | 2014-05-09 | 2016-05-24 | Monsanto Technology Llc | Soybean variety 01051559 |
US9655322B2 (en) | 2014-05-09 | 2017-05-23 | Monsanto Technology Llc | Soybean variety 01051603 |
US9655320B2 (en) | 2014-05-09 | 2017-05-23 | Monsanto Technology Llc | Soybean variety 01051581 |
EP3160227B1 (en) | 2014-06-26 | 2019-11-27 | BASF Agrochemical Products B.V. | Seed treatment with acetolactate synthase (als) inhibitors |
US9585347B2 (en) | 2014-09-29 | 2017-03-07 | Monsanto Technology Llc | Soybean variety 01046668 |
BR112017009437B1 (en) | 2014-11-07 | 2021-11-16 | Basf Se | METHOD FOR PREPARING A TANK MIXTURE, PESTICIDE FORMULATION, PHYTOPATHOGENIC FUNGI CONTROL METHOD AND TANK MIX ADJUVANT USE |
US9743605B2 (en) | 2014-12-22 | 2017-08-29 | Monsanto Technology Llc | Cotton variety 14R950B2XF |
US9826691B2 (en) | 2014-12-22 | 2017-11-28 | Monsanto Technology Llc | Cotton variety 14R914B2XF |
US9615530B2 (en) | 2014-12-22 | 2017-04-11 | Monsanto Technology Llc | Cotton variety 14R938B2XF |
US9717208B2 (en) | 2014-12-22 | 2017-08-01 | Monsanto Technology Llc | Cotton variety 14R953B2XF |
US9820451B2 (en) | 2014-12-22 | 2017-11-21 | Monsanto Technology Llc | Cotton variety 14R948B2XF |
US9723801B2 (en) | 2014-12-22 | 2017-08-08 | Monsanto Technology Llc | Cotton variety 14R952B2XF |
US9743602B2 (en) | 2014-12-22 | 2017-08-29 | Monsanto Technology Llc | Cotton variety 14R911B2XF |
US9743604B2 (en) | 2014-12-22 | 2017-08-29 | Monsanto Technology Llc | Cotton variety 14R949B2XF |
US9743603B2 (en) | 2014-12-22 | 2017-08-29 | Monsanto Technology Llc | Cotton variety 14R925B2XF |
US9668447B2 (en) | 2014-12-22 | 2017-06-06 | Monsanto Technology Llc | Cotton variety 14R941B2XF |
US9788507B2 (en) | 2014-12-22 | 2017-10-17 | Monsanto Technology Llc | Cotton variety 14R955B2XF |
US9924654B2 (en) | 2014-12-22 | 2018-03-27 | Monsanto Technology Llc | Cotton variety 14R922B2XF |
US9820450B2 (en) | 2014-12-22 | 2017-11-21 | Monsanto Technology Llc | Cotton variety 14R942B2XF |
US9820452B2 (en) | 2014-12-22 | 2017-11-21 | Monsanto Technology Llc | Cotton variety 14R915B2XF |
US9854765B2 (en) | 2015-02-26 | 2018-01-02 | Monsanto Technology Llc | Cotton variety 14R934B2XF |
US9609826B2 (en) | 2015-05-20 | 2017-04-04 | Monsanto Technology Llc | Soybean variety 01050982 |
US9585335B2 (en) | 2015-05-20 | 2017-03-07 | Monsanto Technology Llc | Soybean variety 01050939 |
US9585336B2 (en) | 2015-05-20 | 2017-03-07 | Monsanto Technology Llc | Soybean variety 01059528 |
US9615525B2 (en) | 2015-05-20 | 2017-04-11 | Monsanto Technology Llc | Soybean variety 01051642 |
US9743630B2 (en) | 2015-06-25 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01058664 |
US9775320B2 (en) | 2015-06-25 | 2017-10-03 | Monsanto Technology Llc | Soybean variety 01058744 |
US9781897B2 (en) | 2015-06-25 | 2017-10-10 | Monsanto Technology Llc | Soybean variety 01058741 |
US9814206B2 (en) | 2015-06-25 | 2017-11-14 | Monsanto Technology Llc | Soybean variety 01051877 |
US10076093B2 (en) | 2015-06-25 | 2018-09-18 | Monsanto Technology Llc | Soybean variety 01058524 |
US9781898B2 (en) | 2015-06-25 | 2017-10-10 | Monsanto Technology Llc | Soybean variety 01058771 |
US9832963B2 (en) | 2015-06-25 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01058403 |
US10104848B2 (en) | 2015-06-25 | 2018-10-23 | Monsanto Technology Llc | Soybean variety 01051773 |
US9986704B2 (en) | 2015-06-25 | 2018-06-05 | Monsanto Technology Llc | Soybean variety 01057162 |
US9807962B2 (en) | 2015-06-25 | 2017-11-07 | Monsanto Technology Llc | Soybean variety 01058613 |
US9832964B2 (en) | 2015-06-25 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01051705 |
US9907262B2 (en) | 2015-06-25 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01051117 |
US9807961B2 (en) | 2015-06-25 | 2017-11-07 | Monsanto Technology Llc | Soybean variety 01058472 |
US9826701B2 (en) | 2015-06-25 | 2017-11-28 | Monsanto Technology Llc | Soybean variety 01050769 |
US9894860B2 (en) | 2015-06-25 | 2018-02-20 | Monsanto Technology Llc | Soybean variety 01058780 |
US9743631B2 (en) | 2015-06-25 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01058733 |
US9788516B2 (en) | 2015-06-25 | 2017-10-17 | Monsanto Technology Llc | Soybean variety 01058627 |
US9814205B2 (en) | 2015-06-25 | 2017-11-14 | Monsanto Technology Llc | Soybean variety 01058730 |
US9974268B2 (en) | 2015-06-25 | 2018-05-22 | Monsanto Technology Llc | Soybean variety 01051074 |
US9844200B2 (en) | 2015-06-28 | 2017-12-19 | Monsanto Technology Llc | Soybean variety 01058749 |
US9820458B2 (en) | 2015-06-28 | 2017-11-21 | Monsanto Technology Llc | Soybean variety 01052110 |
US9848569B2 (en) | 2015-06-28 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01057209 |
US9924676B2 (en) | 2015-06-28 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01057057 |
US9974269B2 (en) | 2015-06-28 | 2018-05-22 | Monsanto Technology Llc | Soybean variety 01058766 |
US9907266B2 (en) | 2015-06-28 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057255 |
US9924677B2 (en) | 2015-06-28 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01052136 |
US9844199B2 (en) | 2015-06-28 | 2017-12-19 | Monsanto Technology Llc | Soybean variety 01058475 |
US9807963B2 (en) | 2015-06-28 | 2017-11-07 | Monsanto Technology Llc | Soybean variety 01052094 |
US9907265B2 (en) | 2015-06-28 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058380 |
US10051807B2 (en) | 2015-06-28 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01058772 |
US9826703B2 (en) | 2015-06-28 | 2017-11-28 | Monsanto Technology Llc | Soybean variety 01058683 |
US9901056B2 (en) | 2015-06-29 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01057377 |
US9907269B2 (en) | 2015-06-29 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01050536 |
US9907268B2 (en) | 2015-06-29 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057333 |
US9844201B2 (en) | 2015-06-29 | 2017-12-19 | Monsanto Technology Llc | Soybean variety 01050745 |
US9901057B2 (en) | 2015-06-29 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01050566 |
US9924679B2 (en) | 2015-06-29 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01057010 |
US9907267B2 (en) | 2015-06-29 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057383 |
US9907271B2 (en) | 2015-06-29 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01056960 |
US9968057B2 (en) | 2015-06-29 | 2018-05-15 | Monsanto Technology Llc | Soybean variety 01058336 |
US10034445B2 (en) | 2015-06-29 | 2018-07-31 | Monsanto Technology Llc | Soybean variety 01050611 |
US9924678B2 (en) | 2015-06-29 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01057325 |
US9907270B2 (en) | 2015-06-29 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057497 |
US9832965B2 (en) | 2015-06-30 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01051604 |
US9907263B2 (en) | 2015-06-30 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01050612 |
US10070606B2 (en) | 2015-06-30 | 2018-09-11 | Monsanto Technology Llc | Soybean variety 01058789 |
US9814207B2 (en) | 2015-06-30 | 2017-11-14 | Monsanto Technology Llc | Soybean variety 01058565 |
US9826702B2 (en) | 2015-06-30 | 2017-11-28 | Monsanto Technology Llc | Soybean variety 01051835 |
US9901055B2 (en) | 2015-06-30 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01050596 |
US10004197B2 (en) | 2015-06-30 | 2018-06-26 | Monsanto Technology Llc | Soybean variety 01050595 |
US9907264B2 (en) | 2015-06-30 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01052085 |
US10034444B2 (en) | 2015-06-30 | 2018-07-31 | Monsanto Technology Llc | Soybean variety 01050609 |
US9820459B2 (en) | 2015-06-30 | 2017-11-21 | Monsanto Technology Llc | Soybean variety 01058808 |
CN105123222A (en) * | 2015-08-27 | 2015-12-09 | 苏州高创特新能源发展股份有限公司 | Application of switchgrass in desert control |
MX2018003044A (en) | 2015-09-11 | 2018-04-11 | Bayer Cropscience Ag | Hppd variants and methods of use. |
US9894862B2 (en) | 2015-09-24 | 2018-02-20 | Monsanto Technology Llc | Soybean variety 01058666 |
US9907273B2 (en) | 2015-09-24 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01051571 |
US9901059B2 (en) | 2015-09-24 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01051956 |
US9901062B2 (en) | 2015-09-24 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01052029 |
US9907274B2 (en) | 2015-09-24 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01052030 |
US9901060B2 (en) | 2015-09-24 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01051946 |
US9901061B2 (en) | 2015-09-24 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01052008 |
US9629325B1 (en) | 2015-12-01 | 2017-04-25 | Monsanto Technology Llc | Soybean variety 01057518 |
US9980448B2 (en) | 2015-12-18 | 2018-05-29 | Monsanto Technology Llc | Cotton variety 15R515B2XF |
US9961845B2 (en) | 2015-12-18 | 2018-05-08 | Monsanto Technology Llc | Cotton variety 15R551B2XF |
US9854761B2 (en) | 2015-12-18 | 2018-01-02 | Monsanto Technology Llc | Cotton variety 15R510B2XF |
US9854762B2 (en) | 2015-12-18 | 2018-01-02 | Monsanto Technology Llc | Cotton variety 15R509B2XF |
US10563220B2 (en) | 2015-12-21 | 2020-02-18 | Monsanto Technology Llc | Compositions and methods for efficient targeting of transgenes |
US10219463B2 (en) | 2016-03-25 | 2019-03-05 | Monsanto Technology Llc | Cotton variety 15R513B2XF |
US9907245B2 (en) | 2016-05-31 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01056902 |
US9743624B1 (en) | 2016-05-31 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01056994 |
US9713311B1 (en) | 2016-05-31 | 2017-07-25 | Monsanto Technology Llc | Soybean variety 01057181 |
US9756823B1 (en) | 2016-05-31 | 2017-09-12 | Monsanto Technology Llc | Soybean variety 01056961 |
US9867352B2 (en) | 2016-05-31 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01057081 |
US9867351B2 (en) | 2016-05-31 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01057076 |
US10226001B2 (en) | 2016-05-31 | 2019-03-12 | Monsanto Technology Llc | Soybean variety 01056938 |
US9743623B1 (en) | 2016-05-31 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01056977 |
US9924672B2 (en) | 2016-05-31 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01056984 |
US9901051B2 (en) | 2016-05-31 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01057075 |
US9888648B2 (en) | 2016-05-31 | 2018-02-13 | Monsanto Technology Llc | Soybean variety 01057115 |
US9907246B2 (en) | 2016-05-31 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01056904 |
US9907247B2 (en) | 2016-05-31 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01056929 |
US9750218B1 (en) | 2016-05-31 | 2017-09-05 | Monsanto Technology Llc | Soybean variety 01056968 |
US9877450B2 (en) | 2016-05-31 | 2018-01-30 | Monsanto Technology Llc | Soybean variety 01056979 |
US9901052B2 (en) | 2016-05-31 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01057176 |
US9888646B2 (en) | 2016-05-31 | 2018-02-13 | Monsanto Technology Llc | Soybean variety 01057021 |
US10051806B2 (en) | 2016-05-31 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01057079 |
US9872469B2 (en) | 2016-05-31 | 2018-01-23 | Monsanto Technology Llc | Soybean variety 01056991 |
US9888647B2 (en) | 2016-05-31 | 2018-02-13 | Monsanto Technology Llc | Soybean variety 01057072 |
US9788514B1 (en) | 2016-06-01 | 2017-10-17 | Monsanto Technology Llc | Soybean variety 01057345 |
US9907252B2 (en) | 2016-06-01 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058320 |
US9848562B1 (en) | 2016-06-01 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01058349 |
US9974264B2 (en) | 2016-06-01 | 2018-05-22 | Monsanto Technology Llc | Soybean variety 01057212 |
US10226002B2 (en) | 2016-06-01 | 2019-03-12 | Monsanto Technology Llc | Soybean variety 01057408 |
US9706738B1 (en) | 2016-06-01 | 2017-07-18 | Monsanto Technology Llc | Soybean variety 01057282 |
US9907250B2 (en) | 2016-06-01 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057493 |
US9907249B2 (en) | 2016-06-01 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057459 |
US9968054B2 (en) | 2016-06-01 | 2018-05-15 | Monsanto Technology Llc | Soybean variety 01057207 |
US9661823B1 (en) | 2016-06-01 | 2017-05-30 | Monsanto Technology Llc | Soybean variety 01057424 |
US9788515B1 (en) | 2016-06-01 | 2017-10-17 | Monsanto Technology Llc | Soybean variety 01057347 |
US9907248B2 (en) | 2016-06-01 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01057390 |
US9848563B1 (en) | 2016-06-01 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01058353 |
US9832953B1 (en) | 2016-06-01 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01057348 |
US10231398B2 (en) | 2016-06-01 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01057400 |
US9907251B2 (en) | 2016-06-01 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058313 |
US10104847B2 (en) | 2016-06-01 | 2018-10-23 | Monsanto Technology Llc | Soybean variety 01057454 |
US9700008B1 (en) | 2016-06-01 | 2017-07-11 | Monsanto Technology Llc | Soybean variety 01057341 |
US9854772B2 (en) | 2016-06-01 | 2018-01-02 | Monsanto Technology Llc | Soybean variety 01058360 |
US9706739B1 (en) | 2016-06-01 | 2017-07-18 | Monsanto Technology Llc | Soybean variety 01057290 |
US9693530B1 (en) | 2016-06-02 | 2017-07-04 | Monsanto Technology Llc | Soybean variety 01063884 |
US9907253B2 (en) | 2016-06-02 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058513 |
US9832955B1 (en) | 2016-06-02 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01058718 |
US9867354B2 (en) | 2016-06-02 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01058529 |
US9693529B1 (en) | 2016-06-02 | 2017-07-04 | Monsanto Technology Llc | Soybean variety 01063878 |
US9901053B2 (en) | 2016-06-02 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01058606 |
US9807960B1 (en) | 2016-06-02 | 2017-11-07 | Monsanto Technology Llc | Soybean variety 01063888 |
US9907254B2 (en) | 2016-06-02 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058698 |
US9700009B1 (en) | 2016-06-02 | 2017-07-11 | Monsanto Technology Llc | Soybean variety 01058861 |
US9832954B1 (en) | 2016-06-02 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01058711 |
US9872470B2 (en) | 2016-06-02 | 2018-01-23 | Monsanto Technology Llc | Soybean variety 01058469 |
US9867353B2 (en) | 2016-06-02 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01058528 |
US9700010B1 (en) | 2016-06-02 | 2017-07-11 | Monsanto Technology Llc | Soybean variety 01063871 |
US9832956B1 (en) | 2016-06-02 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01063886 |
US9854773B2 (en) | 2016-06-02 | 2018-01-02 | Monsanto Technology Llc | Soybean variety 01058444 |
US9907256B2 (en) | 2016-06-02 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058822 |
US9848564B1 (en) | 2016-06-02 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01058864 |
US9907255B2 (en) | 2016-06-02 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01058767 |
US9832957B1 (en) | 2016-06-02 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01058863 |
US9901054B2 (en) | 2016-06-03 | 2018-02-27 | Monsanto Technology Llc | Soybean variety 01063900 |
US9737037B1 (en) | 2016-06-03 | 2017-08-22 | Monsanto Technology Llc | Soybean variety 01063921 |
US9717213B1 (en) | 2016-06-03 | 2017-08-01 | Monsanto Technology Llc | Soybean variety 01064120 |
US9717211B1 (en) | 2016-06-03 | 2017-08-01 | Monsanto Technology Llc | Soybean variety 01063940 |
US10058047B2 (en) | 2016-06-03 | 2018-08-28 | Monsanto Technology Llc | Soybean variety 01063918 |
US10219462B2 (en) | 2016-06-03 | 2019-03-05 | Monsanto Technology Llc | Soybean variety 01063907 |
US9848565B1 (en) | 2016-06-03 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01063939 |
US9955645B2 (en) | 2016-06-03 | 2018-05-01 | Monsanto Technology Llc | Soybean variety 01063902 |
US9907257B2 (en) | 2016-06-03 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01063892 |
US9743625B1 (en) | 2016-06-03 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01063903 |
US9907258B2 (en) | 2016-06-03 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01063898 |
US9832958B1 (en) | 2016-06-03 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01064122 |
US9750221B1 (en) | 2016-06-03 | 2017-09-05 | Monsanto Technology Llc | Soybean variety 01063935 |
US9717212B1 (en) | 2016-06-03 | 2017-08-01 | Monsanto Technology Llc | Soybean variety 01064113 |
US9730419B1 (en) | 2016-06-03 | 2017-08-15 | Monsanto Technology Llc | Soybean variety 01064108 |
US9730418B1 (en) | 2016-06-03 | 2017-08-15 | Monsanto Technology Llc | Soybean variety 01063920 |
US9907259B2 (en) | 2016-06-03 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01063916 |
US9907260B2 (en) | 2016-06-03 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01063906 |
US9907261B2 (en) | 2016-06-03 | 2018-03-06 | Monsanto Technology Llc | Soybean variety 01063928 |
US9872471B2 (en) | 2016-06-06 | 2018-01-23 | Monsanto Technology Llc | Soybean variety 01064177 |
US9867355B2 (en) | 2016-06-06 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01064176 |
US9848567B1 (en) | 2016-06-06 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01064142 |
US9743627B1 (en) | 2016-06-06 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01064182 |
US9832960B1 (en) | 2016-06-06 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01064152 |
US9848566B1 (en) | 2016-06-06 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01064124 |
US10064356B2 (en) | 2016-06-06 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01064137 |
US9844197B1 (en) | 2016-06-06 | 2017-12-19 | Monsanto Technology Llc | Soybean variety 01064151 |
US9795106B1 (en) | 2016-06-06 | 2017-10-24 | Monsanto Technology Llc | Soybean variety 01064150 |
US9839187B1 (en) | 2016-06-06 | 2017-12-12 | Monsanto Technology Llc | Soybean variety 01064165 |
US9832961B1 (en) | 2016-06-06 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01064167 |
US9832962B1 (en) | 2016-06-06 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01064172 |
US9924673B2 (en) | 2016-06-06 | 2018-03-27 | Monsanto Technology Llc | Soybean variety 01064169 |
US9730420B1 (en) | 2016-06-06 | 2017-08-15 | Monsanto Technology Llc | Soybean variety 01064123 |
