USRE44556E1 - Electrical power connector - Google Patents

Electrical power connector Download PDF

Info

Publication number
USRE44556E1
USRE44556E1 US12/317,366 US31736608A USRE44556E US RE44556 E1 USRE44556 E1 US RE44556E1 US 31736608 A US31736608 A US 31736608A US RE44556 E USRE44556 E US RE44556E
Authority
US
United States
Prior art keywords
housing
contact
electrical
heat dissipation
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12/317,366
Inventor
Steven E. Minich
Christopher J. Kolivoski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCI Americas Technology LLC
Original Assignee
FCI Americas Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCI Americas Technology LLC filed Critical FCI Americas Technology LLC
Priority to US12/317,366 priority Critical patent/USRE44556E1/en
Assigned to FCI AMERICAS TECHNOLOGY LLC reassignment FCI AMERICAS TECHNOLOGY LLC CONVERSION TO LLC Assignors: FCI AMERICAS TECHNOLOGY, INC.
Application granted granted Critical
Publication of USRE44556E1 publication Critical patent/USRE44556E1/en
Assigned to WILMINGTON TRUST (LONDON) LIMITED reassignment WILMINGTON TRUST (LONDON) LIMITED SECURITY AGREEMENT Assignors: FCI AMERICAS TECHNOLOGY LLC
Assigned to FCI AMERICAS TECHNOLOGY LLC reassignment FCI AMERICAS TECHNOLOGY LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST (LONDON) LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7088Arrangements for power supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/727Coupling devices presenting arrays of contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49149Assembling terminal to base by metal fusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49151Assembling terminal to base by deforming or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/49218Contact or terminal manufacturing by assembling plural parts with deforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4922Contact or terminal manufacturing by assembling plural parts with molding of insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/49222Contact or terminal manufacturing by assembling plural parts forming array of contacts or terminals