US9743626B1 (en) | 2016-06-06 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01064148 |
US9867356B2 (en) | 2016-06-06 | 2018-01-16 | Monsanto Technology Llc | Soybean variety 01064143 |
US9832959B1 (en) | 2016-06-06 | 2017-12-05 | Monsanto Technology Llc | Soybean variety 01064131 |
US9743629B1 (en) | 2016-06-07 | 2017-08-29 | Monsanto Technology Llc | Soybean variety 01058714 |
US9844198B1 (en) | 2016-06-07 | 2017-12-19 | Monsanto Technology Llc | Soybean variety 01063894 |
US9848568B1 (en) | 2016-06-07 | 2017-12-26 | Monsanto Technology Llc | Soybean variety 01064130 |
US10136599B2 (en) | 2016-06-29 | 2018-11-27 | Monsanto Technology Llc | Cotton variety 15R535B2XF |
CA3043493A1 (en) | 2016-11-23 | 2018-05-31 | BASF Agricultural Solutions Seed US LLC | Axmi669 and axmi991 toxin genes and methods for their use |
CN110225974B (en) | 2016-12-22 | 2024-03-29 | 巴斯夫农业种子解决方案美国有限责任公司 | Control of nematode pests using CRY14 |
US9963714B1 (en) | 2016-12-30 | 2018-05-08 | Monsanto Technology Llc | Cotton variety 16R247NRB2XF |
BR112019014727A2 (en) | 2017-01-18 | 2020-04-07 | BASF Agricultural Solutions Seed US LLC | nucleic acid molecule, vector, cell, plant, seed, polypeptide, composition, methods for controlling a pest population, to kill a pest, to produce a polypeptide, to protect a plant and to increase yield on a plant, use of nucleic acid and basic product |
US11286498B2 (en) | 2017-01-18 | 2022-03-29 | BASF Agricultural Solutions Seed US LLC | Use of BP005 for the control of plant pathogens |
US10499605B2 (en) | 2017-03-03 | 2019-12-10 | Monsanto Technology Llc | Cotton variety 16R251NRB2XF |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
US11109591B2 (en) | 2017-04-24 | 2021-09-07 | Taminco Bvba | Single phase liquids of alkanolamine salts of dicamba |
US10034448B1 (en) | 2017-06-26 | 2018-07-31 | Monsanto Technology Llc | Soybean variety 01064516 |
US10039254B1 (en) | 2017-06-26 | 2018-08-07 | Monsanto Technology Llc | Soybean variety 01064117 |
US10039255B1 (en) | 2017-06-26 | 2018-08-07 | Monsanto Technology Llc | Soybean variety 01064252 |
US10342197B2 (en) | 2017-06-26 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01064349 |
US10034447B1 (en) | 2017-06-26 | 2018-07-31 | Monsanto Technology Llc | Soybean variety 01064421 |
US10314274B2 (en) | 2017-06-26 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01068109 |
US10342199B2 (en) | 2017-06-26 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01068883 |
US10405511B2 (en) | 2017-06-26 | 2019-09-10 | Monsanto Technology Llc | Soybean variety 01064350 |
US10455788B2 (en) | 2017-06-26 | 2019-10-29 | Monsanto Technology Llc | Soybean variety 01068888 |
US10368518B2 (en) | 2017-06-26 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 01068117 |
US10383304B2 (en) | 2017-06-26 | 2019-08-20 | Monsanto Technology Llc | Soybean variety 01063944 |
US10314273B2 (en) | 2017-06-26 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01068110 |
US10342198B2 (en) | 2017-06-26 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01064381 |
US10010046B1 (en) | 2017-06-26 | 2018-07-03 | Monsanto Technology Llc | Soybean variety 01064401 |
US10244705B2 (en) | 2017-06-28 | 2019-04-02 | Monsanto Technology Llc | Soybean variety 01064265 |
US10053700B1 (en) | 2017-06-28 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064288 |
US10368512B2 (en) | 2017-06-28 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 01068083 |
US10036027B1 (en) | 2017-06-28 | 2018-07-31 | Monsanto Technology Llc | Soybean variety 01064536 |
US10201138B2 (en) | 2017-06-28 | 2019-02-12 | Monsanto Technology Llc | Soybean variety 01064519 |
US10196646B2 (en) | 2017-06-28 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01064344 |
US10011845B1 (en) | 2017-06-28 | 2018-07-03 | Monsanto Technology Llc | Soybean variety 01068893 |
US10053699B1 (en) | 2017-06-28 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01068892 |
US10368511B2 (en) | 2017-06-28 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 01068085 |
US10194612B2 (en) | 2017-06-28 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01068093 |
US10244704B2 (en) | 2017-06-28 | 2019-04-02 | Monsanto Technologies Llc | Soybean variety 01068084 |
US10271493B2 (en) | 2017-06-28 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01064280 |
US10349598B2 (en) | 2017-06-28 | 2019-07-16 | Monsanto Technology Llc | Soybean variety 01068088 |
US10292358B2 (en) | 2017-06-28 | 2019-05-21 | Monsanto Technology Llc | Soybean variety 01064327 |
US10194613B2 (en) | 2017-06-28 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01064363 |
US10070616B1 (en) | 2017-07-06 | 2018-09-11 | Monsanto Technology Llc | Soybean variety 01067507 |
US10064379B1 (en) | 2017-07-06 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01064450 |
US10064382B1 (en) | 2017-07-06 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01064035 |
US10231403B2 (en) | 2017-07-06 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01068141 |
US10244706B2 (en) | 2017-07-06 | 2019-04-02 | Monsanto Technology Llc | Soybean variety 01064571 |
US10064381B1 (en) | 2017-07-06 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01067510 |
US10194614B2 (en) | 2017-07-06 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01064567 |
US10064367B1 (en) | 2017-07-06 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01067515 |
US10238057B2 (en) | 2017-07-06 | 2019-03-26 | Monsanto Technology Llc | Soybean variety 01064461 |
US10201139B2 (en) | 2017-07-06 | 2019-02-12 | Monsanto Technology Llc | Soybean variety 01068144 |
US10070617B1 (en) | 2017-07-06 | 2018-09-11 | Monsanto Technology Llc | Soybean variety 01063975 |
US10194616B2 (en) | 2017-07-06 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01064568 |
US10098305B1 (en) | 2017-07-06 | 2018-10-16 | Monsanto Technology Llc | Soybean variety 01064403 |
US10058061B1 (en) | 2017-07-19 | 2018-08-28 | Monsanto Technology Llc | Soybean variety 01068112 |
US10238076B2 (en) | 2017-07-19 | 2019-03-26 | Monsanto Technology, Llc | Soybean variety 01068130 |
US10219466B2 (en) | 2017-07-19 | 2019-03-05 | Monsanto Technology Llc | Soybean variety 01064243 |
US10231405B2 (en) | 2017-07-19 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01068135 |
US10194617B1 (en) | 2017-07-19 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01068066 |
US10231421B2 (en) | 2017-07-19 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064231 |
US10064368B1 (en) | 2017-07-19 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01068133 |
US10231422B2 (en) | 2017-07-19 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01068134 |
US10098306B1 (en) | 2017-07-19 | 2018-10-16 | Monsanto Technology Llc | Soybean variety 01068070 |
US10206352B2 (en) | 2017-07-19 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 01068065 |
US10440908B2 (en) | 2017-07-19 | 2019-10-15 | Monsanto Technology Llc | Soybean variety 01064245 |
US10426116B2 (en) | 2017-07-19 | 2019-10-01 | Monsanto Technology Llc | Soybean variety 01068124 |
US10136602B1 (en) | 2017-07-19 | 2018-11-27 | Monsanto Technology Llc | Soybean variety 01068087 |
US10058060B1 (en) | 2017-07-19 | 2018-08-28 | Monsanto Technology Llc | Soybean variety 01068082 |
US10206351B2 (en) | 2017-07-19 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 01068060 |
US10356997B2 (en) | 2017-07-19 | 2019-07-23 | Monsanto Technology Llc | Soybean variety 01068891 |
US10231404B2 (en) | 2017-07-19 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064187 |
US10212901B2 (en) | 2017-07-19 | 2019-02-26 | Monsanto Technology Llc | Soybean variety 01068895 |
US10314275B2 (en) | 2017-07-19 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01064238 |
US10064369B1 (en) | 2017-07-19 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01068131 |
US10398105B2 (en) | 2017-07-19 | 2019-09-03 | Monsanto Technology Llc | Soybean variety 01064198 |
US10285367B2 (en) | 2017-07-20 | 2019-05-14 | Monsanto Technology Llc | Soybean variety 01064508 |
US10064370B1 (en) | 2017-07-20 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01064806 |
US10098307B1 (en) | 2017-07-20 | 2018-10-16 | Monsanto Technology Llc | Soybean variety 01064838 |
US10117400B1 (en) | 2017-07-20 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064185 |
US10231406B2 (en) | 2017-07-20 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01068831 |
US10051823B1 (en) | 2017-07-20 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064868 |
US10098308B1 (en) | 2017-07-20 | 2018-10-16 | Monsanto Technology Llc | Soybean variety 01068054 |
US10244723B2 (en) | 2017-07-20 | 2019-04-02 | Monsanto Technology Llc | Soybean variety 01068058 |
US10058062B1 (en) | 2017-07-20 | 2018-08-28 | Monsanto Technology Llc | Soybean variety 01064840 |
US10206353B2 (en) | 2017-07-20 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 01064485 |
US10117401B1 (en) | 2017-07-20 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064488 |
US10143167B1 (en) | 2017-07-20 | 2018-12-04 | Monsanto Technology Llc | Soybean variety 01064871 |
WO2019023192A1 (en) | 2017-07-24 | 2019-01-31 | Spogen Biotech Inc. | Herbicide-detoxifying enzymes and uses thereof |
US10368513B2 (en) | 2017-07-31 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 01064206 |
US10117402B1 (en) | 2017-07-31 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01068884 |
US10257994B2 (en) | 2017-08-23 | 2019-04-16 | Monsanto Technology Llc | Soybean variety 01068143 |
US10117404B1 (en) | 2017-08-23 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064613 |
US10231408B1 (en) | 2017-08-23 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064013 |
US10264748B2 (en) | 2017-08-23 | 2019-04-23 | Monsanto Technology Llc | Soybean variety 01064212 |
US10231407B1 (en) | 2017-08-23 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01063959 |
US10117403B1 (en) | 2017-08-23 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064099 |
US10271494B2 (en) | 2017-08-23 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01068122 |
US10238059B2 (en) | 2017-08-23 | 2019-03-26 | Monsanto Technology Llc | Soybean variety 01064460 |
US10285368B2 (en) | 2017-08-23 | 2019-05-14 | Monsanto Technology Llc | Soybean variety 01064056 |
US10244708B2 (en) | 2017-08-23 | 2019-04-02 | Monsanto Technology Llc | Soybean variety 01064594 |
US10251354B2 (en) | 2017-08-23 | 2019-04-09 | Monsanto Technology Llc | Soybean variety 01064596 |
US10045506B1 (en) | 2017-08-24 | 2018-08-14 | Monsanto Technology Llc | Soybean variety 01064415 |
US10051825B1 (en) | 2017-08-24 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064400 |
US10314276B2 (en) | 2017-08-24 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01064370 |
US10039256B1 (en) | 2017-08-24 | 2018-08-07 | Monsanto Technology Llc | Soybean variety 01064446 |
US10130060B1 (en) | 2017-08-24 | 2018-11-20 | Monsanto Technology Llc | Soybean variety 01068804 |
US10045507B1 (en) | 2017-08-24 | 2018-08-14 | Monsanto Technology Llc | Soybean variety 01064406 |
US10051824B1 (en) | 2017-08-24 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064393 |
US10130058B1 (en) | 2017-08-24 | 2018-11-20 | Monsanto Technology Llc | Soybean variety 01064723 |
US10130059B1 (en) | 2017-08-24 | 2018-11-20 | Monsanto Technology Llc | Soybean variety 01068801 |
US10231423B1 (en) | 2017-08-24 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064404 |
US10136603B1 (en) | 2017-08-24 | 2018-11-27 | Monsanto Technology Llc | Soybean variety 01067535 |
US10342200B2 (en) | 2017-08-24 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01067525 |
US10123501B1 (en) | 2017-08-24 | 2018-11-13 | Monsanto Technology Llc | Soybean variety 01064722 |
US10159206B1 (en) | 2017-08-29 | 2018-12-25 | Monsanto Technology Llc | Soybean variety 01067519 |
US10314265B2 (en) | 2017-08-29 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01064669 |
US10485197B2 (en) | 2017-08-29 | 2019-11-26 | Monsanto Technology Llc | Soybean variety 01064625 |
US10231409B1 (en) | 2017-08-29 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064026 |
US10433504B2 (en) | 2017-08-29 | 2019-10-08 | Monsanto Technology Llc | Soybean variety 01064105 |
US10159205B1 (en) | 2017-08-29 | 2018-12-25 | Monsanto Technology Llc | Soybean variety 01064633 |
US10314277B2 (en) | 2017-08-29 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01064636 |
US10271496B2 (en) | 2017-08-29 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01064102 |
US10238077B2 (en) | 2017-08-29 | 2019-03-26 | Monsanto Technology Llc | Soybean variety 01064104 |
US10271495B2 (en) | 2017-08-29 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01064036 |
US10342201B2 (en) | 2017-08-29 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01067531 |
US10257995B2 (en) | 2017-08-29 | 2019-04-16 | Monsanto Technology Llc | Soybean variety 01064083 |
US10271497B2 (en) | 2017-08-29 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01064054 |
US10244724B2 (en) | 2017-08-29 | 2019-04-02 | Monsanto Technology Llc | Soybean variety 01064667 |
US10194618B1 (en) | 2017-08-30 | 2019-02-05 | Monsanto Technology Llc | Soybean variety 01064184 |
US10117406B1 (en) | 2017-08-30 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064166 |
US10231424B1 (en) | 2017-08-30 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01067526 |
US10278350B2 (en) | 2017-08-30 | 2019-05-07 | Monsanto Technology Llc | Soybean variety 01064672 |
US10342202B2 (en) | 2017-08-30 | 2019-07-09 | Monsanto Technology Llc | Soybean variety 01064775 |
US10117408B1 (en) | 2017-08-30 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064491 |
US10231426B1 (en) | 2017-08-30 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01064748 |
US10231425B1 (en) | 2017-08-30 | 2019-03-19 | Monsanto Technology Llc | Soybean variety 01067534 |
US10314278B2 (en) | 2017-08-30 | 2019-06-11 | Monsanto Technology Llc | Soybean variety 01064635 |
US10219467B1 (en) | 2017-08-30 | 2019-03-05 | Monsanto Technology Llc | Soybean variety 01064677 |
US10064371B1 (en) | 2017-08-30 | 2018-09-04 | Monsanto Technology Llc | Soybean variety 01064809 |
US10219485B1 (en) | 2017-08-30 | 2019-03-05 | Monsanto Technology Llc | Soybean variety 01069661 |
US10212902B1 (en) | 2017-08-30 | 2019-02-26 | Monsanto Technology Llc | Soybean variety 01067523 |
US10117409B1 (en) | 2017-08-30 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064756 |
US10117405B1 (en) | 2017-08-30 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064511 |
US10219484B1 (en) | 2017-08-30 | 2019-03-05 | Monsanto Technology Llc | Soybean variety 01064735 |
US10357007B2 (en) | 2017-08-30 | 2019-07-23 | Monsanto Technology Llc | Soybean variety 01064743 |
US10188061B1 (en) | 2017-08-30 | 2019-01-29 | Monsanto Technology Llc | Soybean variety 01064486 |
US10188072B1 (en) | 2017-08-30 | 2019-01-29 | Monsanto Technology Llc | Soybean variety 01064694 |
US10051827B1 (en) | 2017-08-30 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064164 |
US10051826B1 (en) | 2017-08-30 | 2018-08-21 | Monsanto Technology Llc | Soybean variety 01064189 |
US10117407B1 (en) | 2017-08-30 | 2018-11-06 | Monsanto Technology Llc | Soybean variety 01064490 |
US10271498B2 (en) | 2017-08-30 | 2019-04-30 | Monsanto Technology Llc | Soybean variety 01064676 |
US11279944B2 (en) | 2017-10-24 | 2022-03-22 | BASF Agricultural Solutions Seed US LLC | Of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors by down-regulation of HPPD expression in soybean |
BR112020008096A2 (en) | 2017-10-24 | 2020-11-03 | Basf Se | method for checking tolerance to a GM herbicide and soy plant |
US10869455B2 (en) | 2017-12-28 | 2020-12-22 | Monsanto Technology Llc | Cotton variety 16R345B3XF |
US10863715B2 (en) | 2017-12-28 | 2020-12-15 | Monsanto Technology Llc | Cotton variety 16R343B3XF |
US10863714B2 (en) | 2017-12-28 | 2020-12-15 | Monsanto Technology Llc | Cotton variety 16R330B3XF |
US10856513B2 (en) | 2017-12-28 | 2020-12-08 | Monsanto Technology Llc | Cotton variety 16R338B3XF |
US10842122B2 (en) | 2017-12-28 | 2020-11-24 | Monsanto Technology Llc | Cotton variety 16R123XF |
US10849302B2 (en) | 2017-12-28 | 2020-12-01 | Monsanto Technology Llc | Cotton variety 16R335B3XF |
US10863713B2 (en) | 2017-12-28 | 2020-12-15 | Monsanto Technology Llc | Cotton variety 16R341B3XF |
US10874079B2 (en) | 2017-12-28 | 2020-12-29 | Monsanto Technology Llc | Cotton variety 16R351B3XF |
US10925248B2 (en) | 2017-12-28 | 2021-02-23 | Monsanto Technology Llc | Cotton variety 16R225NRB2XF |
US10842120B2 (en) | 2017-12-28 | 2020-11-24 | Monsanto Technology Llc | Cotton variety 16R125XF |
US10856512B2 (en) | 2017-12-28 | 2020-12-08 | Monsanto Technology Llc | Cotton variety 16R336B3XF |
US10939656B2 (en) | 2017-12-28 | 2021-03-09 | Monsanto Technology Llc | Cotton variety 16R228NRB2XF |
US10842123B2 (en) | 2017-12-28 | 2020-11-24 | Monsanto Technology Llc | Cotton variety 16R324B3XF |
US10842121B2 (en) | 2017-12-28 | 2020-11-24 | Monsanto Technology Llc | Cotton variety 16R141XF |
US10905085B2 (en) | 2018-12-19 | 2021-02-02 | Monsanto Technology Llc | Cotton variety 17R808B3XF |
US10918071B2 (en) | 2018-12-19 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 16R346B3XF |
US10918070B2 (en) | 2018-12-19 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R806B3XF |
US10905086B2 (en) | 2018-12-19 | 2021-02-02 | Monsanto Technology Llc | Cotton variety 17R820B3XF |
US10874081B2 (en) | 2018-12-19 | 2020-12-29 | Monsanto Technology Llc | Cotton variety 17R709XF |
WO2020137866A1 (en) * | 2018-12-26 | 2020-07-02 | 住友化学株式会社 | Method for controlling weeds |
US10918076B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R817B3XF |
US10939661B2 (en) | 2019-01-09 | 2021-03-09 | Monsanto Technology Llc | Cotton variety 17R815B3XF |
US10939659B2 (en) | 2019-01-09 | 2021-03-09 | Monsanto Technology Llc | Cotton variety 16R353B3XF |
US10939660B2 (en) | 2019-01-09 | 2021-03-09 | Monsanto Technology Llc | Cotton variety 17R740XF |
US10918034B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R737XF |
US10905087B2 (en) | 2019-01-09 | 2021-02-02 | Monsanto Technology Llc | Cotton variety 16R246NRB2XF |
US10918075B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R845B3XF |
US10918072B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R814B3XF |
US10925250B2 (en) | 2019-01-09 | 2021-02-23 | Monsanto Technology Llc | Cotton variety 17R816B3XF |
US10918074B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R844B3XF |
US10918077B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R827B3XF |
US10918073B2 (en) | 2019-01-09 | 2021-02-16 | Monsanto Technology Llc | Cotton variety 17R819B3XF |
US10925249B2 (en) | 2019-01-09 | 2021-02-23 | Monsanto Technology Llc | Cotton variety 17R933NRB3XF |
US10939658B2 (en) | 2019-01-09 | 2021-03-09 | Monsanto Technology Llc | Cotton variety 16R232B2XF |
US10993407B2 (en) | 2019-08-15 | 2021-05-04 | Monsanto Technology Llc | Cotton variety 17R818B3XF |
BR112022002280A2 (en) | 2019-09-03 | 2022-04-26 | Basf Se | Composition for controlling spray drift, aqueous composition, method for reducing spray drift, use of aqueous composition, and kit of parts |
AU2020381748A1 (en) | 2019-11-15 | 2022-05-26 | Basf Corporation | Methods of using a composition comprising an anionic pesticide and a buffer |
US11154029B2 (en) | 2019-12-16 | 2021-10-26 | Monsanto Technology Llc | Cotton variety 18R445B3XF |
US11039594B1 (en) | 2019-12-16 | 2021-06-22 | Monsanto Technology Llc | Cotton variety 18R423B3XF |
US11051483B1 (en) | 2019-12-16 | 2021-07-06 | Monsanto Technology Llc | Cotton variety 18R448B3XF |
US11026392B1 (en) | 2019-12-16 | 2021-06-08 | Monsanto Technology Llc | Cotton variety 18R421B3XF |
US11064672B2 (en) | 2019-12-16 | 2021-07-20 | Monsanto Technology Llc | Cotton variety 18R438B3XF |
US11129354B2 (en) | 2020-01-24 | 2021-09-28 | Monsanto Technology Llc | Cotton variety 18R435B3XF |
US11129352B2 (en) | 2020-01-24 | 2021-09-28 | Monsanto Technology Llc | Cotton variety 18R418B3XF |
US11134646B2 (en) | 2020-01-24 | 2021-10-05 | Monsanto Technology Llc | Cotton variety 18R459B3XF |
US11197454B2 (en) | 2020-01-24 | 2021-12-14 | Monsanto Technology Llc | Cotton variety 18R062 |
US11185046B2 (en) | 2020-01-24 | 2021-11-30 | Monsanto Technology Llc | Cotton variety 18R409B3XF |
US11206800B2 (en) | 2020-01-24 | 2021-12-28 | Monsanto Technology Llc | Cotton variety 18R067 |
US11134645B2 (en) | 2020-01-24 | 2021-10-05 | Monsanto Technology Llc | Cotton variety 18R441B3XF |
US11129353B2 (en) | 2020-01-24 | 2021-09-28 | Monsanto Technology Llc | Cotton variety 18R419B3XF |
US11310991B2 (en) | 2020-01-24 | 2022-04-26 | Monsanto Technology Llc | Cotton variety 18R540B3XF |
US11330787B2 (en) | 2020-02-12 | 2022-05-17 | Monsanto Technology Llc | Cotton variety 18R420B3XF |
US11154030B2 (en) | 2020-02-12 | 2021-10-26 | Monsanto Technology Llc | Cotton variety 16R020 |
US11197455B2 (en) | 2020-02-12 | 2021-12-14 | Monsanto Technology Llc | Cotton variety 18R410B3XF |
EP4164382A1 (en) | 2020-06-15 | 2023-04-19 | Basf Se | A stable, solvent-free, self-emulsifiable concentrate |
US11317592B1 (en) | 2020-12-22 | 2022-05-03 | Monsanto Technology Llc | Cotton variety 19R238NRB3XF |
US11344000B1 (en) | 2020-12-22 | 2022-05-31 | Monsanto Technology Llc | Cotton variety 19R113B3XF |
US11432520B2 (en) | 2020-12-22 | 2022-09-06 | Monsanto Technology Llc | Cotton variety 19R228B3XF |
US11432521B2 (en) | 2020-12-22 | 2022-09-06 | Monsanto Technology Llc | Cotton variety 19R242NRB3XF |
US11432519B2 (en) | 2020-12-22 | 2022-09-06 | Monsanto Technology Llc | Cotton variety 19R227B3XF |
US11653614B2 (en) | 2021-02-11 | 2023-05-23 | Eagle Research LLC | Soybean cultivar P-17 |
US11602115B2 (en) | 2021-02-24 | 2023-03-14 | Monsanto Technology | Cotton variety 19R233B3XF |
US11737420B2 (en) | 2021-02-24 | 2023-08-29 | Monsanto Technology Llc | Cotton variety 19R241NRB3XF |
US11602114B2 (en) | 2021-02-24 | 2023-03-14 | Monsanto Technology Llc | Cotton variety 19R107B3XF |
US11432522B1 (en) | 2021-02-24 | 2022-09-06 | Monsanto Technology Llc | Cotton variety 19R244B3XF |
US11606928B2 (en) | 2021-02-24 | 2023-03-21 | Monsanto Technology Llc | Cotton variety 19R231B3XF |
US11589544B2 (en) | 2021-02-24 | 2023-02-28 | Monsanto Technology Llc | Cotton variety 19R229B3XF |
US11602116B2 (en) | 2021-02-24 | 2023-03-14 | Monsanto Technology Llc | Cotton variety 19R236B3XF |
US11606927B2 (en) | 2021-02-24 | 2023-03-21 | Monsanto Technology Llc | Cotton variety 19R130B3XF |
US11589545B2 (en) | 2021-02-24 | 2023-02-28 | Monsanto Technology Llc | Cotton variety 19R240B3XF |
US11497188B2 (en) | 2021-02-26 | 2022-11-15 | Monsanto Technology Llc | Cotton variety 19R132B3XF |
US11602117B2 (en) | 2021-02-26 | 2023-03-14 | Monsanto Technology Llc | Cotton variety 19R245B3XF |
US11432523B1 (en) | 2021-02-26 | 2022-09-06 | Monsanto Technology Llc | Cotton variety 19R125B3XF |
US11617336B2 (en) | 2021-02-26 | 2023-04-04 | Monsanto Technology Llc | Cotton variety 19R254B3XF |
US11617335B2 (en) | 2021-02-26 | 2023-04-04 | Monsanto Technology Llc | Cotton variety 19R249B3XF |
US20230021295A1 (en) * | 2021-06-30 | 2023-01-19 | Ethox Chemicals, Llc | Synergistic Combinations for Reducing Volatility of Auxin Herbicides |
US12075745B2 (en) | 2021-12-23 | 2024-09-03 | Monsanto Technology Llc | Cotton variety 19R325B3TXF |
US12102052B2 (en) | 2022-01-26 | 2024-10-01 | Monsanto Technology Llc | Cotton variety 20R827B3TXF |
US11985950B2 (en) | 2022-01-26 | 2024-05-21 | Monsanto Technology Llc | Cotton variety 19R114B3XF |
US12108731B2 (en) | 2022-01-26 | 2024-10-08 | Monsanto Technology Llc | Cotton variety 20R824B3TXF |
US12108732B2 (en) | 2022-01-26 | 2024-10-08 | Monsanto Technology Llc | Cotton variety 20R914XF |
US12108730B2 (en) | 2022-01-26 | 2024-10-08 | Monsanto Technology Llc | Cotton variety 19R316B3TXF |
US12070008B2 (en) | 2022-01-26 | 2024-08-27 | Monsanto Technology Llc | Cotton variety 19R239B3XF |
CN114902923A (en) * | 2022-06-27 | 2022-08-16 | 张北县保丰种植专业合作社 | Chemical weeding method for paper tube beet field |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
US11917976B1 (en) | 2023-06-20 | 2024-03-05 | Kg Agri Products, Inc. | Soybean cultivar GL2876 |
Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816403A (en) | 1986-08-04 | 1989-03-28 | Louisiana State University | Detoxification of chlorinated aromatic compounds by organism NRRL B-18086 |
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US5188642A (en) | 1985-08-07 | 1993-02-23 | Monsanto Company | Glyphosate-resistant plants |
US5254799A (en) | 1985-01-18 | 1993-10-19 | Plant Genetic Systems N.V. | Transformation vectors allowing expression of Bacillus thuringiensis endotoxins in plants |
US5362865A (en) | 1993-09-02 | 1994-11-08 | Monsanto Company | Enhanced expression in plants using non-translated leader sequences |
US5445962A (en) | 1988-08-05 | 1995-08-29 | Atallah; Yousef H. | Microorganisms |
US5463175A (en) | 1990-06-25 | 1995-10-31 | Monsanto Company | Glyphosate tolerant plants |
US5491084A (en) | 1993-09-10 | 1996-02-13 | The Trustees Of Columbia University In The City Of New York | Uses of green-fluorescent protein |
CA2165036A1 (en) | 1994-12-15 | 1996-06-16 | Klaus Grossmann | Use of herbicides of the auxin type for treating transgenic crop plants |
US5561236A (en) | 1986-03-11 | 1996-10-01 | Plant Genetic Systems | Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants |
US5627061A (en) | 1990-08-31 | 1997-05-06 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5633437A (en) | 1994-10-11 | 1997-05-27 | Sandoz Ltd. | Gene exhibiting resistance to acetolactate synthase inhibitor herbicides |
US5656422A (en) | 1994-10-05 | 1997-08-12 | Idaho Research Foundation, Inc. | Compositions and methods for detection of 2,4-dichlorophenoxyacetic acid and related compounds |
WO1997041228A2 (en) | 1996-05-01 | 1997-11-06 | Pioneer Hi-Bred International, Inc. | Use of the green fluorescent protein as a screenable marker for plant transformation |
US5728925A (en) | 1984-12-28 | 1998-03-17 | Plant Genetic Systems, N.V. | Chimaeric gene coding for a transit peptide and a heterologous polypeptide |
WO1998020144A2 (en) | 1996-11-07 | 1998-05-14 | Zeneca Limited | Herbicide resistant plants |
WO1998039419A1 (en) | 1997-03-07 | 1998-09-11 | Asgrow Seed Company | Plants having resistance to multiple herbicides and their use |
WO1998045424A1 (en) | 1997-04-04 | 1998-10-15 | Weeks Donald P | Methods and materials for making and using transgenic dicamba-degrading organisms |
US5850019A (en) | 1996-08-06 | 1998-12-15 | University Of Kentucky Research Foundation | Promoter (FLt) for the full-length transcript of peanut chlorotic streak caulimovirus (PCLSV) and expression of chimeric genes in plants |
US5939602A (en) | 1995-06-06 | 1999-08-17 | Novartis Finance Corporation | DNA molecules encoding plant protoporphyrinogen oxidase and inhibitor-resistant mutants thereof |
WO2000008936A1 (en) | 1998-08-13 | 2000-02-24 | Aventis Cropscience Gmbh | Herbicides for tolerant or resistant corn cultures |
WO2000008939A1 (en) | 1998-08-13 | 2000-02-24 | Aventis Cropscience Gmbh | Herbicides for tolerant or resistant sugar beet cultures |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
WO2000026371A1 (en) | 1998-11-04 | 2000-05-11 | Monsanto Co. | Methods for transforming plants to express bacillus thuringiensis delta-endotoxins |
WO2000029596A1 (en) | 1998-11-17 | 2000-05-25 | Monsanto Company | Phosphonate metabolizing plants |
DE19919993A1 (en) | 1999-04-30 | 2000-11-02 | Aventis Cropscience Gmbh | Control of weeds in tolerant maize crops uses herbicidal combination containing glufosinate, glyphosate, imidazolinone, azole, cyclohexanedione or heteroaryloxyphenoxypropionic acid herbicide |
US6146826A (en) | 1993-09-10 | 2000-11-14 | The Trustees Of Columbia University In The City Of New York | Green fluorescent protein |
US6268549B1 (en) | 1995-06-02 | 2001-07-31 | Aventis Cropscience S.A. | DNA sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides |
US20010046945A1 (en) | 1996-09-05 | 2001-11-29 | Bruce Lee | Process for the control of weeds |
WO2002026995A1 (en) | 2000-09-29 | 2002-04-04 | Syngenta Limited | Herbicide resistant plants |
US6414222B1 (en) | 1993-02-05 | 2002-07-02 | Regents Of The University Of Minnesota | Gene combinations for herbicide tolerance in corn |
WO2002068607A2 (en) | 1997-04-04 | 2002-09-06 | Board Of Regents Of The University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
WO2003006660A1 (en) | 2001-07-13 | 2003-01-23 | Sungene Gmbh & Co. Kgaa | Expression cassettes for the transgenic expression of nucleic acids |
US20030041357A1 (en) | 1996-11-07 | 2003-02-27 | Zeneca Limited | Herbicide resistant plants |
WO2003024221A1 (en) | 2001-09-14 | 2003-03-27 | Basf Aktiengesellschaft | Herbicidal mixtures based on 3-phenyluracils |
US20030083480A1 (en) | 2000-10-30 | 2003-05-01 | Maxygen, Inc. | Novel glyphosate N-acetyl transferase (GAT) genes |
WO2003034813A2 (en) | 2001-10-24 | 2003-05-01 | The United States Of America, As Represented By The Secretary Of Agriculture | Synthetic herbicide resistance gene |
US6613963B1 (en) | 2000-03-10 | 2003-09-02 | Pioneer Hi-Bred International, Inc. | Herbicide tolerant Brassica juncea and method of production |
WO2003096811A1 (en) | 2002-05-16 | 2003-11-27 | Monsanto Technology, Llc | Increasing plant yield by seed treatment with a neonicotinoid compound |
WO2004009761A2 (en) | 2002-07-18 | 2004-01-29 | Monsanto Technology Llc | Methods for using artificial polynucleotides and compositions thereof to reduce transgene silencing |
US20040082770A1 (en) | 2000-10-30 | 2004-04-29 | Verdia, Inc. | Novel glyphosate N-acetyltransferase (GAT) genes |
WO2004074443A2 (en) | 2003-02-18 | 2004-09-02 | Monsanto Technology Llc | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
US20040177399A1 (en) | 2002-12-18 | 2004-09-09 | Athenix Corporation | Genes conferring herbicide resistance |
WO2004101797A1 (en) | 2003-05-15 | 2004-11-25 | Icon Genetics Ag | Process of producing a plastid-targeted protein in plant cells |
WO2005003362A2 (en) | 2003-03-10 | 2005-01-13 | Athenix Corporation | Methods to confer herbicide resistance |
US20050235379A1 (en) | 2004-02-11 | 2005-10-20 | Hybrigene, Inc. | Development of controlled total vegetative growth for prevention of transgene escape from genetically modified plants and for enhancing biomass production |
US20060019828A1 (en) | 2004-03-10 | 2006-01-26 | Monsanto Technology Llc | Herbicidal compositions containing N-phosphonomethyl glycine and an auxin herbicide |
US7022896B1 (en) | 1997-04-04 | 2006-04-04 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
WO2005107437A3 (en) | 2004-04-30 | 2006-06-15 | Dow Agrosciences Llc | Novel herbicide resistance genes |
WO2006065815A1 (en) | 2004-12-14 | 2006-06-22 | Bayer Cropscience Lp | Methods for increasing maize yields |
US20060235215A1 (en) | 2002-12-26 | 2006-10-19 | Bret Cooper | Stress-related polypeptides and uses therefor |
US20070010398A1 (en) | 2005-07-07 | 2007-01-11 | Bayer Cropscience Gmbh | Synergistic crop plant-compatible herbicidal compositions comprising herbicides from the group of the benzoylcyclohexanediones |
US20070079393A1 (en) | 2005-08-24 | 2007-04-05 | Pioneer Hi-Bred International, Inc. | Methods and compositions for providing tolerance to multiple herbicides |
US7230163B2 (en) | 2001-10-24 | 2007-06-12 | United Agri Products | Method of improving crop yields |
WO2007143690A2 (en) | 2006-06-06 | 2007-12-13 | Monsanto Technology Llc | Methods for weed control |
WO2007146706A2 (en) | 2006-06-06 | 2007-12-21 | Monsanto Technology Llc | Modified dicamba monooxygenase enzyme and methods of its use |
WO2008048964A2 (en) | 2006-10-16 | 2008-04-24 | Monsanto Technology Llc | Methods and compositions for improving plant health |
US20080120739A1 (en) | 2006-06-06 | 2008-05-22 | Monsanto Technology Llc | Method for selection of transformed cells |
US7385106B2 (en) | 2000-01-24 | 2008-06-10 | Ramot At Tel Aviv University Ltd. | Plants tolerant of environmental stress conditions, methods of generating same and novel polynucleotide sequence utilized thereby |
US7405074B2 (en) | 2004-04-29 | 2008-07-29 | Pioneer Hi-Bred International, Inc. | Glyphosate-N-acetyltransferase (GAT) genes |
WO2008051633A3 (en) | 2006-10-25 | 2008-08-07 | Monsanto Technology Llc | Cropping systems for managing weeds |
WO2008105890A2 (en) | 2007-02-26 | 2008-09-04 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
US7429691B2 (en) | 2002-09-03 | 2008-09-30 | The Regents Of The University Of California | Methods and compositions for transformation and regeneration of maize |
US20090081760A1 (en) | 2007-01-12 | 2009-03-26 | Monsanto Technology Llc | Dmo methods and compositions |
US20090105077A1 (en) | 2006-10-16 | 2009-04-23 | Monsanto Technology Llc | Methods and compositions for improving plant health |
US20110203017A1 (en) | 2005-10-28 | 2011-08-18 | Dow Agrosciences, Llc | Novel Herbicide Resistance Genes |
US8022272B2 (en) | 2001-07-13 | 2011-09-20 | Sungene Gmbh & Co. Kgaa | Expression cassettes for transgenic expression of nucleic acids |
US8247662B2 (en) | 2009-08-17 | 2012-08-21 | Seminis Vegetable Seeds, Inc. | Tomato line FIR 128-1032 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US891675A (en) | 1908-03-17 | 1908-06-23 | William S De Camp | Pneumatic adjuster for angle-cocks on train-pipes. |
US4554101A (en) | 1981-01-09 | 1985-11-19 | New York Blood Center, Inc. | Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity |
US5352605A (en) | 1983-01-17 | 1994-10-04 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US5567600A (en) | 1983-09-26 | 1996-10-22 | Mycogen Plant Sciences, Inc. | Synthetic insecticidal crystal protein gene |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US5750871A (en) | 1986-05-29 | 1998-05-12 | Calgene, Inc. | Transformation and foreign gene expression in Brassica species |
US5017692A (en) | 1986-09-04 | 1991-05-21 | Schering Corporation | Truncated human interleukin-a alpha |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5015580A (en) | 1987-07-29 | 1991-05-14 | Agracetus | Particle-mediated transformation of soybean plants and lines |
ATE87032T1 (en) | 1986-12-05 | 1993-04-15 | Ciba Geigy Ag | IMPROVED METHOD OF TRANSFORMING PLANT PROTOPLASTS. |
US5359142A (en) | 1987-01-13 | 1994-10-25 | Monsanto Company | Method for enhanced expression of a protein |
US5322938A (en) | 1987-01-13 | 1994-06-21 | Monsanto Company | DNA sequence for enhancing the efficiency of transcription |
US5244802A (en) | 1987-11-18 | 1993-09-14 | Phytogen | Regeneration of cotton |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US6051753A (en) | 1989-09-07 | 2000-04-18 | Calgene, Inc. | Figwort mosaic virus promoter and uses |
ES2150900T3 (en) | 1989-10-31 | 2000-12-16 | Monsanto Co | PROMOTER FOR TRANSGENIC PLANTS. |
US5641876A (en) | 1990-01-05 | 1997-06-24 | Cornell Research Foundation, Inc. | Rice actin gene and promoter |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
CA2074355C (en) | 1990-01-22 | 2008-10-28 | Ronald C. Lundquist | Method of producing fertile transgenic corn plants |
US5837848A (en) | 1990-03-16 | 1998-11-17 | Zeneca Limited | Root-specific promoter |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
AU648214B2 (en) | 1991-12-31 | 1994-04-14 | Lucky Limited | Recombinant gene coding for human alpha interferon and expression vector thereof, etc. |
US5593874A (en) | 1992-03-19 | 1997-01-14 | Monsanto Company | Enhanced expression in plants |
HU214698B (en) | 1992-04-09 | 1998-06-29 | Gyógyszerkutató Intézet Kft. | Process for producing recombinant desulphatohirudin hv-1 peptides |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
ATE210182T1 (en) | 1993-06-30 | 2001-12-15 | Lucky Ltd | MODIFIED GRANULOCYTE MACROPHAGE COLONY-STIMULATING FACTOR GENE AND ITS EXPRESSION IN YEAST |
WO1995006722A1 (en) | 1993-09-03 | 1995-03-09 | Japan Tobacco Inc. | Method of transforming monocotyledon by using scutellum of immature embryo |