Definitions

  • the present invention relates to electrical connectors and, more particularly, to electrical power connectors used to supply power to a printed circuit board.
  • FCI USA, Inc. manufactures and sells printed circuit board power and signal connectors known as PwrBladeTM in a connection system.
  • An example of the PwrBladeTM connector can be seen in U.S. Pat. No. 6,319,075.
  • FCI USA, Inc. also manufactures and sells high-speed signal connectors known as MetralTM.
  • MetralTM high-speed signal connectors
  • a printed circuit board electrical power contact for connecting a daughter printed circuit board to a mating contact on another electrical component.
  • the power contact includes a main section; at least one daughter board electrical contact section extending from the main section; and at least one mating connector contact section extending from the main section.
  • the mating connector contact section includes at least three forward projecting beams. A first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction. Two second ones of the beams are located on opposite sides of the first beam and extend outward in a second opposite direction as the second beams extend forward from the main section. The second beams have contact surfaces facing the second direction. These second beams are preferably one half the width of the first beam so overall normal force is equal in each direction.
  • a system for connecting a daughter printed circuit board to a mother printed circuit board comprises a first power connector adapted to be mounted to the mother printed circuit board.
  • the first power connector has a first housing and first power contacts.
  • the system comprises a second power connector adapted to be mounted to the daughter printed circuit board.
  • the second power connector has second power contacts with substantially flat main sections and outwardly bent contact beams having outward facing contact areas.
  • the second power contacts are adapted to be inserted into the first housing.
  • the system comprises a first signal connector adapted to be mounted to the mother printed circuit board.
  • the first signal connector comprises male signal contacts.
  • the system comprises a second signal connector adapted to be mounted to the daughter printed circuit board.
  • the second signal connector comprises female signal contacts adapted to receive the male signal contacts therein.
  • a method of manufacturing electrical power connectors comprising manufacturing a first type of electrical power terminal from a metal stock material by use of a metal stamping die; inserting an insert tooling punch into the metal stamping die; stamping a second electrical power terminal and a third electrical power terminal substantially simultaneously from the metal stock material when the insert tooling punch is located in the metal stamping die; inserting the first type of electrical power terminal into a first housing to form a first type of electrical power connector, and inserting the second and third types of electrical power terminals into a second housing to form a second type of electrical power connector.
  • the metal stamping die, and optional insertion of the insert tooling punch into the metal stamping die can be used to form the three different electrical power terminals and subsequently form the two different types of electrical power connectors.
  • FIG. 1 is a perspective view of a connector system incorporating features of the present invention and portions of a daughter printed circuit board and a mother printed circuit board;
  • FIG. 2 is a perspective view of the connector system shown in FIG. 1 from an opposite angle;
  • FIG. 3 is a perspective view of the first type of power electrical connector shown in FIG. 1 ;
  • FIG. 4 is a perspective view of the first type of power electrical connector shown in FIG. 3 taken from an opposite angle;
  • FIG. 5 is a perspective view of a first type of the electrical power contact used in the connector shown in FIG. 3 ;
  • FIG. 6 is a perspective view of the second type of power electrical connector shown in FIG. 1 ;
  • FIG. 7 is a perspective view of the second type of power connector shown in FIG. 6 taken from a generally opposite angle;
  • FIG. 8 is a perspective view of a second type of electrical power contact used in the connector shown in FIG. 6 ;
  • FIG. 9 is a perspective view of a third type of electrical power contact used in the connector shown in FIG. 6 ;
  • FIG. 10 is a front and top side perspective view of one of the power electrical connectors attached to the mother board shown in FIG. 1 ;
  • FIG. 11 is a rear and top side perspective view of the power electrical connector shown in FIG. 10 ;
  • FIG. 12 is a perspective view of one of the power contacts used in the power electrical connector shown in FIG. 10 ;
  • FIG. 13A is a perspective view of two of the first type of contacts formed from metal stock material on a carry strip;
  • FIG. 13B is a perspective view of two pairs of the second and third types of contacts formed from metal stock material on a carry strip formed with a same metal stamping die as used to form the first type of contacts shown in FIG. 13A and with use of an additional, optional insert tooling punch;
  • FIG. 14 is a method flow chart of one method of the present invention.
  • FIG. 15 is a method flow chart of another method of the present invention.
  • FIGS. 1 and 2 there are shown perspective views of a connection system 10 incorporating features of the present invention for removably connecting a daughter printed circuit board 12 to a back panel or mother printed circuit board 14 .
  • features of the present invention could be used to connect the daughter printed circuit board to any suitable type of electrical component.
  • the present invention will be described with reference to the exemplary embodiments shown in the drawings, it should be understood that the present invention can be embodied in many alternate forms of embodiments.
  • any suitable size, shape or type of elements or materials could be used.
  • the connection system 10 generally comprises a daughter board connection section 16 and a mother board connection section 18 .
  • the daughter board connection section 16 generally comprises a signal connector 20 , a first power connector 22 , and a second power connector 24 .
  • the three connectors 20 , 22 , 24 are shown stacked adjacent each other with the signal connector 20 located between the two power connectors 22 , 24 .
  • the signal connector 20 generally comprises a housing with a plurality of female signal contacts and possibly ground contacts therein.
  • the signal connector 20 comprises a MetralTM receptacle connector manufactured and sold by FCI USA, Inc.
  • the present invention relates to a high power connector system for power-to-daughter card applications.
  • the system can be used to supply 150 Volts or more.
  • Three power connectors will be described below; namely, a 1 ⁇ 2 right angle header, a 2 ⁇ 2 right angle header, and a 2 ⁇ 2 vertical receptacle that will work with both headers.
  • One of the features of the present invention is the ability to stack the power connectors adjacent to the signal connectors and the modularity of the connector system.
  • a connection section could be provided with two of the first type of connectors 22 located on opposite sides of the signal connector 20 or, with two of the second type of connectors 24 located on opposite sides of the signal connector 20 .
  • the present invention also allows a single type of mother board power connector 142 to be used which can be connected to either the first type of connector 22 or the second type of connector 24 .
  • the second type of connector 24 can provide for 15 amps of current per contact for a total of 60 amps per connector.
  • the bottom side of the connector 24 can be as small as a half-inch, for example, such that the amperage density can be provided at about 60 amps per half inch.
  • This increased amperage density relative to conventional designs, can be provided due to the higher conductivity of the high performance copper alloy and, due to the increased air flow through the connector housings 26 , 74 , 144 (see FIGS. 4 , 7 and 10 ).
  • Another feature of the present invention is the ability for the power connectors to meet specification standards for a given voltage for secondary circuit power card-to-back panel interfaces. More specifically, it has been found that implementation of the present invention can meet the specifications for UL 60950, IEC 61984 and IEC 664-1 for a 150-160 Volt secondary circuit power card-to-back panel connection.
  • the first power connector 22 generally comprises a housing 26 and two electrical power contacts or terminals 28 .
  • the housing 26 is preferably comprised of a molded plastic or polymer material.
  • the housing 26 generally comprises a rear section 30 and a front section 32 .
  • the rear section 30 generally comprises contact mounting areas 34 formed along air flow passages 36 .
  • the air flow passages 36 form a majority of a cross sectional size of the rear section 30 .
  • the air flow passages 36 comprise holes through a top side 38 and a rear side 40 and bottom side of the rear section 30 .
  • the bottom side of the rear section 30 includes mounting posts 42 for mounting the housing on the daughter printed circuit board 12 .
  • any suitable means for mounting the housing 26 on the daughter printed circuit board could be provided.
  • the front section 32 generally comprises a mating connector receiving area 44 , air passage holes 46 , 48 at top and bottom sides of the front section, and mating connector aligner receiving grooves 50 .
  • the mating connector receiving area 44 is sized and shaped to receive a portion of a mating connector of the mother board connection section 18 .
  • the mating connector aligner receiving grooves 50 in the embodiment shown, are located on a top side and two lateral sides of the front section 32 .
  • the air passage holes 46 , 48 are provided to allow air to flow into and out of the mating connector receiving area 44 .
  • each power contact 28 generally comprises a main section 52 , daughter board electrical contact sections 54 , and mating connector contact sections 56 .
  • the power contact 28 comprises two of the mating connector contact sections 56 .
  • the power contact 28 could comprise more or less than two of the mating connector contact sections.
  • the power contact 28 is preferably comprised of a one-piece metal member which has been stamped and subsequently plated; at least at some of its contact surfaces.
  • the power contact 28 is substantially flat except at the mating connector contact sections 56 .
  • the daughter board electrical contact sections 54 comprise a plurality of through-hole contact tails. However, in alternate embodiments, any suitable type of daughter board electrical contact sections could be provided.
  • the main section 52 comprises a first retention section 66 located at a rear end of the main section and a second retention section 68 extending from a bottom side of the main section.
  • the retention sections 66 , 68 engage with the housing 26 to fixedly hold the main section 52 in the housing.
  • any suitable system for retaining the power contacts with the housing could be provided.
  • the main section 52 comprises a recess 70 at the first retention section 66 .
  • a crossbar 72 at the rear end of the housing 26 is received in the recess 70 .
  • the contacts 28 are loaded into the housing 26 through the front end of the housing; through the mating connector receiving area 44 .
  • the mating connector contact sections 56 are substantially identical to each other. However, in alternate embodiments, the mating connector contact sections could be different from each other. Each mating connector contact section 56 generally comprises three forward projecting cantilevered beams; a first beam 58 and two second beams 60 . However, in alternate embodiments, the mating connector contact section could comprise more or less than three cantilevered contact beams.
  • the first beam 58 extends outward in a first direction as the first beam extends forward from the main section 52 .
  • the first beam 58 has a contact surface 62 facing outward in the first direction.
  • the second beams 60 are located on opposite top and bottom sides of the first beam 58 .
  • the second beams 60 extend outward in a second opposite direction as the second beams extend forward from the main section 52 .
  • the second beams 60 have contact surfaces 64 facing outward in the second direction.
  • the beams 58 , 60 are bent outward about 15 degrees from a central plain of the power contact. However, in alternate embodiments, any suitable angle could be provided. In the embodiment shown, the front ends of the beams 58 , 60 are curved inward and also comprise coined surfaces on their outer contact surfaces 62 , 64 . When the power contacts are inserted into the housing 26 , the mating connector contact sections 56 are located in the mating connector receiving area 44 .
  • the power contact is comprised of a highly conductive high-performance copper alloy material.
  • Some high performance copper alloy materials are highly conductivity material.
  • a highly conductive high-performance copper alloy material is sold under the descriptor C18080 by Olin Corporation.
  • a highly conductive high-performance copper alloy material may have a minimum bend radius to material thickness ratio (R/T) of greater than one; whereas common conventional metal conductors may have a R/T of less than 1 ⁇ 2.
  • R/T minimum bend radius to material thickness ratio
  • common conventional metal conductors may have a R/T of less than 1 ⁇ 2.
  • a highly conductive high performance copper alloy material may not be as malleable as other common electrically conductive materials used for electrical contacts.
  • an electrical contact formed with a highly conductive high-performance copper alloy material may be more difficult to form in conventional contact stamping and forming dies.
  • the second power connector 24 generally comprises a housing 74 and four electrical power contacts or terminals 76 , 78 .
  • the housing 74 is preferably comprised of a molded plastic or polymer material.
  • the housing 74 generally comprises a rear section 80 and a front section 82 .
  • the rear section 80 generally comprises contact mounting areas 84 formed along air flow passages 86 .
  • the air flow passages 86 form a majority of a cross sectional size of the rear section 80 .
  • the air flow passages 86 comprise holes through a top side 88 and a rear side 90 and bottom side of the rear section 80 .
  • the bottom side of the rear section 80 includes mounting posts 92 for mounting the housing on the daughter printed circuit board 12 .
  • the housing 74 is substantially the same as the housing 26 except for the shape of the contact mounting areas 84 .
  • the front section 82 is identical to the front section 32 . However, in alternate embodiments, the front section 82 could comprise a different shape.
  • the front section 82 generally comprises a mating connector receiving area 94 , air passage holes 96 , 98 at top and bottom sides of the front section, and mating connector aligner receiving grooves 100 .
  • the mating connector receiving area 94 is sized and shaped to receive a portion of a mating connector of the mother board connection section 18 .
  • the mating connector aligner receiving grooves 100 in the embodiment shown, are located on a top side and two lateral sides of the front section 82 .
  • the air passage holes 96 , 98 are provided to allow air to flow into and out of the mating connector receiving area 94 .
  • the connector 24 comprises four power contacts 76 , 78 .
  • the connector could comprise more or less than four power contacts.
  • the power contacts are provided in two sets, each set comprising a second type of contact 76 and a third type of contact 78 .
  • the two contacts in each set are aligned with each other in a same plane as an upper contact and a lower contact.
  • the second and third types of power contacts 76 , 78 are each preferably comprised of a one-piece metal member which has been stamped and subsequently plated.
  • the power contact 76 , 78 are substantially flat except at their mating connector contact sections.
  • the daughter board electrical contact sections comprise a plurality of through-hole contact tails.
  • each second type of power contact 78 generally comprises a main section 102 , daughter board electrical contact sections 104 , and mating connector contact section 106 .
  • the power contact 78 comprises only one mating connector contact section 106 .
  • the second type of power contact 78 could comprise more than one mating connector contact section.
  • the main section 102 comprises a retention section 118 located at a bottom side of the main section.
  • the retention sections engage with the housing 26 to fixedly hold the main section 102 in the housing.
  • the contacts 78 are loaded into the housing 74 through the rear end of the housing.
  • each third type of power contact 76 generally comprises a main section 122 , daughter board electrical contact sections 124 , and a mating connector contact section 126 .
  • the power contact 76 comprises only one mating connector contact section 126 .
  • the second type of power contact 76 could comprise more than one mating connector contact section.
  • the main section 122 comprises a retention section 138 located at a bottom side of the main section.
  • the retention sections engage with the housing 74 to fixedly hold the main section 122 in the housing.
  • the contacts 76 are loaded into the housing 74 through the front end of the housing; through the mating connector receiving area 94 .
  • the mating connector contact sections 106 , 126 are identical to each other and to the mating connector contact section 56 . However, in alternate embodiments, the mating connector contact sections could be different from each other.
  • the mating connector contact sections 106 , 126 are located in the mating connector receiving area 94 .
  • Each mating connector contact section 106 , 126 generally comprises the three forward projecting cantilevered beams; the first beam 58 and the two second beams 60 .
  • the mating connector contact section could comprise more or less than three cantilevered contact beams.
  • the first beam 58 extends outward in a first direction as the first beam extends forward from the main section.
  • the first beam 58 has a contact surface 62 facing the first direction.
  • the second beams 60 are located on opposite top and bottom sides of the first beam 58 .
  • the second beams 60 extend outward in a second opposite direction as the second beams extend forward from the main section 52 .
  • the second beams 60 have contact surfaces 64 facing the second direction.
  • the beams 58 , 60 are bent outward about 15 degrees from a central plain of the power contacts. However, in alternate embodiments, any suitable angle could be provided. In the embodiment shown, the front ends of the beams 58 , 60 are curved inward and also comprise coined surfaces on their outer contact surfaces 62 , 64 . The front ends of the beams 58 , 60 could comprise any suitable type of shape.
  • the power contacts 76 , 78 are comprised of a high-performance copper alloy material.
  • a highly conductive high performance copper alloy material can have a higher conductivity, but might not be as malleable as other common electrically conductive materials used for electrical contacts.
  • an electrical contact formed with a highly conductive high-performance copper alloy material might be more difficult to form in a conventional contact stamping and forming die.
  • the shape of the mating connector contact sections 56 , 106 , 126 has been specifically designed to be relatively easily formed by a stamping process even though the stock material used to form the contacts comprises a relatively low malleability, high conductivity high-performance copper alloy material.
  • a feature of the present invention is the contact geometry at the mating connector contact sections 56 , 106 , 126 .
  • the contact geometry provides the ability to raise or lower the normal force of the contact beams 58 , 60 on the contacts 146 by merely lengthening or shortening the length of the beams.
  • the contact geometry requires only minimal forming at the mating interface. This is extremely beneficial for use with relatively low malleability materials, such as some high-performance copper alloys.
  • the contact geometry and the minimized forming needed to be done at the mating interface 56 , 106 , 126 reduces tooling costs, reduces material costs, maximizes voltage rating, and allows the housing to be designed to permit more air flow through the mated connector system.
  • the header terminal design can be adjusted to optimize the normal force, by adjusting beam length, because of the opposing beam design. Two small beams 60 opposing one larger beam 58 causes the net bending moment on the housing to be minimized.
  • one feature of the present invention is the increased amperage density which can be provided by the power connectors.
  • the second type of connector 24 can provide for 15 amps of current per contact for a total of 60 amps per connector.
  • the bottom side of the connector 24 can be as small as a half-inch, for example, such that the amperage density can be provided at about 60 amps per half inch.
  • This increased amperage density relative to conventional designs, can be provided due to the higher conductivity of the high performance copper alloy and, due to the increased air flow through the connector housings 26 , 74 , 144 (see FIGS. 4 , 7 and 10 ).
  • another feature of the present invention is the ability for the power connectors to meet specification standards for a given voltage for secondary circuit power card-to-back panel interfaces. More specifically, it has been found that implementation of the present invention can meet the specifications for UL 60950, IEC 61984 and IEC 664-1 for a 150-160 Volt secondary circuit power card-to-back panel connection.
  • the mother board connection section 18 (see FIGS. 1 and 2 ) generally comprises a signal connector 140 and two power connectors 142 .
  • the three connectors 140 , 142 are shown stacked adjacent each other with the signal connector 140 located between the two power connectors 142 .
  • the signal connector 140 generally comprises a header connector with a housing with a plurality of male signal contacts and possibly ground contacts.
  • the signal connector 140 comprises a MetralTM header connector manufactured and sold by FCI USA, Inc.
  • the power connectors 142 each generally comprises a housing 144 and electrical power contacts or terminals 146 .
  • the housing 142 is preferably comprised of a molded plastic or polymer material.
  • the housing 142 generally comprises four receiving areas 148 ; one for each of the mating connector contact sections of the connector 22 or 24 .
  • the housing could comprise more or less than four receiving areas.
  • the housing 144 also comprises three aligners 154 located on three respective sides of the housing and projecting from a front end of the housing.
  • the aligners 154 are sized and shaped to be received in the aligner receiving areas 50 , 100 of the connector 22 or 24 .
  • the aligners 154 function as protruding guide features to ensure that both mating housings are properly positioned before mating begins.
  • Top and bottom sides of the housing 144 also comprise holes 156 therethrough.
  • the holes 156 are at least partially aligned with the holes 46 , 48 , or 96 , 98 . This allows air to flow through the holes into and out of the mating connector receiving area 44 and inside the connector 142 .
  • the housing 144 is cored to allow for air flow through the mating connector system. The increased air flow allows for increased heat dissipation from the power contacts 28 , 76 , 78 .
  • the power connector 142 comprises eight of the power contacts 146 .
  • Each power contact 146 comprises mother board mounting sections 150 and a main section 152 .
  • the power contacts 146 are preferably formed from a flat stock material and, after being formed, each power contact 146 comprises a general flat shape.
  • two of the power contacts 146 are inserted into each one of the receiving areas 148 . More specifically, the two power contacts 146 are inserted adjacent opposite sides of each receiving area 148 . This forms an area between the two power contacts 146 in each receiving area 148 , located between the opposing interior facing contact surfaces of the two power contacts, which is sized and shaped to receive one of the mating connector contact sections 56 , 106 or 126 .
  • the present invention provides an inverse connection system.
  • the two signal connectors 20 , 140 mate with each other and the two power connectors 22 , 24 mate with respective ones of the power connectors 142 .
  • the mating connector contact sections 56 , 106 , 126 project into the receiving areas 148 .
  • the contact surfaces 62 of the first beams 58 contact a first one of the pair of power contacts 146
  • the contact surfaces 64 of the second beams 60 contact a second one of the pair of power contacts in the same receiving area 148 .
  • the first contact beams 58 are deflected slightly inward and the second contact beams 60 are also deflected slightly inward in an opposite direction relative to the first contact beams.
  • the mating connector contact sections 56 , 106 , 126 make electrical contact on two inwardly facing sides with the pairs of power contacts in the mating power connector 142 .
  • the contacts share numerous similarities.
  • a same metal stamping die is used to form all of the contacts.
  • the apparatus used to stamp the metal stock material includes an optional insert tooling punch which can be inserted into the metal stamping die.
  • the metal stamping die can form the first type of electrical power contact 28 when the insert tooling punch is not inserted into the metal stamping die.
  • the insert tooling punch is inserted into the metal stamping die, then, when the metal stock material is stamped by both the metal stamping die and the insert tooling punch, the second electrical power contact 78 and the third electrical power contact 76 are substantially simultaneously formed from the metal stock material.
  • FIG. 13A shows a perspective view of two of the first type of contacts 28 formed from metal stock material on a carry strip 116
  • FIG. 13B shows a perspective view of two pairs of the second and third types of contacts 76 , 78 formed from metal stock material on a carry strip 116 formed with a same metal stamping die as used to form the first type of contacts 28 shown in FIG. 13A and with use of an additional, optional insert tooling punch.
  • the insert tooling punch removes sections 160 , 161 to separate the contacts 76 , 78 .
  • the metal stamping die and the optional insert tooling punch can be used to form the three different types of electrical power contacts and subsequently form the two different types of electrical power connectors 22 , 24 .
  • the stock material is inserted 160 into the stamping apparatus.
  • the stamping apparatus then stamps 162 the stock material without the insert tooling punch inserted in the metal stamping die.
  • the formed first type of contact is then plated 164 and inserted 166 into the first type of housing. This forms the first type of connector 22 .
  • FIG. 15 illustrates the steps for forming the second type of connector 24 .
  • the insert tooling punch is inserted 168 into the metal stamping die.
  • the stock material is inserted 170 into the stamping apparatus.
  • the stamping apparatus than stamps 172 the stock material with both the metal stamping die and the insert tooling punch.
  • This forms the second and third types of contacts 78 , 76 which are subsequently plated 174 .
  • the second and third types of contacts are then inserted 176 into the second type of housing to form the second type of power connector 24 .
  • This method illustrates merely one form of method that can be used to form power connectors incorporating features of the present invention. In alternate embodiments, any suitable method for forming the power connectors as described above could be used.
  • the present invention could be embodied or used with other alternate embodiments than described above.
  • the daughter board connection section 16 could comprise more or less than the three connectors, and one or more of the connectors might not be stacked adjacent the other connectors.
  • the housings for two or more of the connectors might be formed by a one-piece molded housing.
  • the signal connector 20 could comprise any suitable type of signal connector.
  • the air flow passages 36 might not form a majority of a cross sectional size of the rear section 30 .
  • the air flow passages 36 in the rear section 30 could also comprise any suitable size and shape. Any suitable system for loading the contacts into the housing could be provided.
  • the front ends of the beams 58 , 60 could comprise any suitable type of shape.
  • Features of the present invention could be incorporated into vertical headers, right angle receptacles, and power connectors with different contact arrays other than the 1 ⁇ 2 and 2 ⁇ 2 contact arrays described above.