US5689052A (en) | 1993-12-22 | 1997-11-18 | Monsanto Company | Synthetic DNA sequences having enhanced expression in monocotyledonous plants and method for preparation thereof |
US5635055A (en) | 1994-07-19 | 1997-06-03 | Exxon Research & Engineering Company | Membrane process for increasing conversion of catalytic cracking or thermal cracking units (law011) |
US5795737A (en) | 1994-09-19 | 1998-08-18 | The General Hospital Corporation | High level expression of proteins |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
EP0904380B1 (en) | 1996-02-22 | 2005-11-09 | Merck & Co., Inc. | Synthetic hiv genes |
CA2236770A1 (en) | 1996-09-05 | 1998-03-12 | Unilever Plc | Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein |
AU720780B2 (en) | 1997-01-20 | 2000-06-15 | Plant Genetic Systems N.V. | Pathogen-induced plant promoters |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US5922564A (en) | 1997-02-24 | 1999-07-13 | Performance Plants, Inc. | Phosphate-deficiency inducible promoter |
WO1999043797A2 (en) | 1998-02-26 | 1999-09-02 | Pioneer Hi-Bred International, Inc. | Constitutive maize promoters |
WO1999043819A1 (en) | 1998-02-26 | 1999-09-02 | Pioneer Hi-Bred International, Inc. | Family of maize pr-1 genes and promoters |
US6635806B1 (en) | 1998-05-14 | 2003-10-21 | Dekalb Genetics Corporation | Methods and compositions for expression of transgenes in plants |
US6307123B1 (en) | 1998-05-18 | 2001-10-23 | Dekalb Genetics Corporation | Methods and compositions for transgene identification |
JP2000083680A (en) | 1998-07-16 | 2000-03-28 | Nippon Paper Industries Co Ltd | Introduction of gene into plant utilizing adventitious bud redifferentiation gene put under control due to photoinduction type promoter as selection marker gene and vector for transduction of gene into plant used therefor |
WO2000036911A2 (en) | 1998-12-18 | 2000-06-29 | Monsanto Technology Llc | Method for the regeneration of cotton |
EP1141346A2 (en) | 1999-01-14 | 2001-10-10 | Monsanto Co. | Soybean transformation method |
US6207879B1 (en) | 1999-05-14 | 2001-03-27 | Dekalb Genetics Corporation | Maize RS81 promoter and methods for use thereof |
US6194636B1 (en) | 1999-05-14 | 2001-02-27 | Dekalb Genetics Corp. | Maize RS324 promoter and methods for use thereof |
US6232526B1 (en) | 1999-05-14 | 2001-05-15 | Dekalb Genetics Corp. | Maize A3 promoter and methods for use thereof |
US6429357B1 (en) | 1999-05-14 | 2002-08-06 | Dekalb Genetics Corp. | Rice actin 2 promoter and intron and methods for use thereof |
US6677503B1 (en) | 1999-06-23 | 2004-01-13 | Pioneer Hi-Bred International, Inc. | Sunflower anti-pathogene proteins and genes and their uses |
US6388170B1 (en) | 2000-04-07 | 2002-05-14 | University Of Kentucky Research Foundation | Bidirectional promoters and methods related thereto |
US7682829B2 (en) | 2003-05-30 | 2010-03-23 | Monsanto Technology Llc | Methods for corn transformation |
BRPI0413436A (en) | 2003-08-08 | 2006-10-10 | Monsato Technology Llc | promoter molecules for use in plants |
-
2007
- 2007-06-05 US US11/758,653 patent/US7855326B2/en not_active Ceased
- 2007-06-06 CA CA2653739A patent/CA2653739C/en active Active
- 2007-06-06 BR BRPI0712682-4A patent/BRPI0712682A2/en not_active Application Discontinuation
- 2007-06-06 WO PCT/US2007/070517 patent/WO2007143690A2/en active Application Filing
- 2007-06-06 EP EP07798175A patent/EP2023719A2/en not_active Ceased
- 2007-06-06 AU AU2007256618A patent/AU2007256618B2/en active Active
- 2007-06-06 MX MX2008015743A patent/MX2008015743A/en active IP Right Grant
-
2008
- 2008-12-04 GT GT200800275A patent/GT200800275A/en unknown
-
2010
- 2010-11-09 US US12/942,905 patent/US8629328B2/en active Active
-
2013
- 2013-01-25 US US13/751,021 patent/USRE45048E1/en active Active
Patent Citations (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US5728925A (en) | 1984-12-28 | 1998-03-17 | Plant Genetic Systems, N.V. | Chimaeric gene coding for a transit peptide and a heterologous polypeptide |
US5254799A (en) | 1985-01-18 | 1993-10-19 | Plant Genetic Systems N.V. | Transformation vectors allowing expression of Bacillus thuringiensis endotoxins in plants |
US5188642A (en) | 1985-08-07 | 1993-02-23 | Monsanto Company | Glyphosate-resistant plants |
US5561236A (en) | 1986-03-11 | 1996-10-01 | Plant Genetic Systems | Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants |
US4816403A (en) | 1986-08-04 | 1989-03-28 | Louisiana State University | Detoxification of chlorinated aromatic compounds by organism NRRL B-18086 |
US5445962A (en) | 1988-08-05 | 1995-08-29 | Atallah; Yousef H. | Microorganisms |
US5463175A (en) | 1990-06-25 | 1995-10-31 | Monsanto Company | Glyphosate tolerant plants |
US5633435A (en) | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5627061A (en) | 1990-08-31 | 1997-05-06 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US20020168680A1 (en) | 1990-08-31 | 2002-11-14 | Gerard Francis Barry | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
USRE39247E1 (en) | 1990-08-31 | 2006-08-22 | Monsanto Technology Llc | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US6414222B1 (en) | 1993-02-05 | 2002-07-02 | Regents Of The University Of Minnesota | Gene combinations for herbicide tolerance in corn |
US5659122A (en) | 1993-09-02 | 1997-08-19 | Monsanto Company | Enhanced expression in plants using non-translated leader sequences |
US5362865A (en) | 1993-09-02 | 1994-11-08 | Monsanto Company | Enhanced expression in plants using non-translated leader sequences |
US5491084A (en) | 1993-09-10 | 1996-02-13 | The Trustees Of Columbia University In The City Of New York | Uses of green-fluorescent protein |
US6146826A (en) | 1993-09-10 | 2000-11-14 | The Trustees Of Columbia University In The City Of New York | Green fluorescent protein |
US5656422A (en) | 1994-10-05 | 1997-08-12 | Idaho Research Foundation, Inc. | Compositions and methods for detection of 2,4-dichlorophenoxyacetic acid and related compounds |
US5633437A (en) | 1994-10-11 | 1997-05-27 | Sandoz Ltd. | Gene exhibiting resistance to acetolactate synthase inhibitor herbicides |
US5670454A (en) | 1994-12-15 | 1997-09-23 | Basf Aktiengesellschaft | Herbicides of the auxin type for treating transgenic crop plants |
CA2165036A1 (en) | 1994-12-15 | 1996-06-16 | Klaus Grossmann | Use of herbicides of the auxin type for treating transgenic crop plants |
US6268549B1 (en) | 1995-06-02 | 2001-07-31 | Aventis Cropscience S.A. | DNA sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides |
US5939602A (en) | 1995-06-06 | 1999-08-17 | Novartis Finance Corporation | DNA molecules encoding plant protoporphyrinogen oxidase and inhibitor-resistant mutants thereof |
WO1997041228A2 (en) | 1996-05-01 | 1997-11-06 | Pioneer Hi-Bred International, Inc. | Use of the green fluorescent protein as a screenable marker for plant transformation |
US5850019A (en) | 1996-08-06 | 1998-12-15 | University Of Kentucky Research Foundation | Promoter (FLt) for the full-length transcript of peanut chlorotic streak caulimovirus (PCLSV) and expression of chimeric genes in plants |
US20010046945A1 (en) | 1996-09-05 | 2001-11-29 | Bruce Lee | Process for the control of weeds |
US7407913B2 (en) | 1996-09-05 | 2008-08-05 | Syngenta Crop Protection, Inc. | Process for the control of weeds |
US20040097373A1 (en) | 1996-09-05 | 2004-05-20 | Bruce Lee | Process for the control of weeds |
US6586367B2 (en) | 1996-09-05 | 2003-07-01 | Syngenta Crop Protection, Inc. | Process for the control of weeds |
WO1998020144A2 (en) | 1996-11-07 | 1998-05-14 | Zeneca Limited | Herbicide resistant plants |
US20030041357A1 (en) | 1996-11-07 | 2003-02-27 | Zeneca Limited | Herbicide resistant plants |
CN1236394A (en) | 1996-11-07 | 1999-11-24 | 曾尼卡有限公司 | Herbicide resistant plants |
US6376754B1 (en) | 1997-03-07 | 2002-04-23 | Asgrow Seed Company | Plants having resistance to multiple herbicides and its use |
WO1998039419A1 (en) | 1997-03-07 | 1998-09-11 | Asgrow Seed Company | Plants having resistance to multiple herbicides and their use |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
US20030135879A1 (en) | 1997-04-04 | 2003-07-17 | Board Of Regents Of University Of Nebraska. | Methods and materials for making and using transgenic dicamba-degrading organisms |
US7022896B1 (en) | 1997-04-04 | 2006-04-04 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
WO2002068607A2 (en) | 1997-04-04 | 2002-09-06 | Board Of Regents Of The University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
WO1998045424A1 (en) | 1997-04-04 | 1998-10-15 | Weeks Donald P | Methods and materials for making and using transgenic dicamba-degrading organisms |
US7105724B2 (en) | 1997-04-04 | 2006-09-12 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US7812224B2 (en) | 1997-04-04 | 2010-10-12 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US8119380B2 (en) | 1997-04-04 | 2012-02-21 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US20110061137A1 (en) | 1997-04-04 | 2011-03-10 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US20030115626A1 (en) | 1997-04-04 | 2003-06-19 | Weeks Donald P. | Methods and materials for making and using transgenic dicamba-degrading organisms |
US20060111240A1 (en) | 1998-08-13 | 2006-05-25 | Erwin Hacker | Herbicidal compositions for tolerant or resistant maize crops |
WO2000008936A1 (en) | 1998-08-13 | 2000-02-24 | Aventis Cropscience Gmbh | Herbicides for tolerant or resistant corn cultures |
WO2000008939A1 (en) | 1998-08-13 | 2000-02-24 | Aventis Cropscience Gmbh | Herbicides for tolerant or resistant sugar beet cultures |
WO2000026371A1 (en) | 1998-11-04 | 2000-05-11 | Monsanto Co. | Methods for transforming plants to express bacillus thuringiensis delta-endotoxins |
CN1332800A (en) | 1998-11-04 | 2002-01-23 | 孟山都公司 | Methods for transforming plants to express bacillus thuringiensis delta-endotoxins |
WO2000029596A1 (en) | 1998-11-17 | 2000-05-25 | Monsanto Company | Phosphonate metabolizing plants |
DE19919993A1 (en) | 1999-04-30 | 2000-11-02 | Aventis Cropscience Gmbh | Control of weeds in tolerant maize crops uses herbicidal combination containing glufosinate, glyphosate, imidazolinone, azole, cyclohexanedione or heteroaryloxyphenoxypropionic acid herbicide |
US7385106B2 (en) | 2000-01-24 | 2008-06-10 | Ramot At Tel Aviv University Ltd. | Plants tolerant of environmental stress conditions, methods of generating same and novel polynucleotide sequence utilized thereby |
US6613963B1 (en) | 2000-03-10 | 2003-09-02 | Pioneer Hi-Bred International, Inc. | Herbicide tolerant Brassica juncea and method of production |
WO2002026995A1 (en) | 2000-09-29 | 2002-04-04 | Syngenta Limited | Herbicide resistant plants |
CN1541270A (en) | 2000-09-29 | 2004-10-27 | Herbicide resistant plants | |
US7462481B2 (en) | 2000-10-30 | 2008-12-09 | Verdia, Inc. | Glyphosate N-acetyltransferase (GAT) genes |
US20040082770A1 (en) | 2000-10-30 | 2004-04-29 | Verdia, Inc. | Novel glyphosate N-acetyltransferase (GAT) genes |
US20030083480A1 (en) | 2000-10-30 | 2003-05-01 | Maxygen, Inc. | Novel glyphosate N-acetyl transferase (GAT) genes |
US20060218663A1 (en) | 2000-10-30 | 2006-09-28 | Verdia, Inc. | Novel glyphosate-N-acetyltranferase (GAT) genes |
US8022272B2 (en) | 2001-07-13 | 2011-09-20 | Sungene Gmbh & Co. Kgaa | Expression cassettes for transgenic expression of nucleic acids |
WO2003006660A1 (en) | 2001-07-13 | 2003-01-23 | Sungene Gmbh & Co. Kgaa | Expression cassettes for the transgenic expression of nucleic acids |
WO2003024221A1 (en) | 2001-09-14 | 2003-03-27 | Basf Aktiengesellschaft | Herbicidal mixtures based on 3-phenyluracils |
US7230163B2 (en) | 2001-10-24 | 2007-06-12 | United Agri Products | Method of improving crop yields |
WO2003034813A2 (en) | 2001-10-24 | 2003-05-01 | The United States Of America, As Represented By The Secretary Of Agriculture | Synthetic herbicide resistance gene |
WO2003096811A1 (en) | 2002-05-16 | 2003-11-27 | Monsanto Technology, Llc | Increasing plant yield by seed treatment with a neonicotinoid compound |
WO2004009761A2 (en) | 2002-07-18 | 2004-01-29 | Monsanto Technology Llc | Methods for using artificial polynucleotides and compositions thereof to reduce transgene silencing |
US7429691B2 (en) | 2002-09-03 | 2008-09-30 | The Regents Of The University Of California | Methods and compositions for transformation and regeneration of maize |
US7405347B2 (en) | 2002-12-18 | 2008-07-29 | Athenix Corporation | Genes conferring herbicide resistance |
US20040177399A1 (en) | 2002-12-18 | 2004-09-09 | Athenix Corporation | Genes conferring herbicide resistance |
US20060235215A1 (en) | 2002-12-26 | 2006-10-19 | Bret Cooper | Stress-related polypeptides and uses therefor |
WO2004074443A2 (en) | 2003-02-18 | 2004-09-02 | Monsanto Technology Llc | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
WO2005003362A2 (en) | 2003-03-10 | 2005-01-13 | Athenix Corporation | Methods to confer herbicide resistance |
WO2004101797A1 (en) | 2003-05-15 | 2004-11-25 | Icon Genetics Ag | Process of producing a plastid-targeted protein in plant cells |
US20050235379A1 (en) | 2004-02-11 | 2005-10-20 | Hybrigene, Inc. | Development of controlled total vegetative growth for prevention of transgene escape from genetically modified plants and for enhancing biomass production |
US20060019828A1 (en) | 2004-03-10 | 2006-01-26 | Monsanto Technology Llc | Herbicidal compositions containing N-phosphonomethyl glycine and an auxin herbicide |
US7405074B2 (en) | 2004-04-29 | 2008-07-29 | Pioneer Hi-Bred International, Inc. | Glyphosate-N-acetyltransferase (GAT) genes |
US20090093366A1 (en) | 2004-04-30 | 2009-04-09 | Dow Agrosciences Llc | Novel Herbicide Resistance Genes |
WO2005107437A3 (en) | 2004-04-30 | 2006-06-15 | Dow Agrosciences Llc | Novel herbicide resistance genes |
WO2006065815A1 (en) | 2004-12-14 | 2006-06-22 | Bayer Cropscience Lp | Methods for increasing maize yields |
US20070010398A1 (en) | 2005-07-07 | 2007-01-11 | Bayer Cropscience Gmbh | Synergistic crop plant-compatible herbicidal compositions comprising herbicides from the group of the benzoylcyclohexanediones |
US7622641B2 (en) | 2005-08-24 | 2009-11-24 | Pioneer Hi-Bred Int'l., Inc. | Methods and compositions for providing tolerance to multiple herbicides |
US20070079393A1 (en) | 2005-08-24 | 2007-04-05 | Pioneer Hi-Bred International, Inc. | Methods and compositions for providing tolerance to multiple herbicides |
US20110203017A1 (en) | 2005-10-28 | 2011-08-18 | Dow Agrosciences, Llc | Novel Herbicide Resistance Genes |
US20080120739A1 (en) | 2006-06-06 | 2008-05-22 | Monsanto Technology Llc | Method for selection of transformed cells |
US7851670B2 (en) | 2006-06-06 | 2010-12-14 | Monsanto Technology Llc | Method for selection of transformed cells |
US7884262B2 (en) | 2006-06-06 | 2011-02-08 | Monsanto Technology Llc | Modified DMO enzyme and methods of its use |
US20110152096A1 (en) | 2006-06-06 | 2011-06-23 | Feng Paul C C | Methods for weed control |
WO2007146706A2 (en) | 2006-06-06 | 2007-12-21 | Monsanto Technology Llc | Modified dicamba monooxygenase enzyme and methods of its use |
WO2007143690A2 (en) | 2006-06-06 | 2007-12-13 | Monsanto Technology Llc | Methods for weed control |
US20080015110A1 (en) | 2006-06-06 | 2008-01-17 | Monsanto Technology Llc | Modified dmo enzyme and methods of its use |
US7855326B2 (en) | 2006-06-06 | 2010-12-21 | Monsanto Technology Llc | Methods for weed control using plants having dicamba-degrading enzymatic activity |
US20090105077A1 (en) | 2006-10-16 | 2009-04-23 | Monsanto Technology Llc | Methods and compositions for improving plant health |
WO2008048964A2 (en) | 2006-10-16 | 2008-04-24 | Monsanto Technology Llc | Methods and compositions for improving plant health |
US20100279866A1 (en) | 2006-10-16 | 2010-11-04 | Muhammad Bhatti | Methods and Compositions for Improving Plant Health |
WO2008051633A3 (en) | 2006-10-25 | 2008-08-07 | Monsanto Technology Llc | Cropping systems for managing weeds |
US20110245080A1 (en) | 2006-10-25 | 2011-10-06 | Arnevik Cindy L | Cropping systems for managing weeds |
US7939721B2 (en) | 2006-10-25 | 2011-05-10 | Monsanto Technology Llc | Cropping systems for managing weeds |
US20080305952A1 (en) | 2006-10-25 | 2008-12-11 | Arnevik Cindy L | Cropping systems for managing weeds |
US20090081760A1 (en) | 2007-01-12 | 2009-03-26 | Monsanto Technology Llc | Dmo methods and compositions |
US20110126307A1 (en) | 2007-02-26 | 2011-05-26 | Feng Paul C C | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
WO2008105890A2 (en) | 2007-02-26 | 2008-09-04 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
US7838729B2 (en) | 2007-02-26 | 2010-11-23 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US20090029861A1 (en) | 2007-02-26 | 2009-01-29 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
US8084666B2 (en) | 2007-02-26 | 2011-12-27 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US20120151620A1 (en) | 2007-02-26 | 2012-06-14 | Feng Paul C C | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
US8420888B2 (en) | 2007-02-26 | 2013-04-16 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of DMO and uses thereof |
US20130198886A1 (en) | 2007-02-26 | 2013-08-01 | Monsanto Technology Llc | Chloroplast transit peptides for efficient targeting of dmo and uses thereof |
US8247662B2 (en) | 2009-08-17 | 2012-08-21 | Seminis Vegetable Seeds, Inc. | Tomato line FIR 128-1032 |
Non-Patent Citations (158)
Title |
---|
"Banvel Herbicide" Product Insert, undated. |
"Banvel Herbicide," In: Crop Protection Reference, 11th Edition, pp. 1803-1821, 1995. |
Al-Khatib et al., "Foliar absorption and translocation of dicamba from aqueous solution and dicamba-treated soil deposits," Weed Technology, 6:57-61, 1992. |
Amendment and Remarks regarding U.S. Appl. No. 10/330,662, dated Jan. 9, 2009. |
Amendment and Remarks regarding U.S. Appl. No. 10/330,662, dated May 4, 2010. |
Amendment and Remarks regarding U.S. Appl. No. 10/330,662, dated Sep. 24, 2009. |
Amendment and Response to Final Office Action regarding U.S. Appl. No. 11/758,656, dated Aug. 13, 2010. |