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

A printed circuit board electrical power contact for connecting a daughter printed circuit hoard to a mating contact on another electrical component. The power contact includes a main section; at least one daughter board electrical contact section extending from the main section; and at least one mating connector contact section extending from the main section. The mating connector contact section includes at least three forward projecting beams. A first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction. Two second ones of the beams are located on opposite sides of the first beam and extend outward in a second opposite direction as the second beams extend forward from the main section. The second beams have contact surfaces facing the second direction.

Description

CROSS REFERENCE TO RELATED APPLICATION
This is a divisional patent application of co-pending U.S. patent application Ser. No. 10/969,166 filed Oct. 17, 2004, now U.S. Pat. No. 7,065,871, which is a divisional patent application of U.S. patent application Ser. No. 10/155,819 filed May 23, 2002, now U.S. Pat. No. 6,814,590.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connectors and, more particularly, to electrical power connectors used to supply power to a printed circuit board.
2. Brief Description of Prior Developments
FCI USA, Inc. manufactures and sells printed circuit board power and signal connectors known as PwrBlade™ in a connection system. An example of the PwrBlade™ connector can be seen in U.S. Pat. No. 6,319,075. FCI USA, Inc. also manufactures and sells high-speed signal connectors known as Metral™. There is a desire to provide a printed circuit board power connector which can be stacked alongside a Metral™ connector, or a similar connector, such as the connector shown in U.S. Pat. No. 5,286,212 or a Future-Bus™ connector.
There is also a desire to increase amperage density of printed circuit board power connectors. For example, there is a desire to increase amperage density to about 60 amps per half inch in a card-to-back panel interface. Connector specifications for secondary circuits in card-to-back panel interfaces, such as standards for clearance and creepage for a given Voltage, also exist such as in UL 60950, IEC 61984 and IEC 664-1. There is a desire to provide a printed circuit board power connector system which can meet these standards for higher voltage connections, such as 150 volts or more for example.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, a printed circuit board electrical power contact for connecting a daughter printed circuit board to a mating contact on another electrical component is provided. The power contact includes a main section; at least one daughter board electrical contact section extending from the main section; and at least one mating connector contact section extending from the main section. The mating connector contact section includes at least three forward projecting beams. A first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction. Two second ones of the beams are located on opposite sides of the first beam and extend outward in a second opposite direction as the second beams extend forward from the main section. The second beams have contact surfaces facing the second direction. These second beams are preferably one half the width of the first beam so overall normal force is equal in each direction.
In accordance with another aspect of the present invention, a system for connecting a daughter printed circuit board to a mother printed circuit board is provided. The system comprises a first power connector adapted to be mounted to the mother printed circuit board. The first power connector has a first housing and first power contacts. The system comprises a second power connector adapted to be mounted to the daughter printed circuit board. The second power connector has second power contacts with substantially flat main sections and outwardly bent contact beams having outward facing contact areas. The second power contacts are adapted to be inserted into the first housing. The system comprises a first signal connector adapted to be mounted to the mother printed circuit board. The first signal connector comprises male signal contacts. The system comprises a second signal connector adapted to be mounted to the daughter printed circuit board. The second signal connector comprises female signal contacts adapted to receive the male signal contacts therein.
In accordance with one method of the present invention, a method of manufacturing electrical power connectors is provided comprising manufacturing a first type of electrical power terminal from a metal stock material by use of a metal stamping die; inserting an insert tooling punch into the metal stamping die; stamping a second electrical power terminal and a third electrical power terminal substantially simultaneously from the metal stock material when the insert tooling punch is located in the metal stamping die; inserting the first type of electrical power terminal into a first housing to form a first type of electrical power connector, and inserting the second and third types of electrical power terminals into a second housing to form a second type of electrical power connector. The metal stamping die, and optional insertion of the insert tooling punch into the metal stamping die, can be used to form the three different electrical power terminals and subsequently form the two different types of electrical power connectors.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and other features of the present invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
FIG. 1 is a perspective view of a connector system incorporating features of the present invention and portions of a daughter printed circuit board and a mother printed circuit board;
FIG. 2 is a perspective view of the connector system shown in FIG. 1 from an opposite angle;
FIG. 3 is a perspective view of the first type of power electrical connector shown in FIG. 1;
FIG. 4 is a perspective view of the first type of power electrical connector shown in FIG. 3 taken from an opposite angle;
FIG. 5 is a perspective view of a first type of the electrical power contact used in the connector shown in FIG. 3;
FIG. 6 is a perspective view of the second type of power electrical connector shown in FIG. 1;
FIG. 7 is a perspective view of the second type of power connector shown in FIG. 6 taken from a generally opposite angle;
FIG. 8 is a perspective view of a second type of electrical power contact used in the connector shown in FIG. 6;
FIG. 9 is a perspective view of a third type of electrical power contact used in the connector shown in FIG. 6;
FIG. 10 is a front and top side perspective view of one of the power electrical connectors attached to the mother board shown in FIG. 1;
FIG. 11 is a rear and top side perspective view of the power electrical connector shown in FIG. 10;
FIG. 12 is a perspective view of one of the power contacts used in the power electrical connector shown in FIG. 10;
FIG. 13A is a perspective view of two of the first type of contacts formed from metal stock material on a carry strip;
FIG. 13B is a perspective view of two pairs of the second and third types of contacts formed from metal stock material on a carry strip formed with a same metal stamping die as used to form the first type of contacts shown in FIG. 13A and with use of an additional, optional insert tooling punch;
FIG. 14 is a method flow chart of one method of the present invention; and
FIG. 15 is a method flow chart of another method of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIGS. 1 and 2, there are shown perspective views of a connection system 10 incorporating features of the present invention for removably connecting a daughter printed circuit board 12 to a back panel or mother printed circuit board 14. In alternate embodiments, features of the present invention could be used to connect the daughter printed circuit board to any suitable type of electrical component. Although the present invention will be described with reference to the exemplary embodiments shown in the drawings, it should be understood that the present invention can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape or type of elements or materials could be used.
The connection system 10 generally comprises a daughter board connection section 16 and a mother board connection section 18. The daughter board connection section 16 generally comprises a signal connector 20, a first power connector 22, and a second power connector 24. In the embodiment shown, the three connectors 20, 22, 24 are shown stacked adjacent each other with the signal connector 20 located between the two power connectors 22, 24.
The signal connector 20 generally comprises a housing with a plurality of female signal contacts and possibly ground contacts therein. In a preferred embodiment, the signal connector 20 comprises a Metral™ receptacle connector manufactured and sold by FCI USA, Inc.
The present invention relates to a high power connector system for power-to-daughter card applications. For example, the system can be used to supply 150 Volts or more. Three power connectors will be described below; namely, a 1×2 right angle header, a 2×2 right angle header, and a 2×2 vertical receptacle that will work with both headers.
One of the features of the present invention is the ability to stack the power connectors adjacent to the signal connectors and the modularity of the connector system. For example, a connection section could be provided with two of the first type of connectors 22 located on opposite sides of the signal connector 20 or, with two of the second type of connectors 24 located on opposite sides of the signal connector 20. The present invention also allows a single type of mother board power connector 142 to be used which can be connected to either the first type of connector 22 or the second type of connector 24.
Another feature of the present invention is the increased amperage density which can be provided by the power connectors. For example, the second type of connector 24 can provide for 15 amps of current per contact for a total of 60 amps per connector. The bottom side of the connector 24 can be as small as a half-inch, for example, such that the amperage density can be provided at about 60 amps per half inch. This increased amperage density, relative to conventional designs, can be provided due to the higher conductivity of the high performance copper alloy and, due to the increased air flow through the connector housings 26, 74, 144 (see FIGS. 4, 7 and 10).
Another feature of the present invention is the ability for the power connectors to meet specification standards for a given voltage for secondary circuit power card-to-back panel interfaces. More specifically, it has been found that implementation of the present invention can meet the specifications for UL 60950, IEC 61984 and IEC 664-1 for a 150-160 Volt secondary circuit power card-to-back panel connection.
Referring also to FIGS. 3-5, the first power connector 22 generally comprises a housing 26 and two electrical power contacts or terminals 28. The housing 26 is preferably comprised of a molded plastic or polymer material. The housing 26 generally comprises a rear section 30 and a front section 32. The rear section 30 generally comprises contact mounting areas 34 formed along air flow passages 36. In the embodiment shown, the air flow passages 36 form a majority of a cross sectional size of the rear section 30.
The air flow passages 36 comprise holes through a top side 38 and a rear side 40 and bottom side of the rear section 30. The bottom side of the rear section 30 includes mounting posts 42 for mounting the housing on the daughter printed circuit board 12. However, in alternate embodiments, any suitable means for mounting the housing 26 on the daughter printed circuit board could be provided.
The front section 32 generally comprises a mating connector receiving area 44, air passage holes 46, 48 at top and bottom sides of the front section, and mating connector aligner receiving grooves 50. The mating connector receiving area 44 is sized and shaped to receive a portion of a mating connector of the mother board connection section 18. The mating connector aligner receiving grooves 50, in the embodiment shown, are located on a top side and two lateral sides of the front section 32. The air passage holes 46, 48 are provided to allow air to flow into and out of the mating connector receiving area 44.
The power contacts 28, in the embodiment shown, are identical to each other. However, in alternate embodiments, the power contacts could be different from one another. The embodiment shown comprises two of the power contacts 28. In alternate embodiments the power connector could comprise more than two power contacts. As seen best in FIG. 5, each power contact 28 generally comprises a main section 52, daughter board electrical contact sections 54, and mating connector contact sections 56. The power contact 28 comprises two of the mating connector contact sections 56. However, in alternate embodiments, the power contact 28 could comprise more or less than two of the mating connector contact sections.
The power contact 28 is preferably comprised of a one-piece metal member which has been stamped and subsequently plated; at least at some of its contact surfaces. The power contact 28 is substantially flat except at the mating connector contact sections 56. In the embodiment shown, the daughter board electrical contact sections 54 comprise a plurality of through-hole contact tails. However, in alternate embodiments, any suitable type of daughter board electrical contact sections could be provided.
The main section 52 comprises a first retention section 66 located at a rear end of the main section and a second retention section 68 extending from a bottom side of the main section. The retention sections 66, 68 engage with the housing 26 to fixedly hold the main section 52 in the housing. However, in alternate embodiments, any suitable system for retaining the power contacts with the housing could be provided. The main section 52 comprises a recess 70 at the first retention section 66. A crossbar 72 at the rear end of the housing 26 is received in the recess 70. In the embodiment shown, the contacts 28 are loaded into the housing 26 through the front end of the housing; through the mating connector receiving area 44.
The mating connector contact sections 56 are substantially identical to each other. However, in alternate embodiments, the mating connector contact sections could be different from each other. Each mating connector contact section 56 generally comprises three forward projecting cantilevered beams; a first beam 58 and two second beams 60. However, in alternate embodiments, the mating connector contact section could comprise more or less than three cantilevered contact beams.
The first beam 58 extends outward in a first direction as the first beam extends forward from the main section 52. The first beam 58 has a contact surface 62 facing outward in the first direction. The second beams 60 are located on opposite top and bottom sides of the first beam 58. The second beams 60 extend outward in a second opposite direction as the second beams extend forward from the main section 52. The second beams 60 have contact surfaces 64 facing outward in the second direction.
The beams 58, 60 are bent outward about 15 degrees from a central plain of the power contact. However, in alternate embodiments, any suitable angle could be provided. In the embodiment shown, the front ends of the beams 58, 60 are curved inward and also comprise coined surfaces on their outer contact surfaces 62, 64. When the power contacts are inserted into the housing 26, the mating connector contact sections 56 are located in the mating connector receiving area 44.
In a preferred embodiment, the power contact is comprised of a highly conductive high-performance copper alloy material. Some high performance copper alloy materials are highly conductivity material. One example of a highly conductive high-performance copper alloy material is sold under the descriptor C18080 by Olin Corporation. However, in alternate embodiments, other types of materials could be used. A highly conductive high-performance copper alloy material may have a minimum bend radius to material thickness ratio (R/T) of greater than one; whereas common conventional metal conductors may have a R/T of less than ½. However, a highly conductive high performance copper alloy material may not be as malleable as other common electrically conductive materials used for electrical contacts. Thus, an electrical contact formed with a highly conductive high-performance copper alloy material may be more difficult to form in conventional contact stamping and forming dies.