Amendment and Response to Final Office Action regarding U.S. Appl. No. 11/758,656, dated Aug. 16, 2010. |
Amendment and Response to Office Action regarding U.S. Appl. No. 10/330,662, dated Jul. 9, 2007. |
Amendment and Response to Office Action regarding U.S. Appl. No. 10/330,662, dated Mar. 20, 2008. |
Amendment and Response to Office Action regarding U.S. Appl. No. 10/330,662, dated Oct. 18, 2006. |
Amendment and Response to Office Action regarding U.S. Appl. No. 11/758,659, dated May 24, 2010. |
Amendment regarding U.S. Appl. No. 10/330,662, dated Jul. 20, 2007. |
Baker, "Response of cotton (Gossypium hirsutum) to preplant-applied hormone-type herbicides," Weed Technology, 7:150-153, 1993. |
Batie et al., "Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases," In: Chemistry and Biochemistry of Flavoproteins, Muller (Ed.), CRC Press, Boca Raton, FL, pp. 543-556, 1992. |
Batie et al., "Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia," J. of Bio. Chem., 262(4); 1510-1518, 1987. |
Becker, et al, The cab-m7 gene: a light-inducible, mesophyll-specific gene of maize; Plant Mol. Bio. 20: 49-60, 1992. |
Behrens et al., "Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies," Science, 316:1185-1188, 2007. |
Bernhardt et al., "A 4-methoxybenzoate O-demethylase from Pseudomonas putida. A new type of monoxygenase system," Eur. J. Biochem., 57(1):241-256, 1975. |
Bevan, "Structure and transcription of the nopaline synthase gene region of T-DNA," Nucleic Acids Res., 11(2):369-385, 1983. |
Bohlmann, et al, "Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes," The Plant J. 7(3): 491-501, Mar. 1993. |
Buchanan-Wollaston, et al. Detoxification of the herbicide Dalapon by transformed plants, J. Cell. Biochem., 13D, Abstract No. M503, p. 330, 1989. |
Butler et al., "Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases," Advances in Microbial Physiology, 38:47-85, 1997. |
Carrington et al., "Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region," J. of Virology, 4:1590-1597, Apr. 1990. |
Carrington et al., "Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region," J. of Virology, 4:1590-1597, Apr. 1990. |
Clark, et al., "Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein," Plant Mol. Bio. 16:1099-1101, Jun. 1991. |
Comai et al., "Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate," Nature, 317:741-744, 1985. |
Cork et al., "Detection, isolation, and stability of megaplasmid-encoded chloroaromatic herbicide-degrading genes within Pseudomonas species," Adv. Appl. Microbiol., 40:289-321, 1995. |
Cork et al., "Microbial transformations of herbicides and pesticides," Adv. Appl. Microbiology, 36:1-67, 1991. |
Coruzzi et al., "Nucleotide Sequences of Two Pea cDNA Clones Encoding the Small Subunit of Ribulose 1,5-Bisphosphate Carboxylase and the Major Chlorophyll a/b-binding Thylakoid Polypeptide," J. of Biological Chem. 258(3): 1399-1402, Feb. 1983. |
Coruzzi, et al., "Tissue-specific and light-regulated expression of pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase," EMBO J., :(8):1671-1679, 1984. |
Creissen et al., "Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.)," Plant J., 2(1):129-131, 1992. |
Creissen et al., "Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco," Plant J., 8:167-175, 1995. |
De Block et al., "Engineering herbicide resistance in plants by expression of a detoxifying enzyme," EMBO J., 6(9):2513-2518, 1987. |
Declaration of Donald P. Weeks regarding U.S. Appl. No. 10/330,662, dated Feb. 20, 2008. |
Declaration of Donald P. Weeks regarding U.S. Appl. No. 10/330,662, dated Oct. 18, 2006. |
Declaration of Yuechun Wan Under 37 C.F.R. §1.132, dated Aug. 11, 2010. |
Dehmel et al., "Cloning, nucleotide sequence and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310," Arch. Microbiol., 163:35-41, 1995. |
Depicker et al., "Nopaline synthase: transcript mapping and DNA sequence," J. Mol. Appl. Genet., 1:561-573, 1982. |
Dernoeden et al., "Fenoxaprop Activity Influenced by Auxin-like Herbicide Application Timing," Department of Agronomy, University of Maryland, HortScience 29(12):1518-1519, 1994. |
Desvaux et al., "Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824," Biochimica et Biophysica Acta, 1745:223-253, 2005. |
Eckes et al., "Isolation and characterization of a light-inducible, organ-specific gene from potato and analysis of its expression after tagging and transfer into tobacco and potato shoots," Mol. Gen. Genet., 205:14-22, 1986. |
English translation of Office Action regarding Honduran Patent Application No. 2009-00795, dated Dec. 22, 2010. |
EPO, Partial Search Report for Application No. 12155307.7-2403, Apr. 12, 2012. |
European Search Report issued in Application No. 12181146.7 dated Nov. 14, 2012. |
Final Office Action regarding U.S. Appl. No. 10/330,662, dated Apr. 24, 2009. |
Final Office Action regarding U.S. Appl. No. 10/330,662, dated Jan. 10, 2007. |
Final Office Action regarding U.S. Appl. No. 11/758,656, dated Apr. 14, 2010. |
Final Office Action regarding U.S. Appl. No. 11/758,657, dated Apr. 14, 2010. |
Final Office action regarding U.S. Appl. No. 13/035,902 dated Apr. 2, 2012. |
Fogarty et al., "Microbiological degradation of the herbicide dicamba," J. of Industrial Microbiology, 14:365-370, 1995. |
Fukumori et al., "Purification and characterization of 2,-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase," J. Biol. Chem., 268:24311-24317, 1993. |
Fukumori et al., "Purification and characterization of 2,-dichlorophenoxyacetate/α-ketoglutarate dioxygenase," J. Biol. Chem., 268:24311-24317, 1993. |
Gardiner et al., "Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization," Plant Physiol., 134:1317-1326, 2004. |
Gasser et al., "Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato," J. Biol. Chem., 263:4280-4287, 1988. |
GenBank Accession No. AAT48249, 2004. |
GenBank Accession No. AY786443, dated Jun. 29, 2005. |
GenBank Accession No. E01312, Nov. 4, 2005. |
GenBank Accession No. V00087, Mar. 18, 1996. |
Gibson et al., "Aromatic hydrocarbon dioxygenases in environmental biotechnology," Current Opinion in Biotechnology, 11:236-243, 2000. |
Gurbiel, et al., "Active site structure of Rieske-type proteins: electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center," Biochemistry, 35(24):7834-7845, 1996 (Abstract). |
Hajdukiewicz et al., "The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation," Plant Mol. Biol., 25:989-994, 1994. |
Hamill et al., "Weed control in glufosinate-resistant corn (Zea mays)", Weed Technology 14(3):578-585, 2000. |
Herman et al., "A three-component dicamba O-demethylase from Pseudomonas maltophilia, Strain Di-6," J. of Biological Chemistry, 280(26):24759-24767, 2005. |
Hoffman et al., "Type I hyperlipoproteinemia due to a novel loss of function mutation of lipoprotein lipase, Cys(239)->Trp, associated with recurrent severe pancreatitis," J. Clin. Endocrinol. Metab., 85(12):4795-4798, 2000. |
Hoffman et al., "Type I hyperlipoproteinemia due to a novel loss of function mutation of lipoprotein lipase, Cys(239)→Trp, associated with recurrent severe pancreatitis," J. Clin. Endocrinol. Metab., 85(12):4795-4798, 2000. |
Interview Summary regarding U.S. Appl. No. 10/330,662, dated Mar. 19, 2010. |
Interview Summary regarding U.S. Appl. No. 10/330,662, dated Sep. 13, 2006. |
Jordan et al., "Italian Ryegrass Control with Preplant Herbicides," The J of Cotton Science, 5:268-274; 2001. |
Khalil et al., "Plasmid-mediated catabolism of dicamba by Pseudomonsas species strain PXM," Microbios, 102:183-191, 2000. |
Klee et al., "Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants," Mol. Gen. Genet., 210:437-442, 1987. |
Koncz et al., "The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector," Mol. Gen. Genet., 204:383-396, 1986. |
Krueger et al., "Isolation and identification of microorganisms for the degradation of dicamba," J. Agric. Food Chem., 37:534-538, 1989. |
Krueger et al., "Use of dicamba-degrading microorganisms to protect dicamba susceptible plant species," J. of Agri. and Food Chem., 39(5):1000-1003, 1991. |
Magnusson et al., "Tolerance of soybean (Glycine max) and sunflower (Helianthus annuus) to fall-applied dicamba," Weed Sci., 35:846-852, 1987. |
Markus et al., "Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS," J. of Biol. Chem., 261(27):12883-12888, 1986. |
Mason et al., "The electron-transport proteins of hydroxylating bacterial dioxygenases," Ann. Rev. of Microbiology, 46:277-305, 1992. |
Mazur et al., "Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylase-oxygenase from tobacco," Nucleic Acids Res., 13(7):2373-2386, 1985. |
Misawa et al., "Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants," Plant J., 6:481-489, 1994. |
Misawa et al., "Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crt1 in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon," Plant J., 4:833-840, 1993. |
Mitsuhara et al., "Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants," Plant Cell Physiol., 37:49-59, 1996. |
Morgan et al. "Chemical cotton stalk destruction: what will be the herbicide options in the future," presentation given at the 57th Annual Beltwide Cotton Production Conference, Wednesday, Jan. 4, 2012. |
Mueller et al., "Proactive Versus Reactive Management of Glyphosate-Resistant or - Tolerant Weeds", Weed Technology 19:924-933, 2005. |
Notice of Allowance for U.S. Appl. No. 12/942,905, dated Oct. 24, 2011. |
Notice of Allowance regarding U.S. Appl. No. 10/330,662, dated Jul. 12, 2010. |
Notice of Allowance regarding U.S. Appl. No. 11/758,656, dated Oct. 4, 2010. |
Notice of Allowance regarding U.S. Appl. No. 11/758,657, dated Sep. 10, 2010. |
Notice of Allowance regarding U.S. Appl. No. 11/758,659, dated Aug. 3, 2010. |
Notice of Allowance regarding U.S. Appl. No. 11/758,660, dated Jan. 28, 2011. |
Notice of Allowance regarding U.S. Appl. No. 12/914,901 dated Aug. 25, 2011. |
Notice of Non-Compliant Amendment regarding U.S. Appl. No. 12/942,905, dated Sep. 14, 2011. |
Office Action regarding Honduran Patent Application No. 2009-00795, dated Dec. 22, 2010. |
Office Action regarding Honduran Patent Application No. 2009-00795, dated Sep. 27, 2010. |
Office Action regarding U.S. Appl. No. 10/330,662 dated Apr. 18, 2006. |
Office Action regarding U.S. Appl. No. 10/330,662, dated Jan. 11, 2010. |
Office Action regarding U.S. Appl. No. 10/330,662, dated Jul. 9, 2008. |
Office Action regarding U.S. Appl. No. 10/330,662, dated Sep. 21, 2007. |
Office Action regarding U.S. Appl. No. 11/758,656, dated Sep. 15, 2009. |
Office Action regarding U.S. Appl. No. 11/758,657 dated Sep. 2, 2009. |
Office Action regarding U.S. Appl. No. 11/758,659 dated Nov. 24, 2009. |
Office Action regarding U.S. Appl. No. 11/758,660, dated Apr. 28, 2010. |
Office Action regarding U.S. Appl. No. 12/914,901 dated Apr. 26, 2011. |
Office Action regarding U.S. Appl. No. 12/942,905, dated Jul. 7, 2011. |
Office Action regarding U.S. Appl. No. 13/035,902 dated Dec. 15, 2011. |
Okagaki, "Nucleotide sequence of a long cDNA from the rice waxy gene," Plant Mol. Biol., 19:513-516, 1992. |
Padgette et al., "Development, identification and characterization of a glyphosate-tolerant soybean line," Crop Sci., 35:1451-1461, 1995. |
Peniuk et al., "Physiological investigations into the resistance of a wild mustard (Sinapis arvensis L.) biotype to auxinic herbicides," Weed Research, 33:431-440, 1993. |
Petition for Determination of Nonregulated Status for Dicamba-Tolerant Soybean MON 87707, pp. 1, 2 and 77; Oct. 10, 2011. |
Request for Continued Examination and Amendment filed in U.S. Appl. No. 13/035,902, filed Jul. 2, 2012. |
Request for Continued Examination for U.S. Appl. No. 12/942,905, dated Jan. 24, 2012. |
Response and Amendment to Non-final Office Action for U.S. Appl. No. 13/326,204, dated Nov. 6, 2012. |
Response to Final Office Action regarding U.S. Appl. No. 11/758,657, dated Jul. 14, 2010. |
Response to Final Office Action regarding U.S. Appl. No. 11/758,660, filed Jan. 13, 2011. |
Response to Non-Compliant Amendment regarding U.S. Appl. No. 12/942,905, dated Sep. 28, 2011. |
Response to Office Action regarding U.S. Appl. No. 11/758,656, dated Dec. 17, 2009. |
Response to Office Action regarding U.S. Appl. No. 11/758,657, dated Jan. 4, 2010. |
Response to Office Action regarding U.S. Appl. No. 11/758,660, dated Sep. 27, 2010. |
Response to Office Action regarding U.S. Appl. No. 12/914,901 dated Jun. 8, 2011. |
Response to Office Action regarding U.S. Appl. No. 12/942,905, dated Aug. 30, 2011. |
Response to Office Action regarding U.S. Appl. No. 13/035,902 dated Feb. 7, 2012. |
Response to Office Action regarding U.S. Appl. No. 13/774,794, filed Dec. 19, 2013. |
Sarpe et al., "Researches on resistance of maize hybrids and inbred lines to the herbicides based on 2,4-D and dicamba," Fragmenta Herbologica Jugoslavica, 16(1-2):299-305, 1987. |
Sathasivan et al., "Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia," Nucl. Acids. Res., 18(8):2188, 1990. |
Schroeder et al., "Soft red winter wheat (Triticum aestivum) response to dicamba and dicamba plus 2,4-D," Weed Technology, 3:67-71, 1989. |
Spencer et al., "Segregation of transgenes in maize," Plant Molecular Biology, 18:201-210, 1992. |
Sprague, "Avoid herbicide spray tank contamination," IPM News, ipmnews.msu.edu/fieldcrop/tabid/56, Mar. 24, 2010. |
Stalker et al., "Herbicide resistance in transgenic plants expressing a bacterial detoxification gene," Science, 242:419-423, 1988. |
Streber et al., "Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D," Bio/Technology, 7:811-816, 1989. |
Svab et al., "Aminoglycoside-3''-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum," Plant Mol. Biol., 14:197, 1990. |
Svab et al., "Stable transformation of plastids in higher plants," Proc. Natl. Acad. Sci. USA, 87(21):8526-8530, 1990. |
Svab et al., "Aminoglycoside-3″-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum," Plant Mol. Biol., 14:197, 1990. |
Terminal Disclaimer filed in U.S. Appl. No. 10/330,662, dated Oct. 18, 2006. |
Terminal Disclaimer filed in U.S. Appl. No. 11/758,660, filed Jan. 13, 2011. |
Terminal Disclaimer for U.S. Appl. No. 12/942,905, dated Aug. 30, 2011. |
Third Party Submission in a Published Application Under 37 C.F.R. § 1.99 dated Dec. 2, 2011. |
Thompson et al., "Soybean tolerance to early preplant applications of 2,4-D ester, 2,4-D amine, and dicamba," Weed Technology, 21:882-885, 2007. |
Tredaway-Ducar et al., "Site-specific weed management in corn (Zea mays)", Weed Technology 17(4):711-717, 2003. |
U.S. Appl. No. 12/440,173, filed Mar. 5, 2009, Bhatti et al. |
U.S. Appl. No. 12/875,747, filed Sep. 3, 2010, Weeks et al. |
U.S. Appl. No. 12/875,747, filed Sep. 30, 2010, Weeks et al. |
U.S. Appl. No. 12/914,901, filed May 26, 2011, Feng et al. |
U.S. Appl. No. 12/942,905, filed Nov. 9, 2010, Feng et al. |
U.S. Appl. No. 13/035,902, filed Oct. 26, 2011, Arnevik et al. |
U.S. Appl. No. 60/811,276, filed Jun. 6, 2006, Feng et al. |
U.S. Appl. No. 60/884,854, filed Jan. 12, 2007, D'Ordine et al. |
USPTO: Non-final Office Action for U.S. Appl. No. 13/326,204, dated Sep. 17, 2012. |
USPTO: Notice of Allowance regarding U.S. Appl. No. 13/774,794, issued on Mar. 21, 2014. |
USPTO: Notice of Allowance regarding U.S. Appl. No. 13/855,631, issued on Feb. 10, 2014. |
USPTO; Notice of Allowance in U.S. Appl. No. 12/942,905 dated Sep. 17, 2013. |
USPTO; Notice of Allowance in U.S. Appl. No. 13/326,204 dated Dec. 10, 2012. |
USPTO; Office Action in U.S. Appl. No. 11/758,660 dated Dec. 2, 2010. |
USPTO; Office Action in U.S. Appl. No. 13/774,794 dated Oct. 4, 2013. |
Wada et al., "Molecular characterization of coagulation factor XII deficiency in a Japanese family," Thromb. Haemost., 90(1):59-63, 2003. |
Wang et al., "A three-component enzyme system catalyzes the O demethylation of the herbicide dicamba in Pseudomonas maltophilia DI-6," Applied and Environmental Microbiology, 63(4):1623-1626, 1997. |
Wang, "Characterization of cellular and enzymatic degradation of dicamba by Pseudomonas maltophilia, Strain DI-6," Thesis, University of Nebraska, Aug. 1996. |
Weeks et al., "Characterization of a bacterial system capable of degrading dicamba and evaluation of its potential in the development of herbicide-tolerant crops," J. of Cellular Biochemistry, Supplement 18A:91, 1994. |
Xiaoman et al., "Study of BRCA1 gene in hereditary breast and ovarian cancer," Chin. Med. Sci. J., 14(4):195-199, 1999. |
Zuver et al., "Evaluation of postemergence weed control strategies in herbicide-resistant isolines of corn (Zea mays)", Weed Technology 20(1):172-178, 2006. |
Cited By (582)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46292E1 (en) | 2009-09-17 | 2017-01-31 | Monsanto Technology Llc | Soybean transgenic event MON 87708 and methods of use thereof |
US9332708B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XBO9AE13 |
US9271462B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB49AE13 |
US9332709B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB21Z13 |
US9271464B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB35Y13 |
US9271463B1 (en) | 2013-08-29 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB56V13 |
US9332712B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB28T13 |
US9445567B1 (en) | 2013-08-29 | 2016-09-20 | Monsanto Technology Llc | Soybean variety XB39D13 |
US9408359B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB36G13 |
US9320233B1 (en) | 2013-08-29 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XB55B13 |
US9408357B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB35X13 |
US9408358B1 (en) | 2013-08-29 | 2016-08-09 | Monsanto Technology Llc | Soybean variety XB34Y13 |
US9485930B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB35W13 |
US9485931B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB39C13 |
US9332711B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB23AB13 |
US9480226B1 (en) | 2013-08-29 | 2016-11-01 | Monsanto Technology Llc | Soybean variety XB34Z13 |
US9332706B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB007G13 |