Referring also to FIGS. 6-9, the second power connector 24 generally comprises a housing 74 and four electrical power contacts or terminals 76, 78. The housing 74 is preferably comprised of a molded plastic or polymer material. The housing 74 generally comprises a rear section 80 and a front section 82. The rear section 80 generally comprises contact mounting areas 84 formed along air flow passages 86.
In the embodiment shown, the air flow passages 86 form a majority of a cross sectional size of the rear section 80. The air flow passages 86 comprise holes through a top side 88 and a rear side 90 and bottom side of the rear section 80. The bottom side of the rear section 80 includes mounting posts 92 for mounting the housing on the daughter printed circuit board 12. In the embodiment shown, the housing 74 is substantially the same as the housing 26 except for the shape of the contact mounting areas 84.
The front section 82 is identical to the front section 32. However, in alternate embodiments, the front section 82 could comprise a different shape. The front section 82 generally comprises a mating connector receiving area 94, air passage holes 96, 98 at top and bottom sides of the front section, and mating connector aligner receiving grooves 100. The mating connector receiving area 94 is sized and shaped to receive a portion of a mating connector of the mother board connection section 18. The mating connector aligner receiving grooves 100, in the embodiment shown, are located on a top side and two lateral sides of the front section 82. The air passage holes 96, 98 are provided to allow air to flow into and out of the mating connector receiving area 94.
As noted above, the connector 24 comprises four power contacts 76, 78. However, in alternate embodiments, the connector could comprise more or less than four power contacts. The power contacts are provided in two sets, each set comprising a second type of contact 76 and a third type of contact 78. The two contacts in each set are aligned with each other in a same plane as an upper contact and a lower contact.
The second and third types of power contacts 76, 78 are each preferably comprised of a one-piece metal member which has been stamped and subsequently plated. The power contact 76, 78 are substantially flat except at their mating connector contact sections. In the embodiment shown, the daughter board electrical contact sections comprise a plurality of through-hole contact tails.
As seen best in FIG. 8, each second type of power contact 78 generally comprises a main section 102, daughter board electrical contact sections 104, and mating connector contact section 106. The power contact 78 comprises only one mating connector contact section 106. However, in alternate embodiments, the second type of power contact 78 could comprise more than one mating connector contact section.
The main section 102 comprises a retention section 118 located at a bottom side of the main section. The retention sections engage with the housing 26 to fixedly hold the main section 102 in the housing. In the embodiment shown, the contacts 78 are loaded into the housing 74 through the rear end of the housing.
As seen best in FIG. 9, each third type of power contact 76 generally comprises a main section 122, daughter board electrical contact sections 124, and a mating connector contact section 126. The power contact 76 comprises only one mating connector contact section 126. However, in alternate embodiments, the second type of power contact 76 could comprise more than one mating connector contact section.
The main section 122 comprises a retention section 138 located at a bottom side of the main section. The retention sections engage with the housing 74 to fixedly hold the main section 122 in the housing. In the embodiment shown, the contacts 76 are loaded into the housing 74 through the front end of the housing; through the mating connector receiving area 94.
The mating connector contact sections 106, 126 are identical to each other and to the mating connector contact section 56. However, in alternate embodiments, the mating connector contact sections could be different from each other. When the power contacts 76, 78 are inserted into the housing 74, the mating connector contact sections 106, 126 are located in the mating connector receiving area 94. Each mating connector contact section 106, 126 generally comprises the three forward projecting cantilevered beams; the first beam 58 and the two second beams 60. However, in alternate embodiments, the mating connector contact section could comprise more or less than three cantilevered contact beams.
The first beam 58 extends outward in a first direction as the first beam extends forward from the main section. The first beam 58 has a contact surface 62 facing the first direction. The second beams 60 are located on opposite top and bottom sides of the first beam 58. The second beams 60 extend outward in a second opposite direction as the second beams extend forward from the main section 52. The second beams 60 have contact surfaces 64 facing the second direction.
The beams 58, 60 are bent outward about 15 degrees from a central plain of the power contacts. However, in alternate embodiments, any suitable angle could be provided. In the embodiment shown, the front ends of the beams 58, 60 are curved inward and also comprise coined surfaces on their outer contact surfaces 62, 64. The front ends of the beams 58, 60 could comprise any suitable type of shape.
In a preferred embodiment, the power contacts 76, 78 are comprised of a high-performance copper alloy material. However, in alternate embodiments, other types of materials could be used. As noted above, a highly conductive high performance copper alloy material can have a higher conductivity, but might not be as malleable as other common electrically conductive materials used for electrical contacts. Thus, an electrical contact formed with a highly conductive high-performance copper alloy material might be more difficult to form in a conventional contact stamping and forming die. However, the shape of the mating connector contact sections 56, 106, 126 has been specifically designed to be relatively easily formed by a stamping process even though the stock material used to form the contacts comprises a relatively low malleability, high conductivity high-performance copper alloy material.
A feature of the present invention is the contact geometry at the mating connector contact sections 56, 106, 126. The contact geometry provides the ability to raise or lower the normal force of the contact beams 58, 60 on the contacts 146 by merely lengthening or shortening the length of the beams. The contact geometry requires only minimal forming at the mating interface. This is extremely beneficial for use with relatively low malleability materials, such as some high-performance copper alloys.
Compared to a conventional design, such as disclosed in the U.S. Pat. No. 6,319,075, the contact geometry and the minimized forming needed to be done at the mating interface 56, 106, 126, reduces tooling costs, reduces material costs, maximizes voltage rating, and allows the housing to be designed to permit more air flow through the mated connector system. The header terminal design can be adjusted to optimize the normal force, by adjusting beam length, because of the opposing beam design. Two small beams 60 opposing one larger beam 58 causes the net bending moment on the housing to be minimized.
As noted above, one feature of the present invention is the increased amperage density which can be provided by the power connectors. For example, the second type of connector 24 can provide for 15 amps of current per contact for a total of 60 amps per connector. The bottom side of the connector 24 can be as small as a half-inch, for example, such that the amperage density can be provided at about 60 amps per half inch. This increased amperage density, relative to conventional designs, can be provided due to the higher conductivity of the high performance copper alloy and, due to the increased air flow through the connector housings 26, 74, 144 (see FIGS. 4, 7 and 10).
Also as noted above, another feature of the present invention is the ability for the power connectors to meet specification standards for a given voltage for secondary circuit power card-to-back panel interfaces. More specifically, it has been found that implementation of the present invention can meet the specifications for UL 60950, IEC 61984 and IEC 664-1 for a 150-160 Volt secondary circuit power card-to-back panel connection.
The mother board connection section 18 (see FIGS. 1 and 2) generally comprises a signal connector 140 and two power connectors 142. In the embodiment shown, the three connectors 140, 142 are shown stacked adjacent each other with the signal connector 140 located between the two power connectors 142.
The signal connector 140 generally comprises a header connector with a housing with a plurality of male signal contacts and possibly ground contacts. In a preferred embodiment, the signal connector 140 comprises a Metral™ header connector manufactured and sold by FCI USA, Inc.
Referring also to FIGS. 10-12, the power connectors 142 each generally comprises a housing 144 and electrical power contacts or terminals 146. The housing 142 is preferably comprised of a molded plastic or polymer material. The housing 142 generally comprises four receiving areas 148; one for each of the mating connector contact sections of the connector 22 or 24. However, in alternate embodiments, the housing could comprise more or less than four receiving areas. In the embodiment shown, the housing 144 also comprises three aligners 154 located on three respective sides of the housing and projecting from a front end of the housing. The aligners 154 are sized and shaped to be received in the aligner receiving areas 50, 100 of the connector 22 or 24. The aligners 154 function as protruding guide features to ensure that both mating housings are properly positioned before mating begins.
Top and bottom sides of the housing 144 also comprise holes 156 therethrough. When one of the connectors 22 or 24 are connected to one of the connectors 142, the holes 156 are at least partially aligned with the holes 46, 48, or 96, 98. This allows air to flow through the holes into and out of the mating connector receiving area 44 and inside the connector 142. In a preferred embodiment, the housing 144 is cored to allow for air flow through the mating connector system. The increased air flow allows for increased heat dissipation from the power contacts 28, 76, 78.
In the embodiment shown, the power connector 142 comprises eight of the power contacts 146. However, in alternate embodiments, more or less than eight power contacts could be provided. Each power contact 146 comprises mother board mounting sections 150 and a main section 152. The power contacts 146 are preferably formed from a flat stock material and, after being formed, each power contact 146 comprises a general flat shape.
In the embodiment shown, two of the power contacts 146 are inserted into each one of the receiving areas 148. More specifically, the two power contacts 146 are inserted adjacent opposite sides of each receiving area 148. This forms an area between the two power contacts 146 in each receiving area 148, located between the opposing interior facing contact surfaces of the two power contacts, which is sized and shaped to receive one of the mating connector contact sections 56, 106 or 126.
The present invention provides an inverse connection system. When the daughter board connection section 16 is mated with the motherboard connection section 18, the two signal connectors 20, 140 mate with each other and the two power connectors 22, 24 mate with respective ones of the power connectors 142. The mating connector contact sections 56, 106, 126 project into the receiving areas 148. The contact surfaces 62 of the first beams 58 contact a first one of the pair of power contacts 146, and the contact surfaces 64 of the second beams 60 contact a second one of the pair of power contacts in the same receiving area 148. The first contact beams 58 are deflected slightly inward and the second contact beams 60 are also deflected slightly inward in an opposite direction relative to the first contact beams. Thus, the mating connector contact sections 56, 106, 126 make electrical contact on two inwardly facing sides with the pairs of power contacts in the mating power connector 142.
As seen in comparing the a first type of power contact 28 shown in FIG. 5 to the second and third power contacts 78, 76 shown in FIGS. 8 and 9, the contacts share numerous similarities. In one type of method for forming the contacts, a same metal stamping die is used to form all of the contacts. The apparatus used to stamp the metal stock material includes an optional insert tooling punch which can be inserted into the metal stamping die. The metal stamping die can form the first type of electrical power contact 28 when the insert tooling punch is not inserted into the metal stamping die. However, when the insert tooling punch is inserted into the metal stamping die, then, when the metal stock material is stamped by both the metal stamping die and the insert tooling punch, the second electrical power contact 78 and the third electrical power contact 76 are substantially simultaneously formed from the metal stock material.
Referring to FIGS. 13A and 13B, FIG. 13A shows a perspective view of two of the first type of contacts 28 formed from metal stock material on a carry strip 116, and FIG. 13B shows a perspective view of two pairs of the second and third types of contacts 76, 78 formed from metal stock material on a carry strip 116 formed with a same metal stamping die as used to form the first type of contacts 28 shown in FIG. 13A and with use of an additional, optional insert tooling punch. The insert tooling punch removes sections 160, 161 to separate the contacts 76, 78. Thus, the metal stamping die and the optional insert tooling punch can be used to form the three different types of electrical power contacts and subsequently form the two different types of electrical power connectors 22, 24.
Referring now to FIGS. 14 and 15, this method is illustrated. As shown in FIG. 14, the stock material is inserted 160 into the stamping apparatus. The stamping apparatus then stamps 162 the stock material without the insert tooling punch inserted in the metal stamping die. The formed first type of contact is then plated 164 and inserted 166 into the first type of housing. This forms the first type of connector 22.
FIG. 15 illustrates the steps for forming the second type of connector 24. The insert tooling punch is inserted 168 into the metal stamping die. The stock material is inserted 170 into the stamping apparatus. The stamping apparatus than stamps 172 the stock material with both the metal stamping die and the insert tooling punch. This forms the second and third types of contacts 78, 76 which are subsequently plated 174. The second and third types of contacts are then inserted 176 into the second type of housing to form the second type of power connector 24. This method illustrates merely one form of method that can be used to form power connectors incorporating features of the present invention. In alternate embodiments, any suitable method for forming the power connectors as described above could be used.
The present invention could be embodied or used with other alternate embodiments than described above. For example, the daughter board connection section 16 could comprise more or less than the three connectors, and one or more of the connectors might not be stacked adjacent the other connectors. In addition, in another type of alternate embodiment, the housings for two or more of the connectors might be formed by a one-piece molded housing. The signal connector 20 could comprise any suitable type of signal connector. The air flow passages 36 might not form a majority of a cross sectional size of the rear section 30. The air flow passages 36 in the rear section 30 could also comprise any suitable size and shape. Any suitable system for loading the contacts into the housing could be provided. The front ends of the beams 58, 60 could comprise any suitable type of shape. Features of the present invention could be incorporated into vertical headers, right angle receptacles, and power connectors with different contact arrays other than the 1×2 and 2×2 contact arrays described above.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.

Claims (21)

What is claimed is:
1. A printed circuit board electrical power contact for connecting a daughter printed circuit board to a mating contact on another electrical component, the power contact comprising:
a main section;
at least one daughter board electrical contact section extending from the main section; and
at least one mating connector contact section extending from the main section, the mating connector contact section comprising at least two forward projecting beams, wherein a first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction, and wherein a second one of the beams extends outward in a second opposite direction as the second beam extends forward from the main section and has a contact surface facing the second direction, wherein the first beam is larger than the second beam.
2. A system for connecting a daughter printed circuit board to a mother printed circuit board, the system comprising:
a first power connector adapted to be mounted to the mother printed circuit board, the first power connector having a first housing and first power contacts;
a second power connector adapted to be mounted to the daughter printed circuit board, the second power connector having a plurality of second power contacts, each second power contact having a main section with outwardly bent contact beams having outward facing contact areas, the outwardly bent contact beams comprising a first contact beam which is larger than a second contact beam, wherein the first and second contact beams extend in generally opposite directions from a front end of the main section, and wherein the second power contacts are adapted to be inserted into the first housing;
a first signal connector adapted to be mounted to the mother printed circuit board, the first signal connector comprising male signal contacts; and
a second signal connector adapted to be mounted to the daughter printed circuit board, the second signal connector comprising female signal contacts adapted to receive the male signal contacts therein.
3. An electrical contact comprising:
a main section;
a first electrical contact section extending from the main section, wherein the first electrical contact section is adapted to connect to a first device; and
a second electrical contact section extending from the main section, wherein the second electrical contact section is adapted to connect to a second device, wherein the second electrical contact section comprises at least two beams projecting from the main section in a connection direction for connecting the second electrical contact section to the second device, wherein a first one of the beams extends outward in a first direction as well as in the connection direction from the main section and has a first contact surface facing the first direction, wherein a second one of the beams extends outward in a second direction as well as in the connection direction from the main section and has a second contact surface facing the second direction, and wherein the first beam is larger than the second beam.
4. An electrical contact as in claim 3 wherein the second direction is generally opposite to the first direction.
5. An electrical contact as in claim 3 wherein the second direction is a lateral direction relative to the connection direction.
6. An electrical contact as in claim 5 wherein the second direction is generally opposite to the first direction.
7. An electrical contact as in claim 3 wherein the second direction is orthogonal to the connection direction.
8. An electrical contact as in claim 7 wherein the second direction is generally opposite to the first direction.
9. An electrical contact as in claim 3 wherein the second electrical contact section comprises two of the second beams.
10. An electrical contact as in claim 9 wherein the two second contact beams are located on opposite sides of the first beam.
11. An electrical contact as in claim 3 wherein the second electrical contact section comprises a pair of two of the second beams for each first beam, and wherein each of the second beams are located at directly opposite sides of their respective first beam.
12. An electrical connector assembly comprising:
a first electrical connector comprising a first housing and a first electrical contact, wherein the first housing comprises at least two first heat dissipation holes extending from an exterior side of the first housing to an interior of the first housing, where the at least two first heat dissipation holes are located on opposite sides of the first housing;
a second electrical connector comprising a second housing and a second electrical contact, wherein the second housing comprises at least two second heat dissipation holes extending from an exterior side of the second housing to an interior of the second housing, where the at least two second heat dissipation holes are located on opposite sides of the second housing;
wherein the first housing comprises a receiving area adapted to receive at least a portion of the second housing, wherein the first heat dissipation holes extend into the receiving area of the first housing, wherein a first pair of the first and second heat dissipation holes are located on the housings to at least partially vertically align adjacent each other when the second electrical connector is inserted into the receiving area of the first housing, wherein a second pair of the first and second heat dissipation holes are located on the housings to at least partially vertically align adjacent each other when the second electrical connector is inserted into the receiving area of the first housing, where the first pair of heat dissipation holes is aligned substantially unobstructed relative to the second pair of heat dissipation holes for air to flow from the receiving area of the first housing out of the electrical connector assembly.
13. An electrical connector assembly as in claim 12 wherein the first housing comprises two of the first heat dissipation holes located at the two opposite sides of the first housing.
14. An electrical connector assembly as in claim 13 wherein the second housing comprises two of the second heat dissipation holes located at the two opposite sides of the second housing.
15. An electrical connector assembly as in claim 12 wherein the opposite sides of the first housing comprise a top side and a bottom side of the first housing.
16. An electrical connector assembly comprising:
a first electrical connector comprising a first housing and a first electrical contact, wherein the first housing comprises a first heat dissipation hole extending from an exterior side of the first housing to an interior of the first housing;
a second electrical connector comprising a second housing and a second electrical contact, wherein the second housing comprises a second heat dissipation hole extending from an exterior side of the second housing to an interior of the second housing;
wherein the first housing comprises a receiving area adapted to receive at least a portion of the second housing, wherein the first heat dissipation hole extends into the receiving area of the first housing, wherein the first and second heat dissipation holes are located on the housings to at least partially vertically align adjacent each other when the second electrical connector is inserted into the receiving area of the first housing where the first and second heat dissipation holes are aligned substantially unobstructed for air to flow from the receiving area of the first housing out of the electrical connector assembly,
wherein the first electrical contact comprising:
a main section;
at least one daughter board electrical contact section extending from the main section; and
at least one mating connector contact section extending from the main section, the mating connector contact section comprising at least two forward protecting beams, wherein a first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction and wherein a second one of the beams extends outward in a second opposite direction as the second beam extends forward from the main section and has a contact surface facing the second direction, wherein the first beam is larger than the second beam.
17. An electrical connector comprising:
an electrical contact, wherein the electrical contact comprises;
a main section;
at least one daughter board electrical contact section extending from the main section; and
at least one mating connector contact section extending from the main section, the mating connector contact section comprising at least two forward projecting beams, wherein a first one of the beams extends outward in a first direction as the first beam extends forward from the main section and has a contact surface facing the first direction, and wherein a second one of the beams extends outward in a second opposite direction as the second beam extends forward from the main section and has a contact surface facing the second direction, wherein the first beam is larger than the second beam;
a housing having the electrical contact mounted to the housing, wherein the housing comprises a receiving area adapted to receive a portion of a mating electrical connector, wherein the electrical contact extends into the receiving area, wherein the housing comprises heat dissipation holes extending from an exterior side of the housing through different walls of the housing and into the receiving area,
wherein the housing is sized and shaped, and the heat dissipation holes are located at predetermined locations on the housing such that at least some of the heat dissipation holes are aligned relative to each other on opposite sides of the housing, and where the heat dissipation holes are located at the predetermined locations on the housings to at least partially vertically align the heat dissipation holes with heat dissipation holes of a mating electrical connector when the mating electrical connector is connected to the electrical connector for the heat dissipation holes to be substantially unobstructed for air to flow from the receiving area of the first housing out of the electrical connector assembly through the aligned heat dissipation holes.
18. An electrical connector as in claim 17 wherein the different walls of the housing comprise a top side of the housing and an opposite bottom side of the housing.
19. A method comprising:
connecting a first electrical connector to a second electrical connector, wherein the first and second electrical connectors each comprise a housing having an interior open space with mating portions of electrical contacts in the open spaces; and
when the first and second electrical connectors are being connected to each other, at least partially vertically aligning first heat dissipation holes on the housing of the first electrical connector with second heat dissipation holes of the housing of the second electrical connector as aligned pairs of holes,
wherein the heat dissipation holes extend through the housings between exterior sides of the housings and interior open spaces such that heated air can flow from the interior open spaces out of the housings through the aligned pairs of holes, where a first pair of the first and second heat dissipation holes and a second pair of the heat dissipation holes on opposite sides of the housings are aligned substantially unobstructed for the air to flow through the aligned pairs of heat dissipation holes when the electrical connectors are connected.
20. A method as in claim 19 wherein the housing of the first electrical connector comprises two of the first heat dissipation holes and the housing of the second electrical connector comprises two of the second heat dissipation holes, wherein the pairs of heat dissipation holes are located on opposite sides of the electrical connectors when the electrical connectors are connected to each other.
21. A method as in claim 19 wherein the opposite sides of the housings comprise opposite top and bottom sides of the housings.
US12/317,366 2002-05-23 2008-12-22 Electrical power connector Expired - Lifetime USRE44556E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/317,366 USRE44556E1 (en) 2002-05-23 2008-12-22 Electrical power connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/155,819 US6814590B2 (en) 2002-05-23 2002-05-23 Electrical power connector
US10/969,166 US7065871B2 (en) 2002-05-23 2004-10-17 Method of manufacturing electrical power connector
US11/414,062 US7168963B2 (en) 2002-05-23 2006-04-27 Electrical power connector
US12/317,366 USRE44556E1 (en) 2002-05-23 2008-12-22 Electrical power connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/414,062 Reissue US7168963B2 (en) 2002-05-23 2006-04-27 Electrical power connector