US9485932B1 (en) | 2013-08-29 | 2016-11-08 | Monsanto Technology Llc | Soybean variety XB40U13 |
US9332713B1 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB44K13 |
US9332710B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB22A13 |
US9332707B2 (en) | 2013-08-29 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XB04F13 |
US9433175B2 (en) | 2013-08-29 | 2016-09-06 | Monsanto Technology Llc | Soybean variety XB33Z13 |
EP3659414A1 (en) | 2013-09-04 | 2020-06-03 | Indigo Ag, Inc. | Agricultural endophyte-plant compositions, and methods of use |
WO2015035099A1 (en) | 2013-09-04 | 2015-03-12 | Symbiota, Inc. | Agricultural endophyte-plant compositions, and methods of use |
US9445569B2 (en) | 2013-12-17 | 2016-09-20 | Monsanto Technology Llc | Soybean variety 01046426 |
US9386754B2 (en) | 2013-12-17 | 2016-07-12 | Monsanto Technology, Llc | Soybean variety 01046551 |
US9445568B1 (en) | 2013-12-17 | 2016-09-20 | Monsanto Technology Llc | Soybean variety 01046626 |
US10113178B2 (en) | 2014-03-20 | 2018-10-30 | Monsanto Technology Llc | Transgenic maize event MON 87419 and methods of use thereof |
US11098321B2 (en) | 2014-03-20 | 2021-08-24 | Monsanto Technology Llc | Transgenic maize event MON 87419 and methods of use thereof |
US11987798B2 (en) | 2014-03-20 | 2024-05-21 | Monsanto Technology Llc | Transgenic maize event MON 87419 and methods of use thereof |
US9648824B2 (en) | 2014-05-08 | 2017-05-16 | Monsanto Technology Llc | Soybean variety 01050938 |
US9648819B1 (en) | 2014-11-19 | 2017-05-16 | Monsanto Technology Llc | Soybean variety XR57F14RX |
US9320242B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR43A14RX |
US9320240B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR35AS14RX |
US9402362B1 (en) | 2014-11-19 | 2016-08-02 | Monsanto Technology Llc | Soybean variety XR47AB14RX |
US9675026B1 (en) | 2014-11-19 | 2017-06-13 | Monsanto Technology Llc | Soybean variety XR35AP14RX |
US9480228B2 (en) | 2014-11-19 | 2016-11-01 | Monsanto Technology Llc | Soybean variety XR30AR14RX |
US9332717B1 (en) | 2014-11-19 | 2016-05-10 | Monsanto Technology Llc | Soybean variety XR68D14RX |
US9585321B1 (en) | 2014-11-19 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR34AT14RX |
US9320239B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR35AR14RX |
US9320243B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR45Z14RX |
US9554538B2 (en) | 2014-11-19 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XR27AK14RX |
US9320241B1 (en) | 2014-11-19 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XR37Z14RX |
US9554539B2 (en) | 2014-11-19 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XR30AT14RX |
US9554537B2 (en) | 2014-11-24 | 2017-01-31 | Monsanto Technology Llc | Soybean variety XB07A14R2 |
US9271470B1 (en) | 2014-11-24 | 2016-03-01 | Monsanto Technology Llc | Soybean variety XB69F14R2 |
US9635819B1 (en) | 2014-11-24 | 2017-05-02 | Monsanto Technology Llc | Soybean variety XB57E14R2 |
US9320238B1 (en) | 2014-11-24 | 2016-04-26 | Monsanto Technology Llc | Soybean variety XB20AA14R2 |
US9504222B2 (en) | 2014-11-24 | 2016-11-29 | Monsanto Technology Llc | Soybean variety XB15R14R2 |
US9433180B1 (en) | 2014-11-24 | 2016-09-06 | Monsanto Technology Llc | Soybean variety XB35AL14R2 |
US9332716B1 (en) | 2014-11-24 | 2016-05-10 | Monsanto Technology LC | Soybean variety XB42A14R2 |
US9414562B1 (en) | 2014-11-24 | 2016-08-16 | Monsanto Technology Llc | Soybean variety XB47AA14R2 |
US9648818B1 (en) | 2014-11-24 | 2017-05-16 | Monsanto Technology Llc | Soybean variety XB37X14R2 |
CN104611304A (en) * | 2014-12-22 | 2015-05-13 | 北京大北农科技集团股份有限公司生物技术中心 | A herbicide tolerant protein, a coding gene thereof and uses of the protein |
US9351467B1 (en) | 2015-03-02 | 2016-05-31 | Monsanto Technology Llc | Soybean variety XB32AQ13R2 |
US9763414B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR25AL15X |
US9861053B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR36AC15X |
US9596819B1 (en) | 2016-03-21 | 2017-03-21 | Monsanto Technology Llc | Soybean variety XR33AU15X |
US9596818B1 (en) | 2016-03-21 | 2017-03-21 | Monsanto Technology Llc | Soybean variety XR30AX15X |
US9603331B1 (en) | 2016-03-21 | 2017-03-28 | Monsanto Technology Llc | Soybean variety XR39V15X |
US9560827B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR45C15X |
US9560829B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR47AG15X |
US9560828B1 (en) | 2016-03-21 | 2017-02-07 | Monsanto Technology Llc | Soybean variety XR46Z15X |
US9565821B1 (en) | 2016-03-21 | 2017-02-14 | Monsanto Technology Llc | Soybean variety XR47AF15X |
US9585355B1 (en) | 2016-03-21 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR40AA15X |
US9565822B1 (en) | 2016-03-21 | 2017-02-14 | Monsanto Technology Llc | Soybean variety XR37AE15X |
US9861054B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR36Z15X |
US9861055B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR39U15X |
US10010040B1 (en) | 2016-03-21 | 2018-07-03 | Monsanto Technology Llc | Soybean variety XR50E15X |
US9861056B1 (en) | 2016-03-21 | 2018-01-09 | Monsanto Technology Llc | Soybean variety XR56J15X |
US9788508B1 (en) | 2016-03-21 | 2017-10-17 | Monsanto Technology Llc | Soybean variety XR20AH15X |
US9763411B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR09AL15X |
US9585354B1 (en) | 2016-03-21 | 2017-03-07 | Monsanto Technology Llc | Soybean variety XR48C15X |
US9700000B1 (en) | 2016-03-21 | 2017-07-11 | Monsanto Technology Llc | Soybean variety XR38W15X |
US9699999B1 (en) | 2016-03-21 | 2017-07-11 | Monsanto Technology Llc | Soybean variety XR22K15X |
US9763412B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR09AP15X |
US9730415B1 (en) | 2016-03-21 | 2017-08-15 | Monsanto Technology Llc | Soybean variety XR08A15X |
US9763413B1 (en) | 2016-03-21 | 2017-09-19 | Monsanto Technology Llc | Soybean variety XR23AQ15X |
US9585356B1 (en) | 2016-03-22 | 2017-03-07 | Monsanto Technology Llc | Soybean cultivar 52232331 |
US9578849B1 (en) | 2016-03-22 | 2017-02-28 | Monsanto Technology Llc | Soybean cultivar 55021012 |
US9655336B1 (en) | 2016-03-22 | 2017-05-23 | Monsanto Technology Llc | Soybean cultivar 58150703 |
US9770000B1 (en) | 2016-03-22 | 2017-09-26 | Monsanto Technology Llc | Soybean cultivar 56042428 |
US9648835B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 53030521 |
US9591827B1 (en) | 2016-03-22 | 2017-03-14 | Monsanto Technology Llc | Soybean cultivar 57160653 |
US9706729B1 (en) | 2016-03-22 | 2017-07-18 | Monsanto Technology Llc | Soybean cultivar 51240902 |
US9648834B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 51201110 |
US9609831B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 56052100 |
US9585357B1 (en) | 2016-03-22 | 2017-03-07 | Monsanto Technology Llc | Soybean cultivar 53146341 |
US9648836B1 (en) | 2016-03-22 | 2017-05-16 | Monsanto Technology Llc | Soybean cultivar 50262411 |
US9609834B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 55030014 |
US9609832B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 53032202 |
US9609833B1 (en) | 2016-03-22 | 2017-04-04 | Monsanto Technology Llc | Soybean cultivar 58111502 |
US9913450B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 68071303 |
US10039249B1 (en) | 2017-03-29 | 2018-08-07 | Monsanto Technology Llc | Soybean cultivar 61162227 |
US9913448B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 63281310 |
US9913449B1 (en) | 2017-03-29 | 2018-03-13 | Monsanto Technology Llc | Soybean cultivar 67272133 |
US9888659B1 (en) | 2017-03-29 | 2018-02-13 | Monsanto Technology Llc | Soybean cultivar 61040705 |
US9930857B1 (en) | 2017-03-29 | 2018-04-03 | Monsato Technology Llc | Soybean cultivar 61311131 |
US9930856B1 (en) | 2017-03-29 | 2018-04-03 | Monsanto Technology Llc | Soybean cultivar 62030513 |
US9930858B1 (en) | 2017-03-29 | 2018-04-03 | Monsanto Technology Llc | Soybean cultivar 62232543 |
US9961868B1 (en) | 2017-03-29 | 2018-05-08 | Monsanto Technology Llc | Soybean cultivar 60111034 |
US9999193B1 (en) | 2017-03-29 | 2018-06-19 | Monsanto Technology Llc | Soybean cultivar 65090203 |
US9907280B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 64492916 |
US9894869B1 (en) | 2017-03-29 | 2018-02-20 | Monsanto Technology Llc | Soybean cultivar 64091728 |
US9907281B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 64291310 |
US9907279B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 63282422 |
US9907283B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 62103227 |
US9907282B1 (en) | 2017-03-29 | 2018-03-06 | Monsanto Technology Llc | Soybean cultivar 60371632 |
US10188059B1 (en) | 2017-06-28 | 2019-01-29 | Monsanto Technology Llc | Soybean variety 5PUWT62 |
US10206350B1 (en) | 2017-06-28 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 5PDSD70 |
US10206349B1 (en) | 2017-06-28 | 2019-02-19 | Monsanto Technology Llc | Soybean variety 5PPHU37 |
US10182539B1 (en) | 2017-06-28 | 2019-01-22 | Monsanto Technology Llc | Soybean variety 5PDZB74 |
US10178837B1 (en) | 2017-06-28 | 2019-01-15 | Monsanto Technology Llc | Soybean variety 5PHQP31 |
US10172310B1 (en) | 2017-06-28 | 2019-01-08 | Monsanto Technology Llc | Soybean variety 5PYFS21 |
US10368519B1 (en) | 2018-05-24 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 5PYGS18 |
US10477818B1 (en) | 2018-05-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 5PTJB40 |
US10480005B1 (en) | 2018-05-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 5PEKB42 |
US10420312B1 (en) | 2018-05-24 | 2019-09-24 | Monsanto Technology Llc | Soybean variety 5PKGL32 |
US10420313B1 (en) | 2018-05-24 | 2019-09-24 | Monsanto Technology Llc | Soybean variety 5PKVF24 |
US10412921B1 (en) | 2018-05-24 | 2019-09-17 | Monsanto Technology Llc | Soybean variety 5PYUP46 |
US10368520B1 (en) | 2018-05-24 | 2019-08-06 | Monsanto Technology Llc | Soybean variety 5PCDJ10 |
US10342204B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 65382631 |
US10342206B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 60390131 |
US10357010B1 (en) | 2018-08-06 | 2019-07-23 | Monsanto Technology Llc | Soybean cultivar 68352516 |
US10362758B1 (en) | 2018-08-06 | 2019-07-30 | Monsanto Technology Llc | Soybean cultivar 64272401 |
US10368521B1 (en) | 2018-08-06 | 2019-08-06 | Monsanto Technology Llc | Soybean cultivar 70490447 |
US10349608B1 (en) | 2018-08-06 | 2019-07-16 | Monsanto Technology Llc | Soybean cultivar 70520427 |
US10258014B1 (en) | 2018-08-06 | 2019-04-16 | Monsanto Technology Llc | Soybean cultivar 76051047 |
US10398122B1 (en) | 2018-08-06 | 2019-09-03 | Monsanto Technology Llc | Soybean cultivar 77252418 |
US10342207B1 (en) | 2018-08-06 | 2019-07-09 | Monsanto Technology Llc | Soybean cultivar 68381333 |
US10349607B1 (en) | 2018-08-06 | 2019-07-16 | Monsanto Technology Llc | Soybean cultivar 78091047 |
US10321654B1 (en) | 2018-08-06 | 2019-06-18 | Monsanto Technology Llc | Soybean cultivar 76222418 |
US10258013B1 (en) | 2018-08-06 | 2019-04-16 | Monsanto Technology Llc | Soybean cultivar 64442216 |
US10238066B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 73301323 |
US10517255B1 (en) | 2018-08-06 | 2019-12-31 | Monsanto Technology Llc | Soybean cultivar 62391708 |
US10264760B1 (en) | 2018-08-06 | 2019-04-23 | Monsanto Technology Llc | Soybean cultivar 79380729 |
US10238079B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 77301427 |
US10238080B1 (en) | 2018-08-06 | 2019-03-26 | Monsanto Technology Llc | Soybean cultivar 79072143 |
US10575490B1 (en) | 2018-08-22 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067547 |
US10905080B2 (en) | 2018-08-22 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072355 |
US10897869B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072333 |
US10999998B2 (en) | 2018-08-22 | 2021-05-11 | Monsanto Technology Llc | Soybean variety 01072346 |
US10993404B2 (en) | 2018-08-22 | 2021-05-04 | Monsanto Technology Llc | Soybean variety 01072356 |
US10897870B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072322 |
US11013197B2 (en) | 2018-08-22 | 2021-05-25 | Monsanto Technology Llc | Soybean variety 01072368 |
US10897868B2 (en) | 2018-08-22 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01072327 |
US10555483B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067598 |
US10973201B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072339 |
US10561099B1 (en) | 2018-08-22 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068352 |
US10624303B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072279 |
US10624302B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072280 |
US10973200B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072342 |
US10555484B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068903 |
US10624285B2 (en) | 2018-08-22 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01068376 |
US10555482B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068427 |
US11109552B2 (en) | 2018-08-22 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01072332 |
US10555481B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068364 |
US10617089B2 (en) | 2018-08-22 | 2020-04-14 | Monsanto Technology Llc | Soybean variety 01067827 |
US11026389B2 (en) | 2018-08-22 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01072367 |
US10905081B2 (en) | 2018-08-22 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072329 |
US10602704B2 (en) | 2018-08-22 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068313 |
US11044876B2 (en) | 2018-08-22 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01072345 |
US10602689B2 (en) | 2018-08-22 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068908 |
US10918065B2 (en) | 2018-08-22 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072343 |
US10561098B1 (en) | 2018-08-22 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01067649 |
US10582686B1 (en) | 2018-08-22 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01064580 |
US10555480B1 (en) | 2018-08-22 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068350 |
US10973198B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072340 |
US10575489B1 (en) | 2018-08-22 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067545 |
US11096363B2 (en) | 2018-08-22 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01072331 |
US10939652B2 (en) | 2018-08-22 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072350 |
US11109553B2 (en) | 2018-08-22 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01072328 |
US11206791B2 (en) | 2018-08-22 | 2021-12-28 | Monsanto Technology Llc | Soybean variety 01072337 |
US10973199B2 (en) | 2018-08-22 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072341 |
US10492450B1 (en) | 2018-08-23 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01064752 |
US10548284B1 (en) | 2018-08-23 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01072294 |
US10687502B2 (en) | 2018-08-23 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068433 |
US10448608B1 (en) | 2018-08-23 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01067812 |
US10524446B1 (en) | 2018-08-23 | 2020-01-07 | Monsanto Technology Llc | Soybean variety 01072245 |
US10448609B1 (en) | 2018-08-23 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01072293 |
US10512239B1 (en) | 2018-08-23 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072273 |
US10609888B2 (en) | 2018-08-23 | 2020-04-07 | Monsanto Technology Llc | Soybean variety 01068346 |
US10506786B1 (en) | 2018-08-23 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01067789 |
US10555485B1 (en) | 2018-08-23 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01073532 |
US10499601B1 (en) | 2018-08-23 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01068356 |
US10624286B2 (en) | 2018-08-23 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072276 |
US10463000B1 (en) | 2018-08-23 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01072224 |
US10555486B1 (en) | 2018-08-23 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068910 |
US10624287B2 (en) | 2018-08-23 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01072275 |
US10631499B2 (en) | 2018-08-23 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01072291 |
US10687501B2 (en) | 2018-08-23 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068438 |
US10631486B2 (en) | 2018-08-23 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068187 |
US10638707B2 (en) | 2018-08-23 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01067639 |
US10638708B2 (en) | 2018-08-23 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068325 |
US10477821B1 (en) | 2018-08-24 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01067769 |
US10506787B1 (en) | 2018-08-24 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01072220 |
US10561103B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01073501 |
US10448610B1 (en) | 2018-08-24 | 2019-10-22 | Monsanto Technology Llc | Soybean variety 01067781 |
US10561102B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068182 |
US10561105B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01072235 |
US10555488B1 (en) | 2018-08-24 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067714 |
US10561101B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068184 |
US10561100B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01067742 |
US10555487B1 (en) | 2018-08-24 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01067694 |
US10561106B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068466 |
US10463010B1 (en) | 2018-08-24 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01068189 |
US10660292B2 (en) | 2018-08-24 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01068157 |
US10645898B2 (en) | 2018-08-24 | 2020-05-12 | Monsanto Technology Llc | Soybean variety 01068192 |
US10470395B1 (en) | 2018-08-24 | 2019-11-12 | Monsanto Technology Llc | Soybean variety 01067663 |
US10548285B1 (en) | 2018-08-24 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01067703 |
US10470425B1 (en) | 2018-08-24 | 2019-11-12 | Monsanto Technology Llc | Soybean variety 01067783 |