Publications (1)

Publication Number Publication Date
USRE44556E1 true USRE44556E1 (en) 2013-10-22

Family

ID=29549175

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/155,819 Expired - Lifetime US6814590B2 (en) 2002-05-23 2002-05-23 Electrical power connector
US10/969,166 Expired - Lifetime US7065871B2 (en) 2002-05-23 2004-10-17 Method of manufacturing electrical power connector
US11/414,062 Ceased US7168963B2 (en) 2002-05-23 2006-04-27 Electrical power connector
US12/317,366 Expired - Lifetime USRE44556E1 (en) 2002-05-23 2008-12-22 Electrical power connector

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/155,819 Expired - Lifetime US6814590B2 (en) 2002-05-23 2002-05-23 Electrical power connector
US10/969,166 Expired - Lifetime US7065871B2 (en) 2002-05-23 2004-10-17 Method of manufacturing electrical power connector
US11/414,062 Ceased US7168963B2 (en) 2002-05-23 2006-04-27 Electrical power connector

Country Status (7)

Country Link
US (4) US6814590B2 (en)
EP (1) EP1506597B1 (en)
JP (3) JP2005534142A (en)
CN (3) CN100421306C (en)
AU (1) AU2003228982A1 (en)
TW (1) TW588475B (en)
WO (1) WO2003100909A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD718253S1 (en) 2012-04-13 2014-11-25 Fci Americas Technology Llc Electrical cable connector
US8905651B2 (en) 2012-01-31 2014-12-09 Fci Dismountable optical coupling device
USD720698S1 (en) 2013-03-15 2015-01-06 Fci Americas Technology Llc Electrical cable connector
US8944831B2 (en) 2012-04-13 2015-02-03 Fci Americas Technology Llc Electrical connector having ribbed ground plate with engagement members
US20150056833A1 (en) * 2013-08-26 2015-02-26 Thomas Brungard Replacement electrical connectors
USD727268S1 (en) 2012-04-13 2015-04-21 Fci Americas Technology Llc Vertical electrical connector
USD727852S1 (en) 2012-04-13 2015-04-28 Fci Americas Technology Llc Ground shield for a right angle electrical connector
US9048583B2 (en) 2009-03-19 2015-06-02 Fci Americas Technology Llc Electrical connector having ribbed ground plate
USD733662S1 (en) 2013-01-25 2015-07-07 Fci Americas Technology Llc Connector housing for electrical connector
USD746236S1 (en) 2012-07-11 2015-12-29 Fci Americas Technology Llc Electrical connector housing
US9257778B2 (en) 2012-04-13 2016-02-09 Fci Americas Technology High speed electrical connector
US9543703B2 (en) 2012-07-11 2017-01-10 Fci Americas Technology Llc Electrical connector with reduced stack height
US10114182B2 (en) 2015-09-10 2018-10-30 Samtec, Inc. Rack-mountable equipment with a high-heat-dissipation module, and transceiver receptacle with increased cooling

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814590B2 (en) * 2002-05-23 2004-11-09 Fci Americas Technology, Inc. Electrical power connector
US20040147169A1 (en) 2003-01-28 2004-07-29 Allison Jeffrey W. Power connector with safety feature
DE10333913A1 (en) * 2003-07-25 2005-02-24 Krone Gmbh Wiring connection module for circuit boards, uses contacts allowing longitudinal axes of insulation-piercing contacts to lie parallel to circuit-board surface
US7158379B2 (en) * 2003-12-12 2007-01-02 Cisco Technology, Inc. Device for removing heat from a power connector
EP1702389B1 (en) * 2003-12-31 2020-12-09 Amphenol FCI Asia Pte. Ltd. Electrical power contacts and connectors comprising same
US7458839B2 (en) 2006-02-21 2008-12-02 Fci Americas Technology, Inc. Electrical connectors having power contacts with alignment and/or restraining features
MXPA06010602A (en) 2004-03-18 2006-12-14 Lg Electronics Inc Apparatus and method for recording and/or reproducing data to/from recording medium.
TWI386923B (en) 2004-03-18 2013-02-21 Lg Electronics Inc Recording medium with segment information thereon and apparatus and methods for forming, recording, and reproducing the recording medium
US7137832B2 (en) * 2004-06-10 2006-11-21 Samtec Incorporated Array connector having improved electrical characteristics and increased signal pins with decreased ground pins
JP2006049130A (en) * 2004-08-05 2006-02-16 D D K Ltd Electric connector
US7182642B2 (en) * 2004-08-16 2007-02-27 Fci Americas Technology, Inc. Power contact having current flow guiding feature and electrical connector containing same
US8660701B2 (en) 2004-08-26 2014-02-25 A. O. Smith Corporation Modular control system and method for water heaters
US7613855B2 (en) * 2004-08-26 2009-11-03 A. O. Smith Corporation Modular control system and method for water heaters
SG121012A1 (en) * 2004-10-01 2006-04-26 Molex Inc Heat dissipating terminal and elctrical connector using same
US7476108B2 (en) * 2004-12-22 2009-01-13 Fci Americas Technology, Inc. Electrical power connectors with cooling features
US7384289B2 (en) 2005-01-31 2008-06-10 Fci Americas Technology, Inc. Surface-mount connector
US7422483B2 (en) * 2005-02-22 2008-09-09 Molex Incorproated Differential signal connector with wafer-style construction
US7175446B2 (en) * 2005-03-28 2007-02-13 Tyco Electronics Corporation Electrical connector
US7574120B2 (en) 2005-05-11 2009-08-11 A. O. Smith Corporation System and method for estimating and indicating temperature characteristics of temperature controlled liquids
US7527509B1 (en) * 2005-06-21 2009-05-05 Ideal Industries, Inc. Electrical disconnect with push-in connectors
EP1737070A3 (en) * 2005-06-21 2007-02-07 Ideal Industries Inc. Eledtrical disconnect with push-in connectors
JP4704889B2 (en) * 2005-10-31 2011-06-22 矢崎総業株式会社 Wire harness manufacturing apparatus and method
US8887671B2 (en) * 2006-03-27 2014-11-18 A. O. Smith Corporation Water heating systems and methods
US8245669B2 (en) * 2006-03-27 2012-08-21 A. O. Smith Corporation Water heating systems and methods
US20070246552A1 (en) * 2006-03-27 2007-10-25 Patterson Wade C Water heating systems and methods
US20070248340A1 (en) * 2006-03-27 2007-10-25 Phillips Terry G Water heating systems and methods
US20070246557A1 (en) * 2006-03-27 2007-10-25 Phillips Terry G Water heating systems and methods
US7425145B2 (en) * 2006-05-26 2008-09-16 Fci Americas Technology, Inc. Connectors and contacts for transmitting electrical power
US7726982B2 (en) * 2006-06-15 2010-06-01 Fci Americas Technology, Inc. Electrical connectors with air-circulation features
US7727002B2 (en) * 2006-06-21 2010-06-01 Ideal Industries, Inc. Electrical disconnect with adjacent wire receptacle boxes
CN101236230A (en) * 2007-02-02 2008-08-06 深圳富泰宏精密工业有限公司 Detection apparatus
US7597573B2 (en) * 2007-02-26 2009-10-06 Tyco Electronics Corporation Low profile high current power connector with cooling slots
US7641500B2 (en) * 2007-04-04 2010-01-05 Fci Americas Technology, Inc. Power cable connector system
US20080280488A1 (en) * 2007-05-09 2008-11-13 Hartley James T Modular electrical connector for a circuit board
US7905731B2 (en) * 2007-05-21 2011-03-15 Fci Americas Technology, Inc. Electrical connector with stress-distribution features
US7473123B1 (en) * 2007-07-09 2009-01-06 Ideal Industries, Inc. Electrical disconnect with radially-spaced terminals
JP2009054306A (en) * 2007-08-23 2009-03-12 D D K Ltd Connector
EP2194618B1 (en) * 2007-09-28 2013-10-23 Kabushiki Kaisha Toshiba Power connector
US7762857B2 (en) 2007-10-01 2010-07-27 Fci Americas Technology, Inc. Power connectors with contact-retention features
US7604489B2 (en) * 2007-11-13 2009-10-20 Fci Americas Technology, Inc. μTCA-compliant power contacts
US7976317B2 (en) * 2007-12-04 2011-07-12 Molex Incorporated Low profile modular electrical connectors and systems
US8435047B2 (en) * 2007-12-04 2013-05-07 Molex Incorporated Modular connectors with easy-connect capability
JP2009153239A (en) * 2007-12-18 2009-07-09 Sumitomo Wiring Syst Ltd Electrical connection box
US7494389B1 (en) * 2008-03-10 2009-02-24 Infineon Technologies Ag Press-fit-connection
US8062051B2 (en) 2008-07-29 2011-11-22 Fci Americas Technology Llc Electrical communication system having latching and strain relief features
USD606497S1 (en) 2009-01-16 2009-12-22 Fci Americas Technology, Inc. Vertical electrical connector
USD608293S1 (en) 2009-01-16 2010-01-19 Fci Americas Technology, Inc. Vertical electrical connector
USD640637S1 (en) 2009-01-16 2011-06-28 Fci Americas Technology Llc Vertical electrical connector
USD664096S1 (en) 2009-01-16 2012-07-24 Fci Americas Technology Llc Vertical electrical connector
USD610548S1 (en) 2009-01-16 2010-02-23 Fci Americas Technology, Inc. Right-angle electrical connector
USD619099S1 (en) 2009-01-30 2010-07-06 Fci Americas Technology, Inc. Electrical connector
US8323049B2 (en) 2009-01-30 2012-12-04 Fci Americas Technology Llc Electrical connector having power contacts
JP5250450B2 (en) * 2009-02-27 2013-07-31 第一電子工業株式会社 Electrical connector
USD618181S1 (en) 2009-04-03 2010-06-22 Fci Americas Technology, Inc. Asymmetrical electrical connector
USD618180S1 (en) 2009-04-03 2010-06-22 Fci Americas Technology, Inc. Asymmetrical electrical connector
CN101872916A (en) * 2009-04-24 2010-10-27 凡甲电子(苏州)有限公司 Electric connector and subassembly thereof
US8366458B2 (en) * 2009-06-24 2013-02-05 Fci Americas Technology Llc Electrical power connector system
US7997938B2 (en) * 2009-10-22 2011-08-16 Tyco Electronics Corporation Electrical connector system with electrical power connection and guide features
US8267721B2 (en) * 2009-10-28 2012-09-18 Fci Americas Technology Llc Electrical connector having ground plates and ground coupling bar
CN102055094A (en) * 2009-10-30 2011-05-11 苏州华旃航天电器有限公司 Multi-contact high current elastic contact element terminal
CN102263344B (en) * 2010-05-24 2013-06-05 凡甲电子(苏州)有限公司 Socket power connector, plug power connector and component
US8100699B1 (en) * 2010-07-22 2012-01-24 Tyco Electronics Corporation Connector assembly having a connector extender module
US8262395B2 (en) * 2010-12-27 2012-09-11 Chief Land Electronic Co., Ltd. Power connector assembly with improved terminals
US8472205B2 (en) * 2010-12-30 2013-06-25 Research In Motion Limited Adaptive printed circuit board connector
US10243284B2 (en) * 2011-01-31 2019-03-26 Amphenol Corporation Multi-stage beam contacts
US8657616B2 (en) * 2011-05-24 2014-02-25 Fci Americas Technology Llc Electrical contact normal force increase
US8794991B2 (en) * 2011-08-12 2014-08-05 Fci Americas Technology Llc Electrical connector including guidance and latch assembly
JP5904573B2 (en) * 2011-08-19 2016-04-13 富士通コンポーネント株式会社 connector
TWM420072U (en) * 2011-08-26 2012-01-01 Aces Electronic Co Ltd Plug connector, jack connector and their assembly
TWM420093U (en) * 2011-08-26 2012-01-01 Aces Electronic Co Ltd Plug connector, jack connector and their assembly
US8597047B2 (en) 2011-11-14 2013-12-03 Airborn, Inc. Insulator with air dielectric cavities for electrical connector
JP5802561B2 (en) * 2012-01-06 2015-10-28 ホシデン株式会社 connector
US20130217267A1 (en) * 2012-02-21 2013-08-22 Rongzhe Guo Connector assembly capable of sustaining large current
CN104704682B (en) * 2012-08-22 2017-03-22 安费诺有限公司 High-frequency electrical connector
CN103730745B (en) * 2012-10-16 2016-02-03 欧品电子(昆山)有限公司 Electric connector and combination thereof
CN103811888A (en) * 2012-11-08 2014-05-21 凡甲电子(苏州)有限公司 Electric connector
CN103811911B (en) * 2012-11-08 2015-12-09 凡甲电子(苏州)有限公司 Electric connector
TWI482375B (en) * 2012-11-09 2015-04-21 Alltop Technology Co Ltd Electrical connector
CN104103931B (en) * 2013-04-01 2018-02-16 泰科电子公司 Electric connector with the electrical contact with multiple contact beams
CN104103954B (en) 2013-04-08 2018-01-02 泰科电子公司 The electric connector of guide element with entirety
CN104103925B (en) 2013-04-08 2018-01-02 泰科电子公司 Electrical contact and the electric coupler component for including it
TWI643414B (en) * 2013-07-12 2018-12-01 摩勒克斯公司 Power module, electrical connector and connector assembly
CN104348050B (en) * 2013-08-08 2017-08-25 光宝电子(广州)有限公司 Electrical power distribution apparatus and its assemble method
WO2015081064A1 (en) * 2013-11-27 2015-06-04 Fci Asia Pte. Ltd Electrical power connector
DE102014202316B4 (en) * 2014-02-07 2021-04-01 Te Connectivity Germany Gmbh Contact carrier with a base body and at least one contact element, tool for injection molding a contact carrier and method for producing a contact carrier
JP6311396B2 (en) * 2014-03-28 2018-04-18 住友電装株式会社 connector
CN104124553A (en) * 2014-07-24 2014-10-29 珠海格力电器股份有限公司 Inserting sheet and printed circuit board with same
JP2016091598A (en) * 2014-10-29 2016-05-23 富士通コンポーネント株式会社 Connector and connector device
US9401558B1 (en) * 2015-01-30 2016-07-26 Alltop Electronics (Suzhou) Ltd. Power connector
US10439310B2 (en) * 2015-03-25 2019-10-08 Edward Perez Circuit assembly pin
FR3034914B1 (en) * 2015-04-13 2017-05-05 Seifel ELECTRICAL CONNECTION TERMINAL FOR RECEIVING A KNIFE
EP3501066B1 (en) 2016-08-18 2021-08-18 Samtec, Inc. Direct-attach connector and manufacturing method thereof
TWM590795U (en) * 2019-08-22 2020-02-11 映興電子股份有限公司 Connector structure
CN110829070A (en) * 2019-10-31 2020-02-21 武汉嘉晨汽车技术有限公司 PDU socket
WO2021114162A1 (en) * 2019-12-12 2021-06-17 Fci Usa Llc Card-edge connector system with busbar connection for high-power applications

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790763A (en) 1986-04-22 1988-12-13 Amp Incorporated Programmable modular connector assembly
US4818237A (en) 1987-09-04 1989-04-04 Amp Incorporated Modular plug-in connection means for flexible power supply of electronic apparatus
US4820169A (en) 1986-04-22 1989-04-11 Amp Incorporated Programmable modular connector assembly
US4821146A (en) 1987-11-17 1989-04-11 International Business Machines Corporation Plugable interposer and printed circuit card carrier
US4975084A (en) 1988-10-17 1990-12-04 Amp Incorporated Electrical connector system
US5046960A (en) 1990-12-20 1991-09-10 Amp Incorporated High density connector system
US5139426A (en) 1991-12-11 1992-08-18 Amp Incorporated Adjunct power connector
US5152700A (en) 1991-06-17 1992-10-06 Litton Systems, Inc. Printed circuit board connector system
JPH05344728A (en) 1992-06-05 1993-12-24 Toshiba Corp Noncontact contactor
US5286212A (en) 1992-03-09 1994-02-15 The Whitaker Corporation Shielded back plane connector
US5458426A (en) 1993-04-26 1995-10-17 Sumitomo Wiring Systems, Ltd. Double locking connector with fallout preventing protrusion
US5511987A (en) 1993-07-14 1996-04-30 Yazaki Corporation Waterproof electrical connector
US5564952A (en) 1994-12-22 1996-10-15 The Whitaker Corporation Electrical plug connector with blade receiving slots
US5664968A (en) 1996-03-29 1997-09-09 The Whitaker Corporation Connector assembly with shielded modules
US5667392A (en) 1995-03-28 1997-09-16 The Whitaker Corporation Electrical connector with stabilized contact
US5782644A (en) 1995-01-30 1998-07-21 Molex Incorporated Printed circuit board mounted electrical connector
US5882214A (en) 1996-06-28 1999-03-16 The Whitaker Corporation Electrical connector with contact assembly
US6066048A (en) 1996-09-16 2000-05-23 Alpine Engineered Products, Inc. Punch and die for producing connector plates
JP2000228243A (en) 1999-02-08 2000-08-15 Denso Corp Ventilation of waterproof case
US6206722B1 (en) 1999-07-09 2001-03-27 Hon Hai Precision Ind. Co., Ltd. Micro connector assembly and method of making the same
US6261132B1 (en) 2000-12-29 2001-07-17 Hon Hai Precision Ind. Co., Ltd. Header connector for future bus
US6319075B1 (en) 1998-04-17 2001-11-20 Fci Americas Technology, Inc. Power connector
US6514103B2 (en) 2000-06-02 2003-02-04 Harting Kgaa Printed circuit board connector
US6768643B1 (en) * 2000-09-26 2004-07-27 Hewlett-Packard Development Company, L.P. Methods and apparatus for reducing the opportunity for accidental removal or insertion of components
US6814590B2 (en) * 2002-05-23 2004-11-09 Fci Americas Technology, Inc. Electrical power connector
US6923685B2 (en) 2002-08-19 2005-08-02 Anderson Power Products Handle locking system for electrical connectors and methods thereof
US20080248670A1 (en) 2003-12-31 2008-10-09 Fci Americas Technology, Inc. Electrical power contacts and connectors comprising same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148884U (en) * 1982-03-31 1983-10-06 富士通株式会社 crimp terminal connector
JPH0799706B2 (en) * 1986-09-15 1995-10-25 アンプ インコーポレーテッド Modular connector
JP2681562B2 (en) * 1991-10-14 1997-11-26 ヒロセ電機株式会社 Terminal structure and its manufacturing method
US5358413A (en) * 1992-12-08 1994-10-25 The Whitaker Corporation Right-angle board-mountable electrical connector with precision terminal positioning
US5904581A (en) * 1996-07-17 1999-05-18 Minnesota Mining And Manufacturing Company Electrical interconnection system and device
JP3647979B2 (en) * 1996-08-08 2005-05-18 富士通コンポーネント株式会社 Multi-pole connector
US6190215B1 (en) * 1997-01-31 2001-02-20 Berg Technology, Inc. Stamped power contact
JP3843402B2 (en) * 1997-03-07 2006-11-08 モレックス インコーポレーテッド Manufacturing method of electrical connectors
US6102754A (en) * 1997-03-31 2000-08-15 The Whitaker Corporation Bus bar contact
JP3685908B2 (en) * 1997-05-30 2005-08-24 富士通コンポーネント株式会社 High-speed transmission connector
SG101926A1 (en) * 1999-11-12 2004-02-27 Molex Inc Power connector
US6439975B1 (en) * 2000-01-28 2002-08-27 Hon Hai Precision Ind. Co., Ltd. Method for forming contact of electrical connector and press die for practicing the method
JP2002008788A (en) * 2000-06-26 2002-01-11 Nagano Fujitsu Component Kk Jack connector, plug connector and connector device
US6375508B1 (en) * 2000-12-26 2002-04-23 Hon Hai Precision Ind. Co.., Ltd. Electrical connector assembly having the same circuit boards therein

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820169A (en) 1986-04-22 1989-04-11 Amp Incorporated Programmable modular connector assembly
US4790763A (en) 1986-04-22 1988-12-13 Amp Incorporated Programmable modular connector assembly
US4818237A (en) 1987-09-04 1989-04-04 Amp Incorporated Modular plug-in connection means for flexible power supply of electronic apparatus
US4821146A (en) 1987-11-17 1989-04-11 International Business Machines Corporation Plugable interposer and printed circuit card carrier
US4975084A (en) 1988-10-17 1990-12-04 Amp Incorporated Electrical connector system
US5046960A (en) 1990-12-20 1991-09-10 Amp Incorporated High density connector system
US5152700A (en) 1991-06-17 1992-10-06 Litton Systems, Inc. Printed circuit board connector system
US5139426A (en) 1991-12-11 1992-08-18 Amp Incorporated Adjunct power connector
US5286212A (en) 1992-03-09 1994-02-15 The Whitaker Corporation Shielded back plane connector
JPH05344728A (en) 1992-06-05 1993-12-24 Toshiba Corp Noncontact contactor
US5458426A (en) 1993-04-26 1995-10-17 Sumitomo Wiring Systems, Ltd. Double locking connector with fallout preventing protrusion
US5511987A (en) 1993-07-14 1996-04-30 Yazaki Corporation Waterproof electrical connector
US5564952A (en) 1994-12-22 1996-10-15 The Whitaker Corporation Electrical plug connector with blade receiving slots
US5782644A (en) 1995-01-30 1998-07-21 Molex Incorporated Printed circuit board mounted electrical connector
US5667392A (en) 1995-03-28 1997-09-16 The Whitaker Corporation Electrical connector with stabilized contact
US5664968A (en) 1996-03-29 1997-09-09 The Whitaker Corporation Connector assembly with shielded modules
US5882214A (en) 1996-06-28 1999-03-16 The Whitaker Corporation Electrical connector with contact assembly
US6041498A (en) 1996-06-28 2000-03-28 The Whitaker Corporation Method of making a contact assembly
US6066048A (en) 1996-09-16 2000-05-23 Alpine Engineered Products, Inc. Punch and die for producing connector plates
US20020034889A1 (en) 1998-04-17 2002-03-21 Clark Stephen L. Power connector
US6319075B1 (en) 1998-04-17 2001-11-20 Fci Americas Technology, Inc. Power connector
US20020031925A1 (en) 1998-04-17 2002-03-14 Clark Stephen L. Power connector
JP2000228243A (en) 1999-02-08 2000-08-15 Denso Corp Ventilation of waterproof case
US6206722B1 (en) 1999-07-09 2001-03-27 Hon Hai Precision Ind. Co., Ltd. Micro connector assembly and method of making the same
US6514103B2 (en) 2000-06-02 2003-02-04 Harting Kgaa Printed circuit board connector
US6768643B1 (en) * 2000-09-26 2004-07-27 Hewlett-Packard Development Company, L.P. Methods and apparatus for reducing the opportunity for accidental removal or insertion of components
US6261132B1 (en) 2000-12-29 2001-07-17 Hon Hai Precision Ind. Co., Ltd. Header connector for future bus
US6814590B2 (en) * 2002-05-23 2004-11-09 Fci Americas Technology, Inc. Electrical power connector
US6923685B2 (en) 2002-08-19 2005-08-02 Anderson Power Products Handle locking system for electrical connectors and methods thereof
US20080248670A1 (en) 2003-12-31 2008-10-09 Fci Americas Technology, Inc. Electrical power contacts and connectors comprising same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Metral® 1000 Series, PCB Mounted Receptacle Assembly", FCI Web Site page, Nov. 26, 2001, 1 pg.
1. Patent Abstracts of Japan, JP05-344728, Dec. 24, 1993, 1 page.
Metral® 1000 Series, PCB Mounted Header Assembly, FCI Web Site page, 1 p.
Metral® 1000 Series, PCB Mounted Receptacle Assembly, FCI Web Site page, 1 p.

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048583B2 (en) 2009-03-19 2015-06-02 Fci Americas Technology Llc Electrical connector having ribbed ground plate
US10720721B2 (en) 2009-03-19 2020-07-21 Fci Usa Llc Electrical connector having ribbed ground plate
US10096921B2 (en) 2009-03-19 2018-10-09 Fci Usa Llc Electrical connector having ribbed ground plate
US9461410B2 (en) 2009-03-19 2016-10-04 Fci Americas Technology Llc Electrical connector having ribbed ground plate
US8905651B2 (en) 2012-01-31 2014-12-09 Fci Dismountable optical coupling device
USD750030S1 (en) 2012-04-13 2016-02-23 Fci Americas Technology Llc Electrical cable connector
US9831605B2 (en) 2012-04-13 2017-11-28 Fci Americas Technology Llc High speed electrical connector
USD727268S1 (en) 2012-04-13 2015-04-21 Fci Americas Technology Llc Vertical electrical connector
US8944831B2 (en) 2012-04-13 2015-02-03 Fci Americas Technology Llc Electrical connector having ribbed ground plate with engagement members
USD816044S1 (en) 2012-04-13 2018-04-24 Fci Americas Technology Llc Electrical cable connector
USD727852S1 (en) 2012-04-13 2015-04-28 Fci Americas Technology Llc Ground shield for a right angle electrical connector
USD748063S1 (en) 2012-04-13 2016-01-26 Fci Americas Technology Llc Electrical ground shield
US9257778B2 (en) 2012-04-13 2016-02-09 Fci Americas Technology High speed electrical connector
USD750025S1 (en) 2012-04-13 2016-02-23 Fci Americas Technology Llc Vertical electrical connector
USD718253S1 (en) 2012-04-13 2014-11-25 Fci Americas Technology Llc Electrical cable connector
USD790471S1 (en) 2012-04-13 2017-06-27 Fci Americas Technology Llc Vertical electrical connector
US9543703B2 (en) 2012-07-11 2017-01-10 Fci Americas Technology Llc Electrical connector with reduced stack height
USD751507S1 (en) 2012-07-11 2016-03-15 Fci Americas Technology Llc Electrical connector
USD746236S1 (en) 2012-07-11 2015-12-29 Fci Americas Technology Llc Electrical connector housing
US9871323B2 (en) 2012-07-11 2018-01-16 Fci Americas Technology Llc Electrical connector with reduced stack height
USD766832S1 (en) 2013-01-25 2016-09-20 Fci Americas Technology Llc Electrical connector
USD772168S1 (en) 2013-01-25 2016-11-22 Fci Americas Technology Llc Connector housing for electrical connector
USD745852S1 (en) 2013-01-25 2015-12-22 Fci Americas Technology Llc Electrical connector
USD733662S1 (en) 2013-01-25 2015-07-07 Fci Americas Technology Llc Connector housing for electrical connector
USD720698S1 (en) 2013-03-15 2015-01-06 Fci Americas Technology Llc Electrical cable connector
US20150056833A1 (en) * 2013-08-26 2015-02-26 Thomas Brungard Replacement electrical connectors
US10741945B2 (en) * 2013-08-26 2020-08-11 Fci Usa Llc Replacement electrical connectors
US10114182B2 (en) 2015-09-10 2018-10-30 Samtec, Inc. Rack-mountable equipment with a high-heat-dissipation module, and transceiver receptacle with increased cooling

Also Published As

Publication number Publication date
US6814590B2 (en) 2004-11-09
JP2009081143A (en) 2009-04-16
CN101276981B (en) 2010-07-28
EP1506597B1 (en) 2013-04-24
JP2005534142A (en) 2005-11-10
JP2009081144A (en) 2009-04-16
TW588475B (en) 2004-05-21
EP1506597A4 (en) 2006-12-13
US7168963B2 (en) 2007-01-30
WO2003100909A1 (en) 2003-12-04
AU2003228982A1 (en) 2003-12-12
EP1506597A1 (en) 2005-02-16
CN101924285B (en) 2013-11-20
US20030219999A1 (en) 2003-11-27
US20050042901A1 (en) 2005-02-24
CN1656651A (en) 2005-08-17
US20060194472A1 (en) 2006-08-31
US7065871B2 (en) 2006-06-27
CN101924285A (en) 2010-12-22
TW200408164A (en) 2004-05-16
CN101276981A (en) 2008-10-01
CN100421306C (en) 2008-09-24

Similar Documents

Publication Publication Date Title
USRE44556E1 (en) Electrical power connector
JP3041676B2 (en) Electrical connector with improved terminal retention mechanism
US11682852B2 (en) Electrical connector assembly
WO2008156857A2 (en) Backplane connector with improved pin header
JPH10500245A (en) Electrical connectors, housings and contacts
US5536179A (en) Electrical connector with ground bus insert
CN114175410B (en) Safe, stable and compact connector
EP2945225A1 (en) Electrical connectors having leadframes
US11050200B2 (en) Electrical connector with hermaphroditic terminal and housing
EP1538706B1 (en) A connector fixing bracket
CN1104057C (en) Board mountable electrical connector
EP1294055B1 (en) Connector assembly comprising a tab-receiving insulated spring sleeve and a dual contact with pairs of spaced apart contact members and tails
KR101029668B1 (en) Surface mount header assembly
US6027376A (en) Connector for integrated circuit chip
EP4336664A1 (en) Terminal socket, terminal pin, terminal system, and terminal assembly
US20240178592A1 (en) Miniaturized high-speed interposer

Legal Events

Date Code Title Description
AS Assignment

Owner name: FCI AMERICAS TECHNOLOGY LLC, NEVADA

Free format text: CONVERSION TO LLC;ASSIGNOR:FCI AMERICAS TECHNOLOGY, INC.;REEL/FRAME:025957/0432

Effective date: 20090930

CC Certificate of correction
AS Assignment

Owner name: WILMINGTON TRUST (LONDON) LIMITED, UNITED KINGDOM

Free format text: SECURITY AGREEMENT;ASSIGNOR:FCI AMERICAS TECHNOLOGY LLC;REEL/FRAME:031896/0696

Effective date: 20131227

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: FCI AMERICAS TECHNOLOGY LLC, NEVADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST (LONDON) LIMITED;REEL/FRAME:037484/0169

Effective date: 20160108

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12