US10542721B1 (en) | 2018-08-24 | 2020-01-28 | Monsanto Technology Llc | Soybean variety 01072231 |
US10531629B1 (en) | 2018-08-24 | 2020-01-14 | Monsanto Technology Llc | Soybean variety 01072223 |
US10638709B2 (en) | 2018-08-24 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068191 |
US10575491B1 (en) | 2018-08-24 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01072289 |
US10638710B2 (en) | 2018-08-24 | 2020-05-05 | Monsanto Technology Llc | Soybean variety 01068195 |
US10582690B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067790 |
US10582687B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01068359 |
US10561104B1 (en) | 2018-08-24 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01072234 |
US10631501B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067793 |
US10582688B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067543 |
US10517259B1 (en) | 2018-08-24 | 2019-12-31 | Monsanto Technology Llc | Soybean variety 01068824 |
US10582689B1 (en) | 2018-08-24 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01067573 |
US10631502B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067840 |
US10631500B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067788 |
US10512241B1 (en) | 2018-08-24 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072232 |
US10631503B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067814 |
US10512240B1 (en) | 2018-08-24 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01072228 |
US10631507B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068485 |
US10602705B2 (en) | 2018-08-24 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068821 |
US10631506B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068838 |
US10631504B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01072295 |
US10631505B2 (en) | 2018-08-24 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01069676 |
US10485213B1 (en) | 2018-08-24 | 2019-11-26 | Monsanto Technology Llc | Soybean variety 01068968 |
US10492451B1 (en) | 2018-08-24 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 0107226 |
US10624304B2 (en) | 2018-08-24 | 2020-04-21 | Monsanto Technology Llc | Soybean variety 01068381 |
US10617090B2 (en) | 2018-08-24 | 2020-04-14 | Monsanto Technology Llc | Soybean variety 01068163 |
US10582679B1 (en) | 2018-08-27 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01072243 |
US10463012B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01069688 |
US10743491B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077432 |
US10506788B1 (en) | 2018-08-27 | 2019-12-17 | Monsanto Technology Llc | Soybean variety 01072292 |
US10499602B1 (en) | 2018-08-27 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01067553 |
US10743493B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077438 |
US10499603B1 (en) | 2018-08-27 | 2019-12-10 | Monsanto Technology Llc | Soybean variety 01068207 |
US10561107B1 (en) | 2018-08-27 | 2020-02-18 | Monsanto Technology Llc | Soybean variety 01068807 |
US10492453B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01072254 |
US10687503B2 (en) | 2018-08-27 | 2020-06-23 | Monsanto Technology Llc | Soybean variety 01068213 |
US10492452B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01067646 |
US10492454B1 (en) | 2018-08-27 | 2019-12-03 | Monsanto Technology Llc | Soybean variety 01072256 |
US10463013B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01069709 |
US10463011B1 (en) | 2018-08-27 | 2019-11-05 | Monsanto Technology Llc | Soybean variety 01068162 |
US10602706B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01077437 |
US10660294B2 (en) | 2018-08-27 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01077435 |
US10631508B2 (en) | 2018-08-27 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01068228 |
US10602690B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01068227 |
US10512242B1 (en) | 2018-08-27 | 2019-12-24 | Monsanto Technology Llc | Soybean variety 01077436 |
US10631509B2 (en) | 2018-08-27 | 2020-04-28 | Monsanto Technology Llc | Soybean variety 01067807 |
US10743492B2 (en) | 2018-08-27 | 2020-08-18 | Monsanto Technology Llc | Soybean variety 01077433 |
US10555489B1 (en) | 2018-08-27 | 2020-02-11 | Monsanto Technology Llc | Soybean variety 01068972 |
US10660293B2 (en) | 2018-08-27 | 2020-05-26 | Monsanto Technology Llc | Soybean variety 01077434 |
US10568290B1 (en) | 2018-08-27 | 2020-02-25 | Monsanto Technology Llc | Soybean variety 01068219 |
US10548286B1 (en) | 2018-08-27 | 2020-02-04 | Monsanto Technology Llc | Soybean variety 01068171 |
US10602691B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01072253 |
US10602692B2 (en) | 2018-08-27 | 2020-03-31 | Monsanto Technology Llc | Soybean variety 01072252 |
US10582678B1 (en) | 2018-08-27 | 2020-03-10 | Monsanto Technology Llc | Soybean variety 01072239 |
US10477822B1 (en) | 2018-08-27 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01069686 |
US10568291B1 (en) | 2018-08-27 | 2020-02-25 | Monsanto Technology Llc | Soybean variety 01067741 |
US10575492B1 (en) | 2018-08-27 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01068915 |
US10575493B1 (en) | 2018-08-27 | 2020-03-03 | Monsanto Technology Llc | Soybean variety 01067819 |
US10477823B1 (en) | 2018-08-27 | 2019-11-19 | Monsanto Technology Llc | Soybean variety 01069720 |
US10506789B1 (en) | 2018-12-04 | 2019-12-17 | Monsanto Technology Llc | Soybean cultivar 61381330 |
US10602693B1 (en) | 2019-06-04 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 81302732 |
US10667484B1 (en) | 2019-06-04 | 2020-06-02 | Monsanto Technology Llc | Soybean cultivar 82322805 |
US10631512B1 (en) | 2019-06-04 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 85322536 |
US10631513B1 (en) | 2019-06-04 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 87181312 |
US10617080B1 (en) | 2019-06-04 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 87352527 |
US10617091B1 (en) | 2019-06-04 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 86331141 |
US10624305B1 (en) | 2019-06-04 | 2020-04-21 | Monsanto Technology Llc | Soybean cultivar 85161422 |
US10548287B1 (en) | 2019-06-05 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 86411138 |
US10602709B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 86360847 |
US10638686B1 (en) | 2019-06-05 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 84161023 |
US10638713B1 (en) | 2019-06-05 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 85220103 |
US10602708B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 82370721 |
US10660295B1 (en) | 2019-06-05 | 2020-05-26 | Monsanto Technology Llc | Soybean cultivar 86072029 |
US10609883B1 (en) | 2019-06-05 | 2020-04-07 | Monsanto Technology Llc | Soybean cultivar 82340103 |
US10624288B1 (en) | 2019-06-05 | 2020-04-21 | Monsanto Technology Llc | Soybean cultivar 85061635 |
US10602707B1 (en) | 2019-06-05 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 85442619 |
US10631514B1 (en) | 2019-06-05 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 80131402 |
US10813335B1 (en) | 2019-06-06 | 2020-10-27 | Monsanto Technology Llc | Soybean cultivar 80261309 |
US10548289B1 (en) | 2019-06-06 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 82290447 |
US10638714B1 (en) | 2019-06-06 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 84062517 |
US10631487B1 (en) | 2019-06-06 | 2020-04-28 | Monsanto Technology Llc | Soybean cultivar 83240828 |
US10617092B1 (en) | 2019-06-06 | 2020-04-14 | Monsanto Technology Llc | Soybean cultivar 80411617 |
US10609889B1 (en) | 2019-06-06 | 2020-04-07 | Monsanto Technology Llc | Soybean cultivar 89001711 |
US10568292B1 (en) | 2019-06-06 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 80181322 |
US10548288B1 (en) | 2019-06-06 | 2020-02-04 | Mansanto Technology Llc | Soybean cultivar 80372800 |
US10561108B1 (en) | 2019-06-06 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 80431932 |
US10561109B1 (en) | 2019-06-06 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 82042815 |
US10548273B1 (en) | 2019-06-06 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 87120510 |
US10568284B1 (en) | 2019-06-06 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 87161804 |
US10785950B1 (en) | 2019-06-06 | 2020-09-29 | Stine Seed Farm, Inc. | Soybean cultivar 86190345 |
US10638687B1 (en) | 2019-06-06 | 2020-05-05 | Monsanto Technology Llc | Soybean cultivar 88103087 |
US10561089B1 (en) | 2019-06-07 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 84060345 |
US10568293B1 (en) | 2019-06-07 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar AR 86112649 |
US10568294B1 (en) | 2019-06-07 | 2020-02-25 | Monsanto Technology Llc | Soybean cultivar 82440038 |
US10548274B1 (en) | 2019-06-07 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 83262718 |
US10561090B1 (en) | 2019-06-07 | 2020-02-18 | Monsanto Technology Llc | Soybean cultivar 86370345 |
US10555492B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 81430038 |
US10602710B1 (en) | 2019-06-07 | 2020-03-31 | Monsanto Technology Llc | Soybean cultivar 89282206 |
US10555490B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 85370909 |
US10555491B1 (en) | 2019-06-07 | 2020-02-11 | Monsanto Technology Llc | Soybean cultivar 83072718 |
US10548290B1 (en) | 2019-06-07 | 2020-02-04 | Monsanto Technology Llc | Soybean cultivar 89031941 |
US10660296B1 (en) | 2019-06-07 | 2020-05-26 | Monsanto Technology Llc | Soybean cultivar 84241941 |
US10925238B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073320 |
US10918051B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072804 |
US10863708B1 (en) | 2019-07-29 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073439 |
US10993401B2 (en) | 2019-07-29 | 2021-05-04 | Monsanto Technology Llc | Soybean variety 01073256 |
US10849300B1 (en) | 2019-07-29 | 2020-12-01 | Monsanto Technology Llc | Soybean variety 01073359 |
US10863709B1 (en) | 2019-07-29 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01072789 |
US11096357B2 (en) | 2019-07-29 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073351 |
US10905072B1 (en) | 2019-07-29 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073330 |
US10939643B2 (en) | 2019-07-29 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072768 |
US10932429B2 (en) | 2019-07-29 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01073265 |
US10905071B1 (en) | 2019-07-29 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072744 |
US10912270B1 (en) | 2019-07-29 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01072737 |
US10932428B2 (en) | 2019-07-29 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01072749 |
US10869452B1 (en) | 2019-07-29 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01072767 |
US10925235B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072810 |
US10925236B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072823 |
US10918050B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01072791 |
US10918053B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073354 |
US10918052B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073365 |
US10918054B1 (en) | 2019-07-29 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073353 |
US10925237B1 (en) | 2019-07-29 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073288 |
US10939645B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073480 |
US10881073B1 (en) | 2019-07-30 | 2021-01-05 | Monsanto Technology Llc | Soybean variety 01072782 |
US10925239B1 (en) | 2019-07-30 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073452 |
US10888063B1 (en) | 2019-07-30 | 2021-01-12 | Monsanto Technology Llc | Soybean variety 01072800 |
US10918055B1 (en) | 2019-07-30 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01073472 |
US11266100B2 (en) | 2019-07-30 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01073441 |
US10856508B1 (en) | 2019-07-30 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073445 |
US10897864B1 (en) | 2019-07-30 | 2021-01-26 | Monsanto Technology Llc | Soybean variety 01073453 |
US10925240B1 (en) | 2019-07-30 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01073455 |
US10856507B1 (en) | 2019-07-30 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073444 |
US10881074B1 (en) | 2019-07-30 | 2021-01-05 | Monsanto Technology Llc | Soybean variety 01072802 |
US10849301B1 (en) | 2019-07-30 | 2020-12-01 | Monsanto Technology Llc | Soybean variety 01072784 |
US10827714B1 (en) | 2019-07-30 | 2020-11-10 | Monsanto Technology Llc | Soybean variety 01073443 |
US10939646B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073479 |
US10939644B2 (en) | 2019-07-30 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01073461 |
US11122759B2 (en) | 2019-07-31 | 2021-09-21 | Monsanto Technology Llc | Soybean variety 01072870 |
US10959389B2 (en) | 2019-07-31 | 2021-03-30 | Monsanto Technology Llc | Soybean variety 01073503 |
US10842117B1 (en) | 2019-07-31 | 2020-11-24 | Monsanto Technology Llc | Soybean variety 01072842 |
US10945397B2 (en) | 2019-07-31 | 2021-03-16 | Monsanto Technology Llc | Soybean variety 01073506 |
US10939648B2 (en) | 2019-07-31 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072899 |
US10869453B1 (en) | 2019-07-31 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01072813 |
US10827715B1 (en) | 2019-07-31 | 2020-11-10 | Monsanto Technology Llc | Soybean variety 01077799 |
US10912271B1 (en) | 2019-07-31 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01072822 |
US10939647B2 (en) | 2019-07-31 | 2021-03-09 | Monsanto Technology Llc | Soybean variety 01072860 |
US10874078B1 (en) | 2019-07-31 | 2020-12-29 | Monsanto Technology Llc | Soybean variety 01072817 |
US10842116B1 (en) | 2019-07-31 | 2020-11-24 | Monsanto Technology Llc | Soybean variety 01072832 |
US10918056B1 (en) | 2019-07-31 | 2021-02-16 | Monsanto Technology Llc | Soybean variety 01077815 |
US10973194B2 (en) | 2019-07-31 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072867 |
US10863710B1 (en) | 2019-07-31 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01072819 |
US10973193B2 (en) | 2019-07-31 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01072864 |
US11019788B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01072980 |
US10905074B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072906 |
US11129346B2 (en) | 2019-08-01 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073533 |
US10905075B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073059 |
US10905073B1 (en) | 2019-08-01 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01072883 |
US11026387B2 (en) | 2019-08-01 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01073016 |
US11026388B2 (en) | 2019-08-01 | 2021-06-08 | Monsanto Technology Llc | Soybean variety 01073060 |
US11019787B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01072951 |
US11006602B2 (en) | 2019-08-01 | 2021-05-18 | Monsanto Technology Llc | Soybean variety 01072946 |
US10925241B1 (en) | 2019-08-01 | 2021-02-23 | Monsanto Technology Llc | Soybean variety 01072974 |
US11019789B2 (en) | 2019-08-01 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01073534 |
US10912273B1 (en) | 2019-08-07 | 2021-02-09 | Monsanto Technology Llc | Soybean variety 01073355 |
US11019790B2 (en) | 2019-08-07 | 2021-06-01 | Monsanto Technology Llc | Soybean variety 01073304 |
US11076552B2 (en) | 2019-08-07 | 2021-08-03 | Monsanto Technology Llc | Soybean variety 01073356 |
US10973195B2 (en) | 2019-08-07 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01073325 |
US10980203B2 (en) | 2019-08-07 | 2021-04-20 | Monsanto Technology Llc | Soybean variety 01073305 |
US11096359B2 (en) | 2019-08-07 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01077377 |
US10952392B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073151 |
US11109550B2 (en) | 2019-08-15 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01073116 |
US10952393B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073169 |
US10952391B2 (en) | 2019-08-15 | 2021-03-23 | Monsanto Technology Llc | Soybean variety 01073150 |
US11096360B2 (en) | 2019-08-15 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01067560 |
US11044866B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073114 |
US11044867B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073133 |
US10959390B2 (en) | 2019-08-15 | 2021-03-30 | Monsanto Technology Llc | Soybean variety 01073069 |
US11044865B2 (en) | 2019-08-15 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073029 |
US11071271B2 (en) | 2019-08-15 | 2021-07-27 | Monsanto Technology Llc | Soybean variety 01073065 |
US10945398B2 (en) | 2019-08-15 | 2021-03-16 | Monsanto Technology Llc | Soybean variety 01073160 |
US11013196B2 (en) | 2019-08-15 | 2021-05-25 | Monsanto Technology Llc | Soybean variety 01073094 |
US11096361B2 (en) | 2019-08-15 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073072 |
US11044868B2 (en) | 2019-08-16 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073261 |
US10863712B1 (en) | 2019-08-16 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073281 |
US11044869B2 (en) | 2019-08-16 | 2021-06-29 | Monsanto Technology Llc | Soybean variety 01073270 |
US10863711B1 (en) | 2019-08-16 | 2020-12-15 | Monsanto Technology Llc | Soybean variety 01073279 |
US11096362B2 (en) | 2019-08-16 | 2021-08-24 | Monsanto Technology Llc | Soybean variety 01073204 |
US11039591B2 (en) | 2019-08-16 | 2021-06-22 | Monsanto Technology Llc | Soybean variety 01073340 |
US11109551B2 (en) | 2019-08-16 | 2021-09-07 | Monsanto Technology Llc | Soybean variety 01073253 |
US11039590B2 (en) | 2019-08-16 | 2021-06-22 | Monsanto Technology Llc | Soybean variety 01073272 |
US11006603B2 (en) | 2019-08-16 | 2021-05-18 | Monsanto Technology Llc | Soybean variety 01072287 |
US10973196B2 (en) | 2019-08-16 | 2021-04-13 | Monsanto Technology Llc | Soybean variety 01073237 |
US10932430B1 (en) | 2019-08-16 | 2021-03-02 | Monsanto Technology Llc | Soybean variety 01073203 |
US11129349B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073350 |
US11129347B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073210 |
US11129348B2 (en) | 2019-08-16 | 2021-09-28 | Monsanto Technology Llc | Soybean variety 01073219 |
US10905079B1 (en) | 2019-08-16 | 2021-02-02 | Monsanto Technology Llc | Soybean variety 01073335 |
US11160237B2 (en) | 2019-08-16 | 2021-11-02 | Monsanto Technology Llc | Soybean variety 01073183 |
US10856509B1 (en) | 2019-08-16 | 2020-12-08 | Monsanto Technology Llc | Soybean variety 01073199 |
US11071272B2 (en) | 2019-08-16 | 2021-07-27 | Monsanto Technology Llc | Soybean variety 01073195 |
US10869454B1 (en) | 2019-08-16 | 2020-12-22 | Monsanto Technology Llc | Soybean variety 01073329 |
US11185044B2 (en) | 2019-09-16 | 2021-11-30 | Monsanto Technology Llc | Soybean variety 01077343 |
US11185043B2 (en) | 2019-09-16 | 2021-11-30 | Monsanto Technology Llc | Soybean variety 01077334 |
US11229182B2 (en) | 2019-09-16 | 2022-01-25 | Monsanto Technology Llc | Soybean variety 01077387 |
US11337400B2 (en) | 2019-09-16 | 2022-05-24 | Monsanto Technology, Llc | Soybean variety 01077373 |
US11284587B2 (en) | 2019-09-16 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01077381 |
US11178841B2 (en) | 2019-09-16 | 2021-11-23 | Monsanto Technology Llc | Soybean variety 01077386 |
US11266105B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077338 |
US11266106B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081407 |
US11350595B2 (en) | 2019-09-16 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01077372 |
US11259493B2 (en) | 2019-09-16 | 2022-03-01 | Monsanto Technology Llc | Soybean variety 01077341 |
US11259494B2 (en) | 2019-09-16 | 2022-03-01 | Monsanto Technology Llc | Soybean variety 01077345 |
US11266107B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081408 |
US11266109B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077385 |
US11266110B2 (en) | 2019-09-16 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077337 |
US11576341B2 (en) | 2019-09-17 | 2023-02-14 | Monsanto Technology, Llc | Soybean variety 01072361 |
US11576340B2 (en) | 2019-09-17 | 2023-02-14 | Monsanto Technology, Llc | Soybean variety 01081414 |
US11266111B2 (en) | 2019-09-17 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01077383 |
US11297792B2 (en) | 2019-09-17 | 2022-04-12 | Monsanto Technology Llc | Soybean variety 01077344 |
US11266108B2 (en) | 2019-09-17 | 2022-03-08 | Monsanto Technology Llc | Soybean variety 01081409 |
US11252922B2 (en) | 2019-10-18 | 2022-02-22 | Monsanto Technology Llc | Soybean variety 01077391 |
US11272679B2 (en) | 2019-10-18 | 2022-03-15 | Monsanto Technology Llc | Soybean variety 01077330 |
US11252921B2 (en) | 2019-10-18 | 2022-02-22 | Monsanto Technology Llc | Soybean variety 01077393 |
US11324181B2 (en) | 2019-10-18 | 2022-05-10 | Monsanto Technology Llc | Soybean variety 01077335 |
US11330777B2 (en) | 2019-10-18 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077390 |
US11330783B2 (en) | 2019-10-18 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077336 |
US11252923B1 (en) | 2020-09-09 | 2022-02-22 | Monsanto Technology Llc | Soybean cultivar 99003018 |
US11206797B1 (en) | 2020-09-09 | 2021-12-28 | Monsanto Technology Llc | Soybean cultivar 97320218 |
US11234406B1 (en) | 2020-09-09 | 2022-02-01 | Monsanto Technology Llc | Soybean cultivar 98010818 |
US11234405B1 (en) | 2020-09-09 | 2022-02-01 | Monsanto Technology Llc | Soybean cultivar 90110208 |
US11259495B1 (en) | 2020-09-09 | 2022-03-01 | Monsanto Technology Llc | Soybean cultivar 90381408 |
US11229183B1 (en) | 2020-09-11 | 2022-01-25 | Monsanto Technology Llc | Soybean cultivar 93070703 |
US11317587B2 (en) | 2020-09-11 | 2022-05-03 | Stine Seed Farm, Inc. | Soybean cultivar 96030600 |
US11317588B2 (en) | 2020-09-11 | 2022-05-03 | Stine Seed Farm, Inc. | Soybean cultivar 97080600 |
US11357200B2 (en) | 2020-09-11 | 2022-06-14 | Monsanto Technology, Llc | Soybean cultivar 92131600 |
US11439111B2 (en) | 2020-09-11 | 2022-09-13 | Monsanto Technology Llc | Soybean cultivar 99354100 |
US11350596B2 (en) | 2020-09-11 | 2022-06-07 | Monsanto Technology, Llc | Soybean cultivar 96050600 |
US11277996B1 (en) | 2020-09-11 | 2022-03-22 | Monsanto Technology Llc | Soybean cultivar 97051600 |
US11330784B2 (en) | 2020-09-11 | 2022-05-17 | Monsanto Technology, Llc | Soybean cultivar 95322700 |
US11284592B1 (en) | 2020-09-11 | 2022-03-29 | Monsanto Technology Llc | Soybean cultivar 91030603 |
US11310988B2 (en) | 2020-09-11 | 2022-04-26 | Monsanto Technology Llc | Soybean cultivar 92340030 |
US11310989B2 (en) | 2020-09-15 | 2022-04-26 | Monsanto Technology Llc | Soybean cultivar 94071660 |
US11419299B2 (en) | 2020-09-15 | 2022-08-23 | Monsanto Technology Llc | Soybean cultivar 91361201 |
US11337401B2 (en) | 2020-09-15 | 2022-05-24 | Monsanto Technology, Llc | Soybean cultivar 90370640 |
US11399496B2 (en) | 2020-09-15 | 2022-08-02 | Monsanto Technology, Llc | Soybean cultivar 90116100 |
US11399497B2 (en) | 2020-09-15 | 2022-08-02 | Monsanto Technology, Llc | Soybean cultivar 93333110 |
US11606926B2 (en) | 2020-09-15 | 2023-03-21 | Monsanto Technology Llc | Soybean cultivar 94030201 |
US11412692B2 (en) | 2020-09-15 | 2022-08-16 | Monsanto Technology Llc | Soybean cultivar 90290600 |
US11343989B2 (en) | 2020-09-15 | 2022-05-31 | Monsanto Technology, Llc | Soybean cultivar 92350300 |
US11744211B2 (en) | 2020-09-15 | 2023-09-05 | Monsanto Technology, Llc | Soybean cultivar 92310017 |
US11324184B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 97061850 |
US11343987B2 (en) | 2020-09-15 | 2022-05-31 | Stine Seed Farm, Inc. | Soybean cultivar 90401320 |
US11363778B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 90221620 |
US11343988B2 (en) | 2020-09-15 | 2022-05-31 | Stine Seed Farm, Inc. | Soybean cultivar 91041800 |
US11369074B2 (en) | 2020-09-15 | 2022-06-28 | Monsanto Technology Llc | Soybean cultivar 99122620 |
US11324183B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 90250820 |
US11363780B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 93272026 |
US11406080B2 (en) | 2020-09-15 | 2022-08-09 | Stine Seed Farm, Inc. | Soybean cultivar 92420140 |
US11350597B2 (en) | 2020-09-15 | 2022-06-07 | Monsanto Technology, Llc | Soybean cultivar 94111580 |
US11357201B2 (en) | 2020-09-15 | 2022-06-14 | Monsanto Technology, Llc | Soybean cultivar 94411660 |
US11317589B2 (en) | 2020-09-15 | 2022-05-03 | Monsanto Technology Llc | Soybean cultivar 95430820 |
US11324182B2 (en) | 2020-09-15 | 2022-05-10 | Stine Seed Farm, Inc. | Soybean cultivar 95060020 |
US11425879B2 (en) | 2020-09-15 | 2022-08-30 | Monsanto Technology, Llc | Soybean cultivar 93054930 |
US11363779B2 (en) | 2020-09-15 | 2022-06-21 | Monsanto Technology Llc | Soybean cultivar 90301201 |
US11653612B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077826 |
US11477960B2 (en) | 2020-11-02 | 2022-10-25 | Monsanto Technology Llc | Soybean variety 01077912 |
US11510382B2 (en) | 2020-11-02 | 2022-11-29 | Monsanto Technology Llc | Soybean variety 01078845 |
US11547075B2 (en) | 2020-11-02 | 2023-01-10 | Monsanto Technology Llc | Soybean variety 01078822 |
US11596122B2 (en) | 2020-11-02 | 2023-03-07 | Monsanto Technology Llc | Soybean variety 01077891 |
US11612128B2 (en) | 2020-11-02 | 2023-03-28 | Monsanto Technology Llc | Soybean variety 01083666 |
US11653613B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077829 |
US11277997B1 (en) | 2020-11-05 | 2022-03-22 | Monsanto Technology Llc | Soybean variety 01077853 |
US11343993B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083650 |
US11412694B2 (en) | 2020-11-05 | 2022-08-16 | Monsanto Technology Llc | Soybean variety 01077905 |
US11284594B1 (en) | 2020-11-05 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01077848 |
US11357205B2 (en) | 2020-11-05 | 2022-06-14 | Monsanto Technology Llc | Soybean variety 01083631 |
US11284593B1 (en) | 2020-11-05 | 2022-03-29 | Monsanto Technology Llc | Soybean variety 01083687 |
US11343990B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083439 |
US11343991B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01078115 |
US11445688B2 (en) | 2020-11-05 | 2022-09-20 | Monsanto Technology, Llc | Soybean variety 01077870 |
US11343992B2 (en) | 2020-11-05 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01078550 |
US11445689B2 (en) | 2020-11-05 | 2022-09-20 | Monsanto Technology, Llc | Soybean variety 01078100 |
US11533883B2 (en) | 2020-11-05 | 2022-12-27 | Monsanto Technology, Llc | Soybean variety 01077890 |
US11457591B2 (en) | 2020-11-05 | 2022-10-04 | Monsanto Technology, Llc | Soybean variety 01077893 |
US11350600B2 (en) | 2020-11-05 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01083699 |
US11343994B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083655 |
US11547077B2 (en) | 2020-11-06 | 2023-01-10 | Monsanto Technology, Llc | Soybean variety 01083688 |
US11457601B2 (en) | 2020-11-06 | 2022-10-04 | Monsanto Technology Llc | Soybean variety 01083638 |
US11484000B2 (en) | 2020-11-06 | 2022-11-01 | Monsanto Technology, Llc | Soybean variety 01083661 |
US11464195B2 (en) | 2020-11-06 | 2022-10-11 | Monsanto Technology Llc | Soybean variety 01083654 |
US11350601B2 (en) | 2020-11-06 | 2022-06-07 | Monsanto Technology, Llc | Soybean variety 01077876 |
US11528879B2 (en) | 2020-11-06 | 2022-12-20 | Monsanto Technology, Llc | Soybean variety 01083659 |
US11357206B2 (en) | 2020-11-06 | 2022-06-14 | Monsanto Technology Llc | Soybean variety 01077974 |
US11533884B2 (en) | 2020-11-06 | 2022-12-27 | Monsanto Technology, Llc | Soybean variety 01083660 |
US11477961B2 (en) | 2020-11-06 | 2022-10-25 | Monsanto Technology, Llc | Soybean variety 01077940 |
US11547076B2 (en) | 2020-11-06 | 2023-01-10 | Monsanto Technology, Llc | Soybean variety 01077931 |
US11432518B2 (en) | 2020-11-06 | 2022-09-06 | Monsanto Technology, Llc | Soybean variety 01078759 |
US11553671B2 (en) | 2020-11-06 | 2023-01-17 | Monsanto Technology, Llc | Soybean variety 01083653 |
US11445690B2 (en) | 2020-11-06 | 2022-09-20 | Monsanto Technology Llc | Soybean variety 01083639 |
US11343996B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01077875 |
US11439114B2 (en) | 2020-11-06 | 2022-09-13 | Monsanto Technology, Llc | Soybean variety 01078032 |
US11510384B2 (en) | 2020-11-06 | 2022-11-29 | Monsanto Technology, Llc | Soybean variety 01078675 |
US11457600B2 (en) | 2020-11-06 | 2022-10-04 | Monsanto Technology, Llc | Soybean variety 01083646 |
US11382301B2 (en) | 2020-11-06 | 2022-07-12 | Monsanto Technology, Llc | Soybean variety 01077881 |
US11330785B1 (en) | 2020-11-06 | 2022-05-17 | Monsanto Technology, Llc | Soybean variety 01077941 |
US11343995B1 (en) | 2020-11-06 | 2022-05-31 | Monsanto Technology, Llc | Soybean variety 01083647 |
US11369076B2 (en) | 2020-11-06 | 2022-06-28 | Monsanto Technology, Llc | Soybean variety 01078749 |
US11641837B2 (en) | 2021-08-24 | 2023-05-09 | Monsanto Technology Llc | Soybean cultivar 02340134 |
US11647720B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 01130157 |
US11647723B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 07060434 |
US11647724B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 03230124 |
US11647721B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 02330517 |
US11647722B2 (en) | 2021-08-24 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 02140434 |
US11641838B2 (en) | 2021-08-24 | 2023-05-09 | Monsanto Technology Llc | Soybean cultivar 04130514 |
US11666031B2 (en) | 2021-08-24 | 2023-06-06 | Monsanto Technology Llc | Soybean cultivar 05140102 |
US11696556B2 (en) | 2021-08-24 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 07080746 |
US11678636B2 (en) | 2021-08-24 | 2023-06-20 | Monsanto Technology, Llc | Soybean cultivar 04070428 |
US11678635B2 (en) | 2021-08-24 | 2023-06-20 | Stine Seed Farm, Inc. | Soybean cultivar 01160922 |
US12029189B2 (en) | 2021-08-30 | 2024-07-09 | Monsanto Technology Llc | Soybean cultivar 02170813 |
US11696558B2 (en) | 2021-08-31 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 02021411 |
US11800847B2 (en) | 2021-08-31 | 2023-10-31 | Monsanto Technology, Llc | Soybean cultivar 05050112 |
US11696557B2 (en) | 2021-08-31 | 2023-07-11 | Monsanto Technology, Llc | Soybean cultivar 04060955 |
US11672230B2 (en) | 2021-08-31 | 2023-06-13 | Monsanto Technology, Llc | Soybean cultivar 03260108 |
US11700825B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 06170324 |
US11700826B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 02410315 |
US11700827B2 (en) | 2021-08-31 | 2023-07-18 | Monsanto Technology, Llc | Soybean cultivar 07220837 |
US11856914B2 (en) | 2021-08-31 | 2024-01-02 | Monsanto Technology, Llc | Soybean cultivar 01140108 |
US11647727B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 04120446 |
US11647725B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 07160416 |
US11716947B2 (en) | 2021-08-31 | 2023-08-08 | Monsanto Technology, Llc | Soybean cultivar 07030013 |
US11672229B2 (en) | 2021-08-31 | 2023-06-13 | Monsanto Technology, Llc | Soybean cultivar 08180710 |
US11647726B2 (en) | 2021-08-31 | 2023-05-16 | Monsanto Technology Llc | Soybean cultivar 04070902 |
US11707044B2 (en) | 2021-09-28 | 2023-07-25 | Monsanto Technology, Llc | Soybean variety 01083999 |
US11730132B2 (en) | 2021-09-28 | 2023-08-22 | Monsanto Technology, Llc | Soybean variety 01083701 |
US11997978B2 (en) | 2021-09-28 | 2024-06-04 | Monsanto Technology Llc | Soybean variety 01083711 |
US11744215B2 (en) | 2021-09-28 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01084068 |
US11917968B2 (en) | 2021-09-28 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01083684 |
US11917969B2 (en) | 2021-09-28 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01083899 |
US11985949B2 (en) | 2021-09-28 | 2024-05-21 | Monsanto Technology Llc | Soybean variety 01091555 |
US11819003B2 (en) | 2021-09-28 | 2023-11-21 | Monsanto Technology, Llc | Soybean variety 01083835 |
US11825806B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083849 |
US11825804B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083877 |
US11825805B2 (en) | 2021-09-28 | 2023-11-28 | Monsanto Technology, Llc | Soybean variety 01083845 |
US11903357B2 (en) | 2021-09-28 | 2024-02-20 | Monsanto Technology Llc | Soybean variety 01083737 |
US11856918B2 (en) | 2021-09-28 | 2024-01-02 | Monsanto Technology, Llc | Soybean variety 01084034 |
US11925161B2 (en) | 2021-09-29 | 2024-03-12 | Monsanto Technology Llc | Soybean variety 01091628 |
US11716957B2 (en) | 2021-09-29 | 2023-08-08 | Monsanto Technology, Llc | Soybean variety 01091574 |
US11839192B2 (en) | 2021-09-29 | 2023-12-12 | Monsanto Technology, Llc | Soybean variety 01091705 |
US11716958B2 (en) | 2021-09-29 | 2023-08-08 | Monsanto Technology, Llc | Soybean variety 01091691 |
US11744217B2 (en) | 2021-09-29 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091711 |
US11758869B2 (en) | 2021-09-29 | 2023-09-19 | M.S. Technologies, L.L.C. | Soybean variety 01091607 |
US11744216B2 (en) | 2021-09-29 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091693 |
US11930768B2 (en) | 2021-09-29 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091702 |
US11917970B2 (en) | 2021-09-29 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091697 |
US11917971B2 (en) | 2021-09-29 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091703 |
US12004474B2 (en) | 2021-09-30 | 2024-06-11 | Monsanto Technology Llc | Soybean variety 01091721 |
US11744218B2 (en) | 2021-09-30 | 2023-09-05 | Monsanto Technology, Llc | Soybean variety 01091749 |
US11930769B2 (en) | 2021-09-30 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091763 |
US11751529B2 (en) | 2021-09-30 | 2023-09-12 | M.S. Technologies, L.L.C. | Soybean variety 01091734 |
US12089555B2 (en) | 2021-09-30 | 2024-09-17 | Monsanto Technology Llc | Soybean variety 01091725 |
US12004475B2 (en) | 2021-09-30 | 2024-06-11 | Monsanto Technology Llc | Soybean variety 01091767 |
US11917973B2 (en) | 2021-10-01 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091785 |
US11917972B2 (en) | 2021-10-01 | 2024-03-05 | Monsanto Technology Llc | Soybean variety 01091777 |
US11930770B2 (en) | 2021-10-01 | 2024-03-19 | Monsanto Technology Llc | Soybean variety 01091765 |
US11963509B2 (en) | 2021-10-01 | 2024-04-23 | Monsanto Technology Llc | Soybean variety 01091775 |
US11917974B2 (en) | 2021-10-04 | 2024-03-05 | Monsanto Technology, Llc | Soybean variety 01091792 |
US11839193B2 (en) | 2021-10-04 | 2023-12-12 | Monsanto Technology, Llc | Soybean variety 01091798 |
US11832578B2 (en) | 2021-10-04 | 2023-12-05 | Monsanto Technology, Llc | Soybean variety 01091795 |
US12082547B2 (en) | 2021-10-04 | 2024-09-10 | Monsanto Technology Llc | Soybean variety 01091811 |
US11903358B2 (en) | 2021-10-04 | 2024-02-20 | Monsanto Technology Llc | Soybean variety 01091805 |
Also Published As
Publication number | Publication date |
---|---|
US20110152096A1 (en) | 2011-06-23 |
AU2007256618B2 (en) | 2012-12-06 |
WO2007143690A3 (en) | 2008-10-09 |
US8629328B2 (en) | 2014-01-14 |
BRPI0712682A2 (en) | 2012-06-26 |
EP2023719A2 (en) | 2009-02-18 |
US20080119361A1 (en) | 2008-05-22 |
CA2653739C (en) | 2014-10-07 |
MX2008015743A (en) | 2009-02-13 |
AU2007256618A1 (en) | 2007-12-13 |
CA2653739A1 (en) | 2007-12-13 |
WO2007143690A8 (en) | 2008-06-26 |
WO2007143690A2 (en) | 2007-12-13 |
US7855326B2 (en) | 2010-12-21 |
GT200800275A (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE45048E1 (en) | Methods for weed control using plants having dicamba-degrading enzymatic activity | |
CN101500421B (en) | Methods for weed control | |
US9155300B2 (en) | Methods and compositions for improving plant health | |
CA2662511C (en) | Method for improving plant health by providing dicamba to a dicamba monooxygenase (dmo) transgenic plant or by providing a product of dmo-mediated metabolism to a plant | |
USRE44971E1 (en) | Method for selection of transformed cells | |
CA2667099C (en) | Cropping systems for managing weeds | |
NZ576083A (en) | Cropping systems for managing weeds | |
US20120238451A1 (en) | Herbicide and adjuvant compositions and method of use thereof | |
US20240200091A1 (en) | Use of protoporphyrinogen oxidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